51
|
Neis VB, Moretti M, Rosa PB, Dalsenter YDO, Werle I, Platt N, Kaufmann FN, Rosado AF, Besen MH, Rodrigues ALS. The involvement of PI3K/Akt/mTOR/GSK3β signaling pathways in the antidepressant-like effect of AZD6765. Pharmacol Biochem Behav 2020; 198:173020. [DOI: 10.1016/j.pbb.2020.173020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
|
52
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
53
|
Impaired neuronal and astroglial metabolic activity in chronic unpredictable mild stress model of depression: Reversal of behavioral and metabolic deficit with lanicemine. Neurochem Int 2020; 137:104750. [DOI: 10.1016/j.neuint.2020.104750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/05/2020] [Accepted: 04/24/2020] [Indexed: 01/20/2023]
|
54
|
Adell A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 2020; 10:biom10060947. [PMID: 32585886 PMCID: PMC7355879 DOI: 10.3390/biom10060947] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP), dizocilpine (MK-801) and ketamine have long been considered a model of schizophrenia, both in animals and humans. However, ketamine has been recently approved for treatment-resistant depression, although with severe restrictions. Interestingly, the dosage in both conditions is similar, and positive symptoms of schizophrenia appear before antidepressant effects emerge. Here, we describe the temporal mechanisms implicated in schizophrenia-like and antidepressant-like effects of NMDA blockade in rats, and postulate that such effects may indicate that NMDA receptor antagonists induce similar mechanistic effects, and only the basal pre-drug state of the organism delimitates the overall outcome. Hence, blockade of NMDA receptors in depressive-like status can lead to amelioration or remission of symptoms, whereas healthy individuals develop psychotic symptoms and schizophrenia patients show an exacerbation of these symptoms after the administration of NMDA receptor antagonists.
Collapse
Affiliation(s)
- Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC-University of Cantabria), Calle Albert Einstein 22 (PCTCAN), 39011 Santander, Spain; or
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 39011 Santander, Spain
| |
Collapse
|
55
|
Manduca JD, Thériault RK, Williams OOF, Rasmussen DJ, Perreault ML. Transient Dose-dependent Effects of Ketamine on Neural Oscillatory Activity in Wistar-Kyoto Rats. Neuroscience 2020; 441:161-175. [PMID: 32417341 DOI: 10.1016/j.neuroscience.2020.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Ketamine is a promising therapeutic for treatment-resistant depression (TRD) but is associated with an array of short-term psychomimetic side-effects. These disparate drug effects may be elicited through the modulation of neural circuit activity. The purpose of this study was to therefore delineate dose- and time-dependent changes in ketamine-induced neural oscillatory patterns in regions of the brain implicated in depression. Wistar-Kyoto rats were used as a model system to study these aspects of TRD neuropathology whereas Wistar rats were used as a control strain. Animals received a low (10 mg/kg) or high (30 mg/kg) dose of ketamine and temporal changes in neural oscillatory activity recorded from the prefrontal cortex (PFC), cingulate cortex (Cg), and nucleus accumbens (NAc) for ninety minutes. Effects of each dose of ketamine on immobility in the forced swim test were also evaluated. High dose ketamine induced a transient increase in theta power in the PFC and Cg, as well as a dose-dependent increase in gamma power in these regions 10-min, but not 90-min, post-administration. In contrast, only low dose ketamine normalized innate deficits in fast gamma coherence between the NAc-Cg and PFC-Cg, an effect that persisted at 90-min post-injection. These low dose ketamine-induced oscillatory alterations were accompanied by a reduction in immobility time in the forced swim test. These results show that ketamine induces time-dependent effects on neural oscillations at specific frequencies. These drug-induced changes may differentially contribute to the psychomimetic and therapeutic effects of the drug.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada
| | - Rachel-Karson Thériault
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada; Collaborative Neuroscience Program, University of Guelph (ON), Canada
| | - Olivia O F Williams
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada
| | - Duncan J Rasmussen
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph (ON), Canada; Collaborative Neuroscience Program, University of Guelph (ON), Canada.
| |
Collapse
|
56
|
Hamilton scale and MADRS are interchangeable in meta-analyses but can disagree at trial level. J Clin Epidemiol 2020; 124:106-117. [PMID: 32387423 DOI: 10.1016/j.jclinepi.2020.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Major depressive disorder is a multidimensional disease, in which demonstrating the efficacy of treatments is difficult. The Hamilton Rating Scale for Depression (HRSD) and the Montgomery-Asberg Depression Rating Scale (MADRS) cover different domains but are used interchangeably as primary measures of the outcome in trials and-with standardized measures-in meta-analyses. We aimed at understanding (i) whether the choice of the outcome measurement tool can influence the outcome of a trial, and if so, (ii) whether one systematically outperforms the other, and (iii) whether using standardized measures of the effect in meta-analysis is justified. METHODS Short-term randomized trials in patients with major depressive disorder that used both the scales were systematically searched and the results were collected. To quantify the differences in the results-both in terms of the standardized mean difference (SMD) and odds ratio (OR) for response-and their range, data were analyzed and plotted with the Bland-Altman method. RESULTS 161 comparisons from 80 studies were included, involving a total of 18,189 patients. Neither of the two scales appears systematically more sensitive to the treatment effect than the other in terms of SMDs (P-value = 0.06, 95% CI -0.044 to 0.001) or ORs (P-value = 0.15, 95% CI -0.25 to 0.04). However, the variability of differences between the HRSD and MADRS largely depends on the number of patients included in the comparison. CONCLUSION No systematic differences between the two scales were found supporting the use of standardized measures in meta-analyses. However, the same trial may give very different results with either scale, especially in small trials. Further research is needed to understand the causes of this variability.
Collapse
|
57
|
Bobo WV, Riva-Posse P, Goes FS, Parikh SV. Next-Step Treatment Considerations for Patients With Treatment-Resistant Depression That Responds to Low-Dose Intravenous Ketamine. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2020; 18:181-192. [PMID: 33162856 DOI: 10.1176/appi.focus.20190048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous short-term randomized trials support the acute-phase efficacy of low-dose intravenous (IV) ketamine for patients with treatment-resistant unipolar or bipolar depression. Ketamine's antidepressive effects generally have limited duration, highlighting the need for maintenance treatment after an acute-phase response. It is increasingly likely that psychiatrists will be called upon to manage the care of patients with treatment-resistant unipolar or bipolar depression who have responded acutely to ketamine and to recommend or initiate next-step treatments. However, there is a paucity of controlled evidence to guide best practices for managing treatment of patients with treatment-resistant unipolar or bipolar depression who have had a positive initial response to ketamine. This article reviews the available evidence supporting specific strategies for extending and maintaining acute antidepressive responses to low-dose IV ketamine in patients with treatment-resistant unipolar or bipolar depression and provides some preliminary considerations for clinical practice.
Collapse
Affiliation(s)
- William V Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida (Bobo); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (Riva-Posse); Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore (Goes); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh)
| | - Patricio Riva-Posse
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida (Bobo); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (Riva-Posse); Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore (Goes); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh)
| | - Fernando S Goes
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida (Bobo); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (Riva-Posse); Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore (Goes); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh)
| | - Sagar V Parikh
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida (Bobo); Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (Riva-Posse); Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore (Goes); Department of Psychiatry, University of Michigan, Ann Arbor (Parikh)
| |
Collapse
|
58
|
|
59
|
Honda S, Matsumoto M, Tajinda K, Mihara T. Enhancing Clinical Trials Through Synergistic Gamma Power Analysis. Front Psychiatry 2020; 11:537. [PMID: 32587536 PMCID: PMC7299152 DOI: 10.3389/fpsyt.2020.00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
While the etiology of many neuropsychiatric disorders remains unknown, increasing evidence suggests that aberrant sensory processing plays a central role. For this class of disorders, which are characterized by affective, cognitive, and behavioral symptoms, electroencephalography remains the dominant tool for providing insight into the physiological and molecular underpinnings of the disease state and predicting the effectiveness of investigational new drugs. Within the spectrum of electrical activity present in the CNS, high-frequency oscillations in the gamma band are frequently altered in these patient populations. Measurement of gamma oscillation can be further classified into baseline and evoked, each of which offers a specific commentary on disease state. Baseline gamma analysis provides a surrogate of pharmacodynamics and predicting the time course effects of clinical candidate drugs, while alterations in evoked (time-locked) gamma power may serve as a disease biomarker and have utility in assessing patient response to new drugs. Together, these techniques offer complimentary methods of analysis for discrete realms of clinical and translational medicine. In terms of drug development, comprehensive analysis containing aspects of both baseline and evoked gamma oscillations may prove more useful in establishing better workflow and more accurate criteria for the testing of investigational new drugs.
