51
|
Kang W, Saqui-Salces M, Zavros Y, Merchant JL. Induction of follistatin precedes gastric transformation in gastrin deficient mice. Biochem Biophys Res Commun 2008; 376:573-7. [PMID: 18804092 DOI: 10.1016/j.bbrc.2008.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/08/2008] [Indexed: 11/24/2022]
Abstract
We previously showed that antral gastric tumors develop in gastrin-deficient (Gas(-/-)) mice. Therefore Gas(-/-) mice were studied sequentially over 12 months to identify molecular mechanisms underlying gastric transformation. Fundic atrophy developed by 9 months in Gas(-/-) mice. Antral mucosal hyperplasia developed coincident with the focal loss of TFF1 and Muc5AC. Microarray analysis of 12 month Gas(-/-) tumors revealed an increase in follistatin, an activin/BMP antagonist. We found that elevated follistatin expression occurred in the proliferative neck zone of hyperplastic antrums, in antral tumors of Gas(-/-) mice, and also in human gastric cancers. Follistatin induced cyclin D1 and the trefoil factors TFF1 and TFF2 in a gastric cancer cell line. We concluded that antral hyperplasia in Gas(-/-) mice involves amplification of mucous cell lineages due to follistatin, suggesting its role in the development of antral gastric tumors.
Collapse
Affiliation(s)
- Weiqun Kang
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 2051, Ann Arbor, MI 48109-2200, USA
| | | | | | | |
Collapse
|
52
|
Lindén S, Mahdavi J, Semino-Mora C, Olsen C, Carlstedt I, Borén T, Dubois A. Role of ABO secretor status in mucosal innate immunity and H. pylori infection. PLoS Pathog 2008; 4:e2. [PMID: 18179282 PMCID: PMC2174967 DOI: 10.1371/journal.ppat.0040002] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 11/21/2007] [Indexed: 12/14/2022] Open
Abstract
The fucosylated ABH antigens, which constitute the molecular basis for the ABO blood group system, are also expressed in salivary secretions and gastrointestinal epithelia in individuals of positive secretor status; however, the biological function of the ABO blood group system is unknown. Gastric mucosa biopsies of 41 Rhesus monkeys originating from Southern Asia were analyzed by immunohistochemistry. A majority of these animals were found to be of blood group B and weak-secretor phenotype (i.e., expressing both Lewis a and Lewis b antigens), which are also common in South Asian human populations. A selected group of ten monkeys was inoculated with Helicobacter pylori and studied for changes in gastric mucosal glycosylation during a 10-month period. We observed a loss in mucosal fucosylation and concurrent induction and time-dependent dynamics in gastric mucosal sialylation (carbohydrate marker of inflammation), which affect H. pylori adhesion targets and thus modulate host–bacterial interactions. Of particular relevance, gastric mucosal density of H. pylori, gastritis, and sialylation were all higher in secretor individuals compared to weak-secretors, the latter being apparently “protected.” These results demonstrate that the secretor status plays an intrinsic role in resistance to H. pylori infection and suggest that the fucosylated secretor ABH antigens constitute interactive members of the human and primate mucosal innate immune system. The common ABO blood group antigen system was described in the early 20th century. In addition, it has been known for 60 years that the majority of individuals also express the corresponding ABO antigens (carbohydrate identity tags) in their saliva, tears, milk, and mucus secretions in the digestive tract. To this date, however, the biological function of the ABO blood group antigens has remained an enigma. Here, we show that the great majority of Rhesus monkeys are of blood group B and weak-secretors, i.e., are similar to the human populations in South Asia from where these monkeys originate. This observation suggests that an evolutionary adaptation in digestive tract mucosal carbohydrate patterns to local environmental selection has occurred. In addition, we demonstrate that long-term infection by the “peptic ulcer bacterium” Helicobacter pylori induces mucosal carbohydrate patterns that change according to the individual secretor phenotype. The common weak-secretor monkeys were apparently “protected,” as they had stable glycosylation, lower inflammation, and lower bacterial infection load, whereas the less common secretor animals had increased levels of inflammation-associated mucosal carbohydrate patterns and a transient decrease in the ABO blood group system type of carbohydrates. These novel observations suggest that the individual ABO blood group and secretor phenotype are part of human and non-human primate innate immunity against infectious disease.
