51
|
Lee JA, Cho A, Huang EN, Xu Y, Quach H, Hu J, Wong AP. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med 2021; 19:452. [PMID: 34717671 PMCID: PMC8556969 DOI: 10.1186/s12967-021-03099-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will provide insight into personalized therapies for CF.
Collapse
Affiliation(s)
- Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada
| | - Alex Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena N Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yiming Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Henry Quach
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
52
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
53
|
Talbi K, Cabrita I, Kraus A, Hofmann S, Skoczynski K, Kunzelmann K, Buchholz B, Schreiber R. The chloride channel CFTR is not required for cyst growth in an ADPKD mouse model. FASEB J 2021; 35:e21897. [PMID: 34473378 DOI: 10.1096/fj.202100843r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/01/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of bilateral renal cysts which enlarge continuously, leading to compression of adjacent intact nephrons. The growing cysts lead to a progressive decline in renal function. Cyst growth is driven by enhanced cell proliferation and chloride secretion into the cyst lumen. Chloride secretion is believed to occur mainly by the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR), with some contribution by the calcium-activated chloride channel TMEM16A. However, our previous work suggested TMEM16A as a major factor for renal cyst formation. The contribution of CFTR to cyst formation has never been demonstrated in an adult ADPKD mouse model. We used mice with an inducible tubule-specific Pkd1 knockout, which consistently develop polycystic kidneys upon deletion of Pkd1. Cellular properties, ion currents, and cyst development in these mice were compared with that of mice carrying a co-deletion of Pkd1 and Cftr. Knockout of Cftr did not reveal any significant impact on cyst formation in the ADPKD mouse model. Furthermore, knockout of Cftr did not attenuate the largely augmented cell proliferation observed in Pkd1 knockout kidneys. Patch clamp analysis on primary renal epithelial cells lacking expression of Pkd1 indicated an only marginal contribution of CFTR to whole cell Cl- currents, which were clearly dominated by calcium-activated TMEM16A currents. In conclusion, CFTR does not essentially contribute to renal cyst formation in mice caused by deletion of Pkd1. Enhanced cell proliferation and chloride secretion is caused primarily by upregulation of the calcium-activated chloride channel TMEM16A.
Collapse
Affiliation(s)
- Khaoula Talbi
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Inês Cabrita
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sascha Hofmann
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Kathrin Skoczynski
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Rainer Schreiber
- Department of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
54
|
Serum inflammatory profiles in cystic fibrosis mice with and without Bordetella pseudohinzii infection. Sci Rep 2021; 11:17535. [PMID: 34475490 PMCID: PMC8413329 DOI: 10.1038/s41598-021-97033-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein, and is marked by an accumulation of mucus in affected airways resulting in persistent infection and chronic inflammation. Quantitative differences in inflammatory markers have been observed in CF patient serum, tracheal cells, and bronchoalveolar lavage fluid, in the absence of detectable infection, implying that absent CFTR function alone may result in dysregulated immune responses. To examine the relationship between absent CFTR and systemic inflammation, 22 analytes were measured in CF mice (F508del/F508del) sera using the MSD multiplex platform. Pro-inflammatory cytokines IL-2, TNF-α, IL-17α, IFN-γ, IL-1β, and MIP-3α are significantly elevated in infection-naïve CF mice (p < 0.050). Anti-inflammatory cytokines IL-10 and IL-4 are also significantly increased (p = 0.00003, p = 0.004). Additionally, six general markers of inflammation are significantly different from non-CF controls (p < 0.050). To elucidate the effects of chronic infection on the CF inflammatory profile, we examined CF mice exposed to spontaneous Bordetella pseudohinzii infections. There are no statistical differences in nearly all inflammatory markers when compared to their infection-naïve CF counterparts, except in the Th2-derived IL-4 and IL-5 which demonstrate significant decreases following exposure (p = 0.046, p = 0.045). Lastly, following acute infection, CF mice demonstrate elevations in nearly all inflammatory markers, but exhibit a shortened return to uninfected levels over time, and suppression of Th1-derived IL-2 and IL-5 (p = 0.043, p = 0.011). These results imply that CF mice have a persistent inflammatory profile often indistinguishable from chronic infection, and a dysregulated humoral response during and following active infection.
Collapse
|
55
|
Szeri F, Corradi V, Niaziorimi F, Donnelly S, Conseil G, Cole SPC, Tieleman DP, van de Wetering K. Mutagenic Analysis of the Putative ABCC6 Substrate-Binding Cavity Using a New Homology Model. Int J Mol Sci 2021; 22:ijms22136910. [PMID: 34199119 PMCID: PMC8267652 DOI: 10.3390/ijms22136910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Inactivating mutations in ABCC6 underlie the rare hereditary mineralization disorder pseudoxanthoma elasticum. ABCC6 is an ATP-binding cassette (ABC) integral membrane protein that mediates the release of ATP from hepatocytes into the bloodstream. The released ATP is extracellularly converted into pyrophosphate, a key mineralization inhibitor. Although ABCC6 is firmly linked to cellular ATP release, the molecular details of ABCC6-mediated ATP release remain elusive. Most of the currently available data support the hypothesis that ABCC6 is an ATP-dependent ATP efflux pump, an un-precedented function for an ABC transporter. This hypothesis implies the presence of an ATP-binding site in the substrate-binding cavity of ABCC6. We performed an extensive mutagenesis study using a new homology model based on recently published structures of its close homolog, bovine Abcc1, to characterize the substrate-binding cavity of ABCC6. Leukotriene C4 (LTC4), is a high-affinity substrate of ABCC1. We mutagenized fourteen amino acid residues in the rat ortholog of ABCC6, rAbcc6, that corresponded to the residues in ABCC1 found in the LTC4 binding cavity. Our functional characterization revealed that most of the amino acids in rAbcc6 corresponding to those found in the LTC4 binding pocket in bovine Abcc1 are not critical for ATP efflux. We conclude that the putative ATP binding site in the substrate-binding cavity of ABCC6/rAbcc6 is distinct from the bovine Abcc1 LTC4-binding site.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology and PXE Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.S.); (F.N.); (S.D.)
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary
| | - Valentina Corradi
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada; (V.C.); (D.P.T.)
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology and PXE Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.S.); (F.N.); (S.D.)
| | - Sylvia Donnelly
- Department of Dermatology and Cutaneous Biology and PXE Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.S.); (F.N.); (S.D.)
| | - Gwenaëlle Conseil
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.); (S.P.C.C.)
| | - Susan P. C. Cole
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.); (S.P.C.C.)
| | - D. Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada; (V.C.); (D.P.T.)
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology and PXE Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.S.); (F.N.); (S.D.)
- Correspondence: ; Tel.: +1-(215)-503-5701
| |
Collapse
|
56
|
Pharmacokinetics and pharmacodynamics of antibiotics in cystic fibrosis: a narrative review. Int J Antimicrob Agents 2021; 58:106381. [PMID: 34157401 DOI: 10.1016/j.ijantimicag.2021.106381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis affects several organs, predisposing patients to severe bacterial respiratory infections, including those caused by methicillin-resistant Staphylococcus aureus. Cystic fibrosis is also associated with a wide spectrum of pathological changes that can significantly affect the absorption, distribution, metabolism, and/or elimination of several drugs, including antibacterial agents. Therefore, awareness of the pharmacokinetic derangements in patients with cystic fibrosis is mandatory for the optimisation of antibiotic therapy. This review discusses the basic principles of pharmacokinetics and the pathophysiology of the pharmacokinetics changes associated with cystic fibrosis; it also provides an update of available data for the most widely used antibiotics. Evidence accumulated in the last few years has clearly shown that a significant number of cystic fibrosis patients treated with conventional dosing schemes have sub-therapeutic antibiotic concentrations, increasing their risk of therapeutic failure and/or the emergence of resistant pathogens. Some proposals to optimise antibiotic therapies in this clinical setting based on therapeutic drug monitoring are also discussed.