Collapse
Affiliation(s)
- Sokichi Honda
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Mitsuyuki Matsumoto
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Katsunori Tajinda
- Neuroscience, La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, United States
| | - Takuma Mihara
- Candidate Discovery Research Labs, DDR, Astellas Pharm Inc., Tsukuba, Japan
| |
Collapse
|
60
|
Jimenez-Trevino L, Gonzalez-Blanco L, Alvarez-Vazquez C, Rodriguez-Revuelta J, Saiz Martinez PA. Glutamine and New Pharmacological Targets to Treat Suicidal Ideation. Curr Top Behav Neurosci 2020; 46:179-196. [PMID: 32926351 DOI: 10.1007/7854_2020_168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, and it is linked with the amino acid glutamine through a metabolic relationship of enzymatic compound interconversion and transportation, also known as the glutamate-glutamine cycle.A growing body of evidence suggests involvement of the glutamatergic neurotransmitter system in suicidal behaviours. The initial evidence comes from the pathophysiology of neuropsychiatric disorders, as disruptions in glutamate neurotransmission have been found underlying pathology in multiple suicide-related psychiatric conditions such as major depressive disorder, schizophrenia, post-traumatic stress disorder, and bipolar disorder.Existing data from experimental animal models and human in vivo studies also demonstrate that glutamate plays a key role in suicide-related personality traits including aggression and impulsive aggression.Further studies on glutamate system dysfunction underlying suicidal behaviours have focused on the different steps of the glutamate-glutamine cycle: an inflammation-mediated reduction of glutamine synthetase activity has been found in depressed suicide attempters, phosphate-activated glutaminase genes are reduced in suicide completers, and gene expression abnormalities in NMDA receptors have also been discovered in suicide victims.Evidence of a role of the glutamate-glutamine cycle in suicidal behaviours unveils new targets for anti-suicide interventions. Lithium's mechanism to reduce the risk of suicide in people with mood disorders may be related to its ability to increase glutamine synthetase, whereas novel NMDA antagonists such as ketamine [or its S(+) enantiomer esketamine] have already demonstrated positive results in reducing suicidal ideation.
Collapse
Affiliation(s)
- Luis Jimenez-Trevino
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Biomedical Research Networking Centre in Mental Health (CIBERSAM), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Mental Health Services of Principado de Asturias (SESPA), Oviedo, Spain
| | - Leticia Gonzalez-Blanco
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Biomedical Research Networking Centre in Mental Health (CIBERSAM), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Mental Health Services of Principado de Asturias (SESPA), Oviedo, Spain
| | | | - Julia Rodriguez-Revuelta
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Mental Health Services of Principado de Asturias (SESPA), Oviedo, Spain
| | - Pilar A Saiz Martinez
- Department of Psychiatry, University of Oviedo, Oviedo, Spain.
- Biomedical Research Networking Centre in Mental Health (CIBERSAM), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
- Mental Health Services of Principado de Asturias (SESPA), Oviedo, Spain.
| |
Collapse
|
61
|
Polis AJ, Fitzgerald PJ, Hale PJ, Watson BO. Rodent ketamine depression-related research: Finding patterns in a literature of variability. Behav Brain Res 2019; 376:112153. [PMID: 31419519 PMCID: PMC6783386 DOI: 10.1016/j.bbr.2019.112153] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
Abstract
Discovering that the anesthetic drug ketamine has rapidly acting antidepressant effects in many individuals with major depression is one of the most important findings in clinical psychopharmacology in recent decades. The initial report of these effects in human subjects was based on a foundation of rodent preclinical studies carried out in the 1990s, and subsequent investigation has included both further studies in individuals with depression, as well as reverse translational experiments in animal models, especially rodents. While there is general agreement in the rodent literature that ketamine has rapidly-acting, and generally sustained, antidepressant-like properties, there are also points of contention across studies, including the precise mechanism of action of this drug. In this review, we briefly summarize prominent yet variable findings regarding the mechanism of action. We also discuss a combination of similarities and variances in the rodent literature in the antidepressant-like effects of ketamine as a function of dose, species and strain, test, stressor, and presumably sex of the experimenter. We then present previously unpublished mouse strain comparison data suggesting that subanesthetic ketamine does not have robust antidepressant-like properties in unstressed animals, and may actually promote depression-like behavior, in contrast to widely reported findings. We conclude that the data best support the notion of ketamine action principally via NMDA receptor antagonism, transiently boosting glutamatergic (and possibly other) signaling in diverse brain circuits. We also suggest that future studies should address in greater detail the extent to which antidepressant-like properties of this drug are stress-sensitive, in an effort to better model major depression present in humans.
Collapse
Affiliation(s)
- Andrew J Polis
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Paul J Fitzgerald
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Pho J Hale
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America
| | - Brendon O Watson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-5720, United States of America.
| |
Collapse
|
62
|
Lijffijt M, Green CE, Balderston N, Iqbal T, Atkinson M, Vo-Le B, Vo-Le B, O’Brien B, Grillon C, Swann AC, Mathew SJ. A Proof-of-Mechanism Study to Test Effects of the NMDA Receptor Antagonist Lanicemine on Behavioral Sensitization in Individuals With Symptoms of PTSD. Front Psychiatry 2019; 10:846. [PMID: 31920733 PMCID: PMC6923195 DOI: 10.3389/fpsyt.2019.00846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Individuals with post-traumatic stress disorder (PTSD) have a heightened sensitivity to subsequent stressors, addictive drugs, and symptom recurrence, a form of behavioral sensitization. N-methyl-D-aspartate receptors (NMDARs) are involved in the establishment and activation of sensitized behavior. Objective: We describe a protocol of a randomized placebo-controlled Phase 1b proof-of-mechanism trial to examine target engagement, safety, tolerability, and possible efficacy of the NMDAR antagonist lanicemine in individuals with symptoms of PTSD (Clinician Administered PTSD Scale [CAPS-5] score ≥ 25) and evidence of behavioral sensitization measured as enhanced anxiety-potentiated startle (APS; T-score ≥ 2.8). Methods: Subjects (n = 24; age range 21-65) receive three 60-min intravenous infusions of placebo or 100 mg lanicemine over 5 non-consecutive days. Primary endpoint is change in APS from pre-treatment baseline to after the third infusion. NMDAR engagement is probed with resting state EEG gamma band power, 40 Hz auditory steady state response, the mismatch negativity amplitude, and P50 sensory gating. Change in CAPS-5 scores is an exploratory clinical endpoint. Bayesian statistical methods will evaluate endpoints to determine suitability of this agent for further study. Conclusion: In contrast to traditional early-phase trials that use symptom severity to track treatment efficacy, this study tracks engagement of the study drug on expression of behavioral sensitization, a functional mechanism likely to cut across disorders. This experimental therapeutics design is consistent with recent NIMH-industry collaborative studies, and could serve as a template for testing novel pharmacological agents in psychiatry. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03166501.
Collapse
Affiliation(s)
- Marijn Lijffijt
- Research Service Line, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Charles E. Green
- Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Pediatrics - Center for Evidence Based Medicine, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nicholas Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Tabish Iqbal
- Research Service Line, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Megan Atkinson
- Department of Anesthesiology, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, United States
| | - Brittany Vo-Le
- Research Service Line, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Bylinda Vo-Le
- Research Service Line, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Brittany O’Brien
- Research Service Line, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Christian Grillon
- Department of Pediatrics - Center for Evidence Based Medicine, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Alan C. Swann
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Sanjay J. Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
- Mental Health Care Line, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
63
|
Becker R, Gass N, Kußmaul L, Schmid B, Scheuerer S, Schnell D, Dorner-Ciossek C, Weber-Fahr W, Sartorius A. NMDA receptor antagonists traxoprodil and lanicemine improve hippocampal-prefrontal coupling and reward-related networks in rats. Psychopharmacology (Berl) 2019; 236:3451-3463. [PMID: 31267156 DOI: 10.1007/s00213-019-05310-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
RATIONALE The N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine is known to have not only a rapid antidepressant effect but also dissociative side effects. Traxoprodil and lanicemine, also NMDA antagonists, are candidate antidepressant drugs with fewer side effects. OBJECTIVES In order to understand their mechanism of action, we investigated the acute effects of traxoprodil and lanicemine on brain connectivity using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS Functional connectivity (FC) alterations were examined using interregional correlation networks. Graph theoretical methods were used for whole brain network analysis. As interest in NMDAR antagonists as potential antidepressants was triggered by the antidepressant effect of ketamine, results were compared to previous findings from our ketamine studies. RESULTS Similar to ketamine but to a smaller extent, traxoprodil increased hippocampal-prefrontal (Hc-PFC) coupling. Unlike ketamine, traxoprodil decreased connectivity within the PFC. Lanicemine had no effect on these properties. The improvement of Hc-PFC coupling corresponds well to clinical result, showing ketamine to have a greater antidepressant effect than traxoprodil, while lanicemine has a weak and transient effect. Connectivity changes overlapping between the drugs as well as alterations of local network properties occurred mostly in reward-related regions. CONCLUSION The antidepressant effect of NMDA antagonists appears to be associated with enhanced Hc-PFC coupling. The effects on local network properties and regional connectivity suggest that improvement of reward processing might also be important for understanding the mechanisms underlying the antidepressant effects of these drugs.