Collapse
Affiliation(s)
- Sara Lindén
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- United States Military Cancer Institute, Bethesda, Maryland, United States of America
- Mucosal Diseases Program, Mater Medical Research Institute, South Brisbane, Australia
| | - Jafar Mahdavi
- Division of Microbiology and Infectious Diseases, Queen's Medical Centre, Nottingham, United Kingdom
| | - Cristina Semino-Mora
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- United States Military Cancer Institute, Bethesda, Maryland, United States of America
| | - Cara Olsen
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ingemar Carlstedt
- Mucosal Biology Group, Department of Cell- and Molecular Biology, BMC, Lund University, Lund, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * To whom correspondence should be addressed. E-mail: (TB); (AD)
| | - Andre Dubois
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- United States Military Cancer Institute, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (TB); (AD)
| |
Collapse
|
53
|
Semino-Mora C, Liu H, McAvoy T, Nieroda C, Studeman K, Sardi A, Dubois A. Pseudomyxoma peritonei: is disease progression related to microbial agents? A study of bacteria, MUC2 AND MUC5AC expression in disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. Ann Surg Oncol 2008; 15:1414-23. [PMID: 18299935 PMCID: PMC2570966 DOI: 10.1245/s10434-007-9778-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 12/01/2007] [Accepted: 12/03/2007] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Pseudomyxoma peritonei (PMP) is characterized by peritoneal tumors arising from a perforated appendiceal adenoma or adenocarcinoma, but associated entry of enteric bacteria in the peritoneum has not been considered as a cofactor. Because Gram-negative organisms can upregulate MUC2 mucin gene expression, we determined whether bacteria were detectable in PMP tissues. METHODS In situ hybridization was performed on resection specimens from five control subjects with noninflamed, nonperforated, non-neoplastic appendix and 16 patients with PMP [six with disseminated peritoneal adenomucinosis (DPAM) and 10 with peritoneal mucinous carcinomatosis (PMCA)]. Specific probes were designed to recognize: (1) 16S rRNA common to multiple bacteria or specific to H. pylori; (2) H. pylori cagA virulence gene; or (3) MUC2 or MUC5AC apomucins. Specimens from one patient with PMCA were examined by ultrastructural immunohistochemistry. Bacterial density and apomucin expression were determined in four histopathological compartments (epithelia, inflammatory cells, stroma, and free mucus). RESULTS Enteric bacteria were detected in all specimens. Bacterial density and MUC2 expression were significantly (p < 0.05) higher in PMCA than in DPAM and controls and were highest in free mucin. MUC2 was also expressed in dysplastic epithelia and in associated inflammatory cells. MUC2 expression was significantly correlated with bacterial density. CONCLUSIONS Multiple enteric bacteria are present in PMP, and bacterial density and MUC2 expression is highest in the malignant form of PMP. Based on these observations, we propose that the bacteria observed in PMP may play a role in the mucinous ascites and perhaps promote carcinogenesis.
Collapse
Affiliation(s)
- Cristina Semino-Mora
- Laboratory of Gastrointestinal and Liver Studies, Department of Medicine, Uniformed Services University and United States Military Cancer Institute, Bethesda, MD 20814, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Lee CW, Rickman B, Rogers AB, Ge Z, Wang TC, Fox JG. Helicobacter pylori eradication prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Cancer Res 2008; 68:3540-8. [PMID: 18441088 DOI: 10.1158/0008-5472.can-07-6786] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infection results in chronic gastritis, which may progress to gastric cancer. In this study, we investigated the efficacy of H. pylori eradication in preventing the progression of gastritis to gastric cancer in H. pylori-infected transgenic INS-GAS mice. H. pylori infection induced severe dysplasia and gastric cancer classified as high-grade and low-grade gastrointestinal intraepithelial neoplasia (GIN) in INS-GAS mice at 28 weeks postinfection (WPI). H. pylori eradication therapy using omeprazole, metronidazole, and clarithromycin was administered p.o. at 8, 12, or 22 WPI. Compared with untreated infected mice, H. pylori eradication at 8, 12, and 22 WPI significantly reduced the severity of dysplasia (P < 0.01). Moreover, H. pylori eradication at 8 WPI completely prevented the development of GIN (P < 0.001). Although not as effective as early antimicrobial treatment, prevention of progression to high-grade GIN was achieved by H. pylori eradication at 12 and 22 WPI (P < 0.05). Consistent with reduced gastric pathology, H. pylori eradication at all time points significantly down-regulated gastric Interferon-gamma, tumor necrosis factor-alpha, inducible nitric oxide synthase, and Reg 1 mRNA levels (P < 0.05) and reduced epithelial proliferation in the corpus (P < 0.01) compared with untreated infected mice. We concluded that H. pylori eradication prevented gastric cancer to the greatest extent when antibiotics are given at an early point of infection, but that eradication therapy given at a later time point delayed the development of severe dysplastic lesions.
