51
|
Tureckova J, Hermanova Z, Marchetti V, Anderova M. Astrocytic TRPV4 Channels and Their Role in Brain Ischemia. Int J Mol Sci 2023; 24:ijms24087101. [PMID: 37108263 PMCID: PMC10138480 DOI: 10.3390/ijms24087101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Transient receptor potential cation channels subfamily V member 4 (TRPV4) are non-selective cation channels expressed in different cell types of the central nervous system. These channels can be activated by diverse physical and chemical stimuli, including heat and mechanical stress. In astrocytes, they are involved in the modulation of neuronal excitability, control of blood flow, and brain edema formation. All these processes are significantly impaired in cerebral ischemia due to insufficient blood supply to the tissue, resulting in energy depletion, ionic disbalance, and excitotoxicity. The polymodal cation channel TRPV4, which mediates Ca2+ influx into the cell because of activation by various stimuli, is one of the potential therapeutic targets in the treatment of cerebral ischemia. However, its expression and function vary significantly between brain cell types, and therefore, the effect of its modulation in healthy tissue and pathology needs to be carefully studied and evaluated. In this review, we provide a summary of available information on TRPV4 channels and their expression in healthy and injured neural cells, with a particular focus on their role in ischemic brain injury.
Collapse
Affiliation(s)
- Jana Tureckova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Valeria Marchetti
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| |
Collapse
|
52
|
Fabbri R, Spennato D, Conte G, Konstantoulaki A, Lazzarini C, Saracino E, Nicchia GP, Frigeri A, Zamboni R, Spray DC, Benfenati V. The emerging science of Glioception: Contribution of glia in sensing, transduction, circuit integration of interoception. Pharmacol Ther 2023; 245:108403. [PMID: 37024060 DOI: 10.1016/j.pharmthera.2023.108403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Interoception is the process by which the nervous system regulates internal functions to achieve homeostasis. The role of neurons in interoception has received considerable recent attention, but glial cells also contribute. Glial cells can sense and transduce signals including osmotic, chemical, and mechanical status of extracellular milieu. Their ability to dynamically communicate "listening" and "talking" to neurons is necessary to monitor and regulate homeostasis and information integration in the nervous system. This review introduces the concept of "Glioception" and focuses on the process by which glial cells sense, interpret and integrate information about the inner state of the organism. Glial cells are ideally positioned to act as sensors and integrators of diverse interoceptive signals and can trigger regulatory responses via modulation of the activity of neuronal networks, both in physiological and pathological conditions. We believe that understanding and manipulating glioceptive processes and underlying molecular mechanisms provide a key path to develop new therapies for the prevention and alleviation of devastating interoceptive dysfunctions, among which pain is emphasized here with more focused details.
Collapse
Affiliation(s)
- Roberta Fabbri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, viale del Risorgimento 2, 40136 Bologna, Italy.
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Giorgia Conte
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Aikaterini Konstantoulaki
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126 Bologna, BO, Italy
| | - Chiara Lazzarini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Grazia Paola Nicchia
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, BA, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Antonio Frigeri
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| |
Collapse
|
53
|
Blazer-Yost BL. Consideration of Kinase Inhibitors for the Treatment of Hydrocephalus. Int J Mol Sci 2023; 24:ijms24076673. [PMID: 37047646 PMCID: PMC10094860 DOI: 10.3390/ijms24076673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Hydrocephalus is a devastating condition characterized by excess cerebrospinal fluid (CSF) in the brain. Currently, the only effective treatment is surgical intervention, usually involving shunt placement, a procedure prone to malfunction, blockage, and infection that requires additional, often repetitive, surgeries. There are no long-term pharmaceutical treatments for hydrocephalus. To initiate an intelligent drug design, it is necessary to understand the biochemical changes underlying the pathology of this chronic condition. One potential commonality in the various forms of hydrocephalus is an imbalance in fluid–electrolyte homeostasis. The choroid plexus, a complex tissue found in the brain ventricles, is one of the most secretory tissues in the body, producing approximately 500 mL of CSF per day in an adult human. In this manuscript, two key transport proteins of the choroid plexus epithelial cells, transient receptor potential vanilloid 4 and sodium, potassium, 2 chloride co-transporter 1, will be considered. Both appear to play key roles in CSF production, and their inhibition or genetic manipulation has been shown to affect CSF volume. As with most transporters, these proteins are regulated by kinases. Therefore, specific kinase inhibitors are also potential targets for the development of pharmaceuticals to treat hydrocephalus.
Collapse
Affiliation(s)
- Bonnie L. Blazer-Yost
- Biology Department, Indiana University—Purdue University, 723 West Michigan Street, Indianapolis, IN 46202, USA
| |
Collapse
|
54
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
55
|
Zhou Y, Wang XC, Wei JH, Xue HM, Sun WT, He GW, Yang Q. Soluble epoxide hydrolase and TRPC3 channels jointly contribute to homocysteine-induced cardiac hypertrophy: Interrelation and regulation by C/EBPβ. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166643. [PMID: 36669577 DOI: 10.1016/j.bbadis.2023.166643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Studies in certain cardiac hypertrophy models suggested the individual role of soluble epoxide hydrolase (sEH) and canonical transient receptor potential 3 (TRPC3) channels, however, whether they jointly mediate hypertrophic process remains unexplored. Hyperhomocysteinemia promotes cardiac hypertrophy while the involvement of sEH and TRPC3 channels remains unknown. This study aimed to explore the role of, and interrelation between sEH and TRPC3 channels in homocysteine-induced cardiac hypertrophy. METHODS Rats were fed methionine-enriched diet to induce hyperhomocysteinemia. H9c2 cells and neonatal rat cardiomyocytes were incubated with homocysteine. Cardiac hypertrophy was evaluated by echocardiography, histological examination, immunofluorescence imaging, and expressions of hypertrophic markers. Epoxyeicosatrienoic acids (EETs) were determined by ELISA. TRPC3 current was recorded by patch-clamp. Gene promotor activity was measured using dual-luciferase reporter assay. RESULTS Inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) reduced ventricular mass, lowered the expression of hypertrophic markers, decreased interstitial collagen deposition, and improved cardiac function in hyperhomocysteinemic rats, associated with restoration of EETs levels in myocardium. TPPU or knockdown of sEH suppressed TRPC3 transcription and translation as well as TRPC3 current that were enhanced by homocysteine. Exogenous 11,12-EET inhibited homocysteine-induced TRPC3 expression and cellular hypertrophy. Silencing C/EBPβ attenuated, while overexpressing C/EBPβ promoted homocysteine-induced hypertrophy and expressions of sEH and TRPC3, resulting respectively from inhibition or activation of sEH and TRPC3 gene promoters. CONCLUSIONS sEH and TRPC3 channels jointly contribute to homocysteine-induced cardiac hypertrophy. Homocysteine transcriptionally activates sEH and TRPC3 genes through a common regulatory element C/EBPβ. sEH activation leads to an upregulation of TRPC3 channels via a 11,12-EET-dependent manner.
Collapse
Affiliation(s)
- Yang Zhou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China
| | - Xiang-Chong Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; Department of Pharmacology, Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jia-Hui Wei
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China
| | - Hong-Mei Xue
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; Department of Physiology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Wen-Tao Sun
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong 266000, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; Institute of Cardiovascular Diseases, Tianjin University, Tianjin 300457, China; Drug Research and Development Center, Wannan Medical College, Wuhu 241002, Anhui, China; Department of Surgery, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin 300457, China; Institute of Cardiovascular Diseases, Tianjin University, Tianjin 300457, China.
| |
Collapse
|
56
|
Kwon DH, Zhang F, McCray BA, Kumar M, Sullivan JM, Sumner CJ, Lee SY. Structural insights into TRPV4-Rho GTPase signaling complex function and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532784. [PMID: 36993766 PMCID: PMC10055143 DOI: 10.1101/2023.03.15.532784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Crosstalk between ion channels and small GTPases is critical during homeostasis and disease 1 , but little is known about the structural underpinnings of these interactions. TRPV4 is a polymodal, calcium-permeable cation channel that has emerged as a potential therapeutic target in multiple conditions 2-5 . Gain-of-function mutations also cause hereditary neuromuscular disease 6-11 . Here, we present cryo-EM structures of human TRPV4 in complex with RhoA in the apo, antagonist-bound closed, and agonist-bound open states. These structures reveal the mechanism of ligand-dependent TRPV4 gating. Channel activation is associated with rigid-body rotation of the intracellular ankyrin repeat domain, but state-dependent interaction with membrane-anchored RhoA constrains this movement. Notably, many residues at the TRPV4-RhoA interface are mutated in disease and perturbing this interface by introducing mutations into either TRPV4 or RhoA increases TRPV4 channel activity. Together, these results suggest that the interaction strength between TRPV4 and RhoA tunes TRPV4-mediated calcium homeostasis and actin remodeling, and that disruption of TRPV4-RhoA interactions leads to TRPV4-related neuromuscular disease, findings that will guide TRPV4 therapeutics development.