Collapse
Affiliation(s)
- Robert Becker
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
| | - Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Lothar Kußmaul
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Bernhard Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | | | - David Schnell
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | | | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
64
|
Duman RS, Shinohara R, Fogaça MV, Hare B. Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function. Mol Psychiatry 2019; 24:1816-1832. [PMID: 30894661 PMCID: PMC6754322 DOI: 10.1038/s41380-019-0400-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 11/09/2022]
Abstract
Efforts to develop efficacious antidepressant agents with novel mechanisms have been largely unsuccessful since the 1950's until the discovery of ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid and sustained antidepressant actions even in treatment-resistant patients. This finding has ushered in a new era for the development of novel rapid-acting antidepressants that act at the NMDA receptor complex, but without dissociative and psychotomimetic side effects of ketamine. Here, we review the current state of rapid-acting antidepressant drug development, including NMDA channel blockers, glycine site agents, and allosteric modulators, as well as ketamine stereoisomers and metabolites. In addition, we focus on the neurobiological mechanisms underlying the actions of these diverse agents and discuss evidence of convergent mechanisms including increased brain-derived neurotrophic factor signaling, increased synthesis of synaptic proteins, and most notably increased GluR1 and synaptic connectivity in the medial prefrontal cortex. These convergent mechanisms provide insight for potential additional novel targets for drug development (e.g., agents that increase synaptic protein synthesis and plasticity). Importantly, the convergent effects on synapse formation and plasticity also reverse the well-documented neuronal and synaptic deficits associated with stress and depression, and thereby target the underlying pathophysiology of major depressive disorder.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Ryota Shinohara
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brendan Hare
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
65
|
Kato T, Duman RS. Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms. Pharmacol Biochem Behav 2019; 188:172827. [PMID: 31733218 DOI: 10.1016/j.pbb.2019.172827] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Conventional antidepressant medications, which act on monoaminergic systems, have significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. Recently, clinical findings demonstrate that ketamine, a dissociative anesthetic that blocks N-methyl-d-aspartate (NMDA) receptor channel activity, causes rapid (within hours) and long-lasting (7 to 10 days) antidepressant effects. Rapastinel is a novel glutamatergic compound that acts as an NMDAR postive allosteric modulator and produces rapid antidepressant actions in depressed patients and in preclinical rodent models. In addition, rapastinel has no ketamine-like side effect such as cognitive impairment and psychotomimetic symptoms. Despite recent negative clinical trials, it remains possible that rapastinel could prove effective as an alternative rapid agent with reduced side effects. In this review, we discuss the pharmacological profile of rapastinel and the molecular and cellular mechanisms underlying the rapid and sustained antidepressant actions of this novel agent.
Collapse
Affiliation(s)
- Taro Kato
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520, United States of America; Pharmacology Research Unit, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan; Department of Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520, United States of America
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520, United States of America; Department of Neurosciences, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520, United States of America.
| |
Collapse
|
66
|
Updates on Preclinical and Translational Neuroscience of Mood Disorders: A Brief Historical Focus on Ketamine for the Clinician. J Clin Psychopharmacol 2019; 39:665-672. [PMID: 31688400 DOI: 10.1097/jcp.0000000000001132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The development of new-generation antidepressants comes at a time of great clinical need when the global burden of depression, suicide, and other psychiatric conditions continues to increase. Our current treatment armamentarium is limited by the time delay needed for antidepressant effects and the significant number of patients who do not show an adequate response to antidepressants. The past 2 decades of psychiatric research has revealed that ketamine, known to be used only as an anesthetic and drug of abuse and to produce experimental models of psychosis, is effective at subanesthetic doses to ameliorate clinical depression. METHODS We performed a systematic search of PubMed/MEDLINE indexed reports to identify clinical and translational research done with ketamine for purposes of treating depression. RESULTS We will first present the rationale for investigating ketamine and other N-methyl-D-aspartate receptor antagonists as a novel class of glutamate system targeting antidepressants. We will summarize putative molecular pathways underlying mood disorders and outline a brief history of investigation into ketamine as a treatment for depression. Recent clinical/translational evidence of ketamine's rapid-acting antidepressant mechanism will be critically reviewed in detail. CONCLUSIONS At the end of this review, we will opine on the role of ketamine and derivatives in clinical practice.
Collapse
|
67
|
Amat-Foraster M, Celada P, Richter U, Jensen AA, Plath N, Artigas F, Herrik KF. Modulation of thalamo-cortical activity by the NMDA receptor antagonists ketamine and phencyclidine in the awake freely-moving rat. Neuropharmacology 2019; 158:107745. [DOI: 10.1016/j.neuropharm.2019.107745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/29/2023]
|
68
|
Hashimoto K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin Neurosci 2019; 73:613-627. [PMID: 31215725 PMCID: PMC6851782 DOI: 10.1111/pcn.12902] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
69
|
Liz R, Liardo E, Rebolledo F. Highly efficient asymmetric bioreduction of 1-aryl-2-(azaaryl)ethanones. Chemoenzymatic synthesis of lanicemine. Org Biomol Chem 2019; 17:8214-8220. [PMID: 31451824 DOI: 10.1039/c9ob01616c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different ketoreductases (KREDs) have been used to promote a highly selective reduction of several 1-aryl-2-(azaaryl)ethanones (azaaryl = pyridinyl, quinolin-2-yl), the corresponding secondary alcohols being obtained with very high yields and enantiomeric excesses (ee > 99%). The absolute configuration of each optically active alcohol has been assigned by means of modified Mosher and Kelly methods, two shielding effects being evaluated: (1) the Mosher phenyl ring effect on the azaaryl protons and (2) the one of the azaaryl ring on the Mosher methoxy group. In addition, the biologically active amine lanicemine has been synthesized from (R)-1-phenyl-2-(pyridin-2-yl)ethanol, thus proving the utility of the secondary alcohols here prepared.
Collapse
Affiliation(s)
- Ramón Liz
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo, Asturias, Spain.
| | - Elisa Liardo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo, Asturias, Spain.
| | - Francisca Rebolledo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo, Asturias, Spain.
| |
Collapse
|
70
|
McMackin R, Muthuraman M, Groppa S, Babiloni C, Taylor JP, Kiernan MC, Nasseroleslami B, Hardiman O. Measuring network disruption in neurodegenerative diseases: New approaches using signal analysis. J Neurol Neurosurg Psychiatry 2019; 90:1011-1020. [PMID: 30760643 PMCID: PMC6820156 DOI: 10.1136/jnnp-2018-319581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Advanced neuroimaging has increased understanding of the pathogenesis and spread of disease, and offered new therapeutic targets. MRI and positron emission tomography have shown that neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), Parkinson's disease (PD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are associated with changes in brain networks. However, the underlying neurophysiological pathways driving pathological processes are poorly defined. The gap between what imaging can discern and underlying pathophysiology can now be addressed by advanced techniques that explore the cortical neural synchronisation, excitability and functional connectivity that underpin cognitive, motor, sensory and other functions. Transcranial magnetic stimulation can show changes in focal excitability in cortical and transcortical motor circuits, while electroencephalography and magnetoencephalography can now record cortical neural synchronisation and connectivity with good temporal and spatial resolution.Here we reflect on the most promising new approaches to measuring network disruption in AD, LBD, PD, FTD, MS, and ALS. We consider the most groundbreaking and clinically promising studies in this field. We outline the limitations of these techniques and how they can be tackled and discuss how these novel approaches can assist in clinical trials by predicting and monitoring progression of neurophysiological changes underpinning clinical symptomatology.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Muthuraman Muthuraman
- Department of Neurology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Claudio Babiloni
- Dipartimento di Fisiologia e Farmacologia "Vittorio Erspamer", Università degli Studi di Roma "La Sapienza", Roma, Italy
- Istituto di Ricovero e Cura San Raffaele Cassino, Cassino, Italy
| | - John-Paul Taylor
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew C Kiernan
- Brain & Mind Centre, University of Sydney, Sydney, Sydney, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Sydney, Australia
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
71
|
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109668. [PMID: 31207274 DOI: 10.1016/j.pnpbp.2019.109668] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence demonstrating that dysfunction of glutamatergic neurotransmission, particularly via N-methyl-d-aspartate (NMDA) receptors, is involved in the pathophysiology of major depressive disorder (MDD). Several studies have revealed an altered expression of NMDA receptor subtypes and impaired NMDA receptor-mediated intracellular signaling pathways in brain circuits of patients with MDD. Clinical studies have demonstrated that NMDA receptor antagonists, particularly ketamine, have rapid antidepressant effects in treatment-resistant depression, however, neurobiological mechanisms are not completely understood. Growing body of evidence suggest that signal transduction pathways involved in synaptic plasticity play critical role in molecular mechanisms underlying rapidly acting antidepressant properties of ketamine and other NMDAR antagonists in MDD. Discovering the molecular mechanisms underlying the unique antidepressant actions of ketamine will facilitate the development of novel fast acting antidepressants which lack undesirable effects of ketamine. This review provides a critical examination of the NMDA receptor involvement in the neurobiology of MDD including analyses of alterations in NMDA receptor subtypes and their interactive signaling cascades revealed by postmortem studies. Furthermore, to elucidate mechanisms underlying rapid-acting antidepressant properties of NMDA receptor antagonists we discussed their effects on the neuroplasticity, mostly based on signaling systems involved in synaptic plasticity of mood-related neurocircuitries.
