51
|
Wittlinger F, Ogboo BC, Shevchenko E, Damghani T, Pham CD, Schaeffner IK, Oligny BT, Chitnis SP, Beyett TS, Rasch A, Buckley B, Urul DA, Shaurova T, May EW, Schaefer EM, Eck MJ, Hershberger PA, Poso A, Laufer SA, Heppner DE. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. Commun Chem 2024; 7:38. [PMID: 38378740 PMCID: PMC10879502 DOI: 10.1038/s42004-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The re-engineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.
Collapse
Affiliation(s)
- Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ekaterina Shevchenko
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
| | - Tahereh Damghani
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Calvin D Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ilse K Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brandon T Oligny
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Surbhi P Chitnis
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 5119 Rollins Research Center, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Alexander Rasch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, MA, 01752, USA
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, MA, 01752, USA
| | | | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, 70210, Kuopio, Finland
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany.
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany.
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
52
|
Li F, Liu J, Liu C, Liu Z, Peng X, Huang Y, Chen X, Sun X, Wang S, Chen W, Xiong D, Diao X, Wang S, Zhuang J, Wu C, Wu D. Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-X L by engaging a single-residue discrepancy. Nat Commun 2024; 15:1476. [PMID: 38368459 PMCID: PMC10874388 DOI: 10.1038/s41467-024-45848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Junjie Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Liu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ziyan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Yinyue Huang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sen Wang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Chen
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China
| | - Dan Xiong
- Xiamen Lifeint Technology Company Ltd., Xiamen, 361005, China
| | - Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Marine College, Shandong University, Weihai, 264209, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
53
|
Lin C, Zhang Y, Liao J, Cui S, Gao Z, Han W. Effect of photodynamic therapy mediated by hematoporphyrin derivatives on small cell lung cancer H446 cells and bronchial epithelial BEAS-2B cells. Lasers Med Sci 2024; 39:65. [PMID: 38368311 PMCID: PMC10874342 DOI: 10.1007/s10103-024-04013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
To investigate the effects of photodynamic therapy (PDT) mediated by hematoporphyrin derivatives (HPD) on the proliferation of small cell lung cancer H446 cells and bronchial epithelial BEAS-2B cells. H446 cells and BEAS-2B cells were cultured in vitro with different concentrations of HPD(0, 5, 10, 12, 15, 20 μg/mL) for 4 h, and then irradiated with 630 nm laser with different energy densities (0, 25, 50, 75, 100 mW/cm2). Cell viability of H446 cells and BEAS-2B cells were detected by CCK8 assay. The cell apoptosis was observed with Annexin V-FTTC/PI double staining and Hoechst 33258. The RT-PCR examination was applied to detect the transcriptional changes of the mRNA of Bax、Bcl-2, and Caspase-9. The results of CCK8 showed that when the HPD was 15 μg/mL and the laser power density reached 50 mW/cm2, the cell viability was significantly decreased compared with the black control group. Hoechst 33258 staining showed that with the increase of HPD concentration, the cell density was reduced, and apoptotic cells increased. Flow cytometry assay revealed that the apoptotic rates of the HPD-PDT group of H446 cells and BEAS-2B cells were significantly different from those of the blank control group. The RT-PCR examination showed that the expression levels of Bax and Caspase-9 mRNA in the HPD-PDT group were up-regulated, while the expression levels of Bcl-2 mRNA were down-regulated significantly. HPD-PDT can inhibit H446 cells and BEAS-2B cells growth. The mechanism may be related to up-regulating the expression levels of Bax and Caspase-9 mRNA and down-regulating the expression levels of Bcl-2 mRNA.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuanyuan Zhang
- Department of Respiratory and Critical Care Medicine, Yantai Yuhuangding Hospital, Yan Tai, 264001, China
| | - Jiemei Liao
- Department of Respiratory and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, 411199, China
| | - Shichao Cui
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhe Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weizhong Han
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
54
|
Bhatia K, Sandhu V, Wong MH, Iyer P, Bhatt S. Therapeutic biomarkers in acute myeloid leukemia: functional and genomic approaches. Front Oncol 2024; 14:1275251. [PMID: 38410111 PMCID: PMC10894932 DOI: 10.3389/fonc.2024.1275251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is clinically and genetically a heterogeneous disease characterized by clonal expansion of abnormal hematopoietic progenitors. Genomic approaches to precision medicine have been implemented to direct targeted therapy for subgroups of AML patients, for instance, IDH inhibitors for IDH1/2 mutated patients, and FLT3 inhibitors with FLT3 mutated patients. While next generation sequencing for genetic mutations has improved treatment outcomes, only a fraction of AML patients benefit due to the low prevalence of actionable targets. In recent years, the adoption of newer functional technologies for quantitative phenotypic analysis and patient-derived avatar models has strengthened the potential for generalized functional precision medicine approach. However, functional approach requires robust standardization for multiple variables such as functional parameters, time of drug exposure and drug concentration for making in vitro predictions. In this review, we first summarize genomic and functional therapeutic biomarkers adopted for AML therapy, followed by challenges associated with these approaches, and finally, the future strategies to enhance the implementation of precision medicine.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Vedant Sandhu
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Mei Hsuan Wong
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
55
|
Richardson M, Richardson DR. Pharmacological Targeting of Senescence with Senolytics as a New Therapeutic Strategy for Neurodegeneration. Mol Pharmacol 2024; 105:64-74. [PMID: 38164616 DOI: 10.1124/molpharm.123.000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Cellular senescence is a state of permanent cell-cycle arrest. Early in life, senescence has a physiologic role in tumor suppression and wound healing. However, gradually, as these senescent cells accumulate over the lifespan of an organism, they contribute to inflammation and the progression of age-related diseases, including neurodegeneration. Targeting senescent cells using a class of drugs known as "senolytics" holds great promise for the management of Alzheimer's and Parkinson's disease. Already, several senolytic compounds have been shown to ameliorate cognitive deficits across several preclinical models of neurodegeneration. Most of these senolytics (e.g., dasatinib) are repurposed clinical or experimental anticancer drugs, which trigger apoptosis of senescent cells by interfering with pro-survival pathways. However, outside of their senolytic function, many first-generation senolytics also have other less appreciated neuroprotective effects, such as potent antioxidant and anti-inflammatory activity. In addition, some senolytic drugs may also have negative dose-limiting toxicities, including thrombocytopenia. In this review, we discuss the various biologic pathways targeted by the leading senolytic drugs, namely dasatinib, quercetin, fisetin, and navitoclax. We further evaluate the clinical transability of these compounds for neurodegeneration, assessing their adverse effects, pharmacokinetic properties, and chemical structure. SIGNIFICANCE STATEMENT: Currently, there are no effective disease-modifying treatments for the most prevalent neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Some of the drugs currently available for treating these diseases are associated with unwanted side-effects and/or become less efficacious with time. Therefore, researchers have begun to explore new innovative treatments for these belligerent diseases, including senolytic drugs. These agents lead to the apoptosis of senescent cells thereby preventing their deleterious role in neurodegeneration.
Collapse
Affiliation(s)
- Miriam Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery (M.R., DR.R.), Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; and Department of Pathology and Biological Responses (D.R.R.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
56
|
Wu Y, Zehnle PMA, Rajak J, Koleci N, Andrieux G, Gallego-Villar L, Aumann K, Boerries M, Niemeyer CM, Flotho C, Bohler S, Erlacher M. BH3 mimetics and azacitidine show synergistic effects on juvenile myelomonocytic leukemia. Leukemia 2024; 38:136-148. [PMID: 37945692 PMCID: PMC10776398 DOI: 10.1038/s41375-023-02079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive hematopoietic disorder of infancy and early childhood driven by constitutively active RAS signaling and characterized by abnormal proliferation of the granulocytic-monocytic blood cell lineage. Most JMML patients require hematopoietic stem cell transplantation for cure, but the risk of relapse is high for some JMML subtypes. Azacitidine was shown to effectively reduce leukemic burden in a subset of JMML patients. However, variable response rates to azacitidine and the risk of drug resistance highlight the need for novel therapeutic approaches. Since RAS signaling is known to interfere with the intrinsic apoptosis pathway, we combined various BH3 mimetic drugs with azacitidine in our previously established patient-derived xenograft model. We demonstrate that JMML cells require both MCL-1 and BCL-XL for survival, and that these proteins can be effectively targeted by azacitidine and BH3 mimetic combination treatment. In vivo azacitidine acts via downregulation of antiapoptotic MCL-1 and upregulation of proapoptotic BH3-only. The combination of azacitidine with BCL-XL inhibition was superior to BCL-2 inhibition in eliminating JMML cells. Our findings emphasize the need to develop clinically applicable MCL-1 or BCL-XL inhibitors in order to enable novel combination therapies in JMML refractory to standard therapy.