Collapse
Affiliation(s)
- Chung-Wei Lee
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
55
|
Lee CW, Wang XD, Chien KL, Ge Z, Rickman BH, Rogers AB, Varro A, Whary MT, Wang TC, Fox JG. Vitamin C supplementation does not protect L-gulono-gamma-lactone oxidase-deficient mice from Helicobacter pylori-induced gastritis and gastric premalignancy. Int J Cancer 2008; 122:1068-76. [PMID: 17990318 PMCID: PMC2766771 DOI: 10.1002/ijc.23228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In human studies, low vitamin C intake has been associated with more severe Helicobacter pylori gastritis and a higher incidence of gastric cancer. However, vitamin C supplementation has not been definitively shown to protect against gastric cancer. Using vitamin C-deficient B6.129P2-Gulo(tm1Umc/mmcd) (gulo(-/-)) mice lacking L-gulono-gamma-lactone oxidase, we compared gastric lesions and Th1 immune responses in H. pylori-infected gulo(-/-) mice supplemented with low (33 mg/L) or high (3,300 mg/L) vitamin C in drinking water for 16 or 32 weeks. Vitamin C levels in plasma and gastric tissue correlated with the vitamin C supplementation levels in gulo(-/-) mice. H. pylori infection resulted in comparable gastritis and premalignant lesions in wildtype C57BL/6 and gulo(-/-) mice supplemented with high vitamin C, but lesions were less severe in gulo(-/-) mice supplemented with low vitamin C at 32 weeks post infection. The reduced gastric lesions in infected gulo(-/-) mice supplemented with low vitamin C correlated with reduced Th1-associated IgG2c, gastric IFN-gamma and TNF-alpha mRNA and higher H. pylori colonization levels. These results in the H. pylori-infected gulo(-/-) mouse model suggest that although supplementation with a high level of vitamin C achieved physiologically normal vitamin C levels in plasma and gastric tissue, this dose of vitamin C did not protect gulo(-/-) mice from H. pylori-induced premalignant gastric lesions. In addition, less severe gastric lesions in H.pylori infected gulo(-/-) mice supplemented with low vitamin C correlated with an attenuated Th1 inflammatory response.
Collapse
Affiliation(s)
- Chung-Wei Lee
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Kuo-Liong Chien
- School of Public Health, Harvard University, Boston, MA
- Institute of Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Barry H. Rickman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Arlin B. Rogers
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Andrea Varro
- Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | - Mark T. Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, NY, NY
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
56
|
Fox JG, Rogers AB, Whary MT, Ge Z, Ohtani M, Jones EK, Wang TC. Accelerated progression of gastritis to dysplasia in the pyloric antrum of TFF2 -/- C57BL6 x Sv129 Helicobacter pylori-infected mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 171:1520-8. [PMID: 17982128 DOI: 10.2353/ajpath.2007.070249] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trefoil factor family 2 (TFF2) is up-regulated in Helicobacter spp.-infected gastric tissues of both humans and mice. To ascertain the biological effects of TFF2 in vivo, TFF2(-/-) C57BL/6 x Sv129 and wild-type (WT) C57BL/6 x Sv129 mice were orally infected with Helicobacter pylori SS1. Mice were evaluated for gastric H. pylori colonization, pathology, and cytokine profiles at 6 and 19 months post inoculation (pi). At 6 months pi, there was a significant difference (P < 0.05) for epithelial criteria (mucosal defects, atrophy, hyperplasia, pseudopyloric metaplasia, and dysplasia) in the corpus of TFF2(-/-) versus WT mice. At 19 months pi, a similar statistical difference in epithelial parameters was noted in the antrum of TFF2(-/-) versus WT mice (P < 0.01). All of the TFF2(-/-) H. pylori-infected mice had high-grade antral dysplasia, including gastric intraepithelial neoplasia, which was statistically significant (P < 0.05) compared with the infected WT mice. Levels of interferon-gamma were markedly elevated in the gastric mucosa of infected TFF2(-/-) mice at both 6 and 19 months pi. TFF2 provided a cytoprotective and/or anti-inflammatory effect against the progression of premalignant lesions of the gastric corpus at 6 months pi and in the pyloric antrum in H. pylori-infected mice at 19 months pi. These data support a protective role for TFF2 in part by modulating levels of gastric interferon-gamma in the development of H. pylori-associated premalignancy of the distal stomach.
