51
|
Louis M, Grunwald Kadow IC. Action selection: Neuropeptidergic gates of behavior. Curr Biol 2022; 32:R39-R42. [PMID: 35015994 DOI: 10.1016/j.cub.2021.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nervous systems continuously receive environmental signals with distinct behavioral meanings. To process ambiguous sensory inputs, neural circuits rely on hubs with compartmentalized synaptic structures. A new study has revealed how, in Drosophila larvae, this architecture with the local release of neuropeptides enables the control of flexible and context-dependent behavioral outcomes.
Collapse
Affiliation(s)
- Matthieu Louis
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Ilona C Grunwald Kadow
- Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; Institute of Physiology II, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
52
|
Bergs A, Henss T, Glock C, Nagpal J, Gottschalk A. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Methods Mol Biol 2022; 2468:89-115. [PMID: 35320562 DOI: 10.1007/978-1-0716-2181-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past 15 years, optogenetic methods have revolutionized neuroscientific and cell biological research, also in the nematode Caenorhabditis elegans. In this chapter, we give an update about current optogenetic tools and methods to address neuronal activity and inhibition, as well as second messenger signaling, based on microbial rhodopsins. We address channelrhodopsins and variants thereof, which conduct cations or anions, for depolarization and hyperpolarization of the membrane potential. Also, we cover ion pumping rhodopsins, like halorhodopsin, Mac, and Arch. A recent addition to rhodopsin-based optogenetics is voltage imaging tools that allow fluorescent readout of membrane voltage (directly, via fluorescence of the rhodopsin chromophore retinal, or indirectly, via electrochromic FRET). Last, we report on a new addition to the optogenetic toolbox, which is rhodopsin guanylyl cyclases, as well as mutated variants with specificity for cyclic AMP. These can be used to regulate intracellular levels of cGMP and cAMP, which are important second messengers in sensory and other neurons. We further show how they can be combined with cyclic nucleotide-gated channels in two-component optogenetics, for depolarization or hyperpolarization of membrane potential. For all tools, we present protocols for straightforward experimentation to address neuronal activation and inhibition, particularly at the neuromuscular junction, and for combined optogenetic actuation and Ca2+ imaging. We also provide protocols for usage of rhodopsin guanylyl and adenylyl cyclases. Finally, we list a number of points to consider when designing and conducting rhodopsin-based optogenetic experiments.
Collapse
Affiliation(s)
- Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Thilo Henss
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Caspar Glock
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Jatin Nagpal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| |
Collapse
|
53
|
Katz M. Genetic Methods for Cellular Manipulation in C. elegans. Methods Mol Biol 2022; 2468:51-72. [PMID: 35320560 DOI: 10.1007/978-1-0716-2181-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neuron manipulation in vivo by ablation, activation or inactivation, and regulation of gene expression is essential for dissecting nervous system function. Here we describe genetic means for neuron manipulation in the nematode C. elegans, and provide protocols for generating transgenic animals containing these genetic tools.
Collapse
Affiliation(s)
- Menachem Katz
- Department of Biology, Technion- Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
54
|
OKAHATA M, MOTOMURA H, OHTA A, KUHARA A. Molecular physiology regulating cold tolerance and acclimation of Caenorhabditis elegans. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:126-139. [PMID: 35283408 PMCID: PMC8948419 DOI: 10.2183/pjab.98.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Many organisms can survive and proliferate in changing environmental temperatures. Here, we introduce a molecular physiological mechanism for cold tolerance and acclimation of the nematode Caenorhabditis elegans on the basis of previous reports and a new result. Three types of thermosensory neurons located in the head, ASJ, ASG, and ADL, regulate cold tolerance and acclimation. In ASJ, components of the light-signaling pathway are involved in thermosensation. In ASG, mechanoreceptor DEG-1 acts as thermoreceptor. In ADL, transient receptor potential channels are thermoreceptors; however, the presence of an additional unidentified thermoreceptor is also speculated. ADL thermoresponsivity is modulated by oxygen sensory signaling from URX oxygen sensory neurons via hub interneurons. ASJ releases insulin and steroid hormones that are received by the intestine, which results in lipid composition changing with cold tolerance. Additionally, the intestinal transcriptional alteration affects sperm functions, which in turn affects the thermosensitivity of ASJ; thus, the neuron-intestine-sperm-neuron tissue circuit is essential for cold tolerance.