Collapse
Affiliation(s)
- Ying Wu
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Patricia M A Zehnle
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jovana Rajak
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Naile Koleci
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lorena Gallego-Villar
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Konrad Aumann
- University Medical Center Freiburg, Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sheila Bohler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
57
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
58
|
Kleber M, Ntanasis-Stathopoulos I, Terpos E. The Role of t(11;14) in Tailoring Treatment Decisions in Multiple Myeloma. Cancers (Basel) 2023; 15:5829. [PMID: 38136374 PMCID: PMC10742268 DOI: 10.3390/cancers15245829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple myeloma (MM) represents a hematological neoplasia with an uncontrolled proliferation of malignant plasma cells and complex cytogenetic abnormalities. t(11;14) has emerged as a crucial genetic aberration and is one of the most common primary translocations in MM. Patients harboring t(11;14) represent a distinctive subgroup with a clinical profile that differs from t(11;14)-negative MM risk categories. One of the key features linked with t(11;14) is the BCL2 dependency, indicating vulnerability to BCL2 inhibition. BCL2 inhibitors, such as venetoclax, demonstrated impressive efficacy alone or in combination with other anti-myeloma drugs in patients with RRMM accompanied by t(11;14) and BCL2 overexpression. Therefore, t(11;14) plays a key role in both risk stratification and informed decision making towards a tailored therapy. In this review, we highlight the biology of t(11;14) in MM cells, summarize the current evolving role of t(11;14) in the era of novel agents and novel targeted therapies, illuminate current efficacy and safety data of BCL2-based treatment options and explore the future prospects of individualized precision medicine for this special subgroup of patients with MM.
Collapse
Affiliation(s)
- Martina Kleber
- Department of Internal Medicine, Clinic Hirslanden Zurich, 8032 Zurich, Switzerland;
- Faculty of Medicine, University of Basel, 4031 Basel, Switzerland
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
59
|
Liu P, Zhao L, Zitvogel L, Kepp O, Kroemer G. The BCL2 inhibitor venetoclax mediates anticancer effects through dendritic cell activation. Cell Death Differ 2023; 30:2447-2451. [PMID: 37845384 PMCID: PMC10733328 DOI: 10.1038/s41418-023-01232-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
BCL2 is an apoptosis-inhibitory oncoprotein that also possesses apoptosis-unrelated activities. Pharmacological BCL2 inhibitors have been developed with the scope of driving BCL2-dependent cancer cells into apoptosis, and one BCL2 antagonist, venetoclax, has been clinically approved for the treatment of specific leukemias and lymphomas. Nonetheless, it appears that venetoclax, as well as genetic BCL2 inhibition, can mediate anticancer effects through an indirect action. Such an indirect effect relies on the enhancement of the immunostimulatory function of dendritic cells, hence increasing tumor immunosurveillance. Mechanistically, BCL2 inhibition involves improved antigen presentation by conventional type-1 dendritic cells (cDC1s) due to the activation of an interferon response, leading to a T cell-mediated anticancer immune response that can be further enhanced by PD-1 blockade. These findings support the emerging hypothesis that successful antineoplastic drugs generally mediate their effects indirectly, through the immune system, rather via merely cell-autonomous effects on malignant cells.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
60
|
Reisbeck L, Linder B, Tascher G, Bozkurt S, Weber KJ, Herold-Mende C, van Wijk SJL, Marschalek R, Schaefer L, Münch C, Kögel D. The iron chelator and OXPHOS inhibitor VLX600 induces mitophagy and an autophagy-dependent type of cell death in glioblastoma cells. Am J Physiol Cell Physiol 2023; 325:C1451-C1469. [PMID: 37899749 DOI: 10.1152/ajpcell.00293.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Induction of alternative, non-apoptotic cell death programs such as cell-lethal autophagy and mitophagy represent possible strategies to combat glioblastoma (GBM). Here we report that VLX600, a novel iron chelator and oxidative phosphorylation (OXPHOS) inhibitor, induces a caspase-independent type of cell death that is partially rescued in adherent U251 ATG5/7 (autophagy related 5/7) knockout (KO) GBM cells and NCH644 ATG5/7 knockdown (KD) glioma stem-like cells (GSCs), suggesting that VLX600 induces an autophagy-dependent cell death (ADCD) in GBM. This ADCD is accompanied by decreased oxygen consumption, increased expression/mitochondrial localization of BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like), the induction of mitophagy as demonstrated by diminished levels of mitochondrial marker proteins [e.g., COX4I1 (cytochrome c oxidase subunit 4I1)] and the mitoKeima assay as well as increased histone H3 and H4 lysine tri-methylation. Furthermore, the extracellular addition of iron is able to significantly rescue VLX600-induced cell death and mitophagy, pointing out an important role of iron metabolism for GBM cell homeostasis. Interestingly, VLX600 is also able to completely eliminate NCH644 GSC tumors in an organotypic brain slice transplantation model. Our data support the therapeutic concept of ADCD induction in GBM and suggest that VLX600 may be an interesting novel drug candidate for the treatment of this tumor.NEW & NOTEWORTHY Induction of cell-lethal autophagy represents a possible strategy to combat glioblastoma (GBM). Here, we demonstrate that the novel iron chelator and OXPHOS inhibitor VLX600 exerts pronounced tumor cell-killing effects in adherently cultured GBM cells and glioblastoma stem-like cell (GSC) spheroid cultures that depend on the iron-chelating function of VLX600 and on autophagy activation, underscoring the context-dependent role of autophagy in therapy responses. VLX600 represents an interesting novel drug candidate for the treatment of this tumor.
Collapse
Affiliation(s)
- Lisa Reisbeck
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Süleyman Bozkurt
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Katharina J Weber
- Neurological Institute (Edinger Institute), Goethe University Hospital, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Main, a partnership between DKFZ and University Hospital, Frankfurt, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sjoerd J L van Wijk
- Institute for Pediatric Hematology and Oncology, Goethe University Hospital Frankfurt/Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Main, a partnership between DKFZ and University Hospital, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Diagnostic Center of Acute Leukemia, University of Frankfurt, Frankfurt/Main, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Main, a partnership between DKFZ and University Hospital, Frankfurt, Germany
| |
Collapse
|
61
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
62
|
Fan Z, Wan LX, Jiang W, Liu B, Wu D. Targeting autophagy with small-molecule activators for potential therapeutic purposes. Eur J Med Chem 2023; 260:115722. [PMID: 37595546 DOI: 10.1016/j.ejmech.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Autophagy is well-known to be a lysosome-mediated catabolic process for maintaining cellular and organismal homeostasis, which has been established with many links to a variety of human diseases. Compared with the therapeutic strategy for inhibiting autophagy, activating autophagy seems to be another promising therapeutic strategy in several contexts. Hitherto, mounting efforts have been made to discover potent and selective small-molecule activators of autophagy to potentially treat human diseases. Thus, in this perspective, we focus on summarizing the complicated relationships between defective autophagy and human diseases, and further discuss the updated progress of a series of small-molecule activators targeting autophagy in human diseases. Taken together, these inspiring findings would provide a clue on discovering more small-molecule activators of autophagy as targeted candidate drugs for potential therapeutic purposes.
Collapse
Affiliation(s)
- Zhichao Fan
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin-Xi Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dongbo Wu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
63
|
Le Sénéchal R, Keruzoré M, Quillévéré A, Loaëc N, Dinh VT, Reznichenko O, Guixens-Gallardo P, Corcos L, Teulade-Fichou MP, Granzhan A, Blondel M. Alternative splicing of BCL-x is controlled by RBM25 binding to a G-quadruplex in BCL-x pre-mRNA. Nucleic Acids Res 2023; 51:11239-11257. [PMID: 37811881 PMCID: PMC10639069 DOI: 10.1093/nar/gkad772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/05/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Oksana Reznichenko
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Pedro Guixens-Gallardo
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Laurent Corcos
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
64
|
Speir M, Tye H, Gottschalk TA, Simpson DS, Djajawi TM, Deo P, Ambrose RL, Conos SA, Emery J, Abraham G, Pascoe A, Hughes SA, Weir A, Hawkins ED, Kong I, Herold MJ, Pearson JS, Lalaoui N, Naderer T, Vince JE, Lawlor KE. A1 is induced by pathogen ligands to limit myeloid cell death and NLRP3 inflammasome activation. EMBO Rep 2023; 24:e56865. [PMID: 37846472 PMCID: PMC10626451 DOI: 10.15252/embr.202356865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
Programmed cell death pathways play an important role in innate immune responses to infection. Activation of intrinsic apoptosis promotes infected cell clearance; however, comparatively little is known about how this mode of cell death is regulated during infections and whether it can induce inflammation. Here, we identify that the pro-survival BCL-2 family member, A1, controls activation of the essential intrinsic apoptotic effectors BAX/BAK in macrophages and monocytes following bacterial lipopolysaccharide (LPS) sensing. We show that, due to its tight transcriptional and post-translational regulation, A1 acts as a molecular rheostat to regulate BAX/BAK-dependent apoptosis and the subsequent NLRP3 inflammasome-dependent and inflammasome-independent maturation of the inflammatory cytokine IL-1β. Furthermore, induction of A1 expression in inflammatory monocytes limits cell death modalities and IL-1β activation triggered by Neisseria gonorrhoeae-derived outer membrane vesicles (NOMVs). Consequently, A1-deficient mice exhibit heightened IL-1β production in response to NOMV injection. These findings reveal that bacteria can induce A1 expression to delay myeloid cell death and inflammatory responses, which has implications for the development of host-directed antimicrobial therapeutics.