Collapse
|
57
|
Kim SK, Ngo HX, Dennis EK, Thamban Chandrika N, DeShong P, Garneau-Tsodikova S, Lee VT. Inhibition of Pseudomonas aeruginosa Alginate Synthesis by Ebselen Oxide and Its Analogues. ACS Infect Dis 2021; 7:1713-1726. [PMID: 33871968 DOI: 10.1021/acsinfecdis.1c00045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that is frequently found in the airways of cystic fibrosis (CF) patients due to the dehydrated mucus that collapses the underlying cilia and prevents mucociliary clearance. During this life-long chronic infection, P. aeruginosa cell accumulates mutations that lead to inactivation of the mucA gene that results in the constitutive expression of algD-algA operon and the production of alginate exopolysaccharide. The viscous alginate polysaccharide further occludes the airways of CF patients and serves as a protective matrix to shield P. aeruginosa from host immune cells and antibiotic therapy. Development of inhibitors of alginate production by P. aeruginosa would reduce the negative impact from this viscous polysaccharide. In addition to transcriptional regulation, alginate biosynthesis requires allosteric activation by bis (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding to an Alg44 protein. Previously, we found that ebselen (Eb) and ebselen oxide (EbO) inhibited diguanylate cyclase from synthesizing c-di-GMP. In this study, we show that EbO, Eb, ebsulfur (EbS), and their analogues inhibit alginate production. Eb and EbS can covalently modify the cysteine 98 (C98) residue of Alg44 and prevent its ability to bind c-di-GMP. However, P. aeruginosa with Alg44 C98 substituted with alanine or serine was still inhibited for alginate production by Eb and EbS. Our results indicate that EbO, Eb, and EbS are lead compounds for reducing alginate production by P. aeruginosa. Future development of these inhibitors could provide a potential treatment for CF patients infected with mucoid P. aeruginosa.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland 20742, United States
| | - Huy X. Ngo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Emily K. Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Philip DeShong
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, Maryland 20742, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Vincent T. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, Maryland 20742, United States
| |
Collapse
|
58
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self‐Assembly of Size‐Controlled
m
‐Pyridine–Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Yajing Liu
- School of Pharmaceutical Science Capital Medical University Beijing 100069 China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Senbiao Fang
- School of Computer Science and Engineering Central South University Changsha 410012 China
| | - Yuli Sun
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Zequn Yang
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Wei Zheng
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| | - Xunming Ji
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
- Institute of Hypoxia Medicine Xuanwu Hospital Capital Medical University Beijing 100053 China
| | - Zehui Wu
- Beijing Institute of Brain Disorders Laboratory of Brain Disorders Ministry of Science and Technology Collaborative Innovation Center for Brain Disorders Beijing Advanced Innovation Center for Big Data-based Precision Medicine Capital Medical University Beijing 100069 China
| |
Collapse
|
59
|
Chen H, Liu Y, Cheng X, Fang S, Sun Y, Yang Z, Zheng W, Ji X, Wu Z. Self-Assembly of Size-Controlled m-Pyridine-Urea Oligomers and Their Biomimetic Chloride Ion Channels. Angew Chem Int Ed Engl 2021; 60:10833-10841. [PMID: 33624345 DOI: 10.1002/anie.202102174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/06/2023]
Abstract
The m-pyridine urea (mPU) oligomer was constructed by using the intramolecular hydrogen bond formed by the pyridine nitrogen atom and the NH of urea and the intermolecular hydrogen bond of the terminal carbonyl group and the NH of urea. Due to the synergistic effect of hydrogen bonds, mPU oligomer folds and exhibits strong self-assembly behaviour. Affected by folding, mPU oligomer generates a twisted plane, and one of its important features is that the carbonyl group of the urea group orientates outwards from the twisted plane, while the NHs tend to direct inward. This feature is beneficial to NH attraction for electron-rich species. Among them, the trimer self-assembles into helical nanotubes, and can efficiently transport chloride ions. This study provides a novel and efficient strategy for constructing self-assembled biomimetic materials for electron-rich species transmission.
Collapse
Affiliation(s)
- Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Yajing Liu
- School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Senbiao Fang
- School of Computer Science and Engineering, Central South University, Changsha, 410012, China
| | - Yuli Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Zequn Yang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
60
|
Bitam S, Elbahnsi A, Creste G, Pranke I, Chevalier B, Berhal F, Hoffmann B, Servel N, Baatalah N, Tondelier D, Hatton A, Moquereau C, Faria Da Cunha M, Pastor A, Lepissier A, Hinzpeter A, Mornon JP, Prestat G, Edelman A, Callebaut I, Gravier-Pelletier C, Sermet-Gaudelus I. New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation. Sci Rep 2021; 11:6842. [PMID: 33767236 PMCID: PMC7994384 DOI: 10.1038/s41598-021-83240-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
C407 is a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein carrying the p.Phe508del (F508del) mutation. We investigated the corrector effect of c407 and its derivatives on F508del-CFTR protein. Molecular docking and dynamics simulations combined with site-directed mutagenesis suggested that c407 stabilizes the F508del-Nucleotide Binding Domain 1 (NBD1) during the co-translational folding process by occupying the position of the p.Phe1068 side chain located at the fourth intracellular loop (ICL4). After CFTR domains assembly, c407 occupies the position of the missing p.Phe508 side chain. C407 alone or in combination with the F508del-CFTR corrector VX-809, increased CFTR activity in cell lines but not in primary respiratory cells carrying the F508del mutation. A structure-based approach resulted in the synthesis of an extended c407 analog G1, designed to improve the interaction with ICL4. G1 significantly increased CFTR activity and response to VX-809 in primary nasal cells of F508del homozygous patients. Our data demonstrate that in-silico optimized c407 derivative G1 acts by a mechanism different from the reference VX-809 corrector and provide insights into its possible molecular mode of action. These results pave the way for novel strategies aiming to optimize the flawed ICL4-NBD1 interface.
Collapse
Affiliation(s)
- Sara Bitam
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Ahmad Elbahnsi
- Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75005, Paris, France
| | - Geordie Creste
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Iwona Pranke
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Benoit Chevalier
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Farouk Berhal
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Brice Hoffmann
- Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75005, Paris, France
| | - Nathalie Servel
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Nesrine Baatalah
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Danielle Tondelier
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Aurelie Hatton
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Christelle Moquereau
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Mélanie Faria Da Cunha
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Alexandra Pastor
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Agathe Lepissier
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Jean-Paul Mornon
- Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75005, Paris, France
| | - Guillaume Prestat
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Aleksander Edelman
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France
| | - Isabelle Callebaut
- Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, 75005, Paris, France
| | - Christine Gravier-Pelletier
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), Université de Paris, 75006, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 75015, Paris, France.
- Centre de Référence Maladies Rares Mucoviscidose et Maladies du CFTR, European Reference Network for Rare Respiratory Diseases, Hôpital Necker Enfants Malades, 75015, Paris, France.
| |
Collapse
|
61
|
Nowicka-Bauer K, Szymczak-Cendlak M. Structure and Function of Ion Channels Regulating Sperm Motility-An Overview. Int J Mol Sci 2021; 22:ijms22063259. [PMID: 33806823 PMCID: PMC8004680 DOI: 10.3390/ijms22063259] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Sperm motility is linked to the activation of signaling pathways that trigger movement. These pathways are mainly dependent on Ca2+, which acts as a secondary messenger. The maintenance of adequate Ca2+ concentrations is possible thanks to proper concentrations of other ions, such as K+ and Na+, among others, that modulate plasma membrane potential and the intracellular pH. Like in every cell, ion homeostasis in spermatozoa is ensured by a vast spectrum of ion channels supported by the work of ion pumps and transporters. To achieve success in fertilization, sperm ion channels have to be sensitive to various external and internal factors. This sensitivity is provided by specific channel structures. In addition, novel sperm-specific channels or isoforms have been found with compositions that increase the chance of fertilization. Notably, the most significant sperm ion channel is the cation channel of sperm (CatSper), which is a sperm-specific Ca2+ channel required for the hyperactivation of sperm motility. The role of other ion channels in the spermatozoa, such as voltage-gated Ca2+ channels (VGCCs), Ca2+-activated Cl-channels (CaCCs), SLO K+ channels or voltage-gated H+ channels (VGHCs), is to ensure the activation and modulation of CatSper. As the activation of sperm motility differs among metazoa, different ion channels may participate; however, knowledge regarding these channels is still scarce. In the present review, the roles and structures of the most important known ion channels are described in regard to regulation of sperm motility in animals.
Collapse
Affiliation(s)
- Karolina Nowicka-Bauer
- Department of Chemical Physics, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland
- Correspondence:
| | - Monika Szymczak-Cendlak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland;
| |
Collapse
|
62
|
Jiang Y, Ozaki T, Liu C, Igarashi Y, Ye Y, Tang S, Ye T, Maruyama JI, Minami A, Oikawa H. Biosynthesis of Cyclochlorotine: Identification of the Genes Involved in Oxidative Transformations and Intramolecular O, N-Transacylation. Org Lett 2021; 23:2616-2620. [PMID: 33736433 DOI: 10.1021/acs.orglett.1c00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mycotoxin cyclochlorotine (1) and structurally related astins are cyclic pentapeptides containing unique nonproteinogenic amino acids, such as β-phenylalanine, l-allo-threonine, and 3,4-dichloroproline. Herein, we report the biosynthetic pathway for 1, which involves intriguing tailoring processes mediated by DUF3328 proteins, including stereo- and regiospecific chlorination and hydroxylation and intramolecular O,N-transacylation. Our findings demonstrate that DUF3328 proteins, which are known to be involved in oxidative cyclization of fungal ribosomal peptides, have much higher functional diversity than previously expected.
