51
|
Formery L, Schubert M, Croce JC. Ambulacrarians and the Ancestry of Deuterostome Nervous Systems. Results Probl Cell Differ 2019; 68:31-59. [PMID: 31598852 DOI: 10.1007/978-3-030-23459-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary origin and history of metazoan nervous systems has been at the heart of numerous scientific debates for well over a century. This has been a particularly difficult issue to resolve within the deuterostomes, chiefly due to the distinct neural architectures observed within this group of animals. Indeed, deuterosomes feature central nervous systems, apical organs, nerve cords, and basiepidermal nerve nets. Comparative analyses investigating the anatomy and molecular composition of deuterostome nervous systems have nonetheless succeeded in identifying a number of shared and derived features. These analyses have led to the elaboration of diverse theories about the origin and evolutionary history of deuterostome nervous systems. Here, we provide an overview of these distinct theories. Further, we argue that deciphering the adult nervous systems of representatives of all deuterostome phyla, including echinoderms, which have long been neglected in this type of surveys, will ultimately provide answers to the questions concerning the ancestry and evolution of deuterostome nervous systems.
Collapse
Affiliation(s)
- Laurent Formery
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Michael Schubert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe) Team, Villefranche-sur-Mer, France.
| |
Collapse
|
52
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
53
|
Oonuma K, Kusakabe TG. Spatio-temporal regulation of Rx and mitotic patterns shape the eye-cup of the photoreceptor cells in Ciona. Dev Biol 2018; 445:245-255. [PMID: 30502325 DOI: 10.1016/j.ydbio.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
Abstract
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.
Collapse
Affiliation(s)
- Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| |
Collapse
|
54
|
Escriva H. My Favorite Animal, Amphioxus: Unparalleled for Studying Early Vertebrate Evolution. Bioessays 2018; 40:e1800130. [PMID: 30328120 DOI: 10.1002/bies.201800130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Indexed: 01/08/2023]
Abstract
Amphioxus represents the most basally divergent group in chordates and probably the best extant proxy to the ancestor of all chordates including vertebrates. The amphioxus, or lancelets, are benthic filter feeding marine animals and their interest as a model in research is due to their phylogenetic position and their anatomical and genetic stasis throughout their evolutionary history. From the first works in the 19th century to the present day, enormous progress is made mainly favored by technical development at different levels, from spawning induction and husbandry techniques, through techniques for studies of gene function or of the role of different signalling pathways through embryonic development, to functional genomics techniques. Together, these advances foretell a plethora of interesting developments in the world of research with the amphioxus model. Here, the discovery and development of amphioxus as a superb model organism in evolutionary and evolutionary-developmental biology are reviewed.
Collapse
Affiliation(s)
- Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, F-66650, France
| |
Collapse
|
55
|
Tominaga H, Satoh N, Ueno N, Takahashi H. Enhancer activities of amphioxus Brachyury genes in embryos of the ascidian, Ciona intestinalis. Genesis 2018; 56:e23240. [PMID: 30113767 DOI: 10.1002/dvg.23240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 12/22/2022]
Abstract
The notochord and somites are distinctive chordate structures. The T-box transcription factor gene, Brachyury, is expressed in notochord and plays a pivotal role in its formation. In the cephalochordate, Branchiostoma floridae, Brachyury is duplicated into BfBra1 and BfBra2, which are expressed in the somite-formation region as well. In a series of experiments to elucidate the regulatory machinery of chordate Brachyury expression, we carried out a lacZ reporter assay of BfBra in embryos of the urochordate, Ciona intestinalis. Vista analyses suggest the presence of conserved non-coding sequences, not only in the 5'-upstream, but also in the 3'-downstream and in introns of BfBra. We found that: (1) 5'-upstream sequences of both BfBra1 and BfBra2 promote lacZ expression in muscle cells, (2) 3'-downstream sequences have enhancer activity that promotes lacZ expression in notochord cells, and (3) introns of BfBra2 and BfBra1 exhibit lacZ expression preferentially in muscle and notochord cells. These results suggest shared cephalochordate Brachyury enhancer machinery that also works in urochordates. We discuss the results in relation to evolutionary modification of Brachyury expression in formation of chordate-specific organs characteristic of each lineage.
Collapse
Affiliation(s)
- Hitoshi Tominaga
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - Hiroki Takahashi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| |
Collapse
|
56
|
Moroz LL. NeuroSystematics and Periodic System of Neurons: Model vs Reference Species at Single-Cell Resolution. ACS Chem Neurosci 2018; 9:1884-1903. [PMID: 29989789 DOI: 10.1021/acschemneuro.8b00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes (=convergent evolution). Neurons are different not only because they have different functions, but also because neurons and circuits have different genealogies, and perhaps independent origins at the broadest scale from ctenophores and cnidarians to cephalopods and primates. By combining modern phylogenomics, single-neuron sequencing (scRNA-seq), machine learning, single-cell proteomics, and metabolomic across Metazoa, it is possible to reconstruct the evolutionary histories of neurons tracing them to ancestral secretory cells. Comparative data suggest that neurons, and perhaps synapses, evolved at least 2-3 times (in ctenophore, cnidarian and bilateral lineages) during ∼600 million years of animal evolution. There were also several independent events of the nervous system centralization either from a common bilateral/cnidarian ancestor without the bona fide neurons or from the urbilaterian with diffuse, nerve-net type nervous system. From the evolutionary standpoint, (i) a neuron should be viewed as a functional rather than a genetic character, and (ii) any given neural system might be chimeric and composed of different cell lineages with distinct origins and evolutionary histories. The identification of distant neural homologies or examples of convergent evolution among 34 phyla will not only allow the reconstruction of neural systems' evolution but together with single-cell "omic" approaches the proposed synthesis would lead to the "Periodic System of Neurons" with predictive power for neuronal phenotypes and plasticity. Such a phylogenetic classification framework of Neuronal Systematics (NeuroSystematics) might be a conceptual analog of the Periodic System of Chemical Elements. scRNA-seq profiling of all neurons in an entire brain or Brain-seq is now fully achievable in many nontraditional reference species across the entire animal kingdom. Arguably, marine animals are the most suitable for the proposed tasks because the world oceans represent the greatest taxonomic and body-plan diversity.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, 1149 Newell Drive, Gainesville, Florida 32611, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, Florida 32080, United States
| |
Collapse
|
57
|
Fan TP, Ting HC, Yu JK, Su YH. Reiterative use of FGF signaling in mesoderm development during embryogenesis and metamorphosis in the hemichordate Ptychodera flava. BMC Evol Biol 2018; 18:120. [PMID: 30075704 PMCID: PMC6091094 DOI: 10.1186/s12862-018-1235-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/26/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesoderm is generally considered to be a germ layer that is unique to Bilateria, and it develops into diverse tissues, including muscle, and in the case of vertebrates, the skeleton and notochord. Studies on various deuterostome animals have demonstrated that fibroblast growth factor (FGF) signaling is required for the formation of many mesodermal structures, such as vertebrate somites, from which muscles are differentiated, and muscles in sea urchin embryos, suggesting an ancient role of FGF signaling in muscle development. However, the formation of trunk muscles in invertebrate chordates is FGF-independent, leading to ambiguity about this ancient role in deuterostomes. To further understand the role of FGF signaling during deuterostome evolution, we investigated the development of mesodermal structures during embryogenesis and metamorphosis in Ptychodera flava, an indirect-developing hemichordate that has larval morphology similar to echinoderms and adult body features that are similar to chordates. RESULTS Here we show that genes encoding FGF ligands, FGF receptors and transcription factors that are known to be involved in mesoderm formation and myogenesis are expressed dynamically during embryogenesis and metamorphosis. FGF signaling at the early gastrula stage is required for the specification of the mesodermal cell fate in P. flava. The mesoderm cells are then differentiated stepwise into the hydroporic canal, the pharyngeal muscle and the muscle string; formation of the last two muscular structures are controlled by FGF signaling. Moreover, augmentation of FGF signaling during metamorphosis accelerated the process, facilitating the transformation from cilia-driven swimming larvae into muscle-driven worm-like juveniles. CONCLUSIONS Our data show that FGF signaling is required for mesoderm induction and myogenesis in the P. flava embryo, and it is reiteratively used for the morphological transition during metamorphosis. The dependence of muscle development on FGF signaling in both planktonic larvae and sand-burrowing worms supports its ancestral role in deuterostomes.