Collapse
|
57
|
Ritzmann D, Jahn M, Heck S, Jung C, Cesetti T, Couturier N, Rudolf R, Reuscher N, Buerger C, Rauh O, Fauth T. The Ca 2+ channel TRPV4 is dispensable for Ca 2+ influx and cell volume regulation during hypotonic stress response in human keratinocyte cell lines. Cell Calcium 2023; 111:102715. [PMID: 36933289 DOI: 10.1016/j.ceca.2023.102715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Cell swelling as a result of hypotonic stress is counteracted in mammalian cells by a process called regulatory volume decrease (RVD). We have recently discovered that RVD of human keratinocytes requires the LRRC8 volume-regulated anion channel (VRAC) and that Ca2+ exerts a modulatory function on RVD. However, the ion channel that is responsible for Ca2+ influx remains unknown. We investigated in this study whether the Ca2+-permeable TRPV4 ion channel, which functions as cell volume sensor in many cell types, may be involved in cell volume regulation during hypotonic stress response of human keratinocytes. We interfered with TRPV4 function in two human keratinocyte cell lines (HaCaT and NHEK-E6/E7) by using two TRPV4-specific inhibitors (RN1734 and GSK2193874), and by creating a CRISPR/Cas9-mediated genetic TRPV4-/- knockout in HaCaT cells. We employed electrophysiological patch clamp analysis, fluorescence-based Ca2+ imaging and cell volume measurements to determine the functional importance of TRPV4. We could show that both hypotonic stress and direct activation of TRPV4 by the specific agonist GSK1016790A triggered intracellular Ca2+ response. Strikingly, the Ca2+ increase upon hypotonic stress was neither affected by genetic knockout of TRPV4 in HaCaT cells nor by pharmacological inhibition of TRPV4 in both keratinocyte cell lines. Accordingly, hypotonicity-induced cell swelling, downstream activation of VRAC currents as well as subsequent RVD were unaffected both in TRPV4 inhibitor-treated keratinocytes and in HaCaT-TRPV4-/- cells. In summary, our study shows that keratinocytes do not require TRPV4 for coping with hypotonic stress, which implies the involvement of other, yet unidentified Ca2+ channels.
Collapse
Affiliation(s)
| | - Magdalena Jahn
- BRAIN Biotech AG, Zwingenberg, Germany; Department of Dermatology, Venerology and Allergology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Cristina Jung
- Membrane Biophysics, Department of Biology, TU Darmstadt, Darmstadt, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany; Center for Mass Spectrometry and Optical Spectroscopy, Hochschule Mannheim, Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany; Center for Mass Spectrometry and Optical Spectroscopy, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany; Center for Mass Spectrometry and Optical Spectroscopy, Hochschule Mannheim, Mannheim, Germany
| | - Naemi Reuscher
- Department of Dermatology, Venerology and Allergology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Oliver Rauh
- Membrane Biophysics, Department of Biology, TU Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
58
|
Rokeby ACE, Natale BV, Natale DRC. Cannabinoids and the placenta: Receptors, signaling and outcomes. Placenta 2023; 135:51-61. [PMID: 36965349 DOI: 10.1016/j.placenta.2023.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Cannabis use during pregnancy is increasing. The improvement of pregnancy-related symptoms including morning sickness and management of mood and stress are among the most reported reasons for its use. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant cannabinoids found within the cannabis flower. The concentration of these components has drastically increased in the past 20 years. Additionally, many edibles contain only one cannabinoid and are marketed to achieve a specific goal, meaning there are an increasing number of pregnancies that are exposed to isolated cannabinoids. Both Δ9-THC and CBD cross the placenta and can impact the fetus directly, but the receptors through which cannabinoids act are also expressed throughout the placenta, suggesting that the effects of in-utero cannabinoid exposure may include indirect effects from the placenta. In-utero cannabis research focuses on short and long-term fetal health and development; however, these studies include little to no placenta analysis. Prenatal cannabinoid exposure is linked to small for gestational age and fetal growth-restricted babies. Compromised placental development is also associated with fetal growth restriction and the few studies (clinical and animal models) that included placental analysis, identify changes in placental vasculature and function in these cannabinoid-exposed pregnancies. In vitro studies further support cannabinoid impact on cell function in the different populations that comprise the placenta. In this article, we aim to summarize how phytocannabinoids can impact placental development and function. Specifically, the cannabinoids and their actions at the different receptors are described, with receptor localization throughout the human and murine placenta discussed. Findings from studies that included placental analysis and how cannabinoid signaling may modulate critical developmental processing including cell proliferation, angiogenesis and migration are described. Considering the current research, prenatal cannabinoid exposure may significantly impact placental development, and, as such, identifying windows of placental vulnerability for each cannabinoid will be critical to elucidate the etiology of fetal outcome studies.
Collapse
Affiliation(s)
- Abbey C E Rokeby
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bryony V Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, ON, Canada
| | - David R C Natale
- Department of Obstetrics and Gynaecology, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
59
|
Ai C, Wang Z, Li P, Wang M, Zhang W, Song H, Cai X, Lv K, Chen X, Zheng Z. Discovery and pharmacological characterization of a novel benzimidazole TRPV4 antagonist with cyanocyclobutyl moiety. Eur J Med Chem 2023; 249:115137. [PMID: 36696767 DOI: 10.1016/j.ejmech.2023.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
GSK-Bz, a TPRV4 antagonist discovered by GSK, displayed potent in vitro TRPV4 inhibition activity, and demonstrated ability to inhibit TRPV4-mediated pulmonary edema in an in vivo rat model. In this study, a series of GSK-Bz derivatives were designed and synthesized based on our previous findings. Compound 2b with cyanocyclobutyl moiety (IC50 = 22.65 nM) was found to be 5.3-fold more potent than GSK-Bz (IC50 = 121.6 nM) in the calcium imaging experiment. Patch-clamp experiments confirmed that compound 2b (IR = 77.1%) also gave significantly improved potency on TRPV4 currents measured at -60 mV. Furthermore, 2b effectively suppressed the permeability response to LPS in HUVEC with negligible cytotoxicity (CC50 > 100 μM). The in vivo protective effects of compounds 2b on acute lung injury were finally assessed in an LPS-induced ALI mice model. Notably, 2b gave better results than HC-067047 against all of the tested indexes (lung W/D ratios, the concentrations of BALF protein and pathological scores), indicating that 2b is a novel and highly potent TRPV4 antagonist which is worth for further development. Currently, evaluation for the drug-like properties of 2b is underway.
Collapse
Affiliation(s)
- Chongyi Ai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhuang Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Pengyun Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Mengyuan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenjuan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huijuan Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xu Cai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
60
|
Benítez-Angeles M, Juárez-González E, Vergara-Jaque A, Llorente I, Rangel-Yescas G, Thébault SC, Hiriart M, Islas LD, Rosenbaum T. Unconventional interactions of the TRPV4 ion channel with beta-adrenergic receptor ligands. Life Sci Alliance 2023; 6:6/3/e202201704. [PMID: 36549871 PMCID: PMC9780703 DOI: 10.26508/lsa.202201704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is present in different tissues including those of the airways. This channel is activated in response to stimuli such as changes in temperature, hypoosmotic conditions, mechanical stress, and chemicals from plants, lipids, and others. TRPV4's overactivity and/or dysfunction has been associated with several diseases, such as skeletal dysplasias, neuromuscular disorders, and lung pathologies such as asthma and cardiogenic lung edema and COVID-19-related respiratory malfunction. TRPV4 antagonists and blockers have been described; nonetheless, the mechanisms involved in achieving inhibition of the channel remain scarce, and the search for safe use of these molecules in humans continues. Here, we show that the widely used bronchodilator salbutamol and other ligands of β-adrenergic receptors inhibit TRPV4's activation. We also demonstrate that inhibition of TRPV4 by salbutamol is achieved through interaction with two residues located in the outer region of the pore and that salbutamol leads to channel closing, consistent with an allosteric mechanism. Our study provides molecular insights into the mechanisms that regulate the activity of this physiopathologically important ion channel.
Collapse
Affiliation(s)
- Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| | - Emmanuel Juárez-González
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| | | | | | - Marcia Hiriart
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, UNAM, México, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México, México
| |
Collapse
|
61
|
Zhang L, Xu Y, Ma Y, Xie T, Liu C, Liu Q. Research trends in transient receptor potential vanilloid in cardiovascular disease: Bibliometric analysis and visualization. Front Cardiovasc Med 2023; 10:1071198. [PMID: 36910533 PMCID: PMC9992894 DOI: 10.3389/fcvm.2023.1071198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Background Transient receptor potential vanilloid (TRPV) is one of the transient receptor potential protein groups; cardiovascular system disease is a crucial cause of mortality among people globally. Objective This article is intended to accomplish a bibliometric analysis of the trends and public interest since TRPV was reported for the first time. Methods The article summarized the Web of Science (WOS) Core Collection on the relationship between TRPV and cardiovascular system disease each year from 2000 to 2021. Data extraction and visualization were completed by R package bibliometrix. Keyword citation burst and co-citation networks were generated and produced by CiteSpace. The map evaluating the distribution of country and region was painted in GunnMap 2 (lert.co.nz). The ranking was performed using the Standard Competition Ranking method. Co-authorship and co-occurrence were analyzed with VOSviewer. Results After removing duplicated data, books, conference proceedings, and articles of uncertain age, 493 were included, and 17 were excluded. The pattern of publication years showed that the number of publications increased rapidly from 2008 to 2021 with no peak in the number of publications until 2021. The geographical distribution pattern revealed a considerable gap in the number of publications between the United States, China, and other countries, with East Asian institutions leading the world in this area. The pattern of co-authorship showed that 77 institutions were divided into 19 clusters, each covering one country or region.These results suggest that intercontinental cooperation among institutions should be strengthened. The core authors section displayed the change in the most published authors. Keyword analysis listed six burst keywords. Co-citation analysis of references from 2011 to 2021 showed the number and centrality of citations to leading articles. Conclusion Our findings reveal trends and public interest in transient receptor potential vanilloid for cardiovascular disease. These findings suggest that the field has experienced significant growth since 2008, with the United States and China in dominant positions. Our findings also suggest that intercontinental cooperation should be strengthened, and that future research hotspots may focus on pharmacological mechanisms and in-depth exploration of drug clinical trials and new clinical disease application areas such as hypertension, diabetes, and cardiac arrhythmias, which could serve as a foundation for further research.