Collapse
Affiliation(s)
- Yulu Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Chengwei Liu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuya Igarashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ying Ye
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shoubin Tang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen 518055, China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen 518055, China
| | - Jun-Ichi Maruyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
63
|
Szeri F, Niaziorimi F, Donnelly S, Orndorff J, van de Wetering K. Generation of fully functional fluorescent fusion proteins to gain insights into ABCC6 biology. FEBS Lett 2021; 595:799-810. [PMID: 33058196 PMCID: PMC7987643 DOI: 10.1002/1873-3468.13957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
ABCC6 mediates release of ATP from hepatocytes into the blood. Extracellularly, ATP is converted into the mineralization inhibitor pyrophosphate. Consequently, inactivating mutations in ABCC6 give low plasma pyrophosphate and underlie the ectopic mineralization disorder pseudoxanthoma elasticum. How ABCC6 mediates cellular ATP release is still unknown. Fluorescent ABCC6 fusion proteins would allow mechanistic studies, but fluorophores attached to the ABCC6 N- or C-terminus result in intracellular retention and degradation. Here we describe that intramolecular introduction of fluorophores yields fully functional ABCC6 fusion proteins. A corresponding ABCC6 variant in which the catalytic glutamate of the second nucleotide binding domain was mutated, correctly routed to the plasma membrane but was inactive. Finally, N-terminal His10 or FLAG tags did not affect activity of the fusion proteins, allowing their purification for biochemical characterization.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (current address)
| | - Fatemeh Niaziorimi
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
| | - Sylvia Donnelly
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
| | - Joseph Orndorff
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia (PA), USA
| |
Collapse
|
64
|
Masood A, Jacob M, Gu X, Abdel Jabar M, Benabdelkamel H, Nizami I, Li L, Dasouki M, Abdel Rahman AM. Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function. Metabolomics 2021; 17:4. [PMID: 33394183 DOI: 10.1007/s11306-020-01760-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a lethal multisystemic disease of a monogenic origin with numerous mutations. Functional defects in the cystic fibrosis transmembrane conductance receptor (CFTR) protein based on these mutations are categorised into distinct classes having different clinical presentations and disease severity. OBJECTIVES The present study aimed to create a comprehensive metabolomic profile of altered metabolites in patients with CF, among different classes and in relation to lung function. METHODS A chemical isotope labeling liquid chromatography-mass spectrometry metabolomics was used to study the serum metabolic profiles of young and adult CF (n = 39) patients and healthy controls (n = 30). Comparisons were made at three levels, CF vs. controls, among mutational classes of CF, between CF class III and IV, and correlated the lung function findings. RESULTS A distinctive metabolic profile was observed in the three analyses. 78, 20, and 13 significantly differentially dysregulated metabolites were identified in the patients with CF, among the different classes and between class III and IV, respectively. The significantly identified metabolites included amino acids, di-, and tri-peptides, glutathione, glutamine, glutamate, and arginine metabolism. The top significant metabolites include 1-Aminopropan-2-ol, ophthalmate, serotonin, cystathionine, and gamma-glutamylglutamic acid. Lung function represented by an above-average FEV1% level was associated with decreased glutamic acid and increased guanosine levels. CONCLUSION Metabolomic profiling identified alterations in different amino acids and dipeptides, involved in regulating glutathione metabolism. Two metabolites, 3,4-dihydroxymandelate-3-O-sulfate and 5-Aminopentanoic acid, were identified in common between the three anlayses and may represent as highly sensitive biomarkers for CF.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| | - Minnie Jacob
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Mai Abdel Jabar
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 11211, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Majed Dasouki
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia.
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia.
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
65
|
Basak M, Das A, Das G. Exploring cyclohexane/piperazine-urea motifs for spherical halide (X = Cl −/Br −) recognition: effects on anion coordination, photoluminescence, and morphological tunability. CrystEngComm 2021. [DOI: 10.1039/d1ce01090e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two bis-urea receptors bearing aromatic meta-substituted electron-withdrawing groups demonstrated halide-coordination-triggered self-assemblies with contrasting coordination numbers and variation in morphology.
Collapse
Affiliation(s)
- Megha Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Asesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
66
|
The exquisite structural biophysics of the Golgi Reassembly and Stacking Proteins. Int J Biol Macromol 2020; 164:3632-3644. [DOI: 10.1016/j.ijbiomac.2020.08.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
|
67
|
Bordignon E, Seeger MA, Galazzo L, Meier G. From in vitro towards in situ: structure-based investigation of ABC exporters by electron paramagnetic resonance spectroscopy. FEBS Lett 2020; 594:3839-3856. [PMID: 33219535 DOI: 10.1002/1873-3468.14004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
ATP-binding cassette (ABC) exporters have been studied now for more than four decades, and recent structural investigation has produced a large number of protein database entries. Yet, important questions about how ABC exporters function at the molecular level remain debated, such as which are the molecular recognition hotspots and the allosteric couplings dynamically regulating the communication between the catalytic cycle and the export of substrates. This conundrum mainly arises from technical limitations confining all research to in vitro analysis of ABC transporters in detergent solutions or embedded in membrane-mimicking environments. Therefore, a largely unanswered question is how ABC exporters operate in situ, namely in the native membrane context of a metabolically active cell. This review focuses on novel mechanistic insights into type I ABC exporters gained through a unique combination of structure determination, biochemical characterization, generation of conformation-specific nanobodies/sybodies and double electron-electron resonance.
Collapse
Affiliation(s)
- Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Gianmarco Meier
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|
68
|
Krishnan Y, Zou J, Jani MS. Quantitative Imaging of Biochemistry in Situ and at the Nanoscale. ACS CENTRAL SCIENCE 2020; 6:1938-1954. [PMID: 33274271 PMCID: PMC7706076 DOI: 10.1021/acscentsci.0c01076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 05/12/2023]
Abstract
Biochemical reactions in eukaryotic cells occur in subcellular, membrane-bound compartments called organelles. Each kind of organelle is characterized by a unique lumenal chemical composition whose stringent regulation is vital to proper organelle function. Disruption of the lumenal ionic content of organelles is inextricably linked to disease. Despite their vital roles in cellular homeostasis, there are large gaps in our knowledge of organellar chemical composition largely from a lack of suitable probes. In this Outlook, we describe how, using organelle-targeted ratiometric probes, one can quantitatively image the lumenal chemical composition and biochemical activity inside organelles. We discuss how excellent fluorescent detection chemistries applied largely to the cytosol may be expanded to study organelles by chemical imaging at subcellular resolution in live cells. DNA-based reporters are a new and versatile platform to enable such approaches because the resultant probes have precise ratiometry and accurate subcellular targeting and are able to map multiple chemicals simultaneously. Quantitatively mapping lumenal ions and biochemical activity can drive the discovery of new biology and biomedical applications.
Collapse
Affiliation(s)
| | - Junyi Zou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Grossman Institute of Neuroscience,
Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637, United States
| | - Maulik S. Jani
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Grossman Institute of Neuroscience,
Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
69
|
Lewinson O, Orelle C, Seeger MA. Structures of ABC transporters: handle with care. FEBS Lett 2020; 594:3799-3814. [PMID: 33098660 PMCID: PMC7756565 DOI: 10.1002/1873-3468.13966] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
In the past two decades, the ATP‐binding cassette (ABC) transporters' field has undergone a structural revolution. The importance of structural biology to the development of the field of ABC transporters cannot be overstated, as the ensemble of structures not only revealed the architecture of ABC transporters but also shaped our mechanistic view of these remarkable molecular machines. Nevertheless, we advocate that the mechanistic interpretation of the structures is not trivial and should be carried out with prudence. Herein, we bring several examples of structures of ABC transporters that merit re‐interpretation via careful comparison to experimental data. We propose that it is of the upmost importance to place new structures within the context of the available experimental data.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Cédric Orelle
- CNRS, Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), University of Lyon, Lyon, France
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
70
|
Molecular Docking and QSAR Studies as Computational Tools Exploring the Rescue Ability of F508del CFTR Correctors. Int J Mol Sci 2020; 21:ijms21218084. [PMID: 33138251 PMCID: PMC7663332 DOI: 10.3390/ijms21218084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. Different mutations involving the cystic fibrosis transmembrane regulator protein (CFTR) gene, which encodes the CFTR channel, are involved in CF. A number of life-prolonging therapies have been conceived and deeply investigated to combat this disease. Among them, the administration of the so-called CFTR modulators, such as correctors and potentiators, have led to quite beneficial effects. Recently, based on QSAR (quantitative structure activity relationship) studies, we reported the rational design and synthesis of compound 2, an aminoarylthiazole-VX-809 hybrid derivative exhibiting promising F508del-CFTR corrector ability. Herein, we explored the docking mode of the prototype VX-809 as well as of the aforementioned correctors in order to derive useful guidelines for the rational design of further analogues. In addition, we refined our previous QSAR analysis taking into account our first series of in-house hybrids. This allowed us to optimize the QSAR model based on the chemical structure and the potency profile of hybrids as F508del-CFTR correctors, identifying novel molecular descriptors explaining the SAR of the dataset. This study is expected to speed up the discovery process of novel potent CFTR modulators.