Collapse
Affiliation(s)
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; New Jersey Institute of Technology, Newark, NJ, USA
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, University Magdeburg, Germany; Department of Psychiatry, University Tuebingen, Germany
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
72
|
O'Brien B, Green CE, Al-Jurdi R, Chang L, Lijffijt M, Iqbal S, Iqbal T, Swann AC, Mathew SJ. Bayesian adaptive randomization trial of intravenous ketamine for veterans with late-life, treatment-resistant depression. Contemp Clin Trials Commun 2019; 16:100432. [PMID: 31508531 PMCID: PMC6727003 DOI: 10.1016/j.conctc.2019.100432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 01/22/2023] Open
Abstract
More than eleven million U.S. Veterans are at least 65 years of age, an age group of which almost 20% suffers from clinically significant depressive symptoms. Available pharmacological treatments are suboptimal for patients, including veterans, with late-life depression. Ketamine has emerged as a potentially promising rapid-acting therapy for treatment-resistant depression (TRD). However, few studies have examined the safety, tolerability and efficacy of ketamine therapy for older adults with late-life TRD (LL-TRD). This study uses an adaptive randomization design to test the safety, tolerability, efficacy, and durability of three distinct, single sub-anesthetic doses of intravenous (IV) ketamine versus a single dose of active placebo (midazolam) in older depressed veterans. As the study progresses, Bayesian adaptive randomization recalibrates randomization ratios to allocate more participants to conditions demonstrating greater promise and fewer participants to conditions with less promise. Secondary analyses explore clinical and biological moderating and mediating factors of rapid treatment response. Results are expected to inform both the viability of ketamine treatment and optimal dosing strategies for patients with LL-TRD.
Collapse
Affiliation(s)
- Brittany O'Brien
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | | | | | - Lee Chang
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Marijn Lijffijt
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Sidra Iqbal
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Tabish Iqbal
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Alan C Swann
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Sanjay J Mathew
- Michael E. DeBakey VA Medical Center, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
73
|
Pochwat B, Nowak G, Szewczyk B. An update on NMDA antagonists in depression. Expert Rev Neurother 2019; 19:1055-1067. [DOI: 10.1080/14737175.2019.1643237] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| | - Gabriel Nowak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| |
Collapse
|
74
|
Halje P, Brys I, Mariman JJ, da Cunha C, Fuentes R, Petersson P. Oscillations in cortico-basal ganglia circuits: implications for Parkinson’s disease and other neurologic and psychiatric conditions. J Neurophysiol 2019; 122:203-231. [DOI: 10.1152/jn.00590.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cortico-basal ganglia circuits are thought to play a crucial role in the selection and control of motor behaviors and have also been implicated in the processing of motivational content and in higher cognitive functions. During the last two decades, electrophysiological recordings in basal ganglia circuits have shown that several disease conditions are associated with specific changes in the temporal patterns of neuronal activity. In particular, synchronized oscillations have been a frequent finding suggesting that excessive synchronization of neuronal activity may be a pathophysiological mechanism involved in a wide range of neurologic and psychiatric conditions. We here review the experimental support for this hypothesis primarily in relation to Parkinson’s disease but also in relation to dystonia, essential tremor, epilepsy, and psychosis/schizophrenia.
Collapse
Affiliation(s)
- Pär Halje
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ivani Brys
- Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Juan J. Mariman
- Research and Development Direction, Universidad Tecnológica de Chile, Inacap, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Physical Therapy, Faculty of Arts and Physical Education, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Claudio da Cunha
- Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Programas de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Romulo Fuentes
- Department of Neurocience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Per Petersson
- Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
75
|
Impact of midazolam vs. saline on effect size estimates in controlled trials of ketamine as a rapid-acting antidepressant. Neuropsychopharmacology 2019; 44:1233-1238. [PMID: 30653192 PMCID: PMC6785710 DOI: 10.1038/s41386-019-0317-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
The goal of this study was to infer the effectiveness of midazolam as a comparator in preserving the blind in ketamine studies for mood disorders through patient-level analyses of efficacy trial outcomes. In this integrative data analysis (k = 9, N = 367 patients with mood disorders), clinical outcomes were compared across four groups: ketamine (midazolam-controlled), ketamine (saline-controlled), midazolam, and saline. Ketamine doses ranged from 0.5 to 0.54 mg/kg and midazolam doses ranged from 0.02 to 0.045 mg/kg. The baseline-to-Day 1 effect size was d = 0.7 (95% CI: 0.4-0.9) for ketamine (midazolam) versus midazolam and d = 1.8 (95% CI: 1.4-2.2) for ketamine (saline) versus saline. The effect of ketamine relative to control was larger in saline-controlled studies than in midazolam-controlled studies (t(276) = 2.32, p = 0.02). This was driven by a comparatively larger effect under midazolam than saline (t(111) = 5.40, p < 0.0001), whereas there was no difference between ketamine (midazolam) versus ketamine (saline) (t(177) = 0.65, p = 0.51). Model-estimated rates of response (with 95% CI) yielded similar results: ketamine (midazolam), 45% (34-56%); ketamine (saline), 46% (34-58%); midazolam, 18% (6-30%); saline, 1% (0-11%). The response rate for ketamine was higher than the control condition for both saline (t(353) = 7.41, p < 0.0001) and midazolam (t(353) = 4.59, p < 0.0001). Studies that used midazolam as a comparator yielded smaller effects of ketamine than those which used saline, which was accounted for by greater improvement following midazolam compared to saline.
Collapse
|
76
|
Curic S, Leicht G, Thiebes S, Andreou C, Polomac N, Eichler IC, Eichler L, Zöllner C, Gallinat J, Steinmann S, Mulert C. Reduced auditory evoked gamma-band response and schizophrenia-like clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 2019; 44:1239-1246. [PMID: 30758327 PMCID: PMC6785009 DOI: 10.1038/s41386-019-0328-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
Abstract
Abnormal gamma-band oscillations (GBO) have been frequently associated with the pathophysiology of schizophrenia. GBO are modulated by glutamate, a neurotransmitter, which is continuously discussed to shape the complex symptom spectrum in schizophrenia. The current study examined the effects of ketamine, a glutamate N-methyl-D-aspartate receptor (NMDAR) antagonist, on the auditory-evoked gamma-band response (aeGBR) and psychopathological outcomes in healthy volunteers to investigate neuronal mechanisms of psychotic behavior. In a placebo-controlled, randomized crossover design, the aeGBR power, phase-locking factor (PLF) during a choice reaction task, the Positive and Negative Syndrome Scale (PANSS) and the Altered State of Consciousness (5D-ASC) Rating Scale were assessed in 25 healthy subjects. Ketamine was applied in a subanaesthetic dose. Low-resolution brain electromagnetic tomography was used for EEG source localization. Significant reductions of the aeGBR power and PLF were identified under ketamine administration compared to placebo (p < 0.01). Source-space analysis of aeGBR generators revealed significantly reduced current source density (CSD) within the anterior cingulate cortex during ketamine administration. Ketamine induced an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01) and increased response times (p < 0.001) and error rates (p < 0.01). Only negative symptoms were significantly associated with an aeGBR power decrease (p = 0.033) as revealed by multiple linear regression. These findings argue for a substantial role of the glutamate system in the mediation of dysfunctional gamma band responses and negative symptomatology of schizophrenia and are compatible with the NMDAR hypofunction hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Stjepan Curic
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Institute for Sex Research and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Thiebes
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Andreou
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Psychotic Disorders, University Psychiatric Hospital, University of Basel, Basel, Switzerland
| | - Nenad Polomac
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Iris-Carola Eichler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Eichler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Zöllner
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus Liebig University, Gießen, Germany
| |
Collapse
|
77
|
Veen C, Jacobs G, Philippens I, Vermetten E. Subanesthetic Dose Ketamine in Posttraumatic Stress Disorder: A Role for Reconsolidation During Trauma-Focused Psychotherapy? Curr Top Behav Neurosci 2019; 38:137-162. [PMID: 29637527 DOI: 10.1007/7854_2017_34] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite efforts to develop more effective therapies, PTSD remains a difficult disorder to treat. Insight into the dynamic nature of memory formation and its required molecular machinery can provide an opportunity to target pathological memories for emotionally arousing events. As memories become labile upon retrieval, novel information can update the strength and course of these consolidated memories. Targeting the process of reconsolidation may offer a relevant approach to attenuate fearful and traumatic memories. Specific molecular mechanisms that are required for reconsolidation of arousing information include an intact functioning of the glutamatergic signaling pathways and, more specifically, the integrity of NMDA receptors. Ketamine, a noncompetitive NMDA-receptor antagonist, is receiving increasing interest for a variety of psychiatric indications. This compound can also be an interesting candidate for targeting emotional memories. We explore whether single intravenous infusion of a subanesthetic dose of ketamine can be considered as a viable augmentation strategy for trauma-focused psychotherapy in patients with PTSD. As a consequence, a systematic approach is needed to assess the pharmacodynamic effects of ketamine in relation to both psychotherapy and its pharmacokinetics prior to its application in patient populations. By using a "question-based drug development plan," we can explore such aspects for novel drugs, and we formulated five additional topics that need to be addressed concerning the psychotherapeutic approach and phase orientation of pharmacological assisted psychotherapy.