Collapse
|
65
|
Josefsson EC. Platelet intrinsic apoptosis. Thromb Res 2023; 231:206-213. [PMID: 36739256 DOI: 10.1016/j.thromres.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
In a healthy individual, the lifespan of most platelets is tightly regulated by intrinsic, or mitochondrial, apoptosis. This is a special form of programmed cell death governed by the BCL-2 family of proteins, where the prosurvival protein BCL-XL maintains platelet viability by restraining the prodeath proteins BAK and BAX. Restriction of platelet lifespan by activation of BAK and BAX mediated intrinsic apoptosis is essential to maintain a functional, haemostatically reactive platelet population. This review focuses on the molecular regulation of intrinsic apoptosis in platelets, reviews conditions linked to enhanced platelet death, discusses ex vivo storage of platelets and describes caveats associated with the assessment of platelet apoptosis.
Collapse
Affiliation(s)
- Emma C Josefsson
- Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden; The University of Gothenburg, Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg, Sweden; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, VIC 3052, Australia; The University of Melbourne, Department of Medical Biology, 1G Royal Parade, VIC 3052, Australia.
| |
Collapse
|
66
|
Bui I, Baritaki S, Libra M, Zaravinos A, Bonavida B. Cancer Resistance Is Mediated by the Upregulation of Several Anti-Apoptotic Gene Products via the Inducible Nitric Oxide Synthase/Nitric Oxide Pathway: Therapeutic Implications. Antioxid Redox Signal 2023; 39:853-889. [PMID: 37466477 DOI: 10.1089/ars.2023.0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Significance: Several therapeutic strategies for cancer treatments have been developed with time, and significant milestones have been achieved recently. However, with these novel therapies, not all cancer types respond and in the responding cancer types only a subset is affected. The failure to respond is principally the result that these cancers develop several mechanisms of resistance. Thus, a focus of current research investigations is to unravel the various mechanisms that regulate resistance and identify suitable targets for new therapeutics. Recent Advances: Hence, many human cancer types have been reported to overexpress the inducible nitric oxide synthase (iNOS) and it has been suggested that iNOS/nitric oxide (NO) plays a pivotal role in the regulation of resistance. We have postulated that iNOS overexpression or NO regulates the overexpression of pivotal anti-apoptotic gene products such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma extra large (Bcl-xL), myeloid cell leukemia-1 (Mcl-1), and survivin. In this report, we describe the various mechanisms, transcriptional, post-transcriptional, and post-translational, by which iNOS/NO regulates the expression of the above anti-apoptotic gene products. Critical Issues: The iNOS/NO-mediated regulation of the four gene products is not the same with both specific and overlapping pathways. Our findings are, in large part, validated by bioinformatic analyses demonstrating, in several cancers, several direct correlations between the expression of iNOS and each of the four examined anti-apoptotic gene products. Future Directions: We have proposed that targeting iNOS may be highly efficient since it will result in the underexpression of multiple anti-apoptotic proteins and shifting the balance toward the proapoptotic gene products and reversal of resistance. Antioxid. Redox Signal. 39, 853-889.
Collapse
Affiliation(s)
- Indy Bui
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Department of Surgery, School of Medicine, University of Crete, Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Italian League Against Cancer, Catania, Italy
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
67
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
68
|
Saleem HN, Kousar S, Jiskani AH, Sohail I, Faisal A, Saeed M. Repurposing of investigational cancer drugs: Early phase discovery of dengue virus NS2B/NS3 protease inhibitors. Arch Pharm (Weinheim) 2023; 356:e2300292. [PMID: 37582646 DOI: 10.1002/ardp.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Dengue fever is a neglected vector-borne disease and is more prevalent in Asia. Currently, no specific treatment is available. Given the time and cost of de novo drug discovery and development, an alternative option of drug repurposing is becoming an effective tool. We screened a library of 1127 pharmacologically active, metabolically stable, and structurally diverse small anticancer molecules to identify inhibitors of the dengue virus (DENV) NS2B/NS3 protease. Enzyme kinetics and inhibition data revealed four B-cell lymphoma 2 inhibitors, that is, ABT263, ABT737, AT101, and TW37, as potent inhibitors of DENV NS2B/NS3 protease, with IC50 values of 0.86, 1.15, 0.81, and 0.89 µM, respectively. Mode of inhibition experiments and computational docking analyses indicated that ABT263 and ABT737 are competitive inhibitors, whereas AT101 and TW37 are noncompetitive inhibitors of the protease. With further evaluation, the identified inhibitors of the DENV NS2B/NS3 protease have the potential to be developed into specific anti-dengue therapeutics.
Collapse
Affiliation(s)
- Hafiza N Saleem
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Summara Kousar
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Ammar Hassan Jiskani
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Iqra Sohail
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Amir Faisal
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| |
Collapse
|
69
|
Genz LR, Mulvaney T, Nair S, Topf M. PICKLUSTER: a protein-interface clustering and analysis plug-in for UCSF ChimeraX. Bioinformatics 2023; 39:btad629. [PMID: 37846034 PMCID: PMC10629935 DOI: 10.1093/bioinformatics/btad629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023] Open
Abstract
SUMMARY The identification and characterization of interfaces in protein complexes is crucial for understanding the mechanisms of molecular recognition. These interfaces are also attractive targets for protein inhibition. However, targeting protein interfaces can be challenging for large interfaces that consist of multiple interacting regions. We present PICKLUSTER [Protein Interface C(K)luster]-a program for identifying "sub-interfaces" in protein-protein complexes using distance clustering. The division of the interface into smaller "sub-interfaces" offers a more focused approach for targeting protein-protein interfaces. AVAILABILITY AND IMPLEMENTATION PICKLUSTER is implemented as a plug-in for the molecular visualization program UCSF ChimeraX 1.4 and subsequent versions. It is freely available for download in the ChimeraX Toolshed and https://gitlab.com/topf-lab/pickluster.git.
Collapse
Affiliation(s)
- Luca R Genz
- Leibniz-Institut für Virologie (LIV), 20251 Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Thomas Mulvaney
- Leibniz-Institut für Virologie (LIV), 20251 Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Universitätsklinikum Hamburg Eppendorf (UKE), 20246 Hamburg, Germany
| | - Sanjana Nair
- Leibniz-Institut für Virologie (LIV), 20251 Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Maya Topf
- Leibniz-Institut für Virologie (LIV), 20251 Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Universitätsklinikum Hamburg Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
70
|
Skwarska A, Konopleva M. BCL-xL Targeting to Induce Apoptosis and to Eliminate Chemotherapy-Induced Senescent Tumor Cells: From Navitoclax to Platelet-Sparing BCL-xL PROTACs. Cancer Res 2023; 83:3501-3503. [PMID: 37824434 DOI: 10.1158/0008-5472.can-23-2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
Restoring apoptotic cell death is a critical goal for cancer therapy. One of the primary mechanisms by which cancer cells evade death and maintain survival in the face of stress signals is by overexpression of prosurvival B-cell lymphoma 2 (BCL2) family members such as BCL2, BCL-xL, and MCL1, which suppress the intrinsic (mitochondrial) pathway of apoptosis through complex protein and membrane interactions. While these antiapoptotic proteins have been validated as potent therapeutic targets, synthesis of their inhibitors remained challenging for decades mainly due to the presence of a difficult to target, highly hydrophobic groove on the surface. The groove serves as a binding site for the BH3 domain of corresponding proapoptotic partners, which leads to their sequestration and prevents apoptosis. In 2008, a Cancer Research article by Tse and colleagues, led by Dr. Steven Elmore from Abbott Laboratories, reported the discovery of the first orally bioavailable BCL2/BCL-xL inhibitor, navitoclax (ABT-263), marking the onset of an era of "BH3 mimetics" in cancer therapeutics and changing the therapeutic landscape especially for leukemia. Here, we reflect on how this landmark study fueled development of small-molecule BH3 mimetics like venetoclax and seek to indicate new strategies and future directions for improving the clinical activity of navitoclax for hematologic malignancies. See related article by Tse and colleagues, Cancer Res 2008;68:3421-3428.
Collapse
Affiliation(s)
- Anna Skwarska
- Department of Oncology, Albert Einstein College of Medicine, The Bronx, New York
| | - Marina Konopleva
- Department of Oncology, Albert Einstein College of Medicine, The Bronx, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
- Departmenf of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| |
Collapse
|
71
|
Adhikary U, Paulo JA, Godes M, Roychoudhury S, Prew MS, Ben-Nun Y, Yu EW, Budhraja A, Opferman JT, Chowdhury D, Gygi SP, Walensky LD. Targeting MCL-1 triggers DNA damage and an anti-proliferative response independent from apoptosis induction. Cell Rep 2023; 42:113176. [PMID: 37773750 PMCID: PMC10787359 DOI: 10.1016/j.celrep.2023.113176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
MCL-1 is a high-priority target due to its dominant role in the pathogenesis and chemoresistance of cancer, yet clinical trials of MCL-1 inhibitors are revealing toxic side effects. MCL-1 biology is complex, extending beyond apoptotic regulation and confounded by its multiple isoforms, its domains of unresolved structure and function, and challenges in distinguishing noncanonical activities from the apoptotic response. We find that, in the presence or absence of an intact mitochondrial apoptotic pathway, genetic deletion or pharmacologic targeting of MCL-1 induces DNA damage and retards cell proliferation. Indeed, the cancer cell susceptibility profile of MCL-1 inhibitors better matches that of anti-proliferative than pro-apoptotic drugs, expanding their potential therapeutic applications, including synergistic combinations, but heightening therapeutic window concerns. Proteomic profiling provides a resource for mechanistic dissection and reveals the minichromosome maintenance DNA helicase as an interacting nuclear protein complex that links MCL-1 to the regulation of DNA integrity and cell-cycle progression.