Collapse
Affiliation(s)
- James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
57
|
Yoshizawa N, Takenaka Y, Yamaguchi H, Tetsuya T, Tanaka H, Tatematsu M, Nomura S, Goldenring JR, Kaminishi M. Emergence of spasmolytic polypeptide-expressing metaplasia in Mongolian gerbils infected with Helicobacter pylori. J Transl Med 2007; 87:1265-76. [PMID: 18004396 DOI: 10.1038/labinvest.3700682] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spasmolytic polypeptide (TFF2)-expressing metaplasia (SPEM) is observed in mucosa adjacent to human gastric cancer and in fundic glands showing oxyntic atrophy in Helicobacter felis-infected mice. Mongolian gerbils infected with Helicobacter pylori (Hp) develop goblet cell intestinal metaplasia and adenocarcinoma, but the presence of SPEM has not been studied in gerbils. We therefore have sought to examine the development of metaplastic mucosal changes in Hp-infected Mongolian gerbils. Mongolian gerbils were assigned to either uninfected controls or infected with Hp at 17 weeks of age. The animals were killed at 17, 20, 26, 31, 41 and 56 weeks of age. Stomach sections were stained using antibodies for TFF2, intrinsic factor, H/K-ATPase, BrdU and MUC2. Dual immunofluorescence staining for TFF2 with intrinsic factor and for TFF2 with MUC2 was performed. In uninfected animals, no SPEM or intestinal metaplasia was observed. Infected gerbils developed SPEM initially in the intermediate zone along the lesser curvature and subsequently spread out towards the greater curvature. In the earlier stages of infection, SPEM glands demonstrated TFF2 and intrinsic factor double staining cells. However, after 35 weeks of infection, the number of double staining SPEM cells decreased. While early in infection SPEM organized in straight glands, in the later stages of infections, SPEM glands became distorted or dilated along with the development of gastritis cystica profunda that was TFF2 positive. Goblet cell intestinal metaplasia developed only late in the infection. Dual staining for TFF2 and MUC2 showed glands containing both SPEM- and MUC2-positive goblet cell intestinal metaplasia. SPEM develops early in Hp infection in Mongolian gerbils, and alterations in gland morphology arise from SPEM glands during the course of gastric infection with goblet cell intestinal metaplasia developing subsequent to SPEM.
Collapse
Affiliation(s)
- Nao Yoshizawa
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Qiao XT, Ziel JW, McKimpson W, Madison BB, Todisco A, Merchant JL, Samuelson LC, Gumucio DL. Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology 2007; 133:1989-98. [PMID: 18054570 PMCID: PMC2329573 DOI: 10.1053/j.gastro.2007.09.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 08/16/2007] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Epithelial stem cells in the stomach are responsible for constant renewal of the epithelium through generation of multiple gastric cell lineages that populate the gastric glands. However, gastric stem or progenitor cells have not been well-characterized because of the lack of specific markers that permit their prospective recognition. We identified an intestinal promoter that is active in a rare subpopulation of gastric epithelial cells and investigated whether these cells possess multilineage potential. METHODS A marked allele of the endogenous mouse villin locus was used to visualize single beta-galactosidase-positive cells located in the lower third of antral glands. A 12.4-kb villin promoter/enhancer fragment drives several transgenes (EGFP, beta-galactosidase, and Cre recombinase) in these cells in a pattern similar to that of the marked villin allele. Reporter gene activity was used to track these cells during development and to examine cell number in the context of inflammatory challenge while Cre activity allowed lineage tracing in vivo. RESULTS We show that these rare epithelial cells are normally quiescent, but multiply in response to interferon gamma. Lineage tracing studies confirm that these cells give rise to all gastric lineages of the antral glands. In the embryo, these cells are located basally in the stomach epithelium before completion of gastric gland morphogenesis. CONCLUSIONS We have identified a rare subpopulation of gastric progenitors with multilineage potential. The ability to prospectively identify and manipulate such progenitors in situ represents a major step forward in gastric stem cell biology and has potential implications for gastric cancer.