Collapse
Affiliation(s)
- Cato Veen
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.
| | - Gabriel Jacobs
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Arq Psychotrauma Research Group, Diemen, The Netherlands
| |
Collapse
|
78
|
Michaëlsson H, Andersson M, Svensson J, Karlsson L, Ehn J, Culley G, Engström A, Bergström N, Savvidi P, Kuhn H, Hanse E, Seth H. The novel antidepressant ketamine enhances dentate gyrus proliferation with no effects on synaptic plasticity or hippocampal function in depressive-like rats. Acta Physiol (Oxf) 2019; 225:e13211. [PMID: 30347138 DOI: 10.1111/apha.13211] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022]
Abstract
AIM Major depressive disorder is a common and debilitating condition with substantial economic impact. Treatment options, although effective, are aimed at relieving the symptoms with limited disease modification. Ketamine, a commonly used anaesthetic, has received substantial attention as it shows rapid antidepressant effects clinically. We studied the effects of ketamine on hippocampal function and dentate gyrus proliferation in rats showing a depressive-like phenotype. METHODS Adolescent and adult animals were pre-natally exposed to the glucocorticoid analog dexamethasone, and we verified a depressive-like phenotype using behavioural tests, such as the sucrose preference. We subsequently studied the effects of ketamine on hippocampal synaptic transmission, plasticity and dentate gyrus proliferation. In addition, we measured hippocampal glutamate receptor expression. We also tested the ketamine metabolite hydroxynorketamine for NMDA-receptor independent effects. RESULTS Surprisingly, our extensive experimental survey revealed limited effects of ketamine or its metabolite on hippocampal function in control as well as depressive-like animals. We found no effects on synaptic efficacy or induction of long-term potentiation in adolescent and adult animals. Also there was no difference when comparing the dorsal and ventral hippocampus. Importantly, however, ketamine 24 hours prior to experimentation significantly increased the dentate gyrus proliferation, as revealed by Ki-67 immunostaining, in the depressive-like phenotype. CONCLUSION We find limited effects of ketamine on hippocampal glutamatergic transmission. Instead, alterations in dentate gyrus proliferation could explain the antidepressant effects of ketamine.
Collapse
Affiliation(s)
- Henrik Michaëlsson
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Mats Andersson
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Johan Svensson
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Lars Karlsson
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Johan Ehn
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Georgia Culley
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Anders Engström
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Nicklas Bergström
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Parthenia Savvidi
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Hans‐Georg Kuhn
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Eric Hanse
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| | - Henrik Seth
- Department of Neuroscience and Physiology University of Gothenburg Gothenburg Sweden
| |
Collapse
|
79
|
( 2R,6R)-hydroxynorketamine exerts mGlu 2 receptor-dependent antidepressant actions. Proc Natl Acad Sci U S A 2019; 116:6441-6450. [PMID: 30867285 DOI: 10.1073/pnas.1819540116] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Currently approved antidepressant drugs often take months to take full effect, and ∼30% of depressed patients remain treatment resistant. In contrast, ketamine, when administered as a single subanesthetic dose, exerts rapid and sustained antidepressant actions. Preclinical studies indicate that the ketamine metabolite (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a rapid-acting antidepressant drug candidate with limited dissociation properties and abuse potential. We assessed the role of group II metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) in the antidepressant-relevant actions of (2R,6R)-HNK using behavioral, genetic, and pharmacological approaches as well as cortical quantitative EEG (qEEG) measurements in mice. Both ketamine and (2R,6R)-HNK prevented mGlu2/3 receptor agonist (LY379268)-induced body temperature increases in mice lacking the Grm3, but not Grm2, gene. This action was not replicated by NMDA receptor antagonists or a chemical variant of ketamine that limits metabolism to (2R,6R)-HNK. The antidepressant-relevant behavioral effects and 30- to 80-Hz qEEG oscillation (gamma-range) increases resultant from (2R,6R)-HNK administration were prevented by pretreatment with an mGlu2/3 receptor agonist and absent in mice lacking the Grm2, but not Grm3 -/-, gene. Combined subeffective doses of the mGlu2/3 receptor antagonist LY341495 and (2R,6R)-HNK exerted synergistic increases on gamma oscillations and antidepressant-relevant behavioral actions. These findings highlight that (2R,6R)-HNK exerts antidepressant-relevant actions via a mechanism converging with mGlu2 receptor signaling and suggest enhanced cortical gamma oscillations as a marker of target engagement relevant to antidepressant efficacy. Moreover, these results support the use of (2R,6R)-HNK and inhibitors of mGlu2 receptor function in clinical trials for treatment-resistant depression either alone or in combination.
Collapse
|
80
|
Chronic histamine 3 receptor antagonism alleviates depression like conditions in mice via modulation of brain-derived neurotrophic factor and hypothalamus-pituitary adrenal axis. Psychoneuroendocrinology 2019; 101:128-137. [PMID: 30458370 DOI: 10.1016/j.psyneuen.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023]
Abstract
The last two decades of research has established histamine (HA) as a neurotransmitter. Since H3R antagonists are known to modulate several neurotransmitters besides HA, H3R antagonists have shown potential for the treatment of different central nervous system disorders, including depression. However, molecular mechanisms underlying the beneficial effects of H3R antagonism in depression are not clear, yet. In the present study, we investigated the antidepressant potential of ciproxifan, a selective H3R antagonist, in chronic unpredictable stress (CUS) model of depression in C57BL/6 J mice. We observed that chronic treatment of CUS mice with ciproxifan (3 mg/kg i.p.; for three weeks) alleviates depression-like symptoms such as helplessness measured by forced swim and tail suspension test (FST and TST), anhedonia measured by sucrose preference test (SPT) and social deficit measured in social behavior test. Chronic ciproxifan treatment restored CUS induced BDNF expression in the prefrontal cortex (PFC) and hippocampus. We also observed that ciproxifan modulates CUS induced NUCB2/nesfatin-1 and CRH expression in the hypothalamus and plasma corticosterone. We also determined the direct effect of HA on BDNF expression in neurons by western blotting and immunocytochemistry, and found that HA significantly induced BDNF expression, which was blocked by the H4R selective antagonist, but not by other HA receptor selective antagonists. Furthermore, ciproxifan significantly modulated NMDA glutamate receptor subunits NR2B and NR2A. Thus, these results suggest that increased HA signaling in the brain produces antidepressant-like effects in mice and modulates BDNF expression and HPA-axis.
Collapse
|
81
|
Altered mRNA expressions for N-methyl-D-aspartate receptor-related genes in WBC of patients with major depressive disorder. J Affect Disord 2019; 245:1119-1125. [PMID: 30699855 DOI: 10.1016/j.jad.2018.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a complex mental disorder. The lack of well-established biomarkers hinders its diagnosis, treatment, and new-drug development. N-methyl-D-aspartate receptor (NMDAR) dysfunction has been implicated in the pathogenesis of MDD. This study examined whether expressions of the NMDAR-related genes are characteristic of MDD. METHODS Expressions of NMDAR-related genes including SRR, SHMT2, PSAT1, GCAT, GAD1, SLC1A4, NRG1 and COMT in peripheral WBCs of 110 patients with MDD (25 drug-naïve, 21 drug-free, and 64 medicated patients) and 125 healthy individuals were measured using quantitative PCR. RESULTS The mRNA expression levels of SRR, PSAT1, GCAT, GAD1, NRG1 and COMT were significantly different among the four groups (all p < 0.05). For drug-naïve patients, the ΔΔCT values of SRR, PSAT1, GCAT, GAD1, and NRG1 mRNA expressions were significantly different from those in healthy individuals (all p < 0.05). The ROC analysis of the ΔΔCT values of the target genes for differentiating drug-naïve patients from healthy controls showed an excellent sensitivity (0.960) and modest specificity (0.640) (AUC = 0.889). Drug-free and medicated patients obtained less favorable AUC values while compared to healthy controls. The results for the age- and sex-matched cohort were similar to those of the unmatched cohort. CONCLUSIONS This is the first study demonstrating that the peripheral mRNA expression levels of NMDAR-related genes may be altered in patients with MDD, especially drug-naïve individuals. The finding supports the NMDAR hypothesis of depression. Whether mRNA expresssion of NMDAR-related genes could serve as a potential biomarker of MDD deserves further investigations.