Collapse
|
71
|
Khan N, You FM, Datla R, Ravichandran S, Jia B, Cloutier S. Genome-wide identification of ATP binding cassette (ABC) transporter and heavy metal associated (HMA) gene families in flax (Linum usitatissimum L.). BMC Genomics 2020; 21:722. [PMID: 33076828 PMCID: PMC7574471 DOI: 10.1186/s12864-020-07121-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background The recent release of the reference genome sequence assembly of flax, a self-pollinated crop with 15 chromosome pairs, into chromosome-scale pseudomolecules enables the characterization of gene families. The ABC transporter and HMA gene families are important in the control of cadmium (Cd) accumulation in crops. To date, the genome-wide analysis of these two gene families has been successfully conducted in some plant species, but no systematic evolutionary analysis is available for the flax genome. Results Here we describe the ABC transporter and HMA gene families in flax to provide a comprehensive overview of its evolution and some support towards the functional annotation of its members. The 198 ABC transporter and 12 HMA genes identified in the flax genome were classified into eight ABC transporter and four HMA subfamilies based on their phylogenetic analysis and domains’ composition. Nine of these genes, i.e., LuABCC9, LuABCC10, LuABCG58, LuABCG59, LuABCG71, LuABCG72, LuABCG73, LuHMA3, and LuHMA4, were orthologous with the Cd associated genes in Arabidopsis, rice and maize. Ten motifs were identified from all ABC transporter and HMA genes. Also, several motifs were conserved among genes of similar length, but each subfamily each had their own motif structures. Both the ABC transporter and HMA gene families were highly conserved among subfamilies of flax and with those of Arabidopsis. While four types of gene duplication were observed at different frequencies, whole-genome or segmental duplications were the most frequent with 162 genes, followed by 29 dispersed, 14 tandem and 4 proximal duplications, suggesting that segmental duplications contributed the most to the expansion of both gene families in flax. The rates of non-synonymous to synonymous (Ka/Ks) mutations of paired duplicated genes were for the most part lower than one, indicative of a predominant purifying selection. Only five pairs of genes clearly exhibited positive selection with a Ka/Ks ratio greater than one. Gene ontology analyses suggested that most flax ABC transporter and HMA genes had a role in ATP binding, transport, catalytic activity, ATPase activity, and metal ion binding. The RNA-Seq analysis of eight different organs demonstrated diversified expression profiling patterns of the genes and revealed their functional or sub-functional conservation and neo-functionalization. Conclusion Characterization of the ABC transporter and HMA gene families will help in the functional analysis of candidate genes in flax and other crop species.
Collapse
Affiliation(s)
- Nadeem Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Frank M You
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Bosen Jia
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada. .,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
72
|
Wei T, Sui H, Su Y, Cheng W, Liu Y, He Z, Ji Q, Xu C. Research advances in molecular mechanisms underlying the pathogenesis of cystic fibrosis: From technical improvement to clinical applications (Review). Mol Med Rep 2020; 22:4992-5002. [PMID: 33173976 PMCID: PMC7646950 DOI: 10.3892/mmr.2020.11607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a chronic disease causing severe impairment to the respiratory system and digestive tracts. Currently, CF is incurable. As an autosomal recessive disorder, the morbidity of CF is significantly higher among Caucasians of European descent, whereas it is less pervasive among African and Asian populations. The disease is caused by identical mutations (homozygosity) or different mutations (heterozygosity) of an autosomal recessive mutation at position 7q31.2-q31.1 of chromosome 7. Diagnostic criteria and guidelines work concurrently with laboratory detection to facilitate precise CF detection. With technological advances, the understanding of CF pathogenesis has reached an unprecedented level, allowing for increasingly precise carrier screening, more effective early stage CF intervention and improved prognostic outcomes. These advances significantly increase the life quality and expectancy of patients with CF. Given the numerous improvements in the field of CF, the current review summarized the technical advances in the study of the molecular mechanisms underlying CF, as well as how these improvements facilitate the clinical outcomes of CF. Furthermore, challenges and obstacles to overcome are discussed.
Collapse
Affiliation(s)
- Tao Wei
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Wanjing Cheng
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Yunhua Liu
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Zilin He
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Qingchao Ji
- Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 271000, P.R. China
| | - Changlong Xu
- Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi Zhuang Autonomous Region 530031, P.R. China
| |
Collapse
|
73
|
Smith E, Dukovski D, Shumate J, Scampavia L, Miller JP, Spicer TP. Identification of Compounds That Promote Readthrough of Premature Termination Codons in the CFTR. SLAS DISCOVERY 2020; 26:205-215. [PMID: 33016182 PMCID: PMC7838340 DOI: 10.1177/2472555220962001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cystic fibrosis (CF) is caused by a mutation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, which disrupts an ion channel involved in hydration maintenance via anion homeostasis. Nearly 5% of CF patients possess one or more copies of the G542X allele, which results in a stop codon at residue 542, preventing full-length CFTR protein synthesis. Identifying small-molecule modulators of mutant CFTR biosynthesis that affect the readthrough of this and other premature termination codons to synthesize a fully functional CFTR protein represents a novel target area of drug discovery. We describe the implementation and integration for large-scale screening of a homogeneous, 1536-well functional G542X-CFTR readthrough assay. The assay uses HEK 293 cells engineered to overexpress the G542X-CFTR mutant, whose functional activity is monitored with a membrane potential dye. Cells are co-incubated with a CFTR amplifier and CFTR corrector to maximize mRNA levels and trafficking of CFTR to the cell surface. Compounds that allow translational readthrough and synthesis of functional CFTR chloride channels are reflected by changes in membrane potential in response to cAMP stimulation with forskolin and CFTR channel potentiation with genistein. Assay statistics yielded Z′ values of 0.69 ± 0.06. As further evidence of its suitability for high-throughput screening, we completed automated screening of approximately 666,000 compounds, identifying 7761 initial hits. Following secondary and tertiary assays, we identified 188 confirmed hit compounds with low and submicromolar potencies. Thus, this approach takes advantage of a phenotypic screen with high-throughput scalability to identify new small-molecule G542X-CFTR readthrough modulators.
Collapse
Affiliation(s)
- Emery Smith
- Department of Molecular Medicine, Scripps Florida, The Scripps Research Institute Molecular Screening Center, Jupiter, FL, USA
| | | | - Justin Shumate
- Department of Molecular Medicine, Scripps Florida, The Scripps Research Institute Molecular Screening Center, Jupiter, FL, USA
| | - Louis Scampavia
- Department of Molecular Medicine, Scripps Florida, The Scripps Research Institute Molecular Screening Center, Jupiter, FL, USA
| | | | - Timothy P Spicer
- Department of Molecular Medicine, Scripps Florida, The Scripps Research Institute Molecular Screening Center, Jupiter, FL, USA
| |
Collapse
|
74
|
Rodrat M, Jantarajit W, Ng DRS, Harvey BSJ, Liu J, Wilkinson WJ, Charoenphandhu N, Sheppard DN. Carbon monoxide-releasing molecules inhibit the cystic fibrosis transmembrane conductance regulator Cl - channel. Am J Physiol Lung Cell Mol Physiol 2020; 319:L997-L1009. [PMID: 32936026 DOI: 10.1152/ajplung.00440.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gasotransmitter carbon monoxide (CO) regulates fluid and electrolyte movements across epithelial tissues. However, its action on anion channels is incompletely understood. Here, we investigate the direct action of CO on the cystic fibrosis transmembrane conductance regulator (CFTR) by applying CO-releasing molecules (CO-RMs) to the intracellular side of excised inside-out membrane patches from cells heterologously expressing wild-type human CFTR. Addition of increasing concentrations of tricarbonyldichlororuthenium(II) dimer (CORM-2) (1-300 μM) inhibited CFTR channel activity, whereas the control RuCl3 (100 μM) was without effect. CORM-2 predominantly inhibited CFTR by decreasing the frequency of channel openings and, hence, open probability (Po). But, it also reduced current flow through open channels with very fast kinetics, particularly at elevated concentrations. By contrast, the chemically distinct CO-releasing molecule CORM-3 inhibited CFTR by decreasing Po without altering current flow through open channels. Neither depolarizing the membrane voltage nor raising the ATP concentration on the intracellular side of the membrane affected CFTR inhibition by CORM-2. Interestingly, CFTR inhibition by CORM-2, but not by CFTRinh-172, was prevented by prior enhancement of channel activity by the clinically approved CFTR potentiator ivacaftor. Similarly, when added after CORM-2, ivacaftor completely relieved CFTR inhibition. In conclusion, CORM-2 has complex effects on wild-type human CFTR consistent with allosteric inhibition and open-channel blockade. Inhibition of CFTR by CO-releasing molecules suggests that CO regulates CFTR activity and that the gasotransmitter has tissue-specific effects on epithelial ion transport. The action of ivacaftor on CFTR Cl- channels inhibited by CO potentially expands the drug's clinical utility.
Collapse
Affiliation(s)
- Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Walailak Jantarajit
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Demi R S Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bartholomew S J Harvey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jia Liu
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
75
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
76
|
Bernut A, Loynes CA, Floto RA, Renshaw SA. Deletion of cftr Leads to an Excessive Neutrophilic Response and Defective Tissue Repair in a Zebrafish Model of Sterile Inflammation. Front Immunol 2020; 11:1733. [PMID: 32849617 PMCID: PMC7412881 DOI: 10.3389/fimmu.2020.01733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Inflammation-related progressive lung destruction is the leading causes of premature death in cystic fibrosis (CF), a genetic disorder caused by a defective cystic fibrosis transmembrane conductance regulator (CFTR). However, therapeutic targeting of inflammation has been hampered by a lack of understanding of the links between a dysfunctional CFTR and the deleterious innate immune response in CF. Herein, we used a CFTR-depleted zebrafish larva, as an innovative in vivo vertebrate model, to understand how CFTR dysfunction leads to abnormal inflammatory status in CF. We show that impaired CFTR-mediated inflammation correlates with an exuberant neutrophilic response after injury: CF zebrafish exhibit enhanced and sustained accumulation of neutrophils at wounds. Excessive epithelial oxidative responses drive enhanced neutrophil recruitment towards wounds. Persistence of neutrophils at inflamed sites is associated with impaired reverse migration of neutrophils and reduction in neutrophil apoptosis. As a consequence, the increased number of neutrophils at wound sites causes tissue damage and abnormal tissue repair. Importantly, the molecule Tanshinone IIA successfully accelerates inflammation resolution and improves tissue repair in CF animal. Our findings bring important new understanding of the mechanisms underlying the inflammatory pathology in CF, which could be addressed therapeutically to prevent inflammatory lung damage in CF patients with potential improvements in disease outcomes.