Collapse
Affiliation(s)
- Lingfeng Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yantao Xu
- Xiangya School of Medicine, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tianjian Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
62
|
Khara LS, Ali DW. The endocannabinoid system's involvement in motor development relies on cannabinoid receptors, TRP channels, and Sonic Hedgehog signaling. Physiol Rep 2023; 11:e15565. [PMID: 36636759 PMCID: PMC9837476 DOI: 10.14814/phy2.15565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023] Open
Abstract
The endocannabinoid system (eCS) plays critical roles in locomotor function and motor development; however, the roles of non-canonical cannabinoid receptor systems such as transient receptor potential (TRP) channels and the Sonic Hedgehog (SHH) signaling pathway in conjunction with the eCS in sensorimotor development remains enigmatic. To investigate the involvement of canonical and non-canonical cannabinoid receptors, TRP channels, and the SHH pathway in the development of sensorimotor function in zebrafish, we treated developing animals with pharmacological inhibitors of the CB1R, CB2R, TRPA1/TRPV1/TRPM8, and a smoothened (SMO) agonist, along with inhibitors of the eCS catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) during the first ~24 h of zebrafish embryogenesis. Locomotor function was examined by assessing touch-evoked escape swimming at 2 days post-fertilization. We report that FAAH inhibition had no effect on swimming while MAGL inhibition using JZL 184 reduced swimming distance and the dual FAAH/MAGL inhibitor JZL 195 impaired swimming distance and mean swimming velocity. The CB1R antagonist AM 251 prevented locomotor deficits caused by eCS perturbation but the CB2R antagonist AM 630 did not. Inhibition of TRPA1/TRPV1/TRPM8 using AMG 9090 rescued the locomotor reductions caused by FAAH/MAGL inhibition, but not by MAGL inhibition alone. The SMO agonist purmorphamine attenuated the effects of JZL 184 and JZL 195 on swimming distance, but not mean velocity. Together, these findings provide one of the first investigations examining the interactions between the eCS and its non-canonical receptor systems in vertebrate motor development.
Collapse
Affiliation(s)
- Lakhan S. Khara
- Department of Biological SciencesUniversity of Alberta EdmontonEdmontonAlbertaCanada
| | - Declan W. Ali
- Department of Biological SciencesUniversity of Alberta EdmontonEdmontonAlbertaCanada
- Department of PhysiologyUniversity of Alberta EdmontonEdmontonAlbertaCanada
- The Neuroscience and Mental Health InstituteUniversity of Alberta EdmontonEdmontonAlbertaCanada
| |
Collapse
|
63
|
Atsumi Y, Toriyama M, Kato H, Nakamura M, Morita A, Takaishi M, Saito K, Tanaka M, Okada F, Tominaga M, Ishii KJ, Fujita F. Anti-Inflammatory Role of TRPV4 in Human Macrophages. Immunohorizons 2023; 7:81-96. [PMID: 36645854 PMCID: PMC10563396 DOI: 10.4049/immunohorizons.2200100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
The pathology of skin immune diseases such as atopic dermatitis is closely related to the overproduction of cytokines by macrophages. Although the pathological functions of macrophages in skin are known, mechanisms of how they detect the tissue environment remain unknown. TRPV4, a nonselective cation channel with high Ca2+ permeability, is activated at physiological temperatures from 27 to 35°C and involved in the functional control of macrophages. However, the relationship between TRPV4 function in macrophages and skin immune disease is unclear. In this study, we demonstrate that TRPV4 activation inhibits NF-κB signaling, resulting in the suppression of IL-1β production in both human primary monocytes and macrophages derived from human primary monocytes. A TRPV4 activator also inhibited the differentiation of human primary monocytes into GM-CSF M1 macrophages but not M-CSF M2 macrophages. We also observed a significant increase in the number of inducible NO synthase-positive/TRPV4-negative dermal macrophages in atopic dermatitis compared with healthy human skin specimens. Our findings provide insight into the physiological relevance of TRPV4 to the regulation of macrophages during homeostasis maintenance and raise the potential for TRPV4 to be an anti-inflammatory target.
Collapse
Affiliation(s)
- Yukiko Atsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Manami Toriyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroko Kato
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motoki Nakamura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Masayuki Takaishi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Mandom Corporation, Osaka, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kaori Saito
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Mandom Corporation, Osaka, Japan
| | - Miku Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Mandom Corporation, Osaka, Japan
| | | | - Makoto Tominaga
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Ken J. Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; and
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Fujita
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Mandom Corporation, Osaka, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
64
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
65
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
66
|
Davis CM, Ibrahim AH, Alkayed NJ. Cytochrome P450-derived eicosanoids in brain: From basic discovery to clinical translation. ADVANCES IN PHARMACOLOGY 2023; 97:283-326. [DOI: 10.1016/bs.apha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
67
|
Yoshizumi M, Tazawa N, Watanabe C, Mizoguchi H. TRPV4 activation prevents lipopolysaccharide-induced painful bladder hypersensitivity in rats by regulating immune pathways. Front Immunol 2022; 13:1080302. [PMID: 36618411 PMCID: PMC9812943 DOI: 10.3389/fimmu.2022.1080302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation in the urinary bladder is a potential risk factor for bladder dysfunction, including interstitial cystitis/bladder pain syndrome (IC/BPS). Although several studies have reported that activation of transient receptor potential vanilloid 4 (TRPV4) contributes to bladder pain and overactive bladder with a cardinal symptom of acute or chronic cystitis, others have reported its involvement in the protective response mediated by lipopolysaccharides (LPS) to secrete anti-inflammatory/pro-resolution cytokines. Therefore, we investigated the potential benefit of an intravesical TRPV4 agonist for painful bladder hypersensitivity in a rat model of LPS-induced cystitis and determined whether its effects modulate the LPS signal for inflammatory reaction, cytokine release, and macrophage phenotype change. Previously, we showed that repeated intravesical instillations of LPS induce long-lasting bladder inflammation, pain, and overactivity in rats. In the present study, concurrent instillation of the selective TRPV4 agonist GSK1016790A (GSK) with LPS into the rat bladder improved LPS-induced bladder inflammation and reduced the number of mast cells. Furthermore, co-instillation of GSK prevented an increase in bladder pain-related behavior and voiding frequency caused by LPS. Cytokine profiling showed that LPS-stimulated inflammatory events, such as the production and secretion of pro-inflammatory cytokines (CXCL1, CXCL5, CXCL9, CXCL10, CCL3, CCL5, CCL20, and CX3CL1), are suppressed by GSK. Furthermore, TRPV4 activation switched LPS-stimulated pro-inflammatory M1-type macrophages to anti-inflammatory M2-type macrophages. These results suggest that TRPV4 activation in the bladder negatively regulates the pro-inflammatory response induced by LPS and prevents bladder hypersensitivity. These TRPV4 functions may be promising therapeutic targets for refractory IC/BPS.
Collapse
|
68
|
Brown EF, Fronius M, Brown CH. Vasopressin regulation of maternal body fluid balance in pregnancy and lactation: A role for TRPV channels? Mol Cell Endocrinol 2022; 558:111764. [PMID: 36038076 DOI: 10.1016/j.mce.2022.111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Renal water reabsorption increases in pregnancy and lactation to expand maternal blood volume to cope with the cardiovascular demands of the developing fetus and new-born baby. Vasopressin (antidiuretic hormone) promotes renal water reabsorption and its secretion is principally stimulated by body fluid osmolality. Hence, lowered osmolality normally decreases vasopressin secretion. However, despite water retention profoundly reducing osmolality in pregnancy and lactation, vasopressin levels are maintained to drive blood volume expansion. Despite its importance for successful reproduction, the cellular mechanisms that maintain vasopressin secretion in the face of decreased osmolality during pregnancy and lactation are unknown. Vasopressin is secreted by neurons that are intrinsically osmosensitive through expression of N-terminal truncated-transient receptor potential vanilloid-1 channel, ΔN-TRPV1, which is mechanically activated by osmotically-induced cell shrinkage to increase vasopressin neuron activity. Vasopressin neurons also express TRPV4 but the role of TRPV4 in vasopressin neuron function is not well characterised. Here, we summarise our novel evidence showing that TRPV4 forms functional channels with ΔN-TRPV1 that have a greater single-channel conductance compared to channels with ΔN-TRPV1 alone. We propose that upregulation of TRPV4 heteromerisation with ΔN-TRPV1 might maintain vasopressin secretion in pregnancy and lactation to expand blood volume for successful reproduction.