Collapse
|
82
|
McMackin R, Bede P, Pender N, Hardiman O, Nasseroleslami B. Neurophysiological markers of network dysfunction in neurodegenerative diseases. Neuroimage Clin 2019; 22:101706. [PMID: 30738372 PMCID: PMC6370863 DOI: 10.1016/j.nicl.2019.101706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
There is strong clinical, imaging and pathological evidence that neurodegeneration is associated with altered brain connectivity. While functional imaging (fMRI) can detect resting and activated states of metabolic activity, its use is limited by poor temporal resolution, cost and confounding vascular parameters. By contrast, electrophysiological (e.g. EEG/MEG) recordings provide direct measures of neural activity with excellent temporal resolution, and source localization methodologies can address problems of spatial resolution, permitting measurement of functional activity of brain networks with a spatial resolution similar to that of fMRI. This opens an exciting therapeutic approach focussed on pharmacological and physiological modulation of brain network activity. This review describes current neurophysiological approaches towards evaluating cortical network dysfunction in common neurodegenerative disorders. It explores how modern neurophysiologic tools can provide markers for diagnosis, prognosis, subcategorization and clinical trial outcome measures, and how modulation of brain networks can contribute to new therapeutic approaches.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland.
| | - Peter Bede
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland; Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland.
| | - Niall Pender
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland; Beaumont Hospital Dublin, Department of Psychology, Beaumont Road, Beaumont, Dublin 9, Ireland.
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland; Beaumont Hospital Dublin, Department of Neurology, Beaumont Road, Beaumont, Dublin 9, Ireland.
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, 152-160 Pearse St., Trinity College Dublin, The University of Dublin, Ireland.
| |
Collapse
|
83
|
Wilkinson ST, Sanacora G. A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov Today 2019; 24:606-615. [PMID: 30447328 PMCID: PMC6397075 DOI: 10.1016/j.drudis.2018.11.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/12/2018] [Accepted: 11/10/2018] [Indexed: 12/28/2022]
Abstract
Mood disorders represent the largest cause of disability worldwide. The monoaminergic deficiency hypothesis, which has dominated the conceptual framework for researching the pathophysiology of mood disorders and the development of novel treatment strategies, cannot fully explain the underlying neurobiology of mood disorders. Mounting evidence collected over the past two decades suggests the amino acid neurotransmitter systems (glutamate and GABA) serve central roles in the pathophysiology of mood disorders. Here, we review progress in the development of compounds that act on these systems as well as their purported mechanisms of action. We include glutamate-targeting drugs, such as racemic ketamine, esketamine, lanicemine (AZD6765), traxoprodil (CP-101,606), EVT-101, rislenemdaz (CERC-301/MK-0657), AVP-786, AXS-05, rapastinel (formerly GLYX-13), apimostinel (NRX-1074/AGN-241660), AV-101, NRX-101, basimglurant (RO4917523), decoglurant (RG-1578/RO4995819), tulrampator (CX-1632/S-47445), and riluzole; and GABA-targeting agents, such as brexanolone (SAGE-547), ganaxolone, and SAGE-217.
Collapse
Affiliation(s)
- Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA.
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
84
|
Abstract
For decades, symptoms of depression have been treated primarily with medications that directly target the monoaminergic brain systems, which typically take weeks to exert measurable effects and months to exert remission of symptoms. Low, subanesthetic doses of ( R,S)-ketamine (ketamine) result in the rapid improvement of core depressive symptoms, including mood, anhedonia, and suicidal ideation, occurring within hours following a single administration, with relief from symptoms typically lasting up to a week. The discovery of these actions of ketamine has resulted in a reconceptualization of how depression could be more effectively treated in the future. In this review, we discuss clinical data pertaining to ketamine and other rapid-acting antidepressant drugs, as well as the current state of pharmacological knowledge regarding their mechanism of action. Additionally, we discuss the neurobiological circuits that are engaged by this drug class and that may be targeted by a future generation of medications, for example, hydroxynorketamine; metabotropic glutamate receptor 2/3 antagonists; and N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and γ-aminobutyric acid receptor modulators.
Collapse
Affiliation(s)
- Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Departments of Pharmacology and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
85
|
Witkin JM, Martin AE, Golani LK, Xu NZ, Smith JL. Rapid-acting antidepressants. ADVANCES IN PHARMACOLOGY 2019; 86:47-96. [DOI: 10.1016/bs.apha.2019.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
Fasipe O, Akhideno P, Owhin O, Ibiyemi-Fasipe O. Announcing the first novel class of rapid-onset antidepressants in clinical practice. JOURNAL OF MEDICAL SCIENCES 2019. [DOI: 10.4103/jmedsci.jmedsci_36_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
87
|
Godlewska BR. Cognitive neuropsychological theory: Reconciliation of psychological and biological approaches for depression. Pharmacol Ther 2018; 197:38-51. [PMID: 30578809 DOI: 10.1016/j.pharmthera.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
New antidepressants and individualized approaches to treatment, matching specific therapies to individual patients, are urgently needed. For this, a better understanding of processes underpinning the development of depressive symptoms and response to medications are required. The cognitive neuropsychological model offers a novel approach uniquely combining biological and psychological approaches to explain how antidepressants exert their effect, why there is a delay in the onset of their clinical effect, and how changes in emotional processing are an essential step for a clinical antidepressant effect to take place. The paper presents the model and its underpinnings in the form of research in both healthy and depressed individuals, as well as the potential for its practical use.
Collapse
Affiliation(s)
- Beata R Godlewska
- Psychopharmacology Research Unit, University Department of Psychiatry (PPRU), University of Oxford, Oxford, UK.
| |
Collapse
|
88
|
Pochwat B, Szewczyk B, Kotarska K, Rafało-Ulińska A, Siwiec M, Sowa JE, Tokarski K, Siwek A, Bouron A, Friedland K, Nowak G. Hyperforin Potentiates Antidepressant-Like Activity of Lanicemine in Mice. Front Mol Neurosci 2018; 11:456. [PMID: 30618608 PMCID: PMC6299069 DOI: 10.3389/fnmol.2018.00456] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) modulators induce rapid and sustained antidepressant like-activity in rodents through a molecular mechanism of action that involves the activation of Ca2+ dependent signaling pathways. Moreover, ketamine, a global NMDAR antagonist is a potent, novel, and atypical drug that has been successfully used to treat major depressive disorder (MDD). However, because ketamine evokes unwanted side effects, alternative strategies have been developed for the treatment of depression. The objective of the present study was to determine the antidepressant effects of either a single dose of hyperforin or lanicemine vs. their combined effects in mice. Hyperforin modulates intracellular Ca2+ levels by activating Ca2+-conducting non-selective canonical transient receptor potential 6 channel (TRPC6) channels. Lanicemine, on the other hand, blocks NMDARs and regulates Ca2+ dependent processes. To evaluate the antidepressant-like activity of hyperforin and lanicemine, a set of in vivo (behavioral) and in vitro methods (western blotting, Ca2+ imaging studies, electrophysiological, and radioligand binding assays) was employed. Combined administration of hyperforin and lanicemine evoked long-lasting antidepressant-like effects in both naïve and chronic corticosterone-treated mice while also enhancing the expression of the synapsin I, GluA1 subunit, and brain derived neurotrophic factor (BDNF) proteins in the frontal cortex. In Ca2+ imaging studies, lanicemine enhanced Ca2+ influx induced by hyperforin. Moreover, compound such as MK-2206 (Akt kinase inhibitor) inhibited the antidepressant-like activity of hyperforin in the tail suspension test (TST). Hyperforin reversed disturbances induced by MK-801 in the novel object recognition (NOR) test and had no effects on NMDA currents and binding to NMDAR. Our results suggest that co-administration of hyperforin and lanicemine induces long-lasting antidepressant effects in mice and that both substances may have different molecular targets.