Collapse
Affiliation(s)
- Utsarga Adhikary
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Godes
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Michelle S Prew
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yael Ben-Nun
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ellen W Yu
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amit Budhraja
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
72
|
Matsuyama M, Ortega JT, Fedorov Y, Scott-McKean J, Muller-Greven J, Buck M, Adams D, Jastrzebska B, Greenlee W, Matsuyama S. Development of novel cytoprotective small compounds inhibiting mitochondria-dependent cell death. iScience 2023; 26:107916. [PMID: 37841588 PMCID: PMC10568349 DOI: 10.1016/j.isci.2023.107916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
We identified cytoprotective small molecules (CSMs) by a cell-based high-throughput screening of Bax inhibitors. Through a medicinal chemistry program, M109S was developed, which is orally bioactive and penetrates the blood-brain/retina barriers. M109S protected retinal cells in ocular disease mouse models. M109S directly interacted with Bax and inhibited the conformational change and mitochondrial translocation of Bax. M109S inhibited ABT-737-induced apoptosis both in Bax-only and Bak-only mouse embryonic fibroblasts. M109S also inhibited apoptosis induced by staurosporine, etoposide, and obatoclax. M109S decreased maximal mitochondrial oxygen consumption rate and reactive oxygen species production, whereas it increased glycolysis. These effects on cellular metabolism may contribute to the cytoprotective activity of M109S. M109S is a novel small molecule protecting cells from mitochondria-dependent apoptosis both in vitro and in vivo. M109S has the potential to become a research tool for studying cell death mechanisms and to develop therapeutics targeting mitochondria-dependent cell death pathway.
Collapse
Affiliation(s)
- Mieko Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T. Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yuri Fedorov
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonah Scott-McKean
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Macromolecular Science and Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeannie Muller-Greven
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Drew Adams
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Shigemi Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
73
|
Morelos-Garnica LA, Guzmán-Velázquez S, Padilla-Martínez II, García-Sánchez JR, Bello M, Bakalara N, Méndez-Luna D, Correa-Basurto J. In silico design and cell-based evaluation of two dual anti breast cancer compounds targeting Bcl-2 and GPER. Sci Rep 2023; 13:17933. [PMID: 37863936 PMCID: PMC10589355 DOI: 10.1038/s41598-023-43860-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
According to WHO statistics, breast cancer (BC) disease represents about 2.3 million diagnosed and 685,000 deaths globally. Regarding histological classification of BC, the Estrogen (ER) and Progesterone (PR) receptors negative-expression cancer, named Triple-Negative BC (TNBC), represents the most aggressive type of this disease, making it a challenge for drug discovery. In this context, our research group, applying a well-established Virtual Screening (VS) protocol, in addition to docking and molecular dynamics simulations studies, yielded two ligands identified as 6 and 37 which were chemically synthesized and evaluated on MCF-7 and MDA-MB-231 cancer cell lines. Strikingly, 37 assayed on MDA-MB-231 (a TNBC cell model) depicted an outstanding value of 18.66 μM much lower than 65.67 μM yielded by Gossypol Bcl-2 inhibitor whose main disadvantage is to produce multiple toxic effects. Highlighted above, enforce the premise of the computational tools to find new therapeutic options against the most aggressive forms of breast cancer, as the results herein showed.
Collapse
Affiliation(s)
- Loreley-A Morelos-Garnica
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Sonia Guzmán-Velázquez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738, Mexico City, México
| | - Itzia-I Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio la Laguna Ticomán, Alcaldía Gustavo A. Madero, C.P. 07340, Mexico City, México
| | - José-R García-Sánchez
- Laboratorio de Oncología Molecular y Estrés Oxidativo, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México
| | - Norbert Bakalara
- Centre National de la Recherche Scientifique, École Nationale Supérieure de Technologie des Biomolécules de Bordeaux INP, Univeristé de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - David Méndez-Luna
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México.
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, C.P. 07738, Mexico City, México.
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, C.P. 11340, Mexico City, México.
| |
Collapse
|
74
|
Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers (Basel) 2023; 15:4957. [PMID: 37894324 PMCID: PMC10605442 DOI: 10.3390/cancers15204957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Targeting the intrinsic apoptotic pathway regulated by B-cell lymphoma-2 (BCL-2) antiapoptotic proteins can overcome the evasion of apoptosis in cancer cells. BCL-2 inhibitors have evolved into an important means of treating cancers by inducing tumor cell apoptosis. As the most extensively investigated BCL-2 inhibitor, venetoclax is highly selective for BCL-2 and can effectively inhibit tumor survival. Its emergence and development have significantly influenced the therapeutic landscape of hematological malignancies, especially in chronic lymphocytic leukemia and acute myeloid leukemia, in which it has been clearly incorporated into the recommended treatment regimens. In addition, the considerable efficacy of venetoclax in combination with other agents has been demonstrated in relapsed and refractory multiple myeloma and certain lymphomas. Although venetoclax plays a prominent antitumor role in preclinical experiments and clinical trials, large individual differences in treatment outcomes have been characterized in real-world patient populations, and reduced drug sensitivity will lead to disease recurrence or progression. The therapeutic efficacy may vary widely in patients with different molecular characteristics, and key genetic mutations potentially result in differential sensitivities to venetoclax. The identification and validation of more novel biomarkers are required to accurately predict the effectiveness of BCL-2 inhibition therapy. Furthermore, we summarize the recent research progress relating to the use of BCL-2 inhibitors in solid tumor treatment and demonstrate that a wealth of preclinical models have shown promising results through combination therapies. The applications of venetoclax in solid tumors warrant further clinical investigation to define its prospects.
Collapse
Affiliation(s)
- Jiaxuan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Quan Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| |
Collapse
|
75
|
Stuart DD, Guzman-Perez A, Brooijmans N, Jackson EL, Kryukov GV, Friedman AA, Hoos A. Precision Oncology Comes of Age: Designing Best-in-Class Small Molecules by Integrating Two Decades of Advances in Chemistry, Target Biology, and Data Science. Cancer Discov 2023; 13:2131-2149. [PMID: 37712571 PMCID: PMC10551669 DOI: 10.1158/2159-8290.cd-23-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Small-molecule drugs have enabled the practice of precision oncology for genetically defined patient populations since the first approval of imatinib in 2001. Scientific and technology advances over this 20-year period have driven the evolution of cancer biology, medicinal chemistry, and data science. Collectively, these advances provide tools to more consistently design best-in-class small-molecule drugs against known, previously undruggable, and novel cancer targets. The integration of these tools and their customization in the hands of skilled drug hunters will be necessary to enable the discovery of transformational therapies for patients across a wider spectrum of cancers. SIGNIFICANCE Target-centric small-molecule drug discovery necessitates the consideration of multiple approaches to identify chemical matter that can be optimized into drug candidates. To do this successfully and consistently, drug hunters require a comprehensive toolbox to avoid following the "law of instrument" or Maslow's hammer concept where only one tool is applied regardless of the requirements of the task. Combining our ever-increasing understanding of cancer and cancer targets with the technological advances in drug discovery described below will accelerate the next generation of small-molecule drugs in oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Axel Hoos
- Scorpion Therapeutics, Boston, Massachusetts
| |
Collapse
|
76
|
Lampart A, Krowarsch D, Biadun M, Sorensen V, Szymczyk J, Sluzalska K, Wiedlocha A, Otlewski J, Zakrzewska M. Intracellular FGF1 protects cells from apoptosis through direct interaction with p53. Cell Mol Life Sci 2023; 80:311. [PMID: 37783936 PMCID: PMC10545594 DOI: 10.1007/s00018-023-04964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factor 1 (FGF1) acts by activating specific tyrosine kinase receptors on the cell surface. In addition to this classical mode of action, FGF1 also exhibits intracellular activity. Recently, we found that FGF1 translocated into the cell interior exhibits anti-apoptotic activity independent of receptor activation and downstream signaling. Here, we show that expression of FGF1 increases the survival of cells treated with various apoptosis inducers, but only when wild-type p53 is present. The p53-negative cells were not protected by either ectopically expressed or translocated FGF1. We also confirmed the requirement of p53 for the anti-apoptotic intracellular activity of FGF1 by silencing p53, resulting in loss of the protective effect of FGF1. In contrast, in p53-negative cells, intracellular FGF1 regained its anti-apoptotic properties after transfection with wild-type p53. We also found that FGF1 directly interacts with p53 in cells and that the binding region is located in the DBD domain of p53. We therefore postulate that intracellular FGF1 protects cells from apoptosis by directly interacting with p53.