Collapse
Affiliation(s)
- Emily F Brown
- Brain Health Research Centre, University of Otago, Dunedin, Aotearoa New Zealand; Centre for Neuroendocrinology, University of Otago, Dunedin, Aotearoa New Zealand; HeartOtago, University of Otago, Dunedin, Aotearoa New Zealand; Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand.
| | - Martin Fronius
- HeartOtago, University of Otago, Dunedin, Aotearoa New Zealand; Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand.
| | - Colin H Brown
- Brain Health Research Centre, University of Otago, Dunedin, Aotearoa New Zealand; Centre for Neuroendocrinology, University of Otago, Dunedin, Aotearoa New Zealand; HeartOtago, University of Otago, Dunedin, Aotearoa New Zealand; Department of Physiology, University of Otago, Dunedin, Aotearoa New Zealand.
| |
Collapse
|
69
|
Simon A, von Einem T, Seidinger A, Matthey M, Bindila L, Wenzel D. The endocannabinoid anandamide is an airway relaxant in health and disease. Nat Commun 2022; 13:6941. [PMID: 36396957 PMCID: PMC9672354 DOI: 10.1038/s41467-022-34327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive airway diseases are a global medical burden that is expected to increase in the near future. However, the underlying mechanistic processes are poorly understood so far. Herein, we show that the endocannabinoid anandamide (AEA) induces prominent airway relaxation in vitro and in vivo. In contrast to 2-arachidonlyglycerol-induced airway relaxation, this is mediated by fatty acid amide hydrolase (FAAH)-dependent metabolites. In particular, we identify mouse and also human epithelial and airway smooth muscle cells as source of AEA-induced prostaglandin E2 production and cAMP as direct mediator of AEA-dependent airway relaxation. Mass spectrometry experiments demonstrate reduced levels of endocannabinoid-like compounds in lungs of ovalbumin-sensitized mice indicating a pathophysiological relevance of endocannabinoid signalling in obstructive airway disease. Importantly, AEA inhalation protects against airway hyper-reactivity after ovalbumin sensitization. Thus, this work highlights the AEA/FAAH axis as a critical regulator of airway tone that could provide therapeutic targets for airway relaxation.
Collapse
Affiliation(s)
- Annika Simon
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Thomas von Einem
- grid.10388.320000 0001 2240 3300Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Alexander Seidinger
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Michaela Matthey
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Laura Bindila
- grid.410607.4Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Daniela Wenzel
- grid.5570.70000 0004 0490 981XDepartment of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany ,grid.10388.320000 0001 2240 3300Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
70
|
Hayakawa S, Tanaka T, Ogawa R, Ito S, Ueno S, Koyama H, Tomotaka O, Sagawa H, Tanaka T, Iwakura H, Takahashi H, Matsuo Y, Mitsui A, Kimura M, Takahashi S, Takiguchi S. Potential Role of TRPV4 in Stretch-Induced Ghrelin Secretion and Obesity. Int J Endocrinol 2022; 2022:7241275. [PMID: 36397882 PMCID: PMC9666045 DOI: 10.1155/2022/7241275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity is an important health problem, which can be prevented through appetite control. Ghrelin is an appetite-stimulating hormone considered to promote obesity. Thus, we examined whether gastric stretching affects ghrelin secretion. We investigated the role of transient receptor potential vanilloid 4 (TRPV4) in gastric glands in the regulation of ghrelin secretion. TRPV4 immunostaining was performed in tissue samples from 57 patients who underwent gastrectomy. TRPV4 expression was compared between patients with (body mass index (BMI) ≥ 30) and without (BMI <30) obesity. For in vitro experiments, we used MGN3-1 cells, a ghrelin-producing cell line derived from mice. To investigate the bioactivity of TRPV4, MGN3-1 cells were treated with TRPV4 agonists and antagonists, and changes in intracellular Ca2+ concentration were confirmed. The concentration of ghrelin in the cell supernatant was measured using the ELISA with and without 120% stretch stimulation. TRPV4 expression was significantly higher in patients with obesity than in those without at all sites, except the fornix. Immunostaining confirmed the expression of TRPV4 in MGN3-1 cells. TRPV4 agonist administration increased intracellular Ca2+ concentration and ghrelin secretion in MGN3-1 cells, whereas the administration of the agonist combined with the antagonist decreased intracellular Ca2+ concentration and ghrelin secretion. Ghrelin secretion significantly increased in response to a 120% stretch in MGN3-1 cells. However, secretion was not increased by stretch when cells were treated with a TRPV4 antagonist. TRPV4 regulates ghrelin secretion in response to stretch in the stomach, which may affect body weight.
Collapse
Affiliation(s)
- Shunsuke Hayakawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Tatsuya Tanaka
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Sunao Ito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shuhei Ueno
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Okubo Tomotaka
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hiroyuki Sagawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, Wakayama Medical University, Kimiidera, Wakayama, Wakayama, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Akira Mitsui
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masahiro Kimura
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
71
|
Kanta Acharya T, Kumar A, Kumar Majhi R, Kumar S, Chakraborty R, Tiwari A, Smalla KH, Liu X, Chang YT, Gundelfinger ED, Goswami C. TRPV4 acts as a mitochondrial Ca 2+-importer and regulates mitochondrial temperature and metabolism. Mitochondrion 2022; 67:38-58. [PMID: 36261119 DOI: 10.1016/j.mito.2022.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/28/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
TRPV4 is associated with the development of neuropathic pain, sensory defects, muscular dystrophies, neurodegenerative disorders, Charcot Marie Tooth and skeletal dysplasia. In all these cases, mitochondrial abnormalities are prominent. Here, we demonstrate that TRPV4, localizes to a subpopulation of mitochondria in various cell lines. Improper expression and/or function of TRPV4 induces several mitochondrial abnormalities. TRPV4 is also involved in the regulation of mitochondrial numbers, Ca2+-levels and mitochondrial temperature. Accordingly, several naturally occurring TRPV4 mutations affect mitochondrial morphology and distribution. These findings may help in understanding the significance of mitochondria in TRPV4-mediated channelopathies possibly classifying them as mitochondrial diseases.
Collapse
Affiliation(s)
- Tusar Kanta Acharya
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ashutosh Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rakesh Kumar Majhi
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Shamit Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ranabir Chakraborty
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India
| | - Ankit Tiwari
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Brenneckestr 6, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) and Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Xiao Liu
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Brenneckestr 6, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) and Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, P.O. Jatni, Khurda 752050, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
72
|
Birkic N, Azar T, Maddipati KR, Minic Z, Reynolds CA. Excessive dietary linoleic acid promotes plasma accumulation of pronociceptive fatty acyl lipid mediators. Sci Rep 2022; 12:17832. [PMID: 36284115 PMCID: PMC9596689 DOI: 10.1038/s41598-022-21823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 01/20/2023] Open
Abstract
Various fatty acyl lipid mediators are derived from dietary polyunsaturated fatty acids (PUFAs) and modulate nociception. The modern diet is rich in linoleic acid, which is associated with nociceptive hypersensitivities and may present a risk factor for developing pain conditions. Although recommendations about fatty acid intake exist for some diseases (e.g. cardiovascular disease), the role of dietary fatty acids in promoting pain disorders is not completely understood. To determine how dietary linoleic acid content influences the accumulation of pro- and anti-nociceptive fatty acyl lipid mediators, we created novel rodent diets using custom triglyceride blends rich in either linoleic acid or oleic acid. We quantified the fatty acyl lipidome in plasma of male and female rats fed these custom diets from the time of weaning through nine weeks of age. Dietary fatty acid composition determined circulating plasma fatty acyl lipidome content. Exposure to a diet rich in linoleic acid was associated with accumulation of linoleic and arachidonic acid-derived pro-nociceptive lipid mediators and reduction of anti-nociceptive lipid mediators derived from the omega-3 PUFAs. Our findings provide mechanistic insights into exaggerated nociceptive hypersensitivity associated with excessive dietary linoleic acid intake and highlight potential biomarkers for pain risk stratification.
Collapse
Affiliation(s)
- Nada Birkic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Toni Azar
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zeljka Minic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christian A Reynolds
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia.
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
73
|
Blazer-Yost BL. Following Ussing's legacy: from amphibian models to mammalian kidney and brain. Am J Physiol Cell Physiol 2022; 323:C1061-C1069. [PMID: 36036449 PMCID: PMC9529261 DOI: 10.1152/ajpcell.00303.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Professor Hans H. Ussing (1911-2000) was one of the founding members of the field of epithelial cell biology. He is most famous for the electrophysiological technique that he developed to measure electrogenic ion flux across epithelial tissues. Ussing-style electrophysiology has been applied to multiple tissues and has informed fields as diverse as amphibian biology and medicine. In the latter, this technique has contributed to a basic understanding of maladies such as hypertension, polycystic kidney disease, cystic fibrosis, and diarrheal diseases to mention but a few. In addition to this valuable contribution to biological methods, Prof. Ussing also provided strong evidence for the concept of active transport several years before the elucidation of Na+K+ATPase. In addition, he provided cell biologists with the important concept of polarized epithelia with specific and different transporters found in the apical and basolateral membranes, thus providing these cells with the ability to conduct directional, active and passive transepithelial transport. My studies have used Ussing chamber electrophysiology to study the toad urinary bladder, an amphibian cell line, renal cell lines, and, most recently, choroid plexus cell lines. This technique has formed the basis of our in vitro mechanistic studies that are used in an iterative manner with animal models to better understand disease progress and treatment. I was honored to be invited to deliver the 2022 Hans Ussing Lecture sponsored by the Epithelial Transport Group of the American Physiological Society. This manuscript is a version of the material presented in that lecture.