Collapse
Affiliation(s)
- Audrey Bernut
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Catherine A. Loynes
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Francis Crick Avenue, Cambridge Biomedical, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
77
|
Peters AD, Borsley S, Della Sala F, Cairns-Gibson DF, Leonidou M, Clayden J, Whitehead GFS, Vitórica-Yrezábal IJ, Takano E, Burthem J, Cockroft SL, Webb SJ. Switchable foldamer ion channels with antibacterial activity. Chem Sci 2020; 11:7023-7030. [PMID: 32953034 PMCID: PMC7481839 DOI: 10.1039/d0sc02393k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Synthetic ion channels may have applications in treating channelopathies and as new classes of antibiotics, particularly if ion flow through the channels can be controlled. Here we describe triazole-capped octameric α-aminoisobutyric acid (Aib) foldamers that "switch on" ion channel activity in phospholipid bilayers upon copper(ii) chloride addition; activity is "switched off" upon copper(ii) extraction. X-ray crystallography showed that CuCl2 complexation gave chloro-bridged foldamer dimers, with hydrogen bonds between dimers producing channels within the crystal structure. These interactions suggest a pathway for foldamer self-assembly into membrane ion channels. The copper(ii)-foldamer complexes showed antibacterial activity against B. megaterium strain DSM319 that was similar to the peptaibol antibiotic alamethicin, but with 90% lower hemolytic activity.
Collapse
Affiliation(s)
- Anna D Peters
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Stefan Borsley
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Flavio Della Sala
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Dominic F Cairns-Gibson
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Marios Leonidou
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK
| | - George F S Whitehead
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | | | - Eriko Takano
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - John Burthem
- Department of Haematology , Manchester Royal Infirmary , Manchester University NHS Foundation Trust , Manchester M13 9WL , UK
- Division of Cancer Sciences , School of Medical Sciences , University of Manchester , Manchester , UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Simon J Webb
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| |
Collapse
|
78
|
Göddeke H, Schäfer LV. Capturing Substrate Translocation in an ABC Exporter at the Atomic Level. J Am Chem Soc 2020; 142:12791-12801. [PMID: 32578427 DOI: 10.1021/jacs.0c05502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ATP-binding cassette (ABC) transporters chemomechanically couple ATP binding and hydrolysis to large-scale conformational changes, ultimately leading to substrate translocation across biological membranes. Despite recent progress in the structure determination of substrate-bound ABC exporters, the inherently dynamic mechanism of substrate transport remains unclear at the atomic level. In this work, we capture substrate translocation in the heterodimeric ABC exporter TM287/288 from the hyperthermophilic bacterium Thermotoga maritima using all-atom molecular dynamics (MD) simulations. Unguided multimicrosecond simulations at 375 K show how the drugs daunorubicin and verapamil, which were initially docked into the ABC transporter, get translocated through the exporter by following its large-scale alternating access conformational transitions between an inward-facing (IF) and an outward-facing (OF) conformation. Triggered by the affinity difference due to differential solvation of the binding cavity in the IF and OF conformations, the substrates unbind from the OF transporter and partition into the lipid bilayer. While daunorubicin is stably inserted into the outer leaflet of the bilayer, verapamil dynamically flip flops between the bilayer leaflets, possibly rendering its net transport futile.
Collapse
Affiliation(s)
- Hendrik Göddeke
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
79
|
Jouret F, Devuyst O. Targeting chloride transport in autosomal dominant polycystic kidney disease. Cell Signal 2020; 73:109703. [PMID: 32619563 DOI: 10.1016/j.cellsig.2020.109703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent inherited kidney disease. Transepithelial fluid secretion is one of the key factors of cystogenesis in ADPKD. Multiple studies have suggested that fluid secretion across ADPKD cyst-lining cells is driven by the secretion of chloride, essentially mediated by the CFTR channel and stimulated by increased intracellular levels of 3',5'-cyclic adenosine monophosphate. This review focuses on the pathophysiology of fluid secretion in ADPKD based on the pioneering studies of Jared Grantham and colleagues, and on the follow-up investigations from the molecular level to the potential applications in ADPKD patients. Altogether, the studies of fluid and chloride transport in ADPKD paved the way for innovative therapeutic targets to prevent cyst volume expansion and thus, kidney disease progression.
Collapse
Affiliation(s)
- François Jouret
- Division of Nephrology, Department of Internal Medicine, ULiège Academic Hospital, Liège, Belgium,; Groupe Interdisciplinaire de Géno-protéomique Appliquée, Cardiovascular Sciences, ULiège Medical School, Liège, Belgium
| | - Olivier Devuyst
- Division of Nephrology, UCLouvain Medical School, B-1200, Brussels, Belgium,; Mechanisms of Inherited Kidney Disorders, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
80
|
Genistein antagonizes gliadin-induced CFTR malfunction in models of celiac disease. Aging (Albany NY) 2020; 11:2003-2019. [PMID: 30981209 PMCID: PMC6503870 DOI: 10.18632/aging.101888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
In celiac disease (CD), an intolerance to dietary gluten/gliadin, antigenic gliadin peptides trigger an HLA-DQ2/DQ8-restricted adaptive Th1 immune response. Epithelial stress, induced by other non-antigenic gliadin peptides, is required for gliadin to become fully immunogenic. We found that cystic-fibrosis-transmembrane-conductance-regulator (CFTR) acts as membrane receptor for gliadin-derived peptide P31-43, as it binds to CFTR and impairs its channel function. P31-43-induced CFTR malfunction generates epithelial stress and intestinal inflammation. Maintaining CFTR in an active open conformation by the CFTR potentiators VX-770 (Ivacaftor) or Vrx-532, prevents P31-43 binding to CFTR and controls gliadin-induced manifestations. Here, we evaluated the possibility that the over-the-counter nutraceutical genistein, known to potentiate CFTR function, would allow to control gliadin-induced alterations. We demonstrated that pre-treatment with genistein prevented P31-43-induced CFTR malfunction and an epithelial stress response in Caco-2 cells. These effects were abrogated when the CFTR gene was knocked out by CRISP/Cas9 technology, indicating that genistein protects intestinal epithelial cells by potentiating CFTR function. Notably, genistein protected gliadin-sensitive mice from intestinal CFTR malfunction and gliadin-induced inflammation as it prevented gliadin-induced IFN-γ production by celiac peripheral-blood-mononuclear-cells (PBMC) cultured ex-vivo in the presence of P31-43-challenged Caco-2 cells. Our results indicate that natural compounds capable to increase CFTR channel gating might be used for the treatment of CD.
Collapse
|
81
|
Correctors modify the bicarbonate permeability of F508del-CFTR. Sci Rep 2020; 10:8440. [PMID: 32439937 PMCID: PMC7242338 DOI: 10.1038/s41598-020-65287-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
One of the most common mutations in Cystic Fibrosis (CF) patients is the deletion of the amino acid phenylalanine at position 508. This mutation causes both the protein trafficking defect and an early degradation. Over time, small molecules, called correctors, capable of increasing the amount of mutated channel in the plasma membrane and causing an increase in its transport activity have been developed. This study shows that incubating in vitro cells permanently transfected with the mutated channel with the correctors VX809, VX661 and Corr4a, and the combination of VX809 and Corr4a, a recovery of anion transport activity is observed. Interestingly, the permeability of bicarbonate increases in the cells containing corrected p.F508del CFTR channels is greater than the increase of the halide permeability. These different increases of the permeability of bicarbonate and halides are consistent with the concept that the structural conformation of the pore of the corrector-rescued p.F508del channels would be different than the normal wild type CFTR protein.