Collapse
Affiliation(s)
- Bartłomiej Pochwat
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Bernadeta Szewczyk
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Kotarska
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Rafało-Ulińska
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marcin Siwiec
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna E Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Alexandre Bouron
- Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, Grenoble, France
| | - Kristina Friedland
- Pharmacology and Toxicology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gabriel Nowak
- Laboratory of Neurobiology of Trace Elements, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
89
|
Haaf M, Leicht G, Curic S, Mulert C. Glutamatergic Deficits in Schizophrenia - Biomarkers and Pharmacological Interventions within the Ketamine Model. Curr Pharm Biotechnol 2018; 19:293-307. [PMID: 29929462 PMCID: PMC6142413 DOI: 10.2174/1389201019666180620112528] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/12/2018] [Accepted: 05/26/2018] [Indexed: 11/30/2022]
Abstract
Background: The observation that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists such as ketamine transiently induce schizophrenia-like positive, negative and cognitive symptoms has led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. NMDAR hypofunction can explain many schizophrenia symptoms directly due to excitatory-to-inhibitory (E/I) imbalance, but also dopaminergic dysfunction itself. However, so far no new drug targeting the NMDAR has been successfully approved. In the search for possible biomarkers it is interesting that ketamine-induced psychopathological changes in healthy participants were accompanied by altered electro-(EEG), magnetoencephalographic (MEG) and functional magnetic resonance imaging (fMRI) signals. Methods: We systematically searched PubMed/Medline and Web of Knowledge databases (January 2006 to July 2017) to identify EEG/MEG and fMRI studies of the ketamine model of schizophrenia with human subjects. The search strategy identified 209 citations of which 46 articles met specified eligibility criteria. Results: In EEG/MEG studies, ketamine induced changes of event-related potentials, such as the P300 potential and the mismatch negativity, similar to alterations observed in schizophrenia patients. In fMRI studies, alterations of activation were observed in different brain regions, most prominently within the anterior cingulate cortex and limbic structures as well as task-relevant brain regions. These alterations were accompanied by changes in functional connectivity, indicating a balance shift of the underlying brain networks. Pharmacological treatments did alter ketamine-induced changes in EEG/MEG and fMRI studies to different extents. Conclusion: This review highlights the potential applicability of the ketamine model for schizophrenia drug development by offering the possibility to assess the effect of pharmacological agents on schizophrenia-like symptoms and to find relevant neurophysiological and neuroimaging biomarkers.
Collapse
Affiliation(s)
- Moritz Haaf
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stjepan Curic
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch (PNB), Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, UKGM, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
90
|
Abdallah CG, Sanacora G, Duman RS, Krystal JH. The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacol Ther 2018; 190:148-158. [PMID: 29803629 PMCID: PMC6165688 DOI: 10.1016/j.pharmthera.2018.05.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of the antidepressant effects of ketamine has opened a breakthrough opportunity to develop a truly novel class of safe, effective, and rapid-acting antidepressants (RAADs). In addition, the rapid and robust biological and behavioral effects of ketamine offered a unique opportunity to utilize the drug as a tool to thoroughly investigate the neurobiology of stress and depression in animals, and to develop sensitive and reproducible biomarkers in humans. The ketamine literature over the past two decades has considerably enriched our understanding of the mechanisms underlying chronic stress, depression, and RAADs. However, considering the complexity of the pharmacokinetics and in vivo pharmacodynamics of ketamine, several questions remain unanswered and, at times, even answered questions continue to be considered controversial or at least not fully understood. The current perspective paper summarizes our understanding of the neurobiology of depression, and the mechanisms of action of ketamine and other RAADs. The review focuses on the role of glutamate neurotransmission - reviewing the history of the "glutamate inhibition" and "glutamate activation" hypotheses, proposing a synaptic connectivity model of chronic stress pathology, and describing the mechanism of action of ketamine. It will also summarize the clinical efficacy findings of putative RAADs, present relevant human biomarker findings, and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Chadi G Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA; Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, USA.
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA; Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA; Clinical Neuroscience Division, Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, USA; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, USA
| |
Collapse
|
91
|
Sharma V, Kaur A, Sahoo SC, Chimni SS. Enantioselective 1,4-Michael addition reaction of pyrazolin-5-one derivatives with 2-enoylpyridines catalyzed by Cinchona derived squaramides. Org Biomol Chem 2018; 16:6470-6478. [PMID: 30151544 DOI: 10.1039/c8ob01588k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bifunctional nature of the cinchonidine squaramides has been successfully employed to catalyze the enantioselective 1,4-Michael addition reaction of pyrazolin-5-ones with 2-enoylpyridines under mild reaction conditions. Through this methodology, a broad range of optically active heterocyclic derivatives bearing both pyrazole and pyridine motifs have been synthesized in yields up to 88% and enantiomeric excess up to 96%.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| | | | | | | |
Collapse
|
92
|
Temporally dissociable effects of ketamine on neuronal discharge and gamma oscillations in rat thalamo-cortical networks. Neuropharmacology 2018; 137:13-23. [DOI: 10.1016/j.neuropharm.2018.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/28/2022]
|
93
|
Abstract
Therapeutic medications for the treatment of depression have serious limitations, particularly delayed onset and low rates of efficacy. However, the discovery that a single subanesthetic dose of ketamine, a glutamate NMDA receptor channel blocker, can produce a rapid (within hours) antidepressant response that is sustained (about 1 week), even in patients considered treatment-resistant, has invigorated the field. In addition to these remarkable actions, ketamine has proven effective for the treatment of suicidal ideation. Efforts are under way to develop ketamine-like drugs with fewer side effects as well as agents that act at other sites within the glutamate neurotransmitter system. This includes ketamine metabolites and stereoisomers, drugs that act as NMDA allosteric modulators or that block mGluR2/3 autoreceptors. In addition, targets that enhance glutamate neurotransmission or synaptic function (or both), which are essential for the rapid and sustained antidepressant actions of ketamine in rodent models, are being investigated; examples are the muscarinic cholinergic antagonist scopolamine and activators of mechanistic target of rapamycin complex 1 (mTORC1) signaling, which is required for the actions of ketamine. The discovery of ketamine and its unique mechanisms heralds a new era with tremendous promise for the development of novel, rapid, and efficacious antidepressant medications.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| |
Collapse
|
94
|
Chaki S. Beyond Ketamine: New Approaches to the Development of Safer Antidepressants. Curr Neuropharmacol 2018; 15:963-976. [PMID: 28228087 PMCID: PMC5652016 DOI: 10.2174/1570159x15666170221101054] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Ketamine has been reported to exert rapid and sustained antidepressant effects in patients with depression, including patients with treatment-resistant depression. However, ketamine has several drawbacks such as psychotomimetic/dissociative symptoms, abuse potential and neurotoxicity, all of which prevent its routine use in daily clinical practice. Methods: Therefore, development of novel agents with fewer safety and usage concerns for the treatment of depression has been actively investigated. From this standpoint, searching for active substances (stereoisomers and metabolites) and agents acting on the N-methyl-D-aspartate (NMDA) receptor have recently gained much attention. Results: The first approach includes stereoisomers of ketamine, (R)-ketamine and (S)-ketamine. Although (S)-ketamine has been considered as the active stereoisomer of racemic ketamine, recently, (R)-ketamine has been demonstrated to exert even more prolonged antidepressant effects in animal models than (S)-ketamine. Moreover, ketamine is rapidly metabolized into several metabolites, and some metabolites are speculated as being active substances exerting antidepressant effects. Of such metabolites, one in particular, namely, (2R,6R)-hydroxynorketamine, has been reported to be responsible for the antidepressant effects of ketamine. The second approach includes agents acting on the NMDA receptor, such as glycine site modulators and GluN2B subunit-selective antagonists. These agents have been tested in patients with treatment-resistant depression, and have been found to exhibit rapid antidepressant effects like ketamine. Conclusion: The above approaches may be useful to overcome the drawbacks of ketamine. Elucidation of the mechanisms of action of ketamine may pave the way for the development of antidepressant that are safer, but as potent and rapidly acting as ketamine.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama 331-9530. Japan
| |
Collapse
|
95
|
Abstract
Clinical studies have demonstrated that a single sub-anesthetic dose of the dissociative anesthetic ketamine induces rapid and sustained antidepressant actions. Although this finding has been met with enthusiasm, ketamine's widespread use is limited by its abuse potential and dissociative properties. Recent preclinical research has focused on unraveling the molecular mechanisms underlying the antidepressant actions of ketamine in an effort to develop novel pharmacotherapies, which will mimic ketamine's antidepressant actions but lack its undesirable effects. Here we review hypotheses for the mechanism of action of ketamine as an antidepressant, including synaptic or GluN2B-selective extra-synaptic N-methyl-D-aspartate receptor (NMDAR) inhibition, inhibition of NMDARs localized on GABAergic interneurons, inhibition of NMDAR-dependent burst firing of lateral habenula neurons, and the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor activation. We also discuss links between ketamine's antidepressant actions and downstream mechanisms regulating synaptic plasticity, including brain-derived neurotrophic factor (BDNF), eukaryotic elongation factor 2 (eEF2), mechanistic target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3). Mechanisms that do not involve direct inhibition of the NMDAR, including a role for ketamine's (R)-ketamine enantiomer and hydroxynorketamine (HNK) metabolites, specifically (2R,6R)-HNK, are also discussed. Proposed mechanisms of ketamine's action are not mutually exclusive and may act in a complementary manner to exert acute changes in synaptic plasticity, leading to sustained strengthening of excitatory synapses, which are necessary for antidepressant behavioral actions. Understanding the molecular mechanisms underpinning ketamine's antidepressant actions will be invaluable for the identification of targets, which will drive the development of novel, effective, next-generation pharmacotherapies for the treatment of depression.