Collapse
Affiliation(s)
- Bonnie L Blazer-Yost
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
74
|
Goretzki B, Tebbe F, Mitrovic SA, Hellmich UA. Backbone NMR assignments of the extensive human and chicken TRPV4 N-terminal intrinsically disordered regions as important players in ion channel regulation. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:205-212. [PMID: 35451798 PMCID: PMC9027025 DOI: 10.1007/s12104-022-10080-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Transient receptor potential (TRP) channels are important pharmacological targets due to their ability to act as sensory transducers on the organismic and cellular level, as polymodal signal integrators and because of their role in numerous diseases. However, a detailed molecular understanding of the structural dynamics of TRP channels and their integration into larger cellular signalling networks remains challenging, in part due to the systematic absence of highly dynamic regions pivotal for channel regulation from available structures. In human TRP vanilloid 4 (TRPV4), a ubiquitously expressed homotetrameric cation channel involved in temperature, osmo- and mechano-sensation and in a multitude of (patho)physiological processes, the intrinsically disordered N-terminus encompasses 150 amino acids and thus represents > 17% of the entire channel sequence. Its deletion renders the channel significantly less excitable to agonists supporting a crucial role in TRPV4 activation and regulation. For a structural understanding and a comparison of its properties across species, we determined the NMR backbone assignments of the human and chicken TRPV4 N-terminal IDRs.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry and Cluster of Excellence "Balance of the Microverse", Friedrich Schiller University Jena, Humboldtstrasse 10, 07443, Jena, Germany
- Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Frederike Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry and Cluster of Excellence "Balance of the Microverse", Friedrich Schiller University Jena, Humboldtstrasse 10, 07443, Jena, Germany
| | - Sarah-Ana Mitrovic
- Department of Chemistry, Division Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becher-Weg 30, 55128, Mainz, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry and Cluster of Excellence "Balance of the Microverse", Friedrich Schiller University Jena, Humboldtstrasse 10, 07443, Jena, Germany.
- Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| |
Collapse
|
75
|
Ranjbar H, Soti M, Razavinasab M, Kohlmeier KA, Shabani M. The neglected role of endocannabinoid actions at TRPC channels in ataxia. Neurosci Biobehav Rev 2022; 141:104860. [PMID: 36087758 DOI: 10.1016/j.neubiorev.2022.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 12/01/2022]
Abstract
Transient receptor potential (TRP) channels are highly expressed in cells of the cerebellum including in the dendrites and somas of Purkinje cells (PCs). Their endogenous activation promotes influx of Ca2+ and Na+, resulting in depolarization. TRP channels can be activated by endogenous endocannabinoids (eCBs) and activity of TRP channels has been shown to modulate GABA and glutamate transmission. Ataxia is caused by disruption of multiple intracellular pathways which often involve changes in Ca2+ homeostasis that can result in neural cellular dysfunction and cell death. Based on available literature, alteration of transmission of eCBs would be expected to change activity of cerebellar TRP channels. Antagonists of the endocannabinoid system (ECS) including enzymes which break eCBs down have been shown to result in reductions in postsynaptic excitatory activity mediated by TRPC channels. Further, TRPC channel antagonists could modulate both pre and postsynaptically-mediated glutamatergic and GABAergic transmission, resulting in reductions in cell death due to excitotoxicity and dysfunctions caused by abnormal inhibitory signaling. Accordingly, TRP channels, and in particular the TRPC channel, represent a potential therapeutic target for management of ataxia.
Collapse
Affiliation(s)
- Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
76
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
77
|
Zou Y, Zhang M, Wu Q, Zhao N, Chen M, Yang C, Du Y, Han B. Activation of transient receptor potential vanilloid 4 is involved in pressure overload-induced cardiac hypertrophy. eLife 2022; 11:e74519. [PMID: 35731090 PMCID: PMC9224988 DOI: 10.7554/elife.74519] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Previous studies, including our own, have demonstrated that transient receptor potential vanilloid 4 (TRPV4) is expressed in hearts and implicated in cardiac remodeling and dysfunction. However, the effects of TRPV4 on pressure overload-induced cardiac hypertrophy remain unclear. In this study, we found that TRPV4 expression was significantly increased in mouse hypertrophic hearts, human failing hearts, and neurohormone-induced hypertrophic cardiomyocytes. Deletion of TRPV4 attenuated transverse aortic constriction (TAC)-induced cardiac hypertrophy, cardiac dysfunction, fibrosis, inflammation, and the activation of NFκB - NOD - like receptor pyrin domain-containing protein 3 (NLRP3) in mice. Furthermore, the TRPV4 antagonist GSK2193874 (GSK3874) inhibited cardiac remodeling and dysfunction induced by TAC. In vitro, pretreatment with GSK3874 reduced the neurohormone-induced cardiomyocyte hypertrophy and intracellular Ca2+ concentration elevation. The specific TRPV4 agonist GSK1016790A (GSK790A) triggered Ca2+ influx and evoked the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). But these effects were abolished by removing extracellular Ca2+ or GSK3874. More importantly, TAC or neurohormone stimulation-induced CaMKII phosphorylation was significantly blocked by TRPV4 inhibition. Finally, we show that CaMKII inhibition significantly prevented the phosphorylation of NFκB induced by GSK790A. Our results suggest that TRPV4 activation contributes to pressure overload-induced cardiac hypertrophy and dysfunction. This effect is associated with upregulated Ca2+/CaMKII mediated activation of NFκB-NLRP3. Thus, TRPV4 may represent a potential therapeutic drug target for cardiac hypertrophy and dysfunction after pressure overload.
Collapse
Affiliation(s)
- Yan Zou
- Department of Cardiology, Xuzhou Central HospitalXuzhouChina
- Xuzhou Institute of Cardiovascular Disease, Xuzhou Central HospitalXuzhouChina
| | - Miaomiao Zhang
- Department of Cardiology, Xuzhou Central HospitalXuzhouChina
| | - Qiongfeng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ning Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Minwei Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Cui Yang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yimei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bing Han
- Department of Cardiology, Xuzhou Central HospitalXuzhouChina
| |
Collapse
|
78
|
Charles R, Eaton P. Redox Regulation of Soluble Epoxide Hydrolase-Implications for Cardiovascular Health and Disease. Cells 2022; 11:cells11121932. [PMID: 35741062 PMCID: PMC9221603 DOI: 10.3390/cells11121932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Cell responses to changes in their redox state are significantly mediated by reversible oxido-reductive post-translational modifications of proteins, potentially altering their activities or interactions. These modifications are important for the homeostatic responses of cells to environmental changes that alter their redox state. Such redox regulatory mechanisms not only operate to maintain health, but can become dysregulated and contribute to pathophysiology. In this review, we focus on the redox control of soluble epoxide hydrolase (sEH), which is widely expressed, including in blood vessels and cardiomyocytes. We review the different types of oxidative modifications that regulate sEH and how they may alter cardiovascular physiology and affect disease progression during stress.
Collapse
|
79
|
Ramkumar V, Sheth S, Dhukhwa A, Al Aameri R, Rybak L, Mukherjea D. Transient Receptor Potential Channels and Auditory Functions. Antioxid Redox Signal 2022; 36:1158-1170. [PMID: 34465184 PMCID: PMC9221156 DOI: 10.1089/ars.2021.0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Transient receptor potential (TRP) channels are cation-gated channels that serve as detectors of various sensory modalities, such as pain, heat, cold, and taste. These channels are expressed in the inner ear, suggesting that they could also contribute to the perception of sound. This review provides more details on the different types of TRP channels that have been identified in the cochlea to date, focusing on their cochlear distribution, regulation, and potential contributions to auditory functions. Recent Advances: To date, the effect of TRP channels on normal cochlear physiology in mammals is still unclear. These channels contribute, to a limited extent, to normal cochlear physiology such as the hair cell mechanoelectrical transduction channel and strial functions. More detailed information on a number of these channels in the cochlea awaits future studies. Several laboratories focusing on TRPV1 channels have shown that they are responsive to cochlear stressors, such as ototoxic drugs and noise, and regulate cytoprotective and/or cell death pathways. TRPV1 expression in the cochlea is under control of oxidative stress (produced primarily by NOX3 NADPH oxidase) as well as STAT1 and STAT3 transcription factors, which differentially modulate inflammatory and apoptotic signals in the cochlea. Inhibition of oxidative stress or inflammation reduces the expression of TRPV1 channels and protects against cochlear damage and hearing loss. Critical Issues: TRPV1 channels are activated by both capsaicin and cisplatin, which produce differential effects on the inner ear. How these differential actions are produced is yet to be determined. It is clear that TRPV1 is an essential component of cisplatin ototoxicity as knockdown of these channels protects against hearing loss. In contrast, activation of TRPV1 by capsaicin protected against subsequent hearing loss induced by cisplatin. The cellular targets that are influenced by these two drugs to account for their differential profiles need to be fully elucidated. Furthermore, the potential involvement of different TRP channels present in the cochlea in regulating cisplatin ototoxicity needs to be determined. Future Directions: TRPV1 has been shown to mediate the entry of aminoglycosides into the hair cells. Thus, novel otoprotective strategies could involve designing drugs to inhibit entry of aminoglycosides and possibly other ototoxins into cochlear hair cells. TRP channels, including TRPV1, are expressed on circulating and resident immune cells. These receptors modulate immune cell functions. However, whether they are activated by cochlear stressors to initiate cochlear inflammation and ototoxicity needs to be determined. A better understanding of the function and regulation of these TRP channels in the cochlea could enable development of novel treatments for treating hearing loss. Antioxid. Redox Signal. 36, 1158-1170.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, Florida, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Raheem Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leonard Rybak
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.,Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
80
|
Calcium–Permeable Channels and Endothelial Dysfunction in Acute Lung Injury. Curr Issues Mol Biol 2022; 44:2217-2229. [PMID: 35678679 PMCID: PMC9164020 DOI: 10.3390/cimb44050150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The increased permeability of the lung microvascular endothelium is one critical initiation of acute lung injury (ALI). The disruption of vascular-endothelium integrity results in leakiness of the endothelial barrier and accumulation of protein-rich fluid in the alveoli. During ALI, increased endothelial-cell (EC) permeability is always companied by high frequency and amplitude of cytosolic Ca2+ oscillations. Mechanistically, cytosolic calcium oscillations include calcium release from internal stores and calcium entry via channels located in the cell membrane. Recently, numerous publications have shown substantial evidence that calcium-permeable channels play an important role in maintaining the integrity of the endothelium barrier function of the vessel wall in ALI. These novel endothelial signaling pathways are future targets for the treatment of lung injury. This short review focuses on the up-to-date research and provide insight into the contribution of calcium influx via ion channels to the disruption of lung microvascular endothelial-barrier function during ALI.