Collapse
Affiliation(s)
- Xiaotan T. Qiao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-2200
| | - Joshua W. Ziel
- Department of Biology, Duke University, Durham, NC, 27701
| | - Wendy McKimpson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-2200
| | - Blair B. Madison
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104
| | - Andrea Todisco
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109-2200
| | - Juanita L. Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109-2200, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-2200
| | - Linda C. Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-2200
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-2200,*Address Correspondence to: Deborah L. Gumucio, Ph.D., 109 Zina Pitcher Place, 2045 BSRB, Ann Arbor, MI 48109-2200, Telephone: 734-647-0172, Fax: 734-647-9559, E-mail:
| |
Collapse
|
59
|
Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets. BMC Genomics 2007; 8:215. [PMID: 17615075 PMCID: PMC1949829 DOI: 10.1186/1471-2164-8-215] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 07/05/2007] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF) newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology. RESULTS Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, B2M, TAP1 and TAPBP) demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR) and type II (IFNGR) interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1), STAT2 and IFN regulatory factor 7 (IRF7) transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (NFkappaBIA; a.k.a I-kappa-B-alpha, IKBalpha) and toll interacting protein (TOLLIP), both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (GATA1) is consistent with the maintenance of intestinal homeostasis. CONCLUSION This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to continuous microbial exposure, which serves to sustain a tight intestinal barrier while preventing overt inflammatory responses that would compromise barrier function.
Collapse
|
60
|
Tu S, Chi AL, Lim S, Cui G, Dubeykovskaya Z, Ai W, Fleming JV, Takaishi S, Wang TC. Gastrin regulates the TFF2 promoter through gastrin-responsive cis-acting elements and multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1726-37. [PMID: 17332476 DOI: 10.1152/ajpgi.00348.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Trefoil family factor 2 (TFF2) is expressed in gastrointestinal epithelial cells where it serves to maintain mucosal integrity and promote epithelial repair. The peptide hormone, gastrin, stimulates acid secretion but also induces proliferation of the acid-secreting mucosa. Because the relationship between these peptides of overlapping function is not understood, we chose to investigate the regulatory effect of gastrin on TFF2 expression. The expression of mRNA and protein of TFF2 was determined by RT-PCR and immunohistochemical staining, respectively. A series of truncated and mutant murine TFF2 promoter constructs was generated. Promoter activity was assessed using dual luciferase reporter assays. Gastrin-responsive DNA-binding sites in the TFF2 promoter were evaluated by electrophoretic mobility shift assay. Gastrin significantly increased the level of endogenous mRNA of TFF2 in the gastrin receptor-expressing AGS-E gastric cancer cell line in a time- and dose-dependent manner. TFF2 protein expression in the gastric fundus was elevated in hypergastrinemic (INS-GAS) transgenic mice and reduced in gastrin-deficient mice. Gastrin treatment increased TFF2 promoter activity through cis-acting regions, containing CCAATA- and GC-rich enhancers. Pretreatment with Y-F476, a gastrin/CCK(B) receptor antagonist, abolished gastrin-dependent promoter activity. Inhibitors of protein kinase C (PKC), mitogen/extracellular signal-regulated kinase (MEK1), and phosphatidylinositol 3-kinase (PI 3-kinase) reduced gastrin-dependent TFF2 promoter activity, whereas an epithelial growth factor receptor (EGFR) inhibitor had no effect. We found that gastrin regulates TFF2 transcription through a GC-rich DNA-binding site and a PKC-, MEK1- and PI 3-kinase-dependent but EGFR-independent pathway. Regulation of TFF2 by gastrin may play a role in the maintenance and repair of the gastrointestinal mucosa.