Collapse
Affiliation(s)
- Misaki OKAHATA
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Haruka MOTOMURA
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Akane OHTA
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Atsushi KUHARA
- Graduate School of Natural Science, Konan University, Kobe, Hyogo, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Hyogo, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
- PRIME, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
55
|
Imambocus BN, Zhou F, Formozov A, Wittich A, Tenedini FM, Hu C, Sauter K, Macarenhas Varela E, Herédia F, Casimiro AP, Macedo A, Schlegel P, Yang CH, Miguel-Aliaga I, Wiegert JS, Pankratz MJ, Gontijo AM, Cardona A, Soba P. A neuropeptidergic circuit gates selective escape behavior of Drosophila larvae. Curr Biol 2021; 32:149-163.e8. [PMID: 34798050 DOI: 10.1016/j.cub.2021.10.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Animals display selective escape behaviors when faced with environmental threats. Selection of the appropriate response by the underlying neuronal network is key to maximizing chances of survival, yet the underlying network mechanisms are so far not fully understood. Using synapse-level reconstruction of the Drosophila larval network paired with physiological and behavioral readouts, we uncovered a circuit that gates selective escape behavior for noxious light through acute and input-specific neuropeptide action. Sensory neurons required for avoidance of noxious light and escape in response to harsh touch, each converge on discrete domains of neuromodulatory hub neurons. We show that acute release of hub neuron-derived insulin-like peptide 7 (Ilp7) and cognate relaxin family receptor (Lgr4) signaling in downstream neurons are required for noxious light avoidance, but not harsh touch responses. Our work highlights a role for compartmentalized circuit organization and neuropeptide release from regulatory hubs, acting as central circuit elements gating escape responses.
Collapse
Affiliation(s)
- Bibi Nusreen Imambocus
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Fangmin Zhou
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Andrey Formozov
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Annika Wittich
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Federico M Tenedini
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Chun Hu
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Kathrin Sauter
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ednilson Macarenhas Varela
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Fabiana Herédia
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Andreia P Casimiro
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - André Macedo
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal
| | - Philipp Schlegel
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Chung-Hui Yang
- Department of Neurobiology, Duke University Medical School, 427E Bryan Research, Durham, NC 27710, USA
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - J Simon Wiegert
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Michael J Pankratz
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Alisson M Gontijo
- Integrative Biomedicine Laboratory, CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua do Instituto Bacteriológico 5, 1150-082 Lisbon, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Albert Cardona
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
56
|
Britz S, Markert SM, Witvliet D, Steyer AM, Tröger S, Mulcahy B, Kollmannsberger P, Schwab Y, Zhen M, Stigloher C. Structural Analysis of the Caenorhabditis elegans Dauer Larval Anterior Sensilla by Focused Ion Beam-Scanning Electron Microscopy. Front Neuroanat 2021; 15:732520. [PMID: 34819841 PMCID: PMC8607169 DOI: 10.3389/fnana.2021.732520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
At the end of the first larval stage, the nematode Caenorhabditis elegans developing in harsh environmental conditions is able to choose an alternative developmental path called the dauer diapause. Dauer larvae exhibit different physiology and behaviors from non-dauer larvae. Using focused ion beam-scanning electron microscopy (FIB-SEM), we volumetrically reconstructed the anterior sensory apparatus of C. elegans dauer larvae with unprecedented precision. We provide a detailed description of some neurons, focusing on structural details that were unknown or unresolved by previously published studies. They include the following: (1) dauer-specific branches of the IL2 sensory neurons project into the periphery of anterior sensilla and motor or putative sensory neurons at the sub-lateral cords; (2) ciliated endings of URX sensory neurons are supported by both ILso and AMso socket cells near the amphid openings; (3) variability in amphid sensory dendrites among dauers; and (4) somatic RIP interneurons maintain their projection into the pharyngeal nervous system. Our results support the notion that dauer larvae structurally expand their sensory system to facilitate searching for more favorable environments.