Collapse
|
82
|
Al-Qahtani W, Abdel Jabar M, Masood A, Jacob M, Nizami I, Dasouki M, Abdel Rahman AM. Dried Blood Spot-Based Metabolomic Profiling in Adults with Cystic Fibrosis. J Proteome Res 2020; 19:2346-2357. [PMID: 32312052 DOI: 10.1021/acs.jproteome.0c00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mucoviscidosis of the respiratory, gastrointestinal, and genitourinary tracts is the major pathology in patients with cystic fibrosis (CF), a lethal monogenic panethnic and multisystemic disease most commonly identified in Caucasians. Currently, the measurement of immuno reactive trypsinogen in dry blood spots (DBSs) is the gold-standard method for initial newborn screening for CF, followed by targeted CF transmembrane regulator (CFTR) mutation analysis, and ultimate confirmation with abnormally elevated sweat chloride. Previous metabolomics studies in patients with CF reported on different biomarkers such as breath 2-aminoacetophenone produced during acute and chronic infection in human tissues, including the lungs of CF patients. Herein, we used liquid and gas chromatography-mass spectrometry-based targeted metabolomics profiling to identify potentially reliable, sensitive, and specific biomarkers in DBSs collected from 69 young and adult people including CF patients (n = 39) and healthy control (n = 30). A distinctive metabolic profile including 26 significantly differentially expressed metabolites involving amino acids, glycolysis, mitochondrial and peroxisomal metabolism, and sorbitol pathways was identified. Specifically, the osmolyte (sorbitol) was remarkably downregulated in CF patients compared to healthy controls indicating perturbation in the sorbitol pathway, which may be responsible for the mucoviscidosis seen in patients with CF. The significance of our findings is supported by the clinical utility of inhaled mannitol and hypertonic saline in patients with CF. The systemic administration of sorbitol in such patients may confer additional benefits beyond the respiratory system, especially in those with misfolded CFTR proteins.
Collapse
Affiliation(s)
- Wafa Al-Qahtani
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia.,Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| | - Mai Abdel Jabar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Minnie Jacob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia.,Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia.,Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
83
|
Chamayou S, Sicali M, Lombardo D, Maglia E, Liprino A, Cardea C, Fichera M, Venti E, Guglielmino A. The true panel of cystic fibrosis mutations in the Sicilian population. BMC MEDICAL GENETICS 2020; 21:89. [PMID: 32357917 PMCID: PMC7195759 DOI: 10.1186/s12881-020-0958-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/21/2020] [Indexed: 11/24/2022]
Abstract
Background The aim was to establish the true risk of having an affected child with Cystic Fibrosis (CF) in the Sicilian infertile population. Methods A longitudinal CFTR screening of 1279 Sicilian infertile patients for all CFTR mutations sequencing the entire gene by Next Generation Sequencing (NGS) was performed from patient’s blood. Results One patient out of 16 was a carrier of a CFTR mutation. Twenty-four mutations were found. Theoretically one couple out of 256 was at risk of CF transmission. Conclusions The risk of CF transmission is unexpectedly high in Sicily and with a high heterogeneity. Sequencing an entire and long gene such as CFTR makes accessible the true panel of mutations in a specific population and helps better to understand the true risk of having an affected child.
Collapse
Affiliation(s)
- Sandrine Chamayou
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, 95030, Catania, Sant'Agata Li Battiati, Italy.
| | - Maria Sicali
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, 95030, Catania, Sant'Agata Li Battiati, Italy
| | - Debora Lombardo
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, 95030, Catania, Sant'Agata Li Battiati, Italy
| | - Elena Maglia
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, 95030, Catania, Sant'Agata Li Battiati, Italy
| | - Annalisa Liprino
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, 95030, Catania, Sant'Agata Li Battiati, Italy
| | - Clementina Cardea
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, 95030, Catania, Sant'Agata Li Battiati, Italy
| | - Michele Fichera
- Unit of Gynecology and Obstetric - Department of general surgery and medical surgical specialties, University of Catania, Catania, Italy
| | - Ermanno Venti
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, 95030, Catania, Sant'Agata Li Battiati, Italy
| | - Antonino Guglielmino
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, 95030, Catania, Sant'Agata Li Battiati, Italy
| |
Collapse
|
84
|
Drosophila as a model for studying cystic fibrosis pathophysiology of the gastrointestinal system. Proc Natl Acad Sci U S A 2020; 117:10357-10367. [PMID: 32345720 DOI: 10.1073/pnas.1913127117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is a recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The most common symptoms include progressive lung disease and chronic digestive conditions. CF is the first human genetic disease to benefit from having five different species of animal models. Despite the phenotypic differences among the animal models and human CF, these models have provided invaluable insight into understanding disease mechanisms at the organ-system level. Here, we identify a member of the ABCC4 family, CG5789, that has the structural and functional properties expected for encoding the Drosophila equivalent of human CFTR, and thus refer to it as Drosophila CFTR (Dmel\CFTR). We show that knockdown of Dmel\CFTR in the adult intestine disrupts osmotic homeostasis and displays CF-like phenotypes that lead to intestinal stem cell hyperplasia. We also show that expression of wild-type human CFTR, but not mutant variants of CFTR that prevent plasma membrane expression, rescues the mutant phenotypes of Dmel\CFTR Furthermore, we performed RNA sequencing (RNA-Seq)-based transcriptomic analysis using Dmel\CFTR fly intestine and identified a mucin gene, Muc68D, which is required for proper intestinal barrier protection. Altogether, our findings suggest that Drosophila can be a powerful model organism for studying CF pathophysiology.
Collapse
|
85
|
Bernut A, Dupont C, Ogryzko NV, Neyret A, Herrmann JL, Floto RA, Renshaw SA, Kremer L. CFTR Protects against Mycobacterium abscessus Infection by Fine-Tuning Host Oxidative Defenses. Cell Rep 2020; 26:1828-1840.e4. [PMID: 30759393 DOI: 10.1016/j.celrep.2019.01.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/17/2018] [Accepted: 01/17/2019] [Indexed: 01/03/2023] Open
Abstract
Infection by rapidly growing Mycobacterium abscessus is increasingly prevalent in cystic fibrosis (CF), a genetic disease caused by a defective CF transmembrane conductance regulator (CFTR). However, the potential link between a dysfunctional CFTR and vulnerability to M. abscessus infection remains unknown. Herein, we exploit a CFTR-depleted zebrafish model, recapitulating CF immuno-pathogenesis, to study the contribution of CFTR in innate immunity against M. abscessus infection. Loss of CFTR increases susceptibility to infection through impaired NADPH oxidase-dependent restriction of intracellular growth and reduced neutrophil chemotaxis, which together compromise granuloma formation and integrity. As a consequence, extracellular multiplication of M. abscessus expands rapidly, inducing abscess formation and causing lethal infections. Because these phenotypes are not observed with other mycobacteria, our findings highlight the crucial and specific role of CFTR in the immune control of M. abscessus by mounting effective oxidative responses.
Collapse
Affiliation(s)
- Audrey Bernut
- CNRS, UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; Bateson Centre, University of Sheffield, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.
| | - Christian Dupont
- CNRS, UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Nikolay V Ogryzko
- Bateson Centre, University of Sheffield, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Aymeric Neyret
- CNRS, UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | | | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Stephen A Renshaw
- Bateson Centre, University of Sheffield, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Laurent Kremer
- CNRS, UMR9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| |
Collapse
|
86
|
Verschuren EHJ, Castenmiller C, Peters DJM, Arjona FJ, Bindels RJM, Hoenderop JGJ. Sensing of tubular flow and renal electrolyte transport. Nat Rev Nephrol 2020; 16:337-351. [DOI: 10.1038/s41581-020-0259-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
|
87
|
Physiological Significance of Ion Transporters and Channels in the Stomach and Pathophysiological Relevance in Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2869138. [PMID: 32104192 PMCID: PMC7040404 DOI: 10.1155/2020/2869138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is a highly invasive and fatal malignant disease that accounts for 5.7% of new global cancer cases and is the third leading cause of cancer-related death. Acid/base homeostasis is critical for organisms because protein and enzyme function, cellular structure, and plasma membrane permeability change with pH. Various ion transporters are expressed in normal gastric mucosal epithelial cells and regulate gastric acid secretion, ion transport, and fluid absorption, thereby stabilizing the differentiation and homeostasis of gastric mucosal epithelial cells. Ion transporter dysfunction results in disordered ion transport, mucosa barrier dysfunction, and acid/base disturbances, causing gastric acid-related diseases such as chronic atrophic gastritis (CAG) and GC. This review summarizes the physiological functions of multiple ion transporters and channels in the stomach, including Cl− channels, Cl−/HCO3− exchangers, sodium/hydrogen exchangers (NHEs), and potassium (K+) channels, and their pathophysiological relevance in GC.
Collapse
|
88
|
Topical Pilocarpine Formulation for Diagnosis of Cystic Fibrosis. J Pharm Sci 2020; 109:1747-1751. [PMID: 32035925 DOI: 10.1016/j.xphs.2020.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/24/2022]
Abstract
Cystic fibrosis is diagnosed in infants by estimating the levels of chloride ions present in the sweat induced by iontophoresis of pilocarpine solution. Elevated levels of chloride (≥60 mMol/L) in sweat are indicative of cystic fibrosis. However, the iontophoretic method of delivering pilocarpine is cumbersome and usually is associated with several side effects such as skin burn, skin rashes, erythema, and so forth. The objective of this study was therefore to develop a topical formulation that delivers adequate amount of pilocarpine. The drug delivery of formulation was compared with iontophoresis of aqueous solution of pilocarpine nitrate in vitro using porcine skin model. The pilocarpine levels in the skin exposed to topical pilocarpine solution under mild hyperthermia was 152.04 ± 52.23 μg/cm2 after 10 min of application, whereas it was 97.05 ± 27.93 μg/cm2 in the skin after 10 min of iontophoresis. The topical formulation was subjected to clinical evaluation to assess the efficacy of the product to induce sweat production. The average amount of the sweat secreted on application of topical formulation was found to be 77.28 ± 18.97 mg. Based on these results, it was found that the topical formulation was successful in delivering pilocarpine and to stimulate sweat secretion.