Collapse
|
96
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|
97
|
Abstract
Fifteen to thirty percent of patients with major depressive disorder do not respond to antidepressants that target the monoaminergic systems. NMDA antagonists are currently being actively investigated as a treatment for these patients. Ketamine is the most widely studied of the compounds. A brief infusion of a low dose of this agent produces rapid improvement in depressive symptoms that lasts for several days. The improvement occurs after the agent has produced its well characterized psychotomimetic and cognitive side effects. Multiple infusions of the agent (e.g., 2-3× per week for several weeks) provide relief from depressive symptoms, but the symptoms reoccur once the treatment has been stopped. A 96-h infusion of a higher dose using add-on clonidine to mitigate the psychotomimetic effects appears to also provide relief and resulted in about 40% of the subjects still having a good response 8 weeks after the infusion. As this was a pilot study, additional work is needed to confirm and extend this finding. Nitrous oxide also has had positive results. Of the other investigational agents, CERC-301 and rapastinel remain in clinical development. When careful monitoring of neuropsychiatric symptoms has been conducted, these agents all produce similar side effects in the same dose range, indicating that NMDA receptor blockade produces both the wanted and unwanted effects. Research is still needed to determine the appropriate dose, schedule, and ways to mitigate against unwanted side effects of NMDA receptor blockade. These hurdles need to be overcome before ketamine and similar agents can be prescribed routinely to patients.
Collapse
Affiliation(s)
- Nuri B Farber
- Residency Training, Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
98
|
Wallach J, Brandt SD. 1,2-Diarylethylamine- and Ketamine-Based New Psychoactive Substances. Handb Exp Pharmacol 2018; 252:305-352. [PMID: 30196446 DOI: 10.1007/164_2018_148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While phencyclidine (PCP) and ketamine remain the most well-studied and widely known dissociative drugs, a number of other agents have appeared since the late 1950s and early 1960s, when the pharmacological potential of this class was first realized. For example, hundreds of compounds have been pursued as part of legitimate research efforts to explore these agents. Some of these found their way out of the research labs and onto illicit markets of the 1960s and following decades as PCP analogs. Other "illicit analogs" apparently never appeared in the scientific literature prior to their existence on clandestine markets, thus originating as novel innovations in the minds of clandestine chemists and their colleagues. Like so much else in this world, new technologies changed this dynamic. In the 1990s individuals separated by vast geographical distances could now communicate nearly instantaneously with ease through the Internet. Some individuals used this newly found opportunity to discuss the chemistry and psychoactive effects of dissociative drugs as well as to collaborate on the design and development of novel dissociative compounds. Similar to modern pharmaceutical companies and academic researchers, these seekers tinkered with the structure of their leads pursuing goals such as improved duration of action, analgesic effects, and reduced toxicity. Whether all these goals were achieved for any individual compound remains to be seen, but their creations have been let out of the bag and are now materialized as defined compositions of matter. Moreover, these creations now exist not only in and of themselves but live on further as permutations into various novel analogs and derivatives. In some cases these compounds have made their way to academic labs where potential clinical applications have been identified. These compounds reached wider distribution when other individuals picked up on these discussions and began to market them as "research chemicals" or "legal highs". The result is a continuously evolving game that is being played between legislatures, law enforcement, and research chemical market players. Two structurally distinct classes that have appeared as dissociative-based new psychoactive substances (NPS) are the 1,2-diarylethylamines and β-keto-arylcyclohexylamines. Examples of the former include diphenidine and various analogs such as fluorolintane and N-ethyl-lanicemine, and examples of the latter are analogs of ketamine such as methoxetamine, deschloroketamine, and 2-fluoro-2-deschloroketamine. The subject of this chapter is the introduction to some of the dissociative NPS from these classes and their known pharmacology that have emerged on the market in recent years.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA.
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
99
|
Abdallah CG, Dutta A, Averill CL, McKie S, Akiki TJ, Averill LA, William Deakin JF. Ketamine, but Not the NMDAR Antagonist Lanicemine, Increases Prefrontal Global Connectivity in Depressed Patients. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2018; 2:2470547018796102. [PMID: 30263977 PMCID: PMC6154502 DOI: 10.1177/2470547018796102] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Identifying the neural correlates of ketamine treatment may facilitate and expedite the development of novel, robust, and safe rapid-acting antidepressants. Prefrontal cortex (PFC) global brain connectivity with global signal regression (GBCr) was recently identified as a putative biomarker of major depressive disorder (MDD). Accumulating evidence have repeatedly shown reduced PFC GBCr in MDD, an abnormality which appears to normalize following ketamine treatment. METHODS Fifty-six unmedicated participants with MDD were randomized to intravenous placebo (normal saline; n = 18), ketamine (0.5mg/kg; n = 19) or lanicemine (100mg; n = 19). PFC GBCr was computed using time series from functional magnetic resonance imaging (fMRI) scans that were completed at baseline, during infusion, and 24h post-treatment. RESULTS Compared to placebo, ketamine significantly increased average PFC GBCr during infusion (p = 0.01) and 24h post-treatment (p = 0.02). Lanicemine had no significant effects on GBCr during infusion (p = 0.45) and 24h post-treatment (p = 0.23), compared to placebo. Average delta PFC GBCr (during minus baseline) showed a pattern of positively predicting depression improvement in participants receiving ketamine (r = 0.44; p = 0.06; d = 1.0) or lanicemine (r = 0.55; p = 0.01; d = 1.3), but not those receiving placebo (r = -0.1; p = 0.69; d = 0.02). Follow-up vertex-wise analyses showed ketamine-induced GBCr increases in the dorsolateral, dorsomedial, and frontomedial PFC during infusion, and in the dorsolateral and dorsomedial PFC 24h post-treatment (corrected p < 0.05). Exploratory vertex-wise analyses examining the relationship with depression improvement showed positive correlation with GBCr in the dorsal PFC during infusion and 24h post-treatment, but negative correlation with GBCr in the ventral PFC during infusion (uncorrected p < 0.01). CONCLUSIONS In a randomized placebo-controlled approach, the results provide the first evidence in MDD of ketamine-induced increases in PFC GBCr during infusion, and suggests that ketamine's rapid-acting antidepressant properties are related to its acute effects on prefrontal connectivity. Overall, the study findings underscore the similarity and differences between ketamine and another N-methyl-D-aspartate receptor (NMDAR) antagonist, while proposing a pharmacoimaging paradigm for optimization of novel rapid-acting antidepressants prior to testing in costly clinical trials.
Collapse
Affiliation(s)
- Chadi G. Abdallah
- Clinical Neurosciences Division,
National Center for PTSD, U.S. Department of Veterans Affairs, West Haven, CT,
USA
- Department of Psychiatry, Yale
University School of Medicine, New Haven, CT, USA
| | - Arpan Dutta
- Department of Psychiatry, University of
Manchester, Manchester, UK
- Mersey Care NHS Foundation Trust,
Liverpool, UK
| | - Christopher L. Averill
- Clinical Neurosciences Division,
National Center for PTSD, U.S. Department of Veterans Affairs, West Haven, CT,
USA
- Department of Psychiatry, Yale
University School of Medicine, New Haven, CT, USA
| | - Shane McKie
- Department of Psychiatry, University of
Manchester, Manchester, UK
| | - Teddy J. Akiki
- Clinical Neurosciences Division,
National Center for PTSD, U.S. Department of Veterans Affairs, West Haven, CT,
USA
- Department of Psychiatry, Yale
University School of Medicine, New Haven, CT, USA
| | - Lynnette A. Averill
- Clinical Neurosciences Division,
National Center for PTSD, U.S. Department of Veterans Affairs, West Haven, CT,
USA
- Department of Psychiatry, Yale
University School of Medicine, New Haven, CT, USA
| | - J. F. William Deakin
- Department of Psychiatry, University of
Manchester, Manchester, UK
- Greater Manchester Mental Health NHS
Foundation Trust, Manchester, UK
| |
Collapse
|
100
|
Abstract
There is a great unmet need for new medications with novel mechanisms of action that can effectively treat patients who do not benefit from standard antidepressant therapies. After a period in which it seemed as if the pharmaceutical pipeline for new antidepressants was going dry, the past decade has witnessed renewed interest, beginning with discovery of the antidepressant effects of ketamine. This article briefly highlights more recent research on ketamine and other investigational antidepressants.
Collapse
|