Collapse
MESH Headings
- Animals
- Base Sequence
- Benzodiazepinones/pharmacology
- Cell Line, Tumor
- Chromones/pharmacology
- Dose-Response Relationship, Drug
- Flavonoids/pharmacology
- GC Rich Sequence
- Gastric Mucosa/metabolism
- Gastrins/genetics
- Gastrins/metabolism
- Gastrins/pharmacology
- Genes, Reporter
- Humans
- Luciferases
- MAP Kinase Kinase 1/antagonists & inhibitors
- MAP Kinase Kinase 1/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Morpholines/pharmacology
- Mucins/genetics
- Mucins/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Mutation
- Peptides/genetics
- Peptides/metabolism
- Phenylurea Compounds/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Promoter Regions, Genetic/drug effects
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/pharmacology
- RNA, Messenger/metabolism
- Receptor, Cholecystokinin B/drug effects
- Receptor, Cholecystokinin B/metabolism
- Signal Transduction/drug effects
- Staurosporine/pharmacology
- Stomach/drug effects
- Stomach/pathology
- Time Factors
- Transcription, Genetic/drug effects
- Transfection
- Trefoil Factor-2
Collapse
Affiliation(s)
- Shuiping Tu
- Division of Digestive and Liver Diseases, Dept. of Medicine, College of Physicians and Surgeons, Columbia Univ., 1130 St. Nicholas Ave., Rm. 925, 9th Fl., New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Lee CW, Rao VP, Rogers AB, Ge Z, Erdman SE, Whary MT, Fox JG. Wild-type and interleukin-10-deficient regulatory T cells reduce effector T-cell-mediated gastroduodenitis in Rag2-/- mice, but only wild-type regulatory T cells suppress Helicobacter pylori gastritis. Infect Immun 2007; 75:2699-707. [PMID: 17353283 PMCID: PMC1932875 DOI: 10.1128/iai.01788-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/14/2006] [Accepted: 02/22/2007] [Indexed: 12/25/2022] Open
Abstract
CD4(+) CD45RB(hi) CD25(-) effector T cells (T(E)) promote Helicobacter pylori gastritis in mice, and CD4(+) CD45RB(lo) CD25(+) regulatory T cells (T(R)) are anti-inflammatory. Using adoptive transfer into H. pylori-infected Rag2(-/-) mice, we evaluated effects of wild-type (wt) C57BL/6 or congenic interleukin-10-deficient (IL-10(-/-)) T(R) cells on gastritis, gastric cytokines, and H. pylori colonization. Infected Rag2(-/-) mice colonized in the corpus and antrum with 10(5) to 10(6) H. pylori CFU/gram without associated gastritis. T(E) cell transfer caused morbidity and an H. pylori-independent pangastritis and duodenitis (gastroduodenitis) associated with increased expression of gamma interferon (IFN-gamma) and tumor necrosis factor alpha. T(E) cell transfer to H. pylori-infected mice led to additive corpus gastritis associated with inflammatory cytokine expression and reduced colonization. wt T(R) cells reduced morbidity, H. pylori corpus gastritis, gastroduodenitis, and inflammatory cytokine expression and reversed the decline in H. pylori colonization attributable to T(E) cells. Although less effective than wt T(R) cells, IL-10(-/-) T(R) cells also reduced morbidity and gastroduodenitis but did not reduce H. pylori corpus gastritis or impact T(E) cell inhibition of colonization. Gastric tissues from mice receiving wt T(R) cells expressed higher levels of Foxp3 compared to recipients of IL-10(-/-) T(R) cells, consistent with lower regulatory activity of IL-10(-/-) T(R) cells. These results demonstrate that wt T(R) cells suppressed T(E)-cell-mediated H. pylori-independent gastroduodenitis and H. pylori-dependent corpus gastritis more effectively than IL-10(-/-) T(R) cells. Compartmental differences in T(E)-cell- and H. pylori-mediated inflammation and in regulatory effects between wt T(R) and IL-10(-/-) T(R) cells suggest that IL-10 expression by wt T(R) cells is important to regulatory suppression of gastric inflammation.