Collapse
Affiliation(s)
- Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Vigdis Sorensen
- Advanced Light Microscopy Core Facility, Dept. Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway
| | - Jakub Szymczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Antoni Wiedlocha
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
77
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
78
|
Alipour M, Sheikhnejad R, Fouani MH, Bardania H, Hosseinkhani S. DNAi-peptide nanohybrid smart particles target BCL-2 oncogene and induce apoptosis in breast cancer cells. Biomed Pharmacother 2023; 166:115299. [PMID: 37573657 DOI: 10.1016/j.biopha.2023.115299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023] Open
Abstract
Genomic DNA sequences provide unique target sites, with high druggability value, for treatment of genetically-linked diseases like cancer. B-cell lymphoma protein-2 (BCL-2) prevents Bcl-2-associated X protein (BAX) and Bcl-2 antagonist killer 1 (BAK) oligomerization, which would otherwise lead to the release of several apoptogenic molecules from the mitochondrion. It is also known that BCL-2 binds to and inactivates BAX and other pro-apoptotic proteins, thereby inhibiting apoptosis. BCL-2 protein family, through its role in regulation of apoptotic pathways, is possibly related to chemo-resistance in almost half of all cancer types including breast cancer. Here for the first time, we have developed a nanohybrid using a peptide-based carrier and a Deoxyribonucleic acid inhibitor (DNAi) against BCL-2 oncogene to induce apoptosis in breast cancer cells. The genetically designed nanocarrier was functionalized with an internalizing RGD (iRGD) targeting motif and successfully produced by recombinant DNA technology. Gel retardation assay demonstrated that the peptide-based carrier binds single-stranded DNAi upon simple mixing. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses further revealed the formation of nanohybrid particles with a size of 30 nm and a slightly positive charge. This hemocompatible nanohybrid efficiently delivered its contents into cancer cells using iRGD targeting moiety. Gene expression analysis demonstrated that the nanohybrids, which contained DNAi against BCL-2 proficiently suppressed the expression of this oncogene in a sequence specific manner. In addition, the nanohybrid, triggered release of cytochrome c (cyt c) and caspase3/7 activation with high efficiency. Although the DNAi and free nanocarrier were separately unable to affect the cell viability, the nanohybrid of 20 nM of DNAi showed outstanding antineoplastic potential, which was adjusted by the ratio of the MiRGD nanocarrier to DNAi. It should be noted that, the designed nanohybrid showed a suitable specificity profile and did not affect the viability of normal cells. The results suggest that this nanohybrid may be useful for robust breast cancer treatment through targeting the BCL-2 oncogene without any side effects.
Collapse
Affiliation(s)
- Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Nanobiotechnology, Faculty of Biological Sciences,Tarbiat Modares University, Tehran, Iran.
| | - Reza Sheikhnejad
- Department of Molecular Biology, Tofigh Daru Co. (TODACO), Tehran, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences,Tarbiat Modares University, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences,Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
79
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
80
|
Heppner D, Wittlinger F, Ogboo B, Shevchenko E, Damghani T, Pham C, Schaeffner I, Oligny B, Chitnis S, Beyett T, Rasch A, Buckley B, Urul D, Shaurova T, May E, Schaefer E, Eck M, Hershberger P, Poso A, Laufer S. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. RESEARCH SQUARE 2023:rs.3.rs-3286949. [PMID: 37790373 PMCID: PMC10543509 DOI: 10.21203/rs.3.rs-3286949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The reengineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Eck
- Dana-Farber Cancer Institute & Department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School
| | | | | | | |
Collapse
|
81
|
Visser EJ, Jaishankar P, Sijbesma E, Pennings MAM, Vandenboorn EMF, Guillory X, Neitz RJ, Morrow J, Dutta S, Renslo AR, Brunsveld L, Arkin MR, Ottmann C. From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking. Angew Chem Int Ed Engl 2023; 62:e202308004. [PMID: 37455289 DOI: 10.1002/anie.202308004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments-a covalent and a noncovalent fragment-were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.
Collapse
Affiliation(s)
- Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Edmee M F Vandenboorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - R Jeffrey Neitz
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - John Morrow
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Shubhankar Dutta
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| |
Collapse
|
82
|
Diepstraten ST, La Marca JE, Chang C, Young S, Strasser A, Kelly GL. BCL-W makes only minor contributions to MYC-driven lymphoma development. Oncogene 2023; 42:2776-2781. [PMID: 37567974 PMCID: PMC10491490 DOI: 10.1038/s41388-023-02804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
The BH3-mimetic drug Venetoclax, a specific inhibitor of anti-apoptotic BCL-2, has had clinical success for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. Attention has now shifted towards related pro-survival BCL-2 family members, hypothesising that new BH3-mimetic drugs targeting these proteins may emulate the success of Venetoclax. BH3-mimetics targeting pro-survival MCL-1 or BCL-XL have entered clinical trials, but managing on-target toxicities is challenging. While increasing evidence suggests BFL-1/A1 is a resistance factor for diverse chemotherapeutic agents and BH3-mimetic drugs in haematological malignancies, few studies have explored the role of BCL-W in the development, expansion, and therapeutic responses of cancer. Previously, we found that BCL-W was not required for the ongoing survival and growth of various established human Burkitt lymphoma and diffuse large B cell lymphoma cell lines. However, questions remained about whether BCL-W impacts lymphoma development. Here, we show that BCL-W appears dispensable for MYC-driven lymphomagenesis, and such tumours arising in the absence of BCL-W show no compensatory changes to BCL-2 family member expression, nor altered sensitivity to BH3-mimetic drugs. These results demonstrate that BCL-W does not play a major role in the development of MYC-driven lymphoma or the responses of these tumours to anti-cancer agents.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John E La Marca
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Catherine Chang
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia
| | - Savannah Young
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
83
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
84
|
Duminuco A, Vetro C, Giallongo C, Palumbo GA. The pharmacotherapeutic management of patients with myelofibrosis: looking beyond JAK inhibitors. Expert Opin Pharmacother 2023; 24:1449-1461. [PMID: 37341682 DOI: 10.1080/14656566.2023.2228695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The approach to myelofibrosis (MF) has been revolutionized in recent years, overcoming the traditional therapies, often not very effective. Janus kinase inhibitors (JAKi - from ruxolitinib up to momelotinib) were the first class of drugs with considerable results. AREAS COVERED Ongoing, new molecules are being tested that promise to give hope even to those patients not eligible for bone marrow transplants who become intolerant or are refractory to JAKi, for which therapeutic hopes are currently limited. Telomerase, murine double minute 2 (MDM2), phosphatidylinositol 3-kinase δ (PI3Kδ), BCL-2/xL, and bromodomain and extra-terminal motif (BET) inhibitors are the drugs with promising results in clinical trials and close to closure with consequent placing on the market, finally allowing JAK to look beyond. The novelty of the MF field was searched in the PubMed database, and the recently completed/ongoing trials are extrapolated from the ClinicalTrial website. EXPERT OPINION From this point of view, the use of new molecules widely described in this review, probably in association with JAKi, will represent the future treatment of choice in MF, leaving, in any case, the potential new approaches actually in an early stage of development, such as the use of immunotherapy in targeting CALR, which is coming soon.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Calogero Vetro
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Cesarina Giallongo
- Dipartimento di Scienze Mediche Chirurgiche E Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
- Dipartimento di Scienze Mediche Chirurgiche E Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
85
|
Liu C, Ding X, Li G, Zhang Y, Shao Y, Liu L, Zhang W, Ma Y, Guan W, Wang L, Xu Z, Chang Y, Zhang Y, Jiang B, Yin Q, Tao R. Targeting Bcl-xL is a potential therapeutic strategy for extranodal NK/T cell lymphoma. iScience 2023; 26:107369. [PMID: 37539026 PMCID: PMC10393801 DOI: 10.1016/j.isci.2023.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Extranodal natural killer/T cell lymphoma, nasal type (ENKTL) is an aggressive lymphoid malignancy with a poor prognosis and lacks standard treatment. Targeted therapies are urgently needed. Here we systematically investigated the druggable mechanisms through chemogenomic screening and identified that Bcl-xL-specific BH3 mimetics effectively induced ENKTL cell apoptosis. Notably, the specific accumulation of Bcl-xL, but not other Bcl-2 family members, was verified in ENKTL cell lines and patient tissues. Furthermore, Bcl-xL high expression was shown to be closely associated with worse patient survival. The critical role of Bcl-xL in ENKTL cell survival was demonstrated utilizing selective inhibitors, genetic silencing, and a specific degrader. Additionally, the IL2-JAK1/3-STAT5 signaling was implicated in Bcl-xL dysregulation. In vivo, Bcl-xL inhibition reduced tumor burden, increased apoptosis, and prolonged survival in ENKTL cell line xenograft and patient-derived xenograft models. Our study indicates Bcl-xL as a promising therapeutic target for ENKTL, warranting monitoring in ongoing clinical trials by targeting Bcl-xL.