Collapse
|
89
|
Krainer G, Schenkel M, Hartmann A, Ravamehr-Lake D, Deber CM, Schlierf M. CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor. J Biol Chem 2019; 295:1985-1991. [PMID: 31882543 DOI: 10.1074/jbc.ac119.011360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel protein that is defective in individuals with cystic fibrosis (CF). To advance the rational design of CF therapies, it is important to elucidate how mutational defects in CFTR lead to its impairment and how pharmacological compounds interact with and alter CFTR. Here, using a helical-hairpin construct derived from CFTR's transmembrane (TM) helices 3 and 4 (TM3/4) and their intervening loop, we investigated the structural effects of a patient-derived CF-phenotypic mutation, E217G, located in the loop region of CFTR's membrane-spanning domain. Employing a single-molecule FRET assay to probe the folding status of reconstituted hairpins in lipid bilayers, we found that the E217G hairpin exhibits an altered adaptive packing behavior stemming from an additional GXXXG helix-helix interaction motif created in the mutant hairpin. This observation suggested that the misfolding and functional defects caused by the E217G mutation arise from an impaired conformational adaptability of TM helical segments in CFTR. The addition of the small-molecule corrector Lumacaftor exerts a helix stabilization effect not only on the E217G mutant hairpin, but also on WT TM3/4 and other mutations in the hairpin. This finding suggests a general mode of action for Lumacaftor through which this corrector efficiently improves maturation of various CFTR mutants.
Collapse
Affiliation(s)
- Georg Krainer
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany.
| | - Mathias Schenkel
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Andreas Hartmann
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Dorna Ravamehr-Lake
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles M Deber
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Michael Schlierf
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
90
|
Yang Q, Soltis AR, Sukumar G, Zhang X, Caohuy H, Freedy J, Dalgard CL, Wilkerson MD, Pollard HB, Pollard BS. Gene therapy-emulating small molecule treatments in cystic fibrosis airway epithelial cells and patients. Respir Res 2019; 20:290. [PMID: 31864360 PMCID: PMC6925517 DOI: 10.1186/s12931-019-1214-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Several small molecule corrector and potentiator drugs have recently been licensed for Cystic Fibrosis (CF) therapy. However, other aspects of the disease, especially inflammation, are less effectively treated by these drugs. We hypothesized that small molecule drugs could function either alone or as an adjuvant to licensed therapies to treat these aspects of the disease, perhaps emulating the effects of gene therapy in CF cells. The cardiac glycoside digitoxin, which has been shown to inhibit TNFα/NFκB signaling in CF lung epithelial cells, may serve as such a therapy. Methods IB3–1 CF lung epithelial cells were treated with different Vertex (VX) drugs, digitoxin, and various drug mixtures, and ELISA assays were used to assess suppression of baseline and TNFα-activated secretion of cytokines and chemokines. Transcriptional responses to these drugs were assessed by RNA-seq and compared with gene expression in AAV-[wildtype]CFTR-treated IB3–1 (S9) cells. We also compared in vitro gene expression signatures with in vivo data from biopsied nasal epithelial cells from digitoxin-treated CF patients. Results CF cells exposed to digitoxin exhibited significant suppression of both TNFα/NFκB signaling and downstream secretion of IL-8, IL-6 and GM-CSF, with or without co-treatment with VX drugs. No evidence of drug-drug interference was observed. RNA-seq analysis showed that gene therapy-treated CF lung cells induced changes in 3134 genes. Among these, 32.6% were altered by digitoxin treatment in the same direction. Shared functional gene ontology themes for genes suppressed by both digitoxin and gene therapy included inflammation (84 gene signature), and cell-cell interactions and fibrosis (49 gene signature), while genes elevated by both were enriched for epithelial differentiation (82 gene signature). A new analysis of mRNA data from digitoxin-treated CF patients showed consistent trends in expression for genes in these signatures. Conclusions Adjuvant gene therapy-emulating activities of digitoxin may contribute to enhancing the efficacy of currently licensed correctors and potentiators in CF patients.
Collapse
Affiliation(s)
- Q Yang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - A R Soltis
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - G Sukumar
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - X Zhang
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - H Caohuy
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - J Freedy
- Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - C L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - M D Wilkerson
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA
| | - H B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine- America's Medical School, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA. .,Collaborative Health Initiative Research Program (CHIRP), The American Genome Center (TAGC), Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD, 20814, USA.
| | - B S Pollard
- Silver Pharmaceuticals, Rockville, MD, 20854, USA.
| |
Collapse
|
91
|
Chamayou S, Sicali M, Lombardo D, Alecci C, Ragolia C, Maglia E, Liprino A, Cardea C, Storaci G, Romano S, Guglielmino A. Universal strategy for preimplantation genetic testing for cystic fibrosis based on next-generation sequencing. J Assist Reprod Genet 2019:10.1007/s10815-019-01636-1. [PMID: 31848897 DOI: 10.1007/s10815-019-01636-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE We developed and applied a universal strategy for preimplantation genetic testing for all cystic fibrosis gene mutations (PGT-CF) based on next-generation sequencing (NGS). METHODS A molecular protocol was designed to diagnose all CF mutations at preimplantation stage. The detection of CF mutations was performed by direct gene sequencing and linkage strategy testing 38 specific SNPs located upstream and inside the gene for PGT-CF. Seventeen couples at risk of CF transmission decided to undergo PGT-CF. Trophectoderm cell biopsies were performed on days 5-6 blastocysts. PGT for aneuploidy (PGT-A) was performed from the same samples. Tested embryos were transferred on further natural cycles. RESULTS PGT was performed on 109 embryos. Fifteen CF mutations were tested. PGT-CF and PGT-A were conclusive for, respectively, 92.7% and 95.3% of the samples. A mean of 24.1 SNPs was informative per couple. After single embryo transfer on natural cycle, 81.3% of the transferred tested embryos implanted. CONCLUSIONS The present protocol based on the entire CFTR gene sequencing together with informative SNPs outside and inside the gene can be applied to diagnose all CF mutations at preimplantation stage.
Collapse
Affiliation(s)
- Sandrine Chamayou
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy.
| | - Maria Sicali
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| | - Debora Lombardo
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| | - Carmelita Alecci
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| | - Carmen Ragolia
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| | - Elena Maglia
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| | - Annalisa Liprino
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| | - Clementina Cardea
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| | - Giorgia Storaci
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| | - Simona Romano
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| | - Antonino Guglielmino
- Unità di Medicina della Riproduzione, Centro HERA, via Barriera del Bosco n. 51/53, 95030, Sant'Agata Li Battiati, Catania, Italy
| |
Collapse
|
92
|
Chamayou S, Sicali M, Lombardo D, Alecci C, Ragolia C, Maglia E, Liprino A, Cardea C, Storaci G, Romano S, Guglielmino A. Universal strategy for preimplantation genetic testing for cystic fibrosis based on next generation sequencing. J Assist Reprod Genet 2019; 37:213-222. [PMID: 31828483 PMCID: PMC7000499 DOI: 10.1007/s10815-019-01635-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose We developed and applied a universal strategy for preimplantation genetic testing for all cystic fibrosis gene mutations (PGT-CF) based on next-generation sequencing (NGS). Methods A molecular protocol was designed to diagnose all CF mutations at preimplantation stage. The detection of CF mutations was performed by direct gene sequencing and linkage strategy testing 38 specific SNPs located upstream and inside the gene for PGT-CF. Seventeen couples at risk of CF transmission decided to undergo PGT-CF. Trophectoderm cell biopsies were performed on day 5–6 blastocysts. PGT for aneuploidy (PGT-A) was performed from the same samples. Tested embryos were transferred on further natural cycles. Results PGT was performed on 109 embryos. Fifteen CF mutations were tested. PGT-CF and PGT-A were conclusive for respectively 92.7% and 95.3% of the samples. A mean of 24.1 SNPs was informative per couple. After a single embryo transfer on natural cycle, 81.3% of the transferred tested embryos were implanted. Conclusions The present protocol based on the entire CFTR gene together with informative SNPs outside and inside the gene can be applied to diagnose all CF mutations at preimplantation stage. Electronic supplementary material The online version of this article (10.1007/s10815-019-01635-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandrine Chamayou
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy.
| | - Maria Sicali
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| | - Debora Lombardo
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| | - Carmelita Alecci
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| | - Carmen Ragolia
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| | - Elena Maglia
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| | - Annalisa Liprino
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| | - Clementina Cardea
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| | - Giorgia Storaci
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| | - Simona Romano
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| | - Antonino Guglielmino
- Unità di Medicina della Riproduzione - Centro HERA, via Barriera del Bosco n. 51/53, Sant'Agata Li Battiati, 95030, Catania, Italy
| |
Collapse
|
93
|
Darley E, Singh JKD, Surace NA, Wickham SFJ, Baker MAB. The Fusion of Lipid and DNA Nanotechnology. Genes (Basel) 2019; 10:E1001. [PMID: 31816934 PMCID: PMC6947036 DOI: 10.3390/genes10121001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes-aqueous droplets enclosed by a bilayer membrane-can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems.