Collapse
|
81
|
Wan H, Chen XY, Zhang F, Chen J, Chu F, Sellers ZM, Xu F, Dong H. Capsaicin inhibits intestinal Cl - secretion and promotes Na + absorption by blocking TRPV4 channels in healthy and colitic mice. J Biol Chem 2022; 298:101847. [PMID: 35314195 PMCID: PMC9035713 DOI: 10.1016/j.jbc.2022.101847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/06/2023] Open
Abstract
Although capsaicin has been studied extensively as an activator of the transient receptor potential vanilloid cation channel subtype 1 (TRPV1) channels in sensory neurons, little is known about its TRPV1-independent actions in gastrointestinal health and disease. Here, we aimed to investigate the pharmacological actions of capsaicin as a food additive and medication on intestinal ion transporters in mouse models of ulcerative colitis (UC). The short-circuit current (Isc) of the intestine from WT, TRPV1-, and TRPV4-KO mice were measured in Ussing chambers, and Ca2+ imaging was performed on small intestinal epithelial cells. We also performed Western blots, immunohistochemistry, and immunofluorescence on intestinal epithelial cells and on intestinal tissues following UC induction with dextran sodium sulfate. We found that capsaicin did not affect basal intestinal Isc but significantly inhibited carbachol- and caffeine-induced intestinal Isc in WT mice. Capsaicin similarly inhibited the intestinal Isc in TRPV1 KO mice, but this inhibition was absent in TRPV4 KO mice. We also determined that Ca2+ influx via TRPV4 was required for cholinergic signaling-mediated intestinal anion secretion, which was inhibited by capsaicin. Moreover, the glucose-induced jejunal Iscvia Na+/glucose cotransporter was suppressed by TRPV4 activation, which could be relieved by capsaicin. Capsaicin also stimulated ouabain- and amiloride-sensitive colonic Isc. Finally, we found that dietary capsaicin ameliorated the UC phenotype, suppressed hyperaction of TRPV4 channels, and rescued the reduced ouabain- and amiloride-sensitive Isc. We therefore conclude that capsaicin inhibits intestinal Cl- secretion and promotes Na+ absorption predominantly by blocking TRPV4 channels to exert its beneficial anti-colitic action.
Collapse
Affiliation(s)
- Hanxing Wan
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiong Ying Chen
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fenglian Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jun Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Fenglan Chu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zachary M Sellers
- Pediatric Gastroenterology Hepatology & Nutrition, Stanford University School of Medicine, Palo Alto, California, USA
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China; Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China; Department of Medicine, School of Medicine, University of California, San Diego, California, USA.
| |
Collapse
|
82
|
Swain SM, Romac JMJ, Vigna SR, Liddle RA. Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice. JCI Insight 2022; 7:158288. [PMID: 35451372 PMCID: PMC9089793 DOI: 10.1172/jci.insight.158288] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic fibrosis is a complication of chronic pancreatitis and is a prominent feature of pancreatic cancer. Pancreatic fibrosis is commonly observed in patients with prolonged pancreatic duct obstruction, which elevates intrapancreatic pressure. We show here that increased pancreatic duct pressure causes fibrosis and describes the mechanism by which pressure increases deposition of extracellular matrix proteins and fibrosis. We found that pancreatic stellate cells (PSCs), the source of the extracellular matrix proteins in fibrosis, express the mechanically activated ion channel Piezo1. By increasing intracellular calcium, mechanical stress or the Piezo1 agonist Yoda1-activated PSCs manifest by loss of perinuclear fat droplets and increased TGF-β1, fibronectin, and type I collagen expression. These effects were blocked by the Piezo1 inhibitor GsMTx4 and absent in PSCs from mice with conditional genetic deletion of Piezo1 in stellate cells, as was pancreatic duct ligation-induced fibrosis. Although TRPV4 has been proposed to have direct mechanosensing properties, we discovered that PSCs from Trpv4-KO mice were protected against Yoda1-triggered activation. Moreover, mice devoid of TRPV4 were protected from pancreatic duct ligation-induced fibrosis. Thus, high pressure within the pancreas stimulates Piezo1 channel opening, and subsequent activation of TRPV4 leads to stellate cell activation and pressure-induced chronic pancreatitis and fibrosis.
Collapse
Affiliation(s)
- Sandip M Swain
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Joelle M-J Romac
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Steven R Vigna
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Rodger A Liddle
- Department of Medicine, Duke University, Durham, North Carolina, USA.,Department of Veterans Affairs Healthcare System, Durham, North Carolina, USA
| |
Collapse
|
83
|
Boudaka A, Tominaga M. Physiological and Pathological Significance of Esophageal TRP Channels: Special Focus on TRPV4 in Esophageal Epithelial Cells. Int J Mol Sci 2022; 23:ijms23094550. [PMID: 35562940 PMCID: PMC9099744 DOI: 10.3390/ijms23094550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel that is broadly expressed in different human tissues, including the digestive system, where it acts as a molecular sensor and a transducer that regulates a variety of functional activities. Despite the extensive research to determine the role of this channel in the physiology and pathophysiology of different organs, the unique morphological and functional features of TRPV4 in the esophagus remain largely unknown. Ten years ago, TRPV4 was shown to be highly expressed in esophageal epithelial cells where its activation induces Ca2+-dependent ATP release, which, in turn, mediates several functions, ranging from mechanosensation to wound healing. This review summarizes the research progress on TRPV4, and focuses on the functional expression of TRPV4 in esophageal epithelium and its possible role in different esophageal diseases that would support TRPV4 as a candidate target for future therapeutic approaches to treat patients with these conditions.
Collapse
Affiliation(s)
- Ammar Boudaka
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, P.O. Box 35, Muscat 123, Oman
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki 444-8787, Aichi, Japan;
- Correspondence:
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki 444-8787, Aichi, Japan;
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Aichi, Japan
- Exploratory Research Center on Life and Living Systems, Thermal Biology Group, Okazaki 444-8787, Aichi, Japan
| |
Collapse
|
84
|
Khara LS, Amin MR, Ali DW. Inhibiting the endocannabinoid degrading enzymes FAAH and MAGL during zebrafish embryogenesis alters sensorimotor function. J Exp Biol 2022; 225:275080. [PMID: 35438163 DOI: 10.1242/jeb.244146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
Abstract
The endocannabinoid system (eCS) plays a critical role in a variety of homeostatic and developmental processes. Although the eCS is known to be involved in motor and sensory function, the role of endocannabinoid (eCB) signaling in sensorimotor development remains to be fully understood. In this study, the catabolic enzymes fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MAGL) were inhibited either simultaneously, or individually during the first ∼24 hours of zebrafish embryogenesis, and the properties of contractile events and escape responses were studied in animals ranging in age from 1 day post fertilization (dpf) to 10 weeks. This perturbation of the eCS resulted in alterations to contractile activity at 1 dpf. Inhibition of MAGL using JZL 184 and dual inhibition of FAAH/MAGL using JZL 195 decreased escape swimming activity at 2 dpf. Treatment with JZL 195 also produced alterations in the properties of the 2 dpf short latency C-start escape response. Animals treated with JZL 195 exhibited deficits in escape responses elicited by auditory/vibrational (A/V) stimuli at 5 and 6 dpf. These deficits were also present during the juvenile developmental stage (8-10-week-old fish), demonstrating a prolonged impact to sensory systems. These findings demonstrate that eCS perturbation affects sensorimotor function, and underscores the importance of eCB signaling in the development of motor and sensory processes.
Collapse
Affiliation(s)
- Lakhan S Khara
- Departments of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada
| | - Md Ruhul Amin
- Pharmacology, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada
| | - Declan W Ali
- Departments of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada.,Physiology, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada.,Neuroscience and Mental Health Institute. CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
85
|
Golosova D, Levchenko V, Kravtsova O, Palygin O, Staruschenko A. Acute and long-term effects of cannabinoids on hypertension and kidney injury. Sci Rep 2022; 12:6080. [PMID: 35413977 PMCID: PMC9005691 DOI: 10.1038/s41598-022-09902-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabinoids and their endogenous and synthetic analogs impact blood pressure and contribute to the incidence of hypertension. It was previously reported that the endocannabinoid system plays an important role in developing hypertension; however, it was also shown that cannabinoids elicit profound hypotension associated with hemorrhagic, cardiogenic, and endotoxic shock. This study aimed to test acute and chronic effects of an endogenous ligand of cannabinoid receptor anandamide (AEA) on blood pressure and kidney injury in vivo in conscious Dahl salt-sensitive (SS) rats. We demonstrated that acute i.v. bolus administration of a low or a high doses (0.05 or 3 mg/kg) of AEA did not affect blood pressure for 2 h after the injection in Dahl SS rats fed a normal salt diet (0.4% NaCl). Neither low nor high doses of AEA had any beneficial effects on blood pressure or kidney function. Furthermore, hypertensive rats fed a HS diet (8% NaCl) and chronically treated with 3 mg/kg of AEA exhibited a significant increase in blood pressure accompanied by increased renal interstitial fibrosis and glomerular damage at the late stage of hypertension. Western blot analyses revealed increased expression of Smad3 protein levels in the kidney cortex in response to chronic treatment with a high AEA dose. Therefore, TGF-β1/Smad3 signaling pathway may play a crucial role in kidney injury in SS hypertension during chronic treatment with AEA. Collectively, these data indicate that prolonged stimulation of cannabinoid receptors may result in aggravation of hypertension and kidney damage.