Collapse
Affiliation(s)
- Chuanxu Liu
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xinyu Ding
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gaoyang Li
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youping Zhang
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yubao Shao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Linyi Liu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenhao Zhang
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yujie Ma
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhongli Xu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - YungTing Chang
- Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yongqiang Zhang
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qianqian Yin
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rong Tao
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
86
|
Scully MA, Wilkins DE, Dang MN, Hoover EC, Aboeleneen SB, Day ES. Cancer Cell Membrane Wrapped Nanoparticles for the Delivery of a Bcl-2 Inhibitor to Triple-Negative Breast Cancer. Mol Pharm 2023; 20:3895-3913. [PMID: 37459272 PMCID: PMC10628893 DOI: 10.1021/acs.molpharmaceut.3c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Overexpression of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) is correlated with poor survival outcomes in triple-negative breast cancer (TNBC), making Bcl-2 inhibition a promising strategy to treat this aggressive disease. Unfortunately, Bcl-2 inhibitors developed to date have limited clinical success against solid tumors, owing to poor bioavailability, insufficient tumor delivery, and off-target toxicity. To circumvent these problems, we loaded the Bcl-2 inhibitor ABT-737 in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) that were wrapped with phospholipid membranes derived from 4T1 murine mammary cancer cells, which mimic the growth and metastasis of human TNBC. We show that the biomimetic cancer cell membrane coating enabled the NPs to preferentially target 4T1 TNBC cells over noncancerous mammary epithelial cells in vitro and significantly increased NP accumulation in orthotopic 4T1 tumors in mice after intravenous injection by over 2-fold compared to poly(ethylene glycol)-poly(lactide-co-glycolic) (PEG-PLGA) copolymer NPs. Congruently, the ABT-737 loaded, cancer cell membrane-wrapped PLGA NPs (ABT CCNPs) induced higher levels of apoptosis in TNBC cells in vitro than ABT-737 delivered freely or in PEG-PLGA NPs. When tested in a syngeneic spontaneous metastasis model, the ABT CCNPs significantly increased apoptosis (evidenced by elevated active caspase-3 and decreased Bcl-2 staining) and decreased proliferation (denoted by reduced Ki67 staining) throughout tumors compared with saline or ABT-loaded PEG-PLGA NP controls. Moreover, the ABT CCNPs did not alter animal weight or blood composition, suggesting that the specificity afforded by the TNBC cell membrane coating mitigated the off-target adverse effects typically associated with ABT-737. Despite these promising results, the low dose of ABT CCNPs administered only modestly reduced primary tumor growth and metastatic nodule formation in the lungs relative to controls. We posit that increasing the dose of ABT CCNPs, altering the treatment schedule, or encapsulating a more potent Bcl-2 inhibitor may yield more robust effects on tumor growth and metastasis. With further development, drug-loaded biomimetic NPs may safely treat solid tumors such as TNBC that are characterized by Bcl-2 overexpression.
Collapse
Affiliation(s)
- Mackenzie A Scully
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Dana E Wilkins
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Elise C Hoover
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Sara B Aboeleneen
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Helen F. Graham Cancer Center and Research Institute, Newark, Delaware 19713, United States
| |
Collapse
|
87
|
Yang R, Suresh S, Velmurugan R. Synthesis of Quinoline-2-Carboxylic Acid Aryl Ester and Its Apoptotic Action on PC3 Prostate Cancer Cell Line. Appl Biochem Biotechnol 2023; 195:4818-4831. [PMID: 36445681 DOI: 10.1007/s12010-022-04258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/30/2022]
Abstract
The aim of the present study is to synthesise an aryl ester compound from quinoline-2-carboxylic acid to evaluate its apoptotic, cell cycle blockade, and antiproliferative activity on the prostate cancer cell lines (PC3). Chromatographic and spectroscopic analysis was used to identify the synthesised carboxylic acid compound. The synthesised compound was treated with a PC3 cell line for 24 h with control. The cells were treated at various concentration ranges of 0, 3.91, 7.81, 15.63, 31.25, 62.5, 125, 250, 500, and 1000 µg/mL each. The cytotoxicity effect was studied by MTT assay, and their anticancer activity was further evaluated using cell cycle analysis, DNA fragmentation assay, acridine orange-ethidium bromide staining, and Western blot analysis. The end antiproliferative result showed that PC3 cell viability decreases in a concentration-dependent manner and the synthesised compound exhibited potent cytotoxicity against PC3 cells with an IC50 value of 26 µg/mL at the concentration of 125 µg. The increase in the number of apoptotic cells was observed after treating PC3 cells with the sample in double-staining methods. S phase of the cell cycle was significantly blocked by the test sample, and a typical ladder pattern of internucleosomal fragmentation was observed. A decrease in the live cells was observed with the sample in AO/ET-BR. A significant increase in the Bax expression and a decrease in Bcl-2 expression observed enhance the activity of caspases-7 and -9. The synthesised compound had shown to possess excellent cytotoxic effect through inducing apoptosis, especially causing cell cycle arrest at the S phase.
Collapse
Affiliation(s)
- Rongchen Yang
- Department of Urology, Qingdao West Coast New Area Central Hospital, No. 7, Huangpujiang Road, Huangdao District, Qingdao City, 266555, China
| | - Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chennai, Tamil Nadu, 603203, India
| | - Ramaiyan Velmurugan
- Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India.
| |
Collapse
|
88
|
Wei H, Wang H, Wang G, Qu L, Jiang L, Dai S, Chen X, Zhang Y, Chen Z, Li Y, Guo M, Chen Y. Structures of p53/BCL-2 complex suggest a mechanism for p53 to antagonize BCL-2 activity. Nat Commun 2023; 14:4300. [PMID: 37463921 DOI: 10.1038/s41467-023-40087-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Mitochondrial apoptosis is strictly controlled by BCL-2 family proteins through a subtle network of protein interactions. The tumor suppressor protein p53 triggers transcription-independent apoptosis through direct interactions with BCL-2 family proteins, but the molecular mechanism is not well understood. In this study, we present three crystal structures of p53-DBD in complex with the anti-apoptotic protein BCL-2 at resolutions of 2.3-2.7 Å. The structures show that two loops of p53-DBD penetrate directly into the BH3-binding pocket of BCL-2. Structure-based mutations at the interface impair the p53/BCL-2 interaction. Specifically, the binding sites for p53 and the pro-apoptotic protein Bax in the BCL-2 pocket are mostly identical. In addition, formation of the p53/BCL-2 complex is negatively correlated with the formation of BCL-2 complexes with pro-apoptotic BCL-2 family members. Defects in the p53/BCL-2 interaction attenuate p53-mediated cell apoptosis. Overall, our study provides a structural basis for the interaction between p53 and BCL-2, and suggests a molecular mechanism by which p53 regulates transcription-independent apoptosis by antagonizing the interaction of BCL-2 with pro-apoptotic BCL-2 family members.
Collapse
Affiliation(s)
- Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Genxin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
89
|
Valentini E, Di Martile M, Brignone M, Di Caprio M, Manni I, Chiappa M, Sergio I, Chiacchiarini M, Bazzichetto C, Conciatori F, D'Aguanno S, D'Angelo C, Ragno R, Russillo M, Colotti G, Marchesi F, Bellone ML, Dal Piaz F, Felli MP, Damia G, Del Bufalo D. Bcl-2 family inhibitors sensitize human cancer models to therapy. Cell Death Dis 2023; 14:441. [PMID: 37460459 DOI: 10.1038/s41419-023-05963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types. Here, we evaluated the efficacy of IS21 and other BH3 mimetics, both as single agents and combined with the currently used antineoplastic agents in T-cell acute lymphoblastic leukemia, ovarian cancer, and melanoma. IS21 was found to be active in T-cell acute lymphoblastic leukemia, melanoma, lung, pancreatic, and ovarian cancer cell lines. Bcl-xL and Mcl-1 protein levels predicted IS21 sensitivity in melanoma and ovarian cancer, respectively. Exploring IS21 mechanism of action, we found that IS21 activity depends on the presence of BAX and BAK proteins: complexes between Bcl-2 and Bcl-xL proteins and their main binding partners were reduced after IS21 treatment. In combination experiments, BH3 mimetics sensitized leukemia cells to chemotherapy, ovarian cancer cells and melanoma models to PARP and MAPK inhibitors, respectively. We showed that this enhancing effect was related to the potentiation of the apoptotic pathway, both in hematologic and solid tumors. In conclusion, our data suggest the use of inhibitors of anti-apoptotic proteins as a therapeutic strategy to enhance the efficacy of anticancer treatment.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Matteo Brignone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marica Di Caprio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michela Chiappa
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Bazzichetto
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Conciatori
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Michelangelo Russillo
- Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Francesco Marchesi
- Hematology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Bellone
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
90
|
Ailawadhi S, Chen Z, Huang B, Paulus A, Collins MC, Fu L(T, Li M, Ahmad M, Men L, Wang H, Davids MS, Liang E, Mekala DJ, He Z, Lasica M, Yannakou CK, Parrondo R, Glass L, Yang D, Chanan-Khan A, Zhai Y. Novel BCL-2 Inhibitor Lisaftoclax in Relapsed or Refractory Chronic Lymphocytic Leukemia and Other Hematologic Malignancies: First-in-Human Open-Label Trial. Clin Cancer Res 2023; 29:2385-2393. [PMID: 37074726 PMCID: PMC10330157 DOI: 10.1158/1078-0432.ccr-22-3321] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE This global phase I trial investigated the safety, efficacy, pharmacokinetics, and pharmacodynamics of lisaftoclax (APG-2575), a novel, orally active, potent selective B-cell lymphoma 2 (BCL-2) inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma (R/R CLL/SLL) and other hematologic malignancies (HMs). PATIENTS AND METHODS Maximum tolerated dose (MTD) and recommended phase II dose were evaluated. Outcome measures were safety and tolerability (primary) and pharmacokinetic variables and antitumor effects (secondary). Pharmacodynamics in patient tumor cells were explored. RESULTS Among 52 patients receiving lisaftoclax, MTD was not reached. Treatment-emergent adverse events (TEAEs) included diarrhea (48.1%), fatigue (34.6%), nausea (30.8%), anemia and thrombocytopenia (28.8% each), neutropenia (26.9%), constipation (25.0%), vomiting (23.1%), headache (21.2%), peripheral edema and hypokalemia (17.3% each), and arthralgia (15.4%). Grade ≥ 3 hematologic TEAEs included neutropenia (21.2%), thrombocytopenia (13.5%), and anemia (9.6%), none resulting in treatment discontinuation. Clinical pharmacokinetic and pharmacodynamic results demonstrated that lisaftoclax had a limited plasma residence and systemic exposure and elicited rapid clearance of malignant cells. With a median treatment of 15 (range, 6-43) cycles, 14 of 22 efficacy-evaluable patients with R/R CLL/SLL experienced partial responses, for an objective response rate of 63.6% and median time to response of 2 (range, 2-8) cycles. CONCLUSIONS Lisaftoclax was well tolerated, with no evidence of tumor lysis syndrome. Dose-limiting toxicity was not reached at the highest dose level. Lisaftoclax has a unique pharmacokinetic profile compatible with a potentially more convenient daily (vs. weekly) dose ramp-up schedule and induced rapid clinical responses in patients with CLL/SLL, warranting continued clinical investigation.