Collapse
Affiliation(s)
- Chung-Wei Lee
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
|
63
|
Aiello FB, Keller JR, Klarmann KD, Dranoff G, Mazzucchelli R, Durum SK. IL-7 induces myelopoiesis and erythropoiesis. THE JOURNAL OF IMMUNOLOGY 2007; 178:1553-63. [PMID: 17237404 DOI: 10.4049/jimmunol.178.3.1553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-7 administration to mice was previously reported to increase the mobilization of progenitor cells from marrow to peripheral sites. We now report that IL-7 increases the number of mature myeloid and monocytic cells in spleen and peripheral blood. This effect required T cells, and we show that IL-7 treatment in vivo induced GM-CSF and IL-3 production by T cells with memory phenotype. However, additional myelopoietic cytokines were shown to be involved because mice deficient in both GM-CSF and IL-3 also responded to IL-7 with increased myelopoiesis. Candidate cytokines included IFN-gamma and Flt3 ligand, which were also produced in response to IL-7. Because IFN-gamma-deficient mice also increased myelopoiesis, it was suggested that IL-7 induced production of redundant myelopoietic cytokines. In support of this hypothesis, we found that the supernatant from IL-7-treated, purified T cells contained myelopoietic activity that required a combination of Abs against GM-CSF, IL-3, and anti-Flt3 ligand to achieve maximum neutralization. IL-7 administration increased the number of splenic erythroid cells in either normal, Rag1 or GM-CSF-IL-3-deficient mice, suggesting that IL-7 might directly act on erythroid progenitors. In support of this theory, we detected a percentage of TER-119(+) erythroid cells that expressed the IL-7Ralpha-chain and common gamma-chain. Bone marrow cells expressing IL-7R and B220 generated erythroid colonies in vitro in response to IL-7, erythropoietin, and stem cell factor. This study demonstrates that IL-7 can promote nonlymphoid hemopoiesis and production of cytokines active in the host defense system in vivo, supporting its possible clinical utility.
Collapse
Affiliation(s)
- Francesca B Aiello
- Laboratory of Molecular Immunoregulation, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
64
|
Friis-Hansen L. Lessons from the gastrin knockout mice. ACTA ACUST UNITED AC 2007; 139:5-22. [DOI: 10.1016/j.regpep.2006.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 11/30/2006] [Accepted: 12/01/2006] [Indexed: 12/22/2022]
|
65
|
Abstract
The association between chronic inflammation and cancer is now well established. This association has recently received renewed interest with the recognition that microbial pathogens can be responsible for the chronic inflammation observed in many cancers, particularly those originating in the gastrointestinal system. A prime example is Helicobacter pylori, which infects 50% of the world's population and is now known to be responsible for inducing chronic gastric inflammation that progresses to atrophy, metaplasia, dysplasia, and gastric cancer. This Review provides an overview of recent progress in elucidating the bacterial properties responsible for colonization of the stomach, persistence in the stomach, and triggering of inflammation, as well as the host factors that have a role in determining whether gastritis progresses to gastric cancer. We also discuss how the increased understanding of the relationship between inflammation and gastric cancer still leaves many questions unanswered regarding recommendations for prevention and treatment.
Collapse
Affiliation(s)
- James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW Although chronic Helicobacter pylori infection is the strongest known risk factor for development of gastric adenocarcinoma, only a small proportion of infected individuals will ever develop tumours. This article discusses various bacterial, host and environmental factors which may influence an individual's susceptibility. RECENT FINDINGS Recent research on bacterial virulence factors has focussed upon the cag pathogenicity island, particularly its roles in regulating epithelial growth and adhesion. Studies of host genetic factors have included several analyses of polymorphisms in inflammatory cytokines in human cohorts. Animal studies have recently clarified the roles of dysregulated epithelial apoptosis, proliferation and differentiation pathways during gastric carcinogenesis, and novel experiments involving H. felis infection of bone marrow transplanted irradiated mice have suggested that gastric cancer may originate from bone marrow-derived stem cells. Important roles for signalling between epithelial and mesenchymal cells, particularly myofibroblasts, are also emerging. Recent research on the importance of environmental factors has demonstrated how helminth coinfection may protect against atrophic gastritis and T helper type 1 responses. SUMMARY Complex interactions between several bacterial, host genetic and environmental factors determine whether H. pylori infected individuals develop gastric carcinoma. The importance of bone marrow stem cell engraftment during human gastric neoplasia is an area requiring urgent investigation.