Collapse
Affiliation(s)
- Tzu-Pei Fan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsiu-Chi Ting
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan
| | - Yi-Hsien Su
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
58
|
Zieger E, Garbarino G, Robert NSM, Yu JK, Croce JC, Candiani S, Schubert M. Retinoic acid signaling and neurogenic niche regulation in the developing peripheral nervous system of the cephalochordate amphioxus. Cell Mol Life Sci 2018; 75:2407-2429. [PMID: 29387904 PMCID: PMC11105557 DOI: 10.1007/s00018-017-2734-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
The retinoic acid (RA) signaling pathway regulates axial patterning and neurogenesis in the developing central nervous system (CNS) of chordates, but little is known about its roles during peripheral nervous system (PNS) formation and about how these roles might have evolved. This study assesses the requirement of RA signaling for establishing a functional PNS in the cephalochordate amphioxus, the best available stand-in for the ancestral chordate condition. Pharmacological manipulation of RA signaling levels during embryogenesis reduces the ability of amphioxus larvae to respond to sensory stimulation and alters the number and distribution of ectodermal sensory neurons (ESNs) in a stage- and context-dependent manner. Using gene expression assays combined with immunohistochemistry, we show that this is because RA signaling specifically acts on a small population of soxb1c-expressing ESN progenitors, which form a neurogenic niche in the trunk ectoderm, to modulate ESN production during elongation of the larval body. Our findings reveal an important role for RA signaling in regulating neurogenic niche activity in the larval amphioxus PNS. Although only few studies have addressed this issue so far, comparable RA signaling functions have been reported for neurogenic niches in the CNS and in certain neurogenic placode derivatives of vertebrates. Accordingly, the here-described mechanism is likely a conserved feature of chordate embryonic and adult neural development.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Greta Garbarino
- Department of Earth, Environment and Life Sciences (Dipartimento di Scienze della Terra dell'Ambiente e della Vita, DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Nicolas S M Robert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jenifer C Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences (Dipartimento di Scienze della Terra dell'Ambiente e della Vita, DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, Sorbonne Universités, UPMC Université Paris 06, CNRS, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France.
| |
Collapse
|
59
|
Gonzalez P, Jiang JZ, Lowe CJ. The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae). Front Zool 2018; 15:26. [PMID: 29977319 PMCID: PMC6011522 DOI: 10.1186/s12983-018-0270-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023] Open
Abstract
Background Enteropneusts are benthic marine invertebrates that belong to the deuterostome phylum Hemichordata. The two main clades of enteropneusts are defined by differences in early life history strategies. In the Spengelidae and Ptychoderidae, development is indirect via a planktotrophic tornaria larva. In contrast, development in the Harrimanidae is direct without an intervening larval life history stage. Most molecular studies in the development and evolution of the enteropneust adult body plan have been carried out in the harrimanid Saccoglossus kowalevskii. In order to compare these two developmental strategies, we have selected the spengelid enteropneust Schizocardium californicum as a suitable indirect developing species for molecular developmental studies. Here we describe the methods for adult collecting, spawning and larval rearing in Schizocardium californicum, and describe embryogenesis, larval development, and metamorphosis, using light microscopy, immunocytochemistry and confocal microscopy. Results Adult reproductive individuals can be collected intertidally and almost year-round. Spawning can be triggered by heat shock and large numbers of larvae can be reared through metamorphosis under laboratory conditions. Gastrulation begins at 17 h post-fertilization (hpf) and embryos hatch at 26 hpf as ciliated gastrulae. At 3 days post-fertilization (dpf), the tornaria has a circumoral ciliary band, mouth, tripartite digestive tract, protocoel, larval muscles and a simple serotonergic nervous system. The telotroch develops at 5 dpf. In the course of 60 days, the serotonergic nervous system becomes more elaborate, the posterior coeloms develop, and the length of the circumoral ciliary band increases. At the end of the larval stage, larval muscles disappear, gill slits form, and adult muscles develop. Metamorphosis occurs spontaneously when the larva reaches its maximal size (ca. 3 mm), and involves loss and reorganization of larval structures (muscles, nervous system, digestive tract), as well as development of adult structures (adult muscles, tripartite body organization). Conclusions This study will enable future research in S. californicum to address long standing questions related to the evolution of axial patterning mechanisms, germ layer induction, neurogenesis and neural patterning, the mechanisms of metamorphosis, the relationships between larval and adult body plans, and the evolution of metazoan larval forms.
Collapse
Affiliation(s)
- Paul Gonzalez
- 1Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950 USA
| | - Jeffrey Z Jiang
- 2Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104 USA
| | - Christopher J Lowe
- 1Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950 USA
| |
Collapse
|
60
|
Delsuc F, Philippe H, Tsagkogeorga G, Simion P, Tilak MK, Turon X, López-Legentil S, Piette J, Lemaire P, Douzery EJP. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol 2018; 16:39. [PMID: 29653534 PMCID: PMC5899321 DOI: 10.1186/s12915-018-0499-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/20/2018] [Indexed: 01/13/2023] Open
Abstract
Background Tunicates are the closest relatives of vertebrates and are widely used as models to study the evolutionary developmental biology of chordates. Their phylogeny, however, remains poorly understood, and to date, only the 18S rRNA nuclear gene and mitogenomes have been used to delineate the major groups of tunicates. To resolve their evolutionary relationships and provide a first estimate of their divergence times, we used a transcriptomic approach to build a phylogenomic dataset including all major tunicate lineages, consisting of 258 evolutionarily conserved orthologous genes from representative species. Results Phylogenetic analyses using site-heterogeneous CAT mixture models of amino acid sequence evolution resulted in a strongly supported tree topology resolving the relationships among four major tunicate clades: (1) Appendicularia, (2) Thaliacea + Phlebobranchia + Aplousobranchia, (3) Molgulidae, and (4) Styelidae + Pyuridae. Notably, the morphologically derived Thaliacea are confirmed as the sister group of the clade uniting Phlebobranchia + Aplousobranchia within which the precise position of the model ascidian genus Ciona remains uncertain. Relaxed molecular clock analyses accommodating the accelerated evolutionary rate of tunicates reveal ancient diversification (~ 450–350 million years ago) among the major groups and allow one to compare their evolutionary age with respect to the major vertebrate model lineages. Conclusions Our study represents the most comprehensive phylogenomic dataset for the main tunicate lineages. It offers a reference phylogenetic framework and first tentative timescale for tunicates, allowing a direct comparison with vertebrate model species in comparative genomics and evolutionary developmental biology studies. Electronic supplementary material The online version of this article (10.1186/s12915-018-0499-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frédéric Delsuc
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, UMR CNRS 5321, Station d'Ecologie Théorique et Expérimentale, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Canada
| | - Georgia Tsagkogeorga
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Paul Simion
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marie-Ka Tilak
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB, CSIC), Girona, Spain
| | - Susanna López-Legentil
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Jacques Piette
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université de Montpellier, Montpellier, France
| | - Patrick Lemaire
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
61
|
Phylogenomics offers resolution of major tunicate relationships. Mol Phylogenet Evol 2018; 121:166-173. [DOI: 10.1016/j.ympev.2018.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/15/2017] [Accepted: 01/08/2018] [Indexed: 02/03/2023]
|
62
|
Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees. Proc Natl Acad Sci U S A 2018; 115:1854-1859. [PMID: 29432193 DOI: 10.1073/pnas.1712673115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.