Collapse
Affiliation(s)
| | - Zi Chen
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
| | - Bo Huang
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
| | - Aneel Paulus
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL USA
| | - Mary C. Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | | | - Mingyu Li
- Ascentage Pharma Group Inc, Rockville, MD USA
| | | | - Lichuang Men
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
| | - Hengbang Wang
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Eric Liang
- Ascentage Pharma Group Inc, Rockville, MD USA
| | | | - Zhicong He
- Ascentage Pharma Pty Ltd, Sydney, Australia
| | - Masa Lasica
- Department of Hematology, St Vincent’s Hospital Melbourne, Victoria, Australia
| | - Costas K. Yannakou
- Epworth Healthcare, Freemasons Hospital and University of Melbourne, Victoria, Australia
| | - Ricardo Parrondo
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL USA
| | - Laura Glass
- Ascentage Pharma Group Inc, Rockville, MD USA
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
- Ascentage Pharma Group Inc, Rockville, MD USA
- Sun-Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Asher Chanan-Khan
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL USA
- Mayo Clinic Cancer Center, Jacksonville, FL USA
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, Jiangsu, China
- Ascentage Pharma Group Inc, Rockville, MD USA
| |
Collapse
|
91
|
Ming Z, Lim SY, Stewart A, Pedersen B, Shklovskaya E, Menzies AM, Carlino MS, Kefford RF, Lee JH, Scolyer RA, Long GV, Rizos H. IFN-γ Signaling Sensitizes Melanoma Cells to BH3 Mimetics. J Invest Dermatol 2023; 143:1246-1256.e8. [PMID: 36736995 DOI: 10.1016/j.jid.2023.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Immunotherapy targeting PD-1 and/or CTLA4 leads to durable responses in a proportion of patients with melanoma. However, many patients will not respond to these immune checkpoint inhibitors, and up to 60% of responding patients will develop treatment resistance. We describe a vulnerability in melanoma driven by immune cell activity that provides a pathway towards additional treatment options. This study evaluated short-term melanoma cell lines (referred to as PD1 PROG cells) derived from melanoma metastases that progressed on PD-1 inhibitor-based therapy. We show that the cytokine IFN-γ primes melanoma cells for apoptosis by promoting changes in the accumulation and interactions of apoptotic regulators MCL-1, NOXA, and BAK. The addition of pro-apoptotic BH3 mimetic drugs sensitized PD1 PROG melanoma cells to apoptosis in response to IFN-γ or autologous immune cell activation. These findings provide translatable strategies for combination therapies in melanoma.
Collapse
Affiliation(s)
- Zizhen Ming
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Su Yin Lim
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Bernadette Pedersen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Elena Shklovskaya
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Department of Medical Oncology, Mater Hospital, Sydney, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia; Department of Medical Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Sydney, Australia
| | - Richard F Kefford
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia
| | - Jenny H Lee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Chris O'Brien Lifehouse, Camperdown, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia; Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Department of Medical Oncology, Mater Hospital, Sydney, Australia; Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, Australia.
| |
Collapse
|
92
|
Liu J, Ge Z, Jiang X, Zhang J, Sun J, Mao X. A comprehensive review of natural products with anti-hypoxic activity. Chin J Nat Med 2023; 21:499-515. [PMID: 37517818 DOI: 10.1016/s1875-5364(23)60410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Indexed: 08/01/2023]
Abstract
Natural products exhibit substantial impacts in the field of anti-hypoxic traetment. Hypoxia can cause altitude sickness and other negative effect on the body. Headache, coma, exhaustion, vomiting and, in severe cases, death are some of the clinical signs. Currently, hypoxia is no longer just a concern in plateau regions; it is also one of the issues that can not be ignored by urban residents. This review covered polysaccharides, alkaloids, saponins, flavonoids, peptides and traditional Chinese compound prescriptions as natural products to protect against hypoxia. The active ingredients, effectiveness and mechanisms were discussed. The related anti-hypoxic mechanisms involve increasing the hemoglobin (HB) content, glycogen content and adenosine triphosphate (ATP) content, removing excessive reactive oxygen species (ROS), reducing lipid peroxidation, regulating the levels of related enzymes in cells, protecting the structural and functional integrity of the mitochondria and regulating the expression of apoptosis-related genes. These comprehensive summaries are beneficial to anti-hypoxic research and provide useful information for the development of anti-hypoxic products.
Collapse
Affiliation(s)
- Juncai Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Ge
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiao Jiang
- Medical College, Qingdao Binhai University, Qingdao 266555, China
| | - Jingjing Zhang
- Medical College, Qingdao Binhai University, Qingdao 266555, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
93
|
Sularz O, Koronowicz A, Smoleń S, Boycott C, Stefanska B. Iodine-Biofortified Lettuce Can Promote Mitochondrial Dependent Pathway of Apoptosis in Human Gastrointestinal Cancer Cells. Int J Mol Sci 2023; 24:9869. [PMID: 37373017 PMCID: PMC10298746 DOI: 10.3390/ijms24129869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Previously, our research provided evidence that exposure of gastric and colon cancer cells to extracts from iodine-biofortified lettuce leads to a reduction of cell viability and proliferation through cell cycle arrest and upregulation of pro-apoptotic genes. The aim of the present study was to determine the potential cellular mechanisms of induction of cell death in human gastrointestinal cancer cell lines after treatment with iodine-biofortified lettuce. We demonstrated that extracts from lettuce enriched with iodine induce apoptosis in gastric AGS and colon HT-29 cancer cells and the mechanism of programmed cell death may be triggered and executed through different signaling pathways, depending on the type of cells. Western blot analysis revealed that iodine-fortified lettuce leads to cell death through the release of cytochrome c to the cytosolic fraction and activation of the primary drivers of apoptosis: caspase-3, caspase-7, and caspase-9. Furthermore, we have reported that apoptotic effects of lettuce extracts may be mediated by poly (ADP-ribose) polymerase (PARP) and activation of pro-apoptotic Bcl-2 family proteins such as Bad, Bax, and BID. We also observed mitochondrial dysfunction with the dissipation of the mitochondrial membrane potential in cells exposed to lettuce extracts. Taken together, these results indicate that the organic form of iodine such as 5-ISA and 3,5-diISA is an important factor in the activation of intrinsic mitochondrial apoptotic pathway in AGS and HT-29 cancer cells in a p53-independent manner.
Collapse
Affiliation(s)
- Olga Sularz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland;
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland;
| | - Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland;
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada;
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
94
|
Wei AH, Roberts AW. BCL2 Inhibition: A New Paradigm for the Treatment of AML and Beyond. Hemasphere 2023; 7:e912. [PMID: 37304937 PMCID: PMC10256369 DOI: 10.1097/hs9.0000000000000912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Altering the natural history of acute myeloid leukemia (AML) in unfit and older patients has proved a highly challenging hurdle, despite several decades of concerted clinical trial effort. The arrival of venetoclax (VEN) to the clinical stage represents the most important therapeutic advance to date for older patients with AML. In this review, we will explain how and why VEN works, summarize its remarkable pathway to regulatory approval, and highlight the key milestones that have been important for its successful development in AML. We also provide perspectives on some of the challenges associated with using VEN in the clinic, emerging knowledge regarding mechanisms of treatment failure, and current clinical research directions likely to shape how this drug and others in this new class of anticancer agents are used in the future.