Collapse
Affiliation(s)
- D Mark Pritchard
- Division of Gastroenterology, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
67
|
Lopez-Diaz L, Hinkle KL, Jain RN, Zavros Y, Brunkan CS, Keeley T, Eaton KA, Merchant JL, Chew CS, Samuelson LC. Parietal cell hyperstimulation and autoimmune gastritis in cholera toxin transgenic mice. Am J Physiol Gastrointest Liver Physiol 2006; 290:G970-9. [PMID: 16399875 DOI: 10.1152/ajpgi.00461.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The stimulation of gastric acid secretion from parietal cells involves both intracellular calcium and cAMP signaling. To understand the effect of increased cAMP on parietal cell function, we engineered transgenic mice expressing cholera toxin (Ctox), an irreversible stimulator of adenylate cyclase. The parietal cell-specific H(+),K(+)-ATPase beta-subunit promoter was used to drive expression of the cholera toxin A1 subunit (CtoxA1). Transgenic lines were established and tested for Ctox expression, acid content, plasma gastrin, tissue morphology, and cellular composition of the gastric mucosa. Four lines were generated, with Ctox-7 expressing approximately 50-fold higher Ctox than the other lines. Enhanced cAMP signaling in parietal cells was confirmed by observation of hyperphosphorylation of the protein kinase A-regulated proteins LASP-1 and CREB. Basal acid content was elevated and circulating gastrin was reduced in Ctox transgenic lines. Analysis of gastric morphology revealed a progressive cellular transformation in Ctox-7. Expanded patches of mucous neck cells were observed as early as 3 mo of age, and by 15 mo, extensive mucous cell metaplasia was observed in parallel with almost complete loss of parietal and chief cells. Detection of anti-parietal cell antibodies, inflammatory cell infiltrates, and increased expression of the Th1 cytokine IFN-gamma in Ctox-7 mice suggested that autoimmune destruction of the tissue caused atrophic gastritis. Thus constitutively high parietal cell cAMP results in high acid secretion and a compensatory reduction in circulating gastrin. High Ctox in parietal cells can also induce progressive changes in the cellular architecture of the gastric glands, corresponding to the development of anti-parietal cell antibodies and autoimmune gastritis.
Collapse
Affiliation(s)
- Lymari Lopez-Diaz
- Department of Molecular and Integrative Physiology, University of Michigan, 7761 Medical Science II Building, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Oshima M, Oshima H, Matsunaga A, Taketo MM. Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-alpha-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Cancer Res 2005; 65:9147-51. [PMID: 16230370 DOI: 10.1158/0008-5472.can-05-1936] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We showed recently that Helicobacter infection induces expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in the mouse stomach, and that transgenic mice expressing both cyclooxygenase-2 and microsomal prostaglandin E synthase-1 (K19-C2mE mice) develop hyperplastic gastric tumors with inflammatory histopathology. To investigate possible roles of proinflammatory cytokines and acquired immunity in the gastric hyperplasia of K19-C2mE mice, we introduced knockout mutations for tumor necrosis factor-alpha (TNF-alpha; Tnf), interleukin-1 receptor-alpha chain (Il1r1), and Rag2 genes, respectively. Among the compound mutants, only the Tnf (-/-) K19-C2mE mice showed significant suppression of hyperplastic tumors with reduced cell proliferation. In contrast, tumorigenesis remained unaffected in either compound mutants of K19-C2mE containing Il1r1 or Rag2 mutation, indicating that neither interleukin-1beta signaling nor T cell/B cell response was required for the development of hyperplastic tumors. Importantly, spasmolytic polypeptide/trefoil factor 2-expressing metaplasia (SPEM) in the K19-C2mE stomach was also suppressed in the Tnf (-/-) K19-C2mE mice, indicating that TNF-alpha-dependent inflammation is responsible for SPEM development. Because gastric metaplasia to the SPEM lineage is considered as a preneoplastic lesion of gastric cancer, it is possible that inhibition of TNF-alpha-dependent inflammation, together with eradication of Helicobacter, can be an effective prevention strategy for gastric cancer.
Collapse
Affiliation(s)
- Masanobu Oshima
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto and Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | |
Collapse
|
69
|
N/A, 卢 雅, 潘 金. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:2521-2529. [DOI: 10.11569/wcjd.v13.i21.2521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
70
|
Affiliation(s)
- Juanita L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|