Collapse
|
63
|
Lai AG, Aboobaker AA. EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev Biol 2018; 433:118-131. [PMID: 29198565 DOI: 10.1016/j.ydbio.2017.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023]
Abstract
How do animals regenerate specialised tissues or their entire body after a traumatic injury, how has this ability evolved and what are the genetic and cellular components underpinning this remarkable feat? While some progress has been made in understanding mechanisms, relatively little is known about the evolution of regenerative ability. Which elements of regeneration are due to lineage specific evolutionary novelties or have deeply conserved roots within the Metazoa remains an open question. The renaissance in regeneration research, fuelled by the development of modern functional and comparative genomics, now enable us to gain a detailed understanding of both the mechanisms and evolutionary forces underpinning regeneration in diverse animal phyla. Here we review existing and emerging model systems, with the focus on invertebrates, for studying regeneration. We summarize findings across these taxa that tell us something about the evolution of adult stem cell types that fuel regeneration and the growing evidence that many highly regenerative animals harbor adult stem cells with a gene expression profile that overlaps with germline stem cells. We propose a framework in which regenerative ability broadly evolves through changes in the extent to which stem cells generated through embryogenesis are maintained into the adult life history.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
64
|
Darras S, Fritzenwanker JH, Uhlinger KR, Farrelly E, Pani AM, Hurley IA, Norris RP, Osovitz M, Terasaki M, Wu M, Aronowicz J, Kirschner M, Gerhart JC, Lowe CJ. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development. PLoS Biol 2018; 16:e2003698. [PMID: 29337984 PMCID: PMC5786327 DOI: 10.1371/journal.pbio.2003698] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/26/2018] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
The Wnt family of secreted proteins has been proposed to play a conserved role in early specification of the bilaterian anteroposterior (A/P) axis. This hypothesis is based predominantly on data from vertebrate embryogenesis as well as planarian regeneration and homeostasis, indicating that canonical Wnt (cWnt) signaling endows cells with positional information along the A/P axis. Outside of these phyla, there is strong support for a conserved role of cWnt signaling in the repression of anterior fates, but little comparative support for a conserved role in promotion of posterior fates. We further test the hypothesis by investigating the role of cWnt signaling during early patterning along the A/P axis of the hemichordate Saccoglossus kowalevskii. We have cloned and investigated the expression of the complete Wnt ligand and Frizzled receptor complement of S. kowalevskii during early development along with many secreted Wnt modifiers. Eleven of the 13 Wnt ligands are ectodermally expressed in overlapping domains, predominantly in the posterior, and Wnt antagonists are localized predominantly to the anterior ectoderm in a pattern reminiscent of their distribution in vertebrate embryos. Overexpression and knockdown experiments, in combination with embryological manipulations, establish the importance of cWnt signaling for repression of anterior fates and activation of mid-axial ectodermal fates during the early development of S. kowalevskii. However, surprisingly, terminal posterior fates, defined by posterior Hox genes, are unresponsive to manipulation of cWnt levels during the early establishment of the A/P axis at late blastula and early gastrula. We establish experimental support for a conserved role of Wnt signaling in the early specification of the A/P axis during deuterostome body plan diversification, and further build support for an ancestral role of this pathway in early evolution of the bilaterian A/P axis. We find strong support for a role of cWnt in suppression of anterior fates and promotion of mid-axial fates, but we find no evidence that cWnt signaling plays a role in the early specification of the most posterior axial fates in S. kowalevskii. This posterior autonomy may be a conserved feature of early deuterostome axis specification.
Collapse
Affiliation(s)
- Sébastien Darras
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288, Marseille, France
| | - Jens H. Fritzenwanker
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Kevin R. Uhlinger
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Ellyn Farrelly
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Ariel M. Pani
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Imogen A. Hurley
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Rachael P. Norris
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Michelle Osovitz
- Department of Natural Sciences, St. Petersburg College, Clearwater, Florida
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Mike Wu
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Jochanan Aronowicz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - John C. Gerhart
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Christopher J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| |
Collapse
|
65
|
Rink JC. Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods Mol Biol 2018; 1774:57-172. [PMID: 29916155 DOI: 10.1007/978-1-4939-7802-1_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
66
|
Nakano H, Miyazawa H, Maeno A, Shiroishi T, Kakui K, Koyanagi R, Kanda M, Satoh N, Omori A, Kohtsuka H. A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella. BMC Evol Biol 2017; 17:245. [PMID: 29249199 PMCID: PMC5733810 DOI: 10.1186/s12862-017-1080-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Xenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure. RESULTS Here we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure - the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs. CONCLUSIONS Our results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan.
| | - Hideyuki Miyazawa
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025, Japan
| | - Akiteru Maeno
- Mammalian Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Keiichi Kakui
- Faculty of Science, Hokkaido University, N10 W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Akihito Omori
- Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan.,Present address: Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Niigata, 952-2135, Japan
| | - Hisanori Kohtsuka
- Misaki Marine Biological Station, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
67
|
Roles of Retinoic Acid Signaling in Shaping the Neuronal Architecture of the Developing Amphioxus Nervous System. Mol Neurobiol 2017; 55:5210-5229. [PMID: 28875454 DOI: 10.1007/s12035-017-0727-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The morphogen retinoic acid (RA) patterns vertebrate nervous systems and drives neurogenesis, but how these functions evolved remains elusive. Here, we show that RA signaling plays stage- and tissue-specific roles during the formation of neural cell populations with serotonin, dopamine, and GABA neurotransmitter phenotypes in amphioxus, a proxy for the ancestral chordate. Our data suggest that RA signaling restricts the specification of dopamine-containing cells in the ectoderm and of GABA neurons in the neural tube, probably by regulating Hox1 and Hox3 gene expression, respectively. The two Hox genes thus appear to serve distinct functions rather than to participate in a combinatorial Hox code. We were further able to correlate the RA signaling-dependent mispatterning of hindbrain GABA neurons with concomitant motor impairments. Taken together, these data provide new insights into how RA signaling and Hox genes contribute to nervous system as well as to motor control development in amphioxus and hence shed light on the evolution of these functions within vertebrates.