Collapse
Affiliation(s)
- Es Darley
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
| | - Jasleen Kaur Daljit Singh
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- School of Chemical and Biomolecular Engineering, University of Sydney, Camperdown 2006, Australia
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
| | - Natalie A. Surace
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
| | - Shelley F. J. Wickham
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
- School of Physics, University of Sydney, Camperdown 2006, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
94
|
Michels M, Matte U, Fraga LR, Mancuso ACB, Ligabue-Braun R, Berneira EFR, Siebert M, Sanseverino MTV. Determining the pathogenicity of CFTR missense variants: Multiple comparisons of in silico predictors and variant annotation databases. Genet Mol Biol 2019; 42:560-570. [PMID: 31808782 PMCID: PMC6905453 DOI: 10.1590/1678-4685-gmb-2018-0148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023] Open
Abstract
Pathogenic variants in the Cystic Fibrosis Transmembrane Conductance Regulator
gene (CFTR) are responsible for cystic fibrosis (CF), the
commonest monogenic autosomal recessive disease, and
CFTR-related disorders in infants and youth. Diagnosis of such
diseases relies on clinical, functional, and molecular studies. To date, over
2,000 variants have been described on CFTR (~40% missense).
Since few of them have confirmed pathogenicity, in silico
analysis could help molecular diagnosis and genetic counseling. Here, the
pathogenicity of 779 CFTR missense variants was predicted by
consensus predictor PredictSNP and compared to annotations on CFTR2 and ClinVar.
Sensitivity and specificity analysis was divided into modeling and validation
phases using just variants annotated on CFTR2 and/or ClinVar that were not in
the validation datasets of the analyzed predictors. After validation phase, MAPP
and PhDSNP achieved maximum specificity but low sensitivity. Otherwise, SNAP had
maximum sensitivity but null specificity. PredictSNP, PolyPhen-1, PolyPhen-2,
SIFT, nsSNPAnalyzer had either low sensitivity or specificity, or both. Results
showed that most predictors were not reliable when analyzing
CFTR missense variants, ratifying the importance of
clinical information when asserting the pathogenicity of CFTR
missense variants. Our results should contribute to clarify decision making when
classifying the pathogenicity of CFTR missense variants.
Collapse
Affiliation(s)
- Marcus Michels
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ursula Matte
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Lucas Rosa Fraga
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Rodrigo Ligabue-Braun
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Marina Siebert
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Teresa Vieira Sanseverino
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
95
|
Yeh JT, Hwang TC. Positional effects of premature termination codons on the biochemical and biophysical properties of CFTR. J Physiol 2019; 598:517-541. [PMID: 31585024 DOI: 10.1113/jp278418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Biochemical and biophysical characterizations of three nonsense mutations of cystic fibrosis transmembrane conductance regulator (CFTR) associated with a severe form of cystic fibrosis (CF) reveal the importance and heterogenous effects of the position of the premature termination codon (PTC) on the CFTR protein function. Electrophysiological studies of W1282X-CFTR, whose PTC is closer to the C-terminus of CFTR, suggest the presence of both C-terminus truncated CFTR proteins that are poorly functional and read-through, full-length products. For G542X- and E60X-CFTR, the only mechanism capable of generating functional proteins is the read-through, but the outcome of read-through products is highly variable depending on the interplay between the missense mutation caused by the read-through and the structural context of the protein. Pharmacological studies of these three PTCs with various CFTR modulators suggest position-dependent therapeutic strategies for these disease-inflicting mutations. ABSTRACT About one-third of genetic diseases and cancers are caused by the introduction of premature termination codons (PTCs). In theory, the location of the PTC in a gene determines the alternative mechanisms of translation, including premature cessation or reinitiation of translation, and read-through, resulting in differential effects on protein integrity. In this study, we used CFTR as a model system to investigate the positional effect of the PTC because of its well-understood structure-function relationship and pathophysiology. The characterization of three PTC mutations, E60X-, G542X- and W1282X-CFTR revealed heterogenous effects of these PTCs on CFTR function. The W1282X mutation results in both C-terminus truncated and read-through proteins that are partially or fully functional. In contrast, only the read-through protein is functional with E60X- and G542X-CFTR, although abundant N-terminus truncated proteins due to reinitiation of translation were detected in E60X-CFTR. Single-channel studies of the read-through proteins of E60X- and G542X-CFTR demonstrated that both mutations have a single-channel amplitude similar to wild type (WT), and good responses to high-affinity ATP analogues, suggesting intact ion permeation pathways and nucleotide binding domains (NBDs), albeit with reduced open probability (Po ). The comparison of the Po of these mutations with the proposed missense mutations revealed potential identities of the read-through products. Importantly, a majority of the functional protein studied responds to CFTR modulators like GLPG1837 and Lumacaftor. These results not only expand current understanding of the molecular (patho)physiology of CFTR, but also infer therapeutic strategies for different PTC mutations at large.
Collapse
Affiliation(s)
- Jiunn-Tyng Yeh
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Tzyh-Chang Hwang
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
96
|
Treatment of human T-cell acute lymphoblastic leukemia cells with CFTR inhibitor CFTRinh-172. Leuk Res 2019; 86:106225. [DOI: 10.1016/j.leukres.2019.106225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
97
|
Ma Z, Yuan D, Cheng X, Tuo B, Liu X, Li T. Function of ion transporters in maintaining acid-base homeostasis of the mammary gland and the pathophysiological role in breast cancer. Am J Physiol Regul Integr Comp Physiol 2019; 318:R98-R111. [PMID: 31553634 DOI: 10.1152/ajpregu.00202.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incidence of breast cancer is increasing year by year, and the pathogenesis is still unclear. Studies have shown that the high metabolism of solid tumors leads to an increase in hypoxia, glycolysis, production of lactic acid and carbonic acid, and extracellular acidification; a harsh microenvironment; and ultimately to tumor cell death. Approximately 50% of locally advanced breast cancers exhibit hypoxia and/or local hypoxia, and acid-base regulatory proteins play an important role in regulating milk secretion and maintaining mammary gland physiological function. Therefore, ion transporters have gradually become a hot topic in mammary gland and breast cancer research. This review focuses on the research progress of ion transporters in mammary glands and breast cancer. We hope to provide new targets for the treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
98
|
VX-770-mediated potentiation of numerous human CFTR disease mutants is influenced by phosphorylation level. Sci Rep 2019; 9:13460. [PMID: 31530897 PMCID: PMC6749054 DOI: 10.1038/s41598-019-49921-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
VX-770 (ivacaftor) is approved for clinical use in CF patients bearing multiple CFTR mutations. VX-770 potentiated wildtype CFTR and several disease mutants expressed in oocytes in a manner modulated by PKA-mediated phosphorylation. Potentiation of some other mutants, including G551D-CFTR, was less dependent upon the level of phosphorylation, likely related to the severe gating defects in these mutants exhibited in part by a shift in PKA sensitivity to activation, possibly due to an electrostatic interaction of D551 with K1250. Phosphorylation-dependent potentiation of wildtype CFTR and other variants also was observed in epithelial cells. Hence, the efficacy of potentiators may be obscured by a ceiling effect when drug screening is performed under strongly phosphorylating conditions. These results should be considered in campaigns for CFTR potentiator discovery, and may enable the expansion of VX-770 to CF patients bearing ultra-orphan CFTR mutations.
Collapse
|
99
|
van Veen HW, Singh H, Agboh K, Fagg LA, Guo D, Swain B, de Kruijf RF, Guffick C. Energy coupling in ABC exporters. Res Microbiol 2019; 170:392-398. [PMID: 31442612 DOI: 10.1016/j.resmic.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/27/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022]
Abstract
Multidrug transporters are important and interesting molecular machines that extrude a wide variety of cytotoxic drugs from target cells. This review summarizes novel insights in the energetics and mechanisms of bacterial ATP-binding cassette multidrug transporters as well as recent advances connecting multidrug transport to ion and lipid translocation processes in other membrane proteins.
Collapse
Affiliation(s)
- Hendrik W van Veen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Himansha Singh
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Kelvin Agboh
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Lisa A Fagg
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Dawei Guo
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Brendan Swain
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Robbin F de Kruijf
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Charlotte Guffick
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
100
|
Linsdell P. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure. Channels (Austin) 2019; 12:284-290. [PMID: 30152709 PMCID: PMC6986785 DOI: 10.1080/19336950.2018.1502585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a member of the ATP-binding cassette (ABC) family of membrane transport proteins, most members of which function as ATP-dependent pumps. CFTR is unique among human ABC proteins in functioning not as a pump, but as an ion channel. Recent structural data has indicated that CFTR shares broadly similar overall architecture and ATP-dependent conformational changes as other ABC proteins. Functional investigations suggest that CFTR has a unique open portal connecting the cytoplasm to the transmembrane channel pore, that allows for a continuous pathway for Cl− ions to cross the membrane in one conformation. This lateral portal may be what allows CFTR to function as an ion channel rather than as a pump, suggesting a plausible mechanism by which channel function may have evolved in CFTR.
Collapse
Affiliation(s)
- Paul Linsdell
- a Department of Physiology & Biophysics , Dalhousie University , Halifax , Canada
| |
Collapse
|