Collapse
Affiliation(s)
- Daria Golosova
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA. .,Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA. .,Clement J. Zablocki VA Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
86
|
Perspectives on Potential Fatty Acid Modulations of Motility Associated Human Sperm Ion Channels. Int J Mol Sci 2022; 23:ijms23073718. [PMID: 35409078 PMCID: PMC8998313 DOI: 10.3390/ijms23073718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Human spermatozoan ion channels are specifically distributed in the spermatozoan membrane, contribute to sperm motility, and are associated with male reproductive abnormalities. Calcium, potassium, protons, sodium, and chloride are the main ions that are regulated across this membrane, and their intracellular concentrations are crucial for sperm motility. Fatty acids (FAs) affect sperm quality parameters, reproductive pathologies, male fertility, and regulate ion channel functions in other cells. However, to date the literature is insufficient to draw any conclusions regarding the effects of FAs on human spermatozoan ion channels. Here, we aimed to discern the possible effects of FAs on spermatozoan ion channels and direct guidance for future research. After investigating the effects of FAs on characteristics related to human spermatozoan motility, reproductive pathologies, and the modulation of similar ion channels in other cells by FAs, we extrapolated polyunsaturated FAs (PUFAs) to have the highest potency in modulating sperm ion channels to increase sperm motility. Of the PUFAs, the ω-3 unsaturated fatty acids have the greatest effect. We speculate that saturated and monounsaturated FAs will have little to no effect on sperm ion channel activity, though the possible effects could be opposite to those of the PUFAs, considering the differences between FA structure and behavior.
Collapse
|
87
|
Zeng ML, Cheng JJ, Kong S, Yang XL, Jia XL, Cheng XL, Chen L, He FG, Liu YM, Fan YT, Gongga L, Chen TX, Liu WH, He XH, Peng BW. Inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4) Mitigates Seizures. Neurotherapeutics 2022; 19:660-681. [PMID: 35182379 PMCID: PMC9226259 DOI: 10.1007/s13311-022-01198-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are critical regulators of the immune/inflammatory response in several human central nervous system (CNS) diseases. Emerging evidence suggests that dysfunctional astrocytes are crucial players in seizures. The objective of this study was to investigate the role of transient receptor potential vanilloid 4 (TRPV4) in 4-aminopyridine (4-AP)-induced seizures and the underlying mechanism. We also provide evidence for the role of Yes-associated protein (YAP) in seizures. 4-AP was administered to mice or primary cultured astrocytes. YAP-specific small interfering RNA (siRNA) was administered to primary cultured astrocytes. Mouse brain tissue and surgical specimens from epileptic patient brains were examined, and the results showed that TRPV4 was upregulated, while astrocytes were activated and polarized to the A1 phenotype. The levels of glial fibrillary acidic protein (GFAP), cytokine production, YAP, signal transducer activator of transcription 3 (STAT3), intracellular Ca2+([Ca2+]i) and the third component of complement (C3) were increased in 4-AP-induced mice and astrocytes. Perturbations in the immune microenvironment in the brain were balanced by TRPV4 inhibition or the manipulation of [Ca2+]i in astrocytes. Knocking down YAP with siRNA significantly inhibited 4-AP-induced pathological changes in astrocytes. Our study demonstrated that astrocytic TRPV4 activation promoted neuroinflammation through the TRPV4/Ca2+/YAP/STAT3 signaling pathway in mice with seizures. Astrocyte TRPV4 inhibition attenuated neuroinflammation, reduced neuronal injury, and improved neurobehavioral function. Targeting astrocytic TRPV4 activation may provide a promising therapeutic approach for managing epilepsy.
Collapse
Affiliation(s)
- Meng-liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Jing-jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xing-liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xiang-lei Jia
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xue-lei Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Ling Chen
- Institute of Forensic Medicine, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Fang-gang He
- Institute of Forensic Medicine, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Yu-min Liu
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, 430071 Wuhan, Hubei China
| | - Yuan-teng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, 430071 Wuhan, Hubei China
| | - Lanzi Gongga
- Tibet University Medical College, 850000 Lhasa, Tibet China
| | - Tao-xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Wan-hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Xiao-hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Bi-wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| |
Collapse
|
88
|
Minic Z, O’Leary DS, Reynolds CA. Spinal Reflex Control of Arterial Blood Pressure: The Role of TRP Channels and Their Endogenous Eicosanoid Modulators. Front Physiol 2022; 13:838175. [PMID: 35283783 PMCID: PMC8904930 DOI: 10.3389/fphys.2022.838175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
The spinal cord is an important integrative center for blood pressure control. Spinal sensory fibers send projections to sympathetic preganglionic neurons of the thoracic spinal cord and drive sympathetically-mediated increases in blood pressure. While these reflexes responses occur in able-bodied individuals, they are exaggerated following interruption of descending control - such as occurs following spinal cord injury. Similar reflex control of blood pressure may exist in disease states, other than spinal cord injury, where there is altered input to sympathetic preganglionic neurons. This review primarily focuses on mechanisms wherein visceral afferent information traveling via spinal nerves influences sympathetic nerve activity and blood pressure. There is an abundance of evidence for the widespread presence of this spinal reflex arch originating from virtually every visceral organ and thus having a substantial role in blood pressure control. Additionally, this review highlights specific endogenous eicosanoid species, which modulate the activity of afferent fibers involved in this reflex, through their interactions with transient receptor potential (TRP) cation channels.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of Emergency Medicine Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christian A. Reynolds
- Department of Emergency Medicine Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
89
|
Nguyen TN, Siddiqui G, Veldhuis NA, Poole DP. Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Front Immunol 2022; 12:828115. [PMID: 35126384 PMCID: PMC8811046 DOI: 10.3389/fimmu.2021.828115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective mechanosensitive ion channel expressed by various macrophage populations. Recent reports have characterized the role of TRPV4 in shaping the activity and phenotype of macrophages to influence the innate immune response to pathogen exposure and inflammation. TRPV4 has been studied extensively in the context of inflammation and inflammatory pain. Although TRPV4 activity has been generally described as pro-inflammatory, emerging evidence suggests a more complex role where this channel may also contribute to anti-inflammatory activities. However, detailed understanding of how TRPV4 may influence the initiation, maintenance, and resolution of inflammatory disease remains limited. This review highlights recent insights into the cellular processes through which TRPV4 contributes to pathological conditions and immune processes, with a focus on macrophage biology. The potential use of high-throughput and omics methods as an unbiased approach for studying the functional outcomes of TRPV4 activation is also discussed.
Collapse
Affiliation(s)
- Thanh-Nhan Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Nicholas A. Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| | - Daniel P. Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| |
Collapse
|
90
|
Reyes-García J, Carbajal-García A, Montaño LM. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur J Pharmacol 2022; 915:174692. [PMID: 34890545 DOI: 10.1016/j.ejphar.2021.174692] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Transient receptor potential (TRP) ion channels play critical roles in physiological and pathological conditions. Increasing evidence has unveiled the contribution of TRP vanilloid (TRPV) family in the development of asthma. The TRPV family is a group (TRPV1-TRPV6) of polymodal channels capable of sensing thermal, acidic, mechanical stress, and osmotic stimuli. TRPVs can be activated by endogenous ligands including, arachidonic acid derivatives or endocannabinoids. While TRPV1-TRPV4 are non-selective cation channels showing a predominance for Ca2+ over Na + influx, TRPV5 and TRPV6 are only Ca2+ permeable selective channels. Asthma is a chronic inflammatory bronchopulmonary disorder involving airway hyperresponsiveness (AHR) and airway remodeling. Patients suffering from allergic asthma display an inflammatory pattern driven by cytokines produced in type-2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s). Ion channels are essential regulators in airway smooth muscle (ASM) and immune cells physiology. In this review, we summarize the contribution of TRPV1, TRPV2, and TRPV4 to the pathogenesis of asthma. TRPV1 is associated with hypersensitivity to environmental pollutants and chronic cough, inflammation, AHR, and remodeling. TRPV2 is increased in peripheral lymphocytes of asthmatic patients. TRPV4 contributes to ASM cells proliferation, and its blockade leads to a reduced eosinophilia, neutrophilia, as well as an abolished AHR. In conclusion, TRPV2 may represent a novel biomarker for asthma in children; meanwhile, TRPV1 and TRPV4 seem to be essential contributors to the development and exacerbations of asthma. Moreover, these channels may serve as novel therapeutic targets for this ailment.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México.
| |
Collapse
|
91
|
Tang C, Liu Q, Zhang Y, Liu G, Shen G. Identification of CIRBP and TRPV4 as Immune-Related Diagnostic Biomarkers in Osteoarthritis. Int J Gen Med 2022; 14:10235-10245. [PMID: 35002293 PMCID: PMC8728929 DOI: 10.2147/ijgm.s342286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Osteoarthritis (OA) is the most common chronic joint disorder in elderly individuals. This study aimed to identify immune-related diagnostic gene signatures for OA. Methods First, we performed single-sample gene set enrichment analysis (ssGSEA) to evaluate the infiltration of immune cells in OA expression data from the Gene Expression Omnibus (GEO) database. Then, weighted gene coexpression network analysis (WGCNA) was performed to identify hub modules and genes related to immune cell types with significant infiltration. Finally, we screened diagnostic markers from the differentially expressed genes (DEGs) in both the OA group and the hub module using least absolute shrinkage and selection operator (LASSO) logistic regression. Results Immune filtration analysis showed that immature B cells, mast cells, natural killer T cells, myeloid-derived suppressor cells (MDSCs), and type 2 T helper cells were dysregulated in OA samples. In WGCNA, a total of 120 genes were selected as hub genes associated with mast cell infiltration.The enrichment analysis showed that spliceosome, positive regulation of cell migration, and response to mechanical stimulus were mainly involved. The LASSO regression model for the GSE117999 dataset revealed 15 DEGs for predicting OA. Finally, two genes were obtained by intersection for further investigation. Conclusion Cold-inducible RNA-binding protein (CIRBP) and transient receptor potential vanilloid 4 (TRPV4) were identified as diagnostic biomarkers for OA, and both were positively correlated with mast cell infiltration.