Collapse
|
68
|
The study of xenacoelomorph nervous systems. Molecular and morphological perspectives. ACTA ACUST UNITED AC 2017. [DOI: 10.15298/invertzool.14.1.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
The nervous system of the adult ascidian Ciona intestinalis Type A (Ciona robusta): Insights from transgenic animal models. PLoS One 2017. [PMID: 28651020 PMCID: PMC5484526 DOI: 10.1371/journal.pone.0180227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nervous system of ascidians is an excellent model system to provide insights into the evolutionary process of the chordate nervous system due to their phylogenetic positions as the sister group of vertebrates. However, the entire nervous system of adult ascidians has yet to be functionally and anatomically investigated. In this study, we have revealed the whole dorsal and siphon nervous system of the transgenic adult ascidian of Ciona intestinalis Type A (Ciona robusta) in which a Kaede reporter gene is expressed in a pan-neuronal fashion. The fluorescent signal of Kaede revealed the innervation patterns and distribution of neurons in the nervous system of Ciona. Precise microscopic observation demonstrated the clear innervation of the anterior and posterior main nerves to eight and six lobes of the oral and atrial siphons, respectively. Moreover, visceral nerves, previously identified as unpaired nerves, were found to be paired; one nerve was derived from the posterior end of the cerebral ganglion and the other from the right posterior nerve. This study further revealed the full trajectory of the dorsal strand plexus and paired visceral nerves on either side from the cerebral ganglion to the ovary, and precise innervation between the cerebral ganglion and the peripheral organs including the gonoduct, cupular organ, rectum and ovary. The differential innervation patterns of visceral nerves and the dorsal strand plexus indicate that the peripheral organs including the ovary undergo various neural regulations. Collectively, the present anatomical analysis revealed the major innervation of the dorsal and siphon nervous systems of adult Ciona.
Collapse
|
70
|
Abstract
Background Classical cadherins are a metazoan-specific family of homophilic cell-cell adhesion molecules that regulate morphogenesis. Type I and type IV cadherins in this family function at adherens junctions in the major epithelial tissues of vertebrates and insects, respectively, but they have distinct, relatively simple domain organizations that are thought to have evolved by independent reductive changes from an ancestral type III cadherin, which is larger than derived paralogs and has a complicated domain organization. Although both type III and type IV cadherins have been identified in hexapods and branchiopods, the process by which the type IV cadherin evolved is still largely unclear. Results Through an analysis of arthropod genome sequences, we found that the only classical cadherin encoded in chelicerate genomes was the type III cadherin and that the two type III cadherin genes found in the spider Parasteatoda tepidariorum genome exhibited a complex yet ancestral exon-intron organization in arthropods. Genomic and transcriptomic data from branchiopod, copepod, isopod, amphipod, and decapod crustaceans led us to redefine the type IV cadherin category, which we separated into type IVa and type IVb, which displayed a similar domain organization, except type IVb cadherins have a larger number of extracellular cadherin (EC) domains than do type IVa cadherins (nine versus seven). We also showed that type IVa cadherin genes occurred in the hexapod, branchiopod, and copepod genomes whereas only type IVb cadherin genes were present in malacostracans. Furthermore, comparative characterization of the type IVb cadherins suggested that the presence of two extra EC domains in their N-terminal regions represented primitive characteristics. In addition, we identified an evolutionary loss of two highly conserved cysteine residues among the type IVa cadherins of insects. Conclusions We provide a genomic perspective of the evolution of classical cadherins among bilaterians, with a focus on the Arthropoda, and suggest that following the divergence of early arthropods, the precursor of the insect type IV cadherin evolved through stepwise reductive changes from the ancestral type III state. In addition, the complementary distributions of polarized genomic characters related to type IVa/IVb cadherins may have implications for our interpretations of pancrustacean phylogeny. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0991-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mizuki Sasaki
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan.,Current address: Department of Parasitology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa, 078-8510, Hokkaido, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, 569-1125, Osaka, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
71
|
Bauknecht P, Jékely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol 2017; 15:6. [PMID: 28137258 PMCID: PMC5282848 DOI: 10.1186/s12915-016-0341-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
Background Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous functions are performed by the biogenic amines octopamine and its precursor tyramine. These chemically similar transmitters signal by related families of G-protein-coupled receptors in vertebrates and invertebrates, suggesting that octopamine/tyramine are the invertebrate equivalents of vertebrate norepinephrine. However, the evolutionary relationships and origin of these transmitter systems remain unclear. Results Using phylogenetic analysis and receptor pharmacology, here we have established that norepinephrine, octopamine, and tyramine receptors coexist in some marine invertebrates. In the protostomes Platynereis dumerilii (an annelid) and Priapulus caudatus (a priapulid), we have identified and pharmacologically characterized adrenergic α1 and α2 receptors that coexist with octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors. These receptors represent the first examples of adrenergic receptors in protostomes. In the deuterostome Saccoglossus kowalevskii (a hemichordate), we have identified and characterized octopamine α, octopamine β, tyramine type 1, and tyramine type 2 receptors, representing the first examples of these receptors in deuterostomes. S. kowalevskii also has adrenergic α1 and α2 receptors, indicating that all three signaling systems coexist in this animal. In phylogenetic analysis, we have also identified adrenergic and tyramine receptor orthologs in xenacoelomorphs. Conclusions Our results clarify the history of monoamine signaling in bilaterians. Given that all six receptor families (two each for octopamine, tyramine, and norepinephrine) can be found in representatives of the two major clades of Bilateria, the protostomes and the deuterostomes, all six receptors must have coexisted in the last common ancestor of the protostomes and deuterostomes. Adrenergic receptors were lost from most insects and nematodes, and tyramine and octopamine receptors were lost from most deuterostomes. This complex scenario of differential losses cautions that octopamine signaling in protostomes is not a good model for adrenergic signaling in deuterostomes, and that studies of marine animals where all three transmitter systems coexist will be needed for a better understanding of the origin and ancestral functions of these transmitters. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0341-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Bauknecht
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany.
| |
Collapse
|
72
|
Abstract
Most phylogenetic methods are model-based and depend on models of evolution designed to approximate the evolutionary processes. Several methods have been developed to identify suitable models of evolution for phylogenetic analysis of alignments of nucleotide or amino acid sequences and some of these methods are now firmly embedded in the phylogenetic protocol. However, in a disturbingly large number of cases, it appears that these models were used without acknowledgement of their inherent shortcomings. In this chapter, we discuss the problem of model selection and show how some of the inherent shortcomings may be identified and overcome.