Collapse
Affiliation(s)
- Andrew H Wei
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Andrew W Roberts
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
95
|
Lin Y, Zhao Y, Chen M, Li Z, Liu Q, Chen J, Ding Y, Ding C, Ding Y, Qi C, Zheng L, Li J, Zhang R, Zhou J, Wang L, Zhang QQ. CYD0281, a Bcl-2 BH4 domain antagonist, inhibits tumor angiogenesis and breast cancer tumor growth. BMC Cancer 2023; 23:479. [PMID: 37237269 DOI: 10.1186/s12885-023-10974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND B-cell lymphoma 2 (Bcl-2) family proteins are key regulators of apoptosis, which possess four conserved Bcl-2 homologies (BH) domains. Among the BH domains, the BH3 domain is considered as a potent 'death domain' while the BH4 domain is required for anti-apoptotic activity. Bcl-2 can be converted to a pro-apoptotic molecule through the removal or mutation of the BH4 domain. Bcl-2 is considered as an inducer of angiogenesis, which can promote tumor vascular network formation and further afford nutrients and oxygen to promote tumor progression. However, whether disrupting the function of the BH4 domain to convert Bcl-2 into a pro-apoptotic molecule could make Bcl-2 possess the potential for anti-angiogenic therapy remains to be defined. METHODS CYD0281 was designed and synthesized according to the lead structure of BDA-366, and its function on inducing a conformational change of Bcl-2 was further evaluated via immunoprecipitation (IP) and immunofluorescence (IF) assays. Moreover, the function of CYD0281 on apoptosis of endothelial cells was analyzed via cell viability, flow cytometry, and western blotting assays. Additionally, the role of CYD0281 on angiogenesis in vitro was determined via endothelial cell migration and tube formation assays and rat aortic ring assay. Chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, breast cancer cell xenograft tumor on CAM and in mouse models as well as the Matrigel plug angiogenesis assay were used to explore the effects of CYD0281 on angiogenesis in vivo. RESULTS We identified a novel potent small-molecule Bcl-2-BH4 domain antagonist, CYD0281, which exhibited significant anti-angiogenic effects both in vitro and in vivo, and further inhibited breast cancer tumor growth. CYD0281 was found to induce conformational changes in Bcl-2 through the exposure of the BH3 domain and convert Bcl-2 from an anti-apoptotic molecule into a cell death inducer, thereby resulting in the apoptosis of vascular endothelial cells. CONCLUSIONS This study has revealed CYD0281 as a novel Bcl-2-BH4 antagonist that induces conformational changes of Bcl-2 to convert to a pro-apoptotic molecule. Our findings indicate that CYD0281 plays a crucial role in anti-angiogenesis and may be further developed as a potential anti-tumor drug candidate for breast cancer. This work also provides a potential anti-angiogenic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Yihua Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yiling Zhao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Minggui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zishuo Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiao Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jian Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Ding
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chunyong Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ye Ding
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Cuiling Qi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lingyun Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
96
|
Chen Q, Young L, Barsotti R. Mitochondria in cell senescence: A Friend or Foe? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:35-91. [PMID: 37437984 DOI: 10.1016/bs.apcsb.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cell senescence denotes cell growth arrest in response to continuous replication or stresses damaging DNA or mitochondria. Mounting research suggests that cell senescence attributes to aging-associated failing organ function and diseases. Conversely, it participates in embryonic tissue maturation, wound healing, tissue regeneration, and tumor suppression. The acute or chronic properties and microenvironment may explain the double faces of senescence. Senescent cells display unique characteristics. In particular, its mitochondria become elongated with altered metabolomes and dynamics. Accordingly, mitochondria reform their function to produce more reactive oxygen species at the cost of low ATP production. Meanwhile, destructed mitochondrial unfolded protein responses further break the delicate proteostasis fostering mitochondrial dysfunction. Additionally, the release of mitochondrial damage-associated molecular patterns, mitochondrial Ca2+ overload, and altered NAD+ level intertwine other cellular organelle strengthening senescence. These findings further intrigue researchers to develop anti-senescence interventions. Applying mitochondrial-targeted antioxidants reduces cell senescence and mitigates aging by restoring mitochondrial function and attenuating oxidative stress. Metformin and caloric restriction also manifest senescent rescuing effects by increasing mitochondria efficiency and alleviating oxidative damage. On the other hand, Bcl2 family protein inhibitors eradicate senescent cells by inducing apoptosis to facilitate cancer chemotherapy. This review describes the different aspects of mitochondrial changes in senescence and highlights the recent progress of some anti-senescence strategies.
Collapse
Affiliation(s)
- Qian Chen
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States.
| | - Lindon Young
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Robert Barsotti
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
97
|
Shang E, Nguyen TTT, Westhoff MA, Karpel-Massler G, Siegelin MD. Targeting cellular respiration as a therapeutic strategy in glioblastoma. Oncotarget 2023; 14:419-425. [PMID: 37141415 PMCID: PMC10159369 DOI: 10.18632/oncotarget.28424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
While glycolysis is abundant in malignancies, mitochondrial metabolism is significant as well. Mitochondria harbor the enzymes relevant for cellular respiration, which is a critical pathway for both regeneration of reduction equivalents and energy production in the form of ATP. The oxidation of NADH2 and FADH2 are fundamental since NAD and FAD are the key components of the TCA-cycle that is critical to entertain biosynthesis in cancer cells. The TCA-cycle itself is predominantly fueled through carbons from glucose, glutamine, fatty acids and lactate. Targeting mitochondrial energy metabolism appears feasible through several drug compounds that activate the CLPP protein or interfere with NADH-dehydrogenase, pyruvate-dehydrogenase, enzymes of the TCA-cycle and mitochondrial matrix chaperones. While these compounds have demonstrated anti-cancer effects in vivo, recent research suggests which patients most likely benefit from such treatments. Here, we provide a brief overview of the status quo of targeting mitochondrial energy metabolism in glioblastoma and highlight a novel combination therapy.
Collapse
Affiliation(s)
- Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York, NY 10453, USA
| | - Trang Thi Thu Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
98
|
Nacheva K, Kulkarni SS, Kassu M, Flanigan D, Monastyrskyi A, Iyamu ID, Doi K, Barber M, Namelikonda N, Tipton JD, Parvatkar P, Wang HG, Manetsch R. Going beyond Binary: Rapid Identification of Protein-Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach. J Med Chem 2023; 66:5196-5207. [PMID: 37000900 PMCID: PMC10620989 DOI: 10.1021/acs.jmedchem.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 04/03/2023]
Abstract
Kinetic target-guided synthesis (KTGS) is a powerful screening approach that enables identification of small molecule modulators for biomolecules. While many KTGS variants have emerged, a majority of the examples suffer from limited throughput and a poor signal/noise ratio, hampering reliable hit detection. Herein, we present our optimized multifragment KTGS screening strategy that tackles these limitations. This approach utilizes selected reaction monitoring liquid chromatography tandem mass spectrometry for hit detection, enabling the incubation of 190 fragment combinations per screening well. Consequentially, our fragment library was expanded from 81 possible combinations to 1710, representing the largest KTGS screening library assembled to date. The expanded library was screened against Mcl-1, leading to the discovery of 24 inhibitors. This work unveils the true potential of KTGS with respect to the rapid and reliable identification of hits, further highlighting its utility as a complement to the existing repertoire of screening methods used in drug discovery.
Collapse
Affiliation(s)
- Katya Nacheva
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sameer S. Kulkarni
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Mintesinot Kassu
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - David Flanigan
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Sciences, Hillsborough Community College, Tampa, Florida 33619, United States
| | - Andrii Monastyrskyi
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Iredia D. Iyamu
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kenichiro Doi
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Megan Barber
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Niranjan Namelikonda
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeremiah D. Tipton
- Proteomics
and Mass Spectrometry Core Facility, University
of South Florida, Tampa, Florida 33620, United States
| | - Prakash Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Hong-Gang Wang
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Roman Manetsch
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center for
Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
99
|
Hartman ML, Czyz M. BCL-G: 20 years of research on a non-typical protein from the BCL-2 family. Cell Death Differ 2023:10.1038/s41418-023-01158-5. [PMID: 37031274 DOI: 10.1038/s41418-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Proteins from the BCL-2 family control cell survival and apoptosis in health and disease, and regulate apoptosis-unrelated cellular processes. BCL-Gonad (BCL-G, also known as BCL2-like 14) is a non-typical protein of the family as its long isoform (BCL-GL) consists of BH2 and BH3 domains without the BH1 motif. BCL-G is predominantly expressed in normal testes and different organs of the gastrointestinal tract. The complexity of regulatory mechanisms of BCL-G expression and post-translational modifications suggests that BCL-G may play distinct roles in different types of cells and disorders. While several genetic alterations of BCL2L14 have been reported, gene deletions and amplifications prevail, which is also confirmed by the analysis of sequencing data for different types of cancer. Although the studies validating the phenotypic consequences of genetic manipulations of BCL-G are limited, the role of BCL-G in apoptosis has been undermined. Recent studies using gene-perturbation approaches have revealed apoptosis-unrelated functions of BCL-G in intracellular trafficking, immunomodulation, and regulation of the mucin scaffolding network. These studies were, however, limited mainly to the role of BCL-G in the gastrointestinal tract. Therefore, further efforts using state-of-the-art methods and various types of cells are required to find out more about BCL-G activities. Deciphering the isoform-specific functions of BCL-G and the BCL-G interactome may result in the designing of novel therapeutic approaches, in which BCL-G activity will be either imitated using small-molecule BH3 mimetics or inhibited to counteract BCL-G upregulation. This review summarizes two decades of research on BCL-G.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
100
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|