Collapse
Affiliation(s)
- Chengyang Tang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qiang Liu
- Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing, People's Republic of China
| | - Yaxuan Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guihu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guangsi Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
92
|
TRPV4-dependent signaling mechanisms in systemic and pulmonary vasculature. CURRENT TOPICS IN MEMBRANES 2022; 89:1-41. [DOI: 10.1016/bs.ctm.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
93
|
Evolving concepts of TRPV4 in controlling flow-sensitivity of the renal nephron. CURRENT TOPICS IN MEMBRANES 2022; 89:75-94. [DOI: 10.1016/bs.ctm.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
94
|
The Emerging Pro-Algesic Profile of Transient Receptor Potential Vanilloid Type 4. Rev Physiol Biochem Pharmacol 2022; 186:57-93. [PMID: 36378366 DOI: 10.1007/112_2022_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel's least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.Here, we review the role of TRPV4 in mediating pain sensations.
Collapse
|
95
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
96
|
Acharya TK, Sahu RP, Kumar S, Kumar S, Rokade TP, Chakraborty R, Dubey NK, Shikha D, Chawla S, Goswami C. Function and regulation of thermosensitive ion channel TRPV4 in the immune system. CURRENT TOPICS IN MEMBRANES 2022; 89:155-188. [DOI: 10.1016/bs.ctm.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
97
|
Connelly PW, Yan AT, Nash MM, Wald RM, Lok C, Gunaratnam L, Kirpalani A, Prasad GVR. The Increase in Paraoxonase 1 Is Associated With Decrease in Left Ventricular Volume in Kidney Transplant Recipients. Front Cardiovasc Med 2021; 8:763389. [PMID: 34926614 PMCID: PMC8674585 DOI: 10.3389/fcvm.2021.763389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Patients on dialysis have impaired cardiac function, in part due to increased fluid volume and ventricular stress. Restored kidney function through transplantation reduces left ventricular volume in both systole and diastole. We previously reported that the decrease in NT-proB-type natriuretic peptide (NT-proBNP) was associated with a decrease in adiponectin. Paraoxonase 1 (PON1) has been inversely associated with cardiovascular outcomes. We now report the association of changes in PON1 with changes in left ventricular volume and left ventricular mass after kidney transplantation. Design: Patients on dialysis were assessed at baseline and 12 months after kidney transplantation (n = 38). A comparison group of patients on dialysis who were not expected to receive a transplant in the next 24 months were studied (n = 43) to determine if the change of PON1 with kidney transplantation achieved a significance greater than that due to biologic variation. Left ventricular volume and mass were determined by cardiac magnetic resonance imaging. PON1 was measured by arylesterase activity and by mass. Results: PON1 mass and activity were not different between the groups at baseline. Both PON1 mass and activity were increased post-kidney transplantation (p < 0.0001 for change). The change in PON1 mass (p = 0.0062) and PON1 arylesterase activity (p = 0.0254) were inversely correlated with the change in NT-proBNP for patients receiving a kidney transplant. However, only the change in the PON1 mass, and not the change in PON1 arylesterase, was inversely correlated with the change in left ventricular volume (ml/m2.7) (p = 0.0146 and 0.0114 for diastolic and systolic, respectively) and with the change in hemoglobin (p = 0.0042). Conclusion: Both PON1 mass and arylesterase activity are increased by kidney transplantation. The increase in PON1 mass is consistent with a novel relationship to the increase in hemoglobin and decrease in left ventricular volume and NT-proBNP seen when kidney function is restored.
Collapse
Affiliation(s)
- Philip W Connelly
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew T Yan
- Division of Cardiology, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Michelle M Nash
- Kidney Transplant Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Rachel M Wald
- Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Charmaine Lok
- Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Lakshman Gunaratnam
- Division of Nephrology, London Health Sciences Centre, Western University, London, ON, Canada
| | - Anish Kirpalani
- Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - G V Ramesh Prasad
- Kidney Transplant Program, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
98
|
Mahajan N, Khare P, Kondepudi KK, Bishnoi M. TRPA1: Pharmacology, natural activators and role in obesity prevention. Eur J Pharmacol 2021; 912:174553. [PMID: 34627805 DOI: 10.1016/j.ejphar.2021.174553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is a calcium permeable, non-selective cation channel, expressed in the sensory neurons and non-neuronal cells of different tissues. Initially studied for its role in pain and inflammation, TRPA1 has now functionally involved in multiple other physiological functions. TRPA1 channel has been extensively studied for modulation by pungent compounds present in the spices and herbs. In the last decade, the role of TRPA1 agonism in body weight reduction, secretion of hunger and satiety hormones, insulin secretion and thermogenesis, has unveiled the potential of the TRPA1 channel to be used as a preventive target to tackle obesity and associated comorbidities including insulin resistance in type 2 diabetes. In this review, we summarized the recent findings of TRPA1 based dietary/non-dietary modulation for its role in obesity prevention and therapeutics.
Collapse
Affiliation(s)
- Neha Mahajan
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Pragyanshu Khare
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
99
|
Peng S, Poole DP, Veldhuis NA. Mini-review: Dissecting receptor-mediated stimulation of TRPV4 in nociceptive and inflammatory pathways. Neurosci Lett 2021; 770:136377. [PMID: 34856355 DOI: 10.1016/j.neulet.2021.136377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a polymodal, non-selective cation channel that detects thermal, mechanical, and environmental cues and contributes to a range of diverse physiological processes. The effects of chronic TRPV4 stimulation and gain-of-function genetic mutations suggest that TRPV4 may also be a valuable therapeutic target for pathophysiological events including neurogenic inflammation, peripheral neuropathies, and impaired wound healing. There has been significant interest in defining how and where TRPV4 may promote inflammation and pain. Endogenous stimuli such as osmotic stress and lipid binding are established TRPV4 activators. The TRP channel family is also well-known to be controlled by 'receptor-operated' pathways. For example, G protein-coupled receptors (GPCRs) expressed by primary afferent neurons or other cells in inflammatory pathways utilize TRPV4 as an effector protein to amplify nociceptive and inflammatory signaling. Contributing to disorders including arthritis, neuropathies, and pulmonary edema, GPCRs such as the protease-activated receptor PAR2 mediate activation of kinase signaling cascades to increase TRPV4 phosphorylation, resulting in sensitization and enhanced neuronal excitability. Phospholipase activity also leads to production of polyunsaturated fatty acid lipid mediators that directly activate TRPV4. Consistent with the contribution of TRPV4 to disease, pharmacological inhibition or genetic ablation of TRPV4 can diminish receptor-mediated inflammatory events. This review outlines how receptor-mediated signaling is a major endogenous driver of TRPV4 gating and discusses key signaling pathways and emerging TRPV4 modulators such as the mechanosensitive Piezo1 ion channel. A collective understanding of how endogenous stimuli can influence TRPV4 function is critical for future therapeutic endeavors to modulate this channel.
Collapse
Affiliation(s)
- Scott Peng
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
100
|
Uchida T, Shimizu S, Yamagishi R, Tokuoka SM, Kita Y, Sakata R, Honjo M, Aihara M. TRPV4 is activated by mechanical stimulation to induce prostaglandins release in trabecular meshwork, lowering intraocular pressure. PLoS One 2021; 16:e0258911. [PMID: 34673834 PMCID: PMC8530296 DOI: 10.1371/journal.pone.0258911] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Trabecular meshwork constitutes the conventional outflow pathway and controls intraocular pressure by regulating aqueous outflow. Mechanical stimulation has been studied as one of the triggers to regulate aqueous outflow in trabecular meshwork, but it is not well understood. We investigated that how transient receptor potential cation channel subfamily V member 4 (TRPV4) functions in human trabecular meshwork cells (HTMC) and affects intraocular pressure (IOP). HTMC were treated with TRPV4 siRNA, followed by incubation for 24 hours. We confirmed the suppression of TRPV4 mRNA expression and the reduction of Ca2+ influx by the TRPV4 agonist GSK1016790A in TRPV4 siRNA-treated HTMC. TRPV4 siRNA-treated HTMC exhibited a significant reduction in Ca2+ influx and production of arachidonic acid and prostaglandin (PG) E2 induced by mechanical stretch, and direct activation of TRPV4 by GSK1016790A increased production of arachidonic acid, PGE2, and PGD2 and inhibited gel contraction. Furthermore, TRPV4-deficient mice had higher IOP than wild-type mice, and GSK1016790A administration lowered IOP. These results suggest that TRPV4 mediates the cellular response induced by trabecular meshwork stretch, leading to IOP reduction through the production of prostaglandins and inhibition of cell contraction. Targeting TRPV4 may have therapeutic benefits that lead to lowering IOP in glaucoma patients.
Collapse
Affiliation(s)
- Takatoshi Uchida
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Senju Laboratory of Ocular Science, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | - Shota Shimizu
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Senju Laboratory of Ocular Science, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Suzumi M. Tokuoka
- Department of Lipidomics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Life Science Core Facility, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Rei Sakata
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|