Collapse
Affiliation(s)
| | - Vivek Jayaswal
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Faisal M Ababneh
- Department of Mathematics & Statistics, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - John Robinson
- School of Mathematics & Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
73
|
Kusakabe TG. Identifying Vertebrate Brain Prototypes in Deuterostomes. DIVERSITY AND COMMONALITY IN ANIMALS 2017. [DOI: 10.1007/978-4-431-56469-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
74
|
Brunet T, Fischer AH, Steinmetz PR, Lauri A, Bertucci P, Arendt D. The evolutionary origin of bilaterian smooth and striated myocytes. eLife 2016; 5. [PMID: 27906129 PMCID: PMC5167519 DOI: 10.7554/elife.19607] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution. DOI:http://dx.doi.org/10.7554/eLife.19607.001
Collapse
Affiliation(s)
- Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antje Hl Fischer
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Rh Steinmetz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonella Lauri
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paola Bertucci
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
75
|
Abstract
Phylum Hemichordata, composed of worm-like Enteropneusta and colonial Pterobranchia, has been reported to only contain about 100 species. However, recent studies of hemichordate phylogeny and taxonomy suggest the species number has been largely underestimated. One issue is that species must be described by experts, and historically few taxonomists have studied this group of marine invertebrates. Despite this previous lack of coverage, interest in hemichordates has piqued in the past couple of decades, as they are critical to understanding the evolution of chordates–as acorn worms likely resemble the deuterostome ancestor more closely than any other extant animal. This review provides an overview of our current knowledge of hemichordates, focusing specifically on their global biodiversity, geographic distribution, and taxonomy. Using information available in the World Register of Marine Species and published literature, we assembled a list of 130 described, extant species. The majority (83%) of these species are enteropneusts, and more taxonomic descriptions are forthcoming. Ptychoderidae contained the greatest number of species (41 species), closely followed by Harrimaniidae (40 species), of the recognized hemichordate families. Hemichordates are found throughout the world’s oceans, with the highest reported numbers by regions with marine labs and diligent taxonomic efforts (e.g. North Pacific and North Atlantic). Pterobranchs are abundant in Antarctica, but have also been found at lower latitudes. We consider this a baseline report and expect new species of Hemichordata will continue to be discovered and described as new marine habitats are characterized and explored.
Collapse
Affiliation(s)
- Michael G. Tassia
- Department of Biology, University of Washington, Seattle, WA, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, United States of America
| | - Johanna T. Cannon
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, United States of America
- Department of Zoology, Naturhistoriska riksmuseet, Stockholm, SE-104 05, Sweden
| | - Charlotte E. Konikoff
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Noa Shenkar
- Department of Biology, University of Washington, Seattle, WA, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- Department of Zoology, George S. Wise Faculty of Life Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Kenneth M. Halanych
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, United States of America
| | - Billie J. Swalla
- Department of Biology, University of Washington, Seattle, WA, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States of America
- * E-mail:
| |
Collapse
|
76
|
Affiliation(s)
- Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge MA 02138 USA
- Department of Life Sciences The Natural History Museum Cromwell Road London SW7 5BD UK
| |
Collapse
|
77
|
Biological function of unique sulfated glycosaminoglycans in primitive chordates. Glycoconj J 2016; 34:277-283. [PMID: 27614617 DOI: 10.1007/s10719-016-9728-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Glycosaminoglycans with unique sulfation patterns have been identified in different species of ascidians (sea squirts), a group of marine invertebrates of the Phylum Chordata, sub-phylum Tunicata (or Urochordata). Oversulfated dermatan sulfate composed of [4-α-L-IdoA-(2-O-SO3)-1 → 3-β-D-GalNAc(4-OSO3)-1]n repeating disaccharide units is found in the extracellular matrix of several organs, where it seems to interact with collagen fibers. This dermatan sulfate co-localizes with a decorin-like protein, as indicated by immunohistochemical analysis. Low sulfated heparin/heparan sulfate-like glycans composed mainly of [4-α-L-IdoA-(2-OSO3)-1 → 4-α-D-GlcN(SO3)-1 (6-O-SO3)-1]n and [4-α-L-IdoA-(2-O-SO3)-1 → 4-α-D-GlcN(SO3)-1]n have also been described in ascidians. These heparin-like glycans occur in intracellular granules of oocyte assessory cells, named test cells, in circulating basophil-like cells in the hemolymph, and at the basement membrane of different ascidian organs. In this review, we present an overview of the structure, distribution, extracellular and intracellular localization of the sulfated glycosaminoglycans in different species and tissues of ascidians. Considering the phylogenetic position of the subphylum Tunicata in the phylum Chordata, a careful analysis of these data can reveal important information about how these glycans evolved from invertebrate to vertebrate animals.
Collapse
|
78
|
Rahman IA, Zamora S, Falkingham PL, Phillips JC. Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. Proc Biol Sci 2016; 282:20151964. [PMID: 26511049 DOI: 10.1098/rspb.2015.1964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reconstructing the feeding mode of the latest common ancestor of deuterostomes is key to elucidating the early evolution of feeding in chordates and allied phyla; however, it is debated whether the ancestral deuterostome was a tentaculate feeder or a pharyngeal filter feeder. To address this, we evaluated the hydrodynamics of feeding in a group of fossil stem-group echinoderms (cinctans) using computational fluid dynamics. We simulated water flow past three-dimensional digital models of a Cambrian fossil cinctan in a range of possible life positions, adopting both passive tentacular feeding and active pharyngeal filter feeding. The results demonstrate that an orientation with the mouth facing downstream of the current was optimal for drag and lift reduction. Moreover, they show that there was almost no flow to the mouth and associated marginal groove under simulations of passive feeding, whereas considerable flow towards the animal was observed for active feeding, which would have enhanced the transport of suspended particles to the mouth. This strongly suggests that cinctans were active pharyngeal filter feeders, like modern enteropneust hemichordates and urochordates, indicating that the ancestral deuterostome employed a similar feeding strategy.
Collapse
Affiliation(s)
- Imran A Rahman
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - Samuel Zamora
- Instituto Geológico y Minero de España, C/Manuel Lasala, 44 - 9° B, Zaragoza 50006, Spain
| | - Peter L Falkingham
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jeremy C Phillips
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| |
Collapse
|
79
|
Yong LW, Yu JK. Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus. Curr Opin Genet Dev 2016; 39:55-62. [DOI: 10.1016/j.gde.2016.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/01/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022]
|
80
|
Abstract
Animals make up only a small fraction of the eukaryotic tree of life, yet, from our vantage point as members of the animal kingdom, the evolution of the bewildering diversity of animal forms is endlessly fascinating. In the century following the publication of Darwin's Origin of Species, hypotheses regarding the evolution of the major branches of the animal kingdom - their relationships to each other and the evolution of their body plans - was based on a consideration of the morphological and developmental characteristics of the different animal groups. This morphology-based approach had many successes but important aspects of the evolutionary tree remained disputed. In the past three decades, molecular data, most obviously primary sequences of DNA and proteins, have provided an estimate of animal phylogeny largely independent of the morphological evolution we would ultimately like to understand. The molecular tree that has evolved over the past three decades has drastically altered our view of animal phylogeny and many aspects of the tree are no longer contentious. The focus of molecular studies on relationships between animal groups means, however, that the discipline has become somewhat divorced from the underlying biology and from the morphological characteristics whose evolution we aim to understand. Here, we consider what we currently know of animal phylogeny; what aspects we are still uncertain about and what our improved understanding of animal phylogeny can tell us about the evolution of the great diversity of animal life.
Collapse
Affiliation(s)
- Maximilian J Telford
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Hervé Philippe
- Centre de Théorisation et de Modélisation de la Biodiversité, Station d'Ecologie Expérimentale du CNRS, USR CNRS 2936 Moulis, 09200, France; Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
81
|
Rouse GW, Wilson NG, Carvajal JI, Vrijenhoek RC. New deep-sea species of Xenoturbella and the position of Xenacoelomorpha. Nature 2016; 530:94-7. [PMID: 26842060 DOI: 10.1038/nature16545] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
The discovery of four new Xenoturbella species from deep waters of the eastern Pacific Ocean is reported here. The genus and two nominal species were described from the west coast of Sweden, but their taxonomic placement remains unstable. Limited evidence placed Xenoturbella with molluscs, but the tissues can be contaminated with prey. They were then considered deuterostomes. Further taxon sampling and analysis have grouped Xenoturbella with acoelomorphs (=Xenacoelomorpha) as sister to all other Bilateria (=Nephrozoa), or placed Xenacoelomorpha inside Deuterostomia with Ambulacraria (Hemichordata + Echinodermata). Here we describe four new species of Xenoturbella and reassess those hypotheses. A large species (>20 cm long) was found at cold-water hydrocarbon seeps at 2,890 m depth in Monterey Canyon and at 1,722 m in the Gulf of California (Mexico). A second large species (~10 cm long) also occurred at 1,722 m in the Gulf of California. The third large species (~15 cm long) was found at ~3,700 m depth near a newly discovered carbonate-hosted hydrothermal vent in the Gulf of California. Finally, a small species (~2.5 cm long), found near a whale carcass at 631 m depth in Monterey Submarine Canyon (California), resembles the two nominal species from Sweden. Analysis of whole mitochondrial genomes places the three larger species as a sister clade to the smaller Atlantic and Pacific species. Phylogenomic analyses of transcriptomic sequences support placement of Xenacoelomorpha as sister to Nephrozoa or Protostomia.
Collapse
Affiliation(s)
- Greg W Rouse
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA
| | - Nerida G Wilson
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA.,Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia.,School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jose I Carvajal
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA
| | - Robert C Vrijenhoek
- Monterey Bay Aquarium and Research Institute, Moss Landing, California 95039, USA
| |
Collapse
|
82
|
Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A. Xenacoelomorpha is the sister group to Nephrozoa. Nature 2016; 530:89-93. [PMID: 26842059 DOI: 10.1038/nature16520] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023]
Abstract
The position of Xenacoelomorpha in the tree of life remains a major unresolved question in the study of deep animal relationships. Xenacoelomorpha, comprising Acoela, Nemertodermatida, and Xenoturbella, are bilaterally symmetrical marine worms that lack several features common to most other bilaterians, for example an anus, nephridia, and a circulatory system. Two conflicting hypotheses are under debate: Xenacoelomorpha is the sister group to all remaining Bilateria (= Nephrozoa, namely protostomes and deuterostomes) or is a clade inside Deuterostomia. Thus, determining the phylogenetic position of this clade is pivotal for understanding the early evolution of bilaterian features, or as a case of drastic secondary loss of complexity. Here we show robust phylogenomic support for Xenacoelomorpha as the sister taxon of Nephrozoa. Our phylogenetic analyses, based on 11 novel xenacoelomorph transcriptomes and using different models of evolution under maximum likelihood and Bayesian inference analyses, strongly corroborate this result. Rigorous testing of 25 experimental data sets designed to exclude data partitions and taxa potentially prone to reconstruction biases indicates that long-branch attraction, saturation, and missing data do not influence these results. The sister group relationship between Nephrozoa and Xenacoelomorpha supported by our phylogenomic analyses implies that the last common ancestor of bilaterians was probably a benthic, ciliated acoelomate worm with a single opening into an epithelial gut, and that excretory organs, coelomic cavities, and nerve cords evolved after xenacoelomorphs separated from the stem lineage of Nephrozoa.
Collapse
Affiliation(s)
| | - Bruno Cossermelli Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Julian Smith
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, South Carolina 29733, USA
| | - Fredrik Ronquist
- Naturhistoriska Riksmuseet, PO Box 50007, SE-104 05 Stockholm, Sweden
| | - Ulf Jondelius
- Naturhistoriska Riksmuseet, PO Box 50007, SE-104 05 Stockholm, Sweden
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|
83
|
The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0270-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
84
|
Jeffery WR. The Comparative Organismal Approach in Evolutionary Developmental Biology: Insights from Ascidians and Cavefish. Curr Top Dev Biol 2016; 116:489-500. [PMID: 26970636 PMCID: PMC6143178 DOI: 10.1016/bs.ctdb.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Important contributions to evolutionary developmental biology have been made using the comparative organismal approach. As examples, I describe insights obtained from studies of Molgula ascidians and Astyanax cavefish.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
85
|
Moroz LL, Kohn AB. Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150041. [PMID: 26598724 PMCID: PMC4685580 DOI: 10.1098/rstb.2015.0041] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 12/29/2022] Open
Abstract
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses suggest that both electrical and chemical synapses evolved more than once.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Andrea B Kohn
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA
| |
Collapse
|
86
|
Cannon JT, Kocot KM. Phylogenomics Using Transcriptome Data. Methods Mol Biol 2016; 1452:65-80. [PMID: 27460370 DOI: 10.1007/978-1-4939-3774-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter presents a generalized protocol for conducting phylogenetic analyses using large-scale molecular datasets, specifically using transcriptome data from the Illumina sequencing platform. The general molecular lab bench protocol consists of RNA extraction, cDNA synthesis, and sequencing, in this case via Illumina. After sequences have been obtained, bioinformatics methods are used to assemble raw reads, identify coding regions, and categorize sequences from different species into groups of orthologous genes (OGs). The specific OGs to be used for phylogenetic inference are selected using a custom shell script. Finally, the selected orthologous groups are concatenated into a supermatrix. Generalized methods for phylogenomic inference using maximum likelihood and Bayesian inference software are presented.
Collapse
Affiliation(s)
- Johanna Taylor Cannon
- Department of Zoology, Naturhistoriska Riksmuseet, 50007, SE-104 05, Stockholm, Sweden.
| | - Kevin Michael Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, The University of Alabama, 307 Mary Harmon Bryant Hall, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
87
|
Hejnol A, Lowe CJ. Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150045. [PMID: 26554039 PMCID: PMC4650123 DOI: 10.1098/rstb.2015.0045] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 12/14/2022] Open
Abstract
Molecular biology has provided a rich dataset to develop hypotheses of nervous system evolution. The startling patterning similarities between distantly related animals during the development of their central nervous system (CNS) have resulted in the hypothesis that a CNS with a single centralized medullary cord and a partitioned brain is homologous across bilaterians. However, the ability to precisely reconstruct ancestral neural architectures from molecular genetic information requires that these gene networks specifically map with particular neural anatomies. A growing body of literature representing the development of a wider range of metazoan neural architectures demonstrates that patterning gene network complexity is maintained in animals with more modest levels of neural complexity. Furthermore, a robust phylogenetic framework that provides the basis for testing the congruence of these homology hypotheses has been lacking since the advent of the field of 'evo-devo'. Recent progress in molecular phylogenetics is refining the necessary framework to test previous homology statements that span large evolutionary distances. In this review, we describe recent advances in animal phylogeny and exemplify for two neural characters-the partitioned brain of arthropods and the ventral centralized nerve cords of annelids-a test for congruence using this framework. The sequential sister taxa at the base of Ecdysozoa and Spiralia comprise small, interstitial groups. This topology is not consistent with the hypothesis of homology of tripartitioned brain of arthropods and vertebrates as well as the ventral arthropod and rope-like ladder nervous system of annelids. There can be exquisite conservation of gene regulatory networks between distantly related groups with contrasting levels of nervous system centralization and complexity. Consequently, the utility of molecular characters to reconstruct ancestral neural organization in deep time is limited.
Collapse
Affiliation(s)
- Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen 5008, Norway
| | - Christopher J Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview Blvd., Pacific Grove, CA 93950, USA
| |
Collapse
|
88
|
Haszprunar G. Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis). ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0249-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
89
|
Yue JX, Li KL, Yu JK. Discovery of germline-related genes in Cephalochordate amphioxus: A genome wide survey using genome annotation and transcriptome data. Mar Genomics 2015; 24 Pt 2:147-57. [DOI: 10.1016/j.margen.2015.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
|
90
|
Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F, Yue JX, Chen YC, Freeman RM, Sasaki A, Hikosaka-Katayama T, Sato A, Fujie M, Baughman KW, Levine J, Gonzalez P, Cameron C, Fritzenwanker JH, Pani AM, Goto H, Kanda M, Arakaki N, Yamasaki S, Qu J, Cree A, Ding Y, Dinh HH, Dugan S, Holder M, Jhangiani SN, Kovar CL, Lee SL, Lewis LR, Morton D, Nazareth LV, Okwuonu G, Santibanez J, Chen R, Richards S, Muzny DM, Gillis A, Peshkin L, Wu M, Humphreys T, Su YH, Putnam NH, Schmutz J, Fujiyama A, Yu JK, Tagawa K, Worley KC, Gibbs RA, Kirschner MW, Lowe CJ, Satoh N, Rokhsar DS, Gerhart J. Hemichordate genomes and deuterostome origins. Nature 2015; 527:459-65. [PMID: 26580012 PMCID: PMC4729200 DOI: 10.1038/nature16150] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.
Collapse
Affiliation(s)
- Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.,Department of Molecular Evolution, Centre for Organismal Studies, University of Heidelberg, 69115 Heidelberg, Germany
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | | | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Therese Mitros
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jessen Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Fuki Gyoja
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jia-Xing Yue
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Akane Sasaki
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | - Tomoe Hikosaka-Katayama
- Natural Science Center for Basic Research and Development, Gene Science Division, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Atsuko Sato
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kenneth W Baughman
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Judith Levine
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Paul Gonzalez
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Christopher Cameron
- Départment de sciences biologiques, University of Montreal, Quebec H3C 3J7, Canada
| | - Jens H Fritzenwanker
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Ariel M Pani
- University of North Caroline at Chapel Hill, North Carolina 27599, USA
| | - Hiroki Goto
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Shinichi Yamasaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Andrew Cree
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Yan Ding
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Huyen H Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Michael Holder
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Christie L Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Lora R Lewis
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Donna Morton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Lynne V Nazareth
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Geoffrey Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Jireh Santibanez
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Wu
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Tom Humphreys
- Institute for Biogenesis Research, University of Hawaii, Hawaii 96822, USA
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nicholas H Putnam
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Asao Fujiyama
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kunifumi Tagawa
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.,Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| |
Collapse
|
91
|
Gupta RS. Molecular signatures that are distinctive characteristics of the vertebrates and chordates and supporting a grouping of vertebrates with the tunicates. Mol Phylogenet Evol 2015; 94:383-91. [PMID: 26419477 DOI: 10.1016/j.ympev.2015.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022]
Abstract
Members of the phylum Chordata and the subphylum Vertebrata are presently distinguished solely on the basis of morphological characteristics. The relationship of the vertebrates to the two non-vertebrate chordate subphyla is also a subject of debate. Analyses of protein sequences have identified multiple conserved signature indels (CSIs) that are specific for Chordata or for Vertebrata. Five CSIs in 4 important proteins are specific for the Vertebrata, whereas two other CSIs are uniquely found in all sequenced chordate species including Ciona intestinalis and Oikapleura dioica (Tunicates) as well as Branchiostoma floridae (Cephalochordates). The shared presence of these molecular signatures by all vertebrates/chordate species, but in no other animal taxa, strongly indicates that the genetic changes represented by the identified CSIs diagnose monophyletic groups. Two other discovered CSIs are uniquely shared by different vertebrate species and by either one (Ciona intestinalis) or both tunicate (Ciona and Oikapleura) species, but they are not found in Branchiostoma or other animal species. Specific presence of these CSIs in different vertebrates and either one or both tunicate species provides strong independent evidence that the vertebrate species are more closely related to the urochordates (tunicates) than to the cephalochordates.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
92
|
Li G, Wang J, Yuan L, Wang H, Wang YQ. A simple method for selecting spawning-ready individuals out from laboratorial cultured amphioxus population. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:629-35. [DOI: 10.1002/jez.b.22640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Guang Li
- State Key Laboratory of the Cellular Stress Biology, School of Life Sciences; Xiamen University; Xiamen Fujian China
- Shenzhen Research Institute of Xiamen University; Shenzhen China
| | - Jing Wang
- State Key Laboratory of the Cellular Stress Biology, School of Life Sciences; Xiamen University; Xiamen Fujian China
| | - Liang Yuan
- State Key Laboratory of the Cellular Stress Biology, School of Life Sciences; Xiamen University; Xiamen Fujian China
| | - Hui Wang
- State Key Laboratory of the Cellular Stress Biology, School of Life Sciences; Xiamen University; Xiamen Fujian China
| | - Yi-Quan Wang
- State Key Laboratory of the Cellular Stress Biology, School of Life Sciences; Xiamen University; Xiamen Fujian China
- Shenzhen Research Institute of Xiamen University; Shenzhen China
| |
Collapse
|
93
|
Abstract
Xenoturbella is a strange marine worm that can be collected regularly only off the west coast of Sweden. Due to its simple morphology, which lacks a centralized nervous system, coelom, anus, or reproductive organs, its phylogenetic position has long remained obscure. Recent phylogenomic analyses suggest it forms a new phylum, Xenacoelomorpha, together with the Acoelomorpha, but the position of the phylum remains undecided, either as a deuterostome or an early branching bilaterian. Developmental stages exhibit many phylogenetically decisive characters in various animal species, but have remained a mystery for Xenoturbella until recently. Observations of its development showed it has direct development with a very short and simple swimming stage, and that it lacks a feeding larva. Asexual reproduction has never been reported. It has been suggested that Xenoturbella feeds specifically on bivalves, but it still remains unknown whether it feeds on sperm, eggs, larvae, juveniles, carcass, mucus, or feces of bivalves, and direct observations of Xenoturbella feeding on bivalves have not been reported. Endosymbiont bacteria have been found, and their functions are being investigated. The evolutionary scenario of this taxon remains the subject of debate, and our understanding will depend largely on determining its phylogeny. Thus, although recent studies have uncovered many new and crucial facts regarding Xenoturbella, some fundamental biological information, such as phylogeny, complete life cycle, and genome, remain unsolved. Further research on the well-studied Swedish Xenoturbella bocki, as well as the discovery of new species elsewhere, are necessary if we are to more fully understand the nature of Xenoturbella.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025 Japan
| |
Collapse
|
94
|
Hamada M, Goricki S, Byerly MS, Satoh N, Jeffery WR. Evolution of the chordate regeneration blastema: Differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona. Dev Biol 2015. [PMID: 26206613 DOI: 10.1016/j.ydbio.2015.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The regeneration of the oral siphon (OS) and other distal structures in the ascidian Ciona intestinalis occurs by epimorphosis involving the formation of a blastema of proliferating cells. Despite the longstanding use of Ciona as a model in molecular developmental biology, regeneration in this system has not been previously explored by molecular analysis. Here we have employed microarray analysis and quantitative real time RT-PCR to identify genes with differential expression profiles during OS regeneration. The majority of differentially expressed genes were downregulated during OS regeneration, suggesting roles in normal growth and homeostasis. However, a subset of differentially expressed genes was upregulated in the regenerating OS, suggesting functional roles during regeneration. Among the upregulated genes were key members of the Notch signaling pathway, including those encoding the delta and jagged ligands, two fringe modulators, and to a lesser extent the notch receptor. In situ hybridization showed a complementary pattern of delta1 and notch gene expression in the blastema of the regenerating OS. Chemical inhibition of the Notch signaling pathway reduced the levels of cell proliferation in the branchial sac, a stem cell niche that contributes progenitor cells to the regenerating OS, and in the OS regeneration blastema, where siphon muscle fibers eventually re-differentiate. Chemical inhibition also prevented the replacement of oral siphon pigment organs, sensory receptors rimming the entrance of the OS, and siphon muscle fibers, but had no effects on the formation of the wound epidermis. Since Notch signaling is involved in the maintenance of proliferative activity in both the Ciona and vertebrate regeneration blastema, the results suggest a conserved evolutionary role of this signaling pathway in chordate regeneration. The genes identified in this investigation provide the foundation for future molecular analysis of OS regeneration.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Spela Goricki
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mardi S Byerly
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - William R Jeffery
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
95
|
Jeffery WR. Regeneration, Stem Cells, and Aging in the Tunicate Ciona: Insights from the Oral Siphon. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:255-82. [PMID: 26404471 DOI: 10.1016/bs.ircmb.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Regeneration studies in the tunicate Ciona intestinalis have recently been focused on the potential of adult stem cells to replace injured tissues and organs during the adult life cycle using the oral siphon (OS) as a model. The OS has oral siphon pigment organs (OPOs) along its rim and an underlying network of muscle fibers in its tube. Different regeneration processes are triggered by OS amputation at the tip, along the tube, or at the base. One process involves the replacement of OPOs without new cell division by direct differentiation of locally deployed stem cells or stem cells that migrate from the branchial sac. Another process involves blastema formation by the migration of progenitor cells produced from branchial sac stem cells. The capacity for complete and accurate OS regeneration declines continuously during the adult life cycle. Finally, after an age threshold is reached, OS regeneration ceases in old animals. The loss of regeneration capacity in old animals involves the depletion of stem cells in the branchial sac, the inability of branchial sac progenitor cells to migrate to the sites of regeneration, and defective oral pigment organ replacement. The significance of the OS model for studying regeneration, stem cells, and aging will be enhanced by the application of molecular methods.
Collapse
Affiliation(s)
- William R Jeffery
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA; Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
96
|
Moroz LL. Biodiversity Meets Neuroscience: From the Sequencing Ship (Ship-Seq) to Deciphering Parallel Evolution of Neural Systems in Omic's Era. Integr Comp Biol 2015; 55:1005-17. [PMID: 26163680 DOI: 10.1093/icb/icv084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570-600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the "omic" era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless "experiments" Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience and McKnight Brain Institute, University of Florida, 9505 Ocean Shore Blvd., St Augustine, FL 32080, USA
| |
Collapse
|
97
|
Abstract
Over the last three decades, transcriptomic studies of venom gland cells have continuously evolved, opening up new possibilities for exploring the molecular diversity of animal venoms, a prerequisite for the discovery of new drug candidates and molecular phylogenetics. The molecular complexity of animal venoms is much greater than initially thought. In this review, we describe the different technologies available for transcriptomic studies of venom, from the original individual cloning approaches to the more recent global Next Generation Sequencing strategies. Our understanding of animal venoms is evolving, with the discovery of complex and diverse bio-optimized cocktails of compounds, including mostly peptides and proteins, which are now beginning to be studied by academic and industrial researchers.
Collapse
|
98
|
Kozmikova I, Kozmik Z. Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates. Mar Genomics 2015; 24 Pt 2:159-66. [PMID: 26094865 DOI: 10.1016/j.margen.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 01/07/2023]
Abstract
Cephalochordates, commonly known as amphioxus or lancelets, are the most basal subphylum of chordates. Cephalochordates are thus key to understanding the origin of vertebrates and molecular mechanisms underlying vertebrate evolution. The evolution of developmental control mechanisms during invertebrate-to-vertebrate transition involved not only gene duplication events, but also specific changes in spatial and temporal expression of many genes. To get insight into the spatiotemporal regulation of gene expression during invertebrate-to-vertebrate transition, functional studies of amphioxus gene regulatory elements are highly warranted. Here, we review transgenic studies performed in amphioxus and vertebrates using promoters and enhancers derived from the genome of Branchiostoma floridae. We describe the current methods of transgenesis in amphioxus, provide evidence of Tol2 transposon-generated transgenic embryos of Branchiostoma lanceolatum and discuss possible future directions. We envision that comparative transgenic analysis of gene regulatory sequences in the context of amphioxus and vertebrate embryos will likely provide an important mechanistic insight into the evolution of vertebrate body plan.
Collapse
Affiliation(s)
- Iryna Kozmikova
- Institute of Molecular Genetics of the Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
99
|
Abstract
Traditional metazoan phylogeny classifies the Vertebrata as a subphylum of the phylum Chordata, together with two other subphyla, the Urochordata (Tunicata) and the Cephalochordata. The Chordata, together with the phyla Echinodermata and Hemichordata, comprise a major group, the Deuterostomia. Chordates invariably possess a notochord and a dorsal neural tube. Although the origin and evolution of chordates has been studied for more than a century, few authors have intimately discussed taxonomic ranking of the three chordate groups themselves. Accumulating evidence shows that echinoderms and hemichordates form a clade (the Ambulacraria), and that within the Chordata, cephalochordates diverged first, with tunicates and vertebrates forming a sister group. Chordates share tadpole-type larvae containing a notochord and hollow nerve cord, whereas ambulacrarians have dipleurula-type larvae containing a hydrocoel. We propose that an evolutionary occurrence of tadpole-type larvae is fundamental to understanding mechanisms of chordate origin. Protostomes have now been reclassified into two major taxa, the Ecdysozoa and Lophotrochozoa, whose developmental pathways are characterized by ecdysis and trochophore larvae, respectively. Consistent with this classification, the profound dipleurula versus tadpole larval differences merit a category higher than the phylum. Thus, it is recommended that the Ecdysozoa, Lophotrochozoa, Ambulacraria and Chordata be classified at the superphylum level, with the Chordata further subdivided into three phyla, on the basis of their distinctive characteristics.
Collapse
Affiliation(s)
- Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Daniel Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Teruaki Nishikawa
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
100
|
Parrinello D, Sanfratello MA, Vizzini A, Cammarata M. The expression of an immune-related phenoloxidase gene is modulated inCiona intestinalisovary, test cells, embryos and larva. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:141-51. [DOI: 10.1002/jez.b.22613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/18/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Daniela Parrinello
- Marine Immunobiology Laboratory; Department of Biological Chemical Pharmaceutical Science and Technology; University of Palermo; Via Archirafi Palermo Italy
| | - Maria A. Sanfratello
- Marine Immunobiology Laboratory; Department of Biological Chemical Pharmaceutical Science and Technology; University of Palermo; Via Archirafi Palermo Italy
| | - Aiti Vizzini
- Marine Immunobiology Laboratory; Department of Biological Chemical Pharmaceutical Science and Technology; University of Palermo; Via Archirafi Palermo Italy
| | - Matteo Cammarata
- Marine Immunobiology Laboratory; Department of Biological Chemical Pharmaceutical Science and Technology; University of Palermo; Via Archirafi Palermo Italy
| |
Collapse
|