Collapse
Affiliation(s)
- Sebastian Britz
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| | - Sebastian Matthias Markert
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Physiology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anna Maria Steyer
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Sarah Tröger
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Physiology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, Julius-Maximilians-University, Würzburg, Germany
| | - Yannick Schwab
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Physiology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, Theodor-Boveri-Institute, Julius-Maximilians-University, Würzburg, Germany
| |
Collapse
|
57
|
Luo J, Portman DS. Sex-specific, pdfr-1-dependent modulation of pheromone avoidance by food abundance enables flexibility in C. elegans foraging behavior. Curr Biol 2021; 31:4449-4461.e4. [PMID: 34437843 DOI: 10.1016/j.cub.2021.07.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
To make adaptive feeding and foraging decisions, animals must integrate diverse sensory streams with multiple dimensions of internal state. In C. elegans, foraging and dispersal behaviors are influenced by food abundance, population density, and biological sex, but the neural and genetic mechanisms that integrate these signals are poorly understood. Here, by systematically varying food abundance, we find that chronic avoidance of the population-density pheromone ascr#3 is modulated by food thickness, such that hermaphrodites avoid ascr#3 only when food is scarce. The integration of food and pheromone signals requires the conserved neuropeptide receptor PDFR-1, as pdfr-1 mutant hermaphrodites display strong ascr#3 avoidance, even when food is abundant. Conversely, increasing PDFR-1 signaling inhibits ascr#3 aversion when food is sparse, indicating that this signal encodes information about food abundance. In both wild-type and pdfr-1 hermaphrodites, chronic ascr#3 avoidance requires the ASI sensory neurons. In contrast, PDFR-1 acts in interneurons, suggesting that it modulates processing of the ascr#3 signal. Although a sex-shared mechanism mediates ascr#3 avoidance, food thickness modulates this behavior only in hermaphrodites, indicating that PDFR-1 signaling has distinct functions in the two sexes. Supporting the idea that this mechanism modulates foraging behavior, ascr#3 promotes ASI-dependent dispersal of hermaphrodites from food, an effect that is markedly enhanced when food is scarce. Together, these findings identify a neurogenetic mechanism that sex-specifically integrates population and food abundance, two important dimensions of environmental quality, to optimize foraging decisions. Further, they suggest that modulation of attention to sensory signals could be an ancient, conserved function of pdfr-1.
Collapse
Affiliation(s)
- Jintao Luo
- Department of Biomedical Genetics, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Douglas S Portman
- Department of Biomedical Genetics, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
58
|
Molina-García L, Barrios A. Animal behaviour: Shifting attention in order to disperse. Curr Biol 2021; 31:R1397-R1400. [PMID: 34699807 DOI: 10.1016/j.cub.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
New findings in the nematode Caenorhabditis elegans identify neuromodulation of behavioural responses to pheromones as a mechanism for regulating dispersal and foraging strategies.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College London, Rockefeller Building, 5th Floor, 21 University Street, London WC1E 6DE, UK
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, Rockefeller Building, 5th Floor, 21 University Street, London WC1E 6DE, UK.
| |
Collapse
|
59
|
Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 2021; 109:3930-3953. [PMID: 34653349 DOI: 10.1016/j.neuron.2021.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Changes in the microbiota are associated with alterations in nervous system structure-function and behavior and have been implicated in the etiology of neuropsychiatric and neurodegenerative disorders. Most of these studies have centered on mammalian models due to their phylogenetic proximity to humans. Indeed, the germ-free mouse has been a particularly useful model organism for investigating microbiota-brain interactions. However, microbiota-brain axis research on simpler genetic model organisms with a vast and diverse scientific toolkit (zebrafish, Drosophila melanogaster, and Caenorhabditis elegans) is now also coming of age. In this review, we summarize the current state of microbiota-brain axis research in rodents and humans, and then we elaborate and discuss recent research on the neurobiological and behavioral effects of the microbiota in the model systems of fish, flies, and worms. We propose that a cross-species, holistic and mechanistic approach to unravel the microbiota-brain communication is an essential step toward rational microbiota-based therapeutics to combat brain disorders.
Collapse
|
60
|
Vuong-Brender TT, Flynn S, Vallis Y, Sönmez SE, de Bono M. Neuronal calmodulin levels are controlled by CAMTA transcription factors. eLife 2021; 10:e68238. [PMID: 34499028 PMCID: PMC8428840 DOI: 10.7554/elife.68238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/28/2021] [Indexed: 01/18/2023] Open
Abstract
The ubiquitous Ca2+ sensor calmodulin (CaM) binds and regulates many proteins, including ion channels, CaM kinases, and calcineurin, according to Ca2+-CaM levels. What regulates neuronal CaM levels, is, however, unclear. CaM-binding transcription activators (CAMTAs) are ancient proteins expressed broadly in nervous systems and whose loss confers pleiotropic behavioral defects in flies, mice, and humans. Using Caenorhabditis elegans and Drosophila, we show that CAMTAs control neuronal CaM levels. The behavioral and neuronal Ca2+ signaling defects in mutants lacking camt-1, the sole C. elegans CAMTA, can be rescued by supplementing neuronal CaM. CAMT-1 binds multiple sites in the CaM promoter and deleting these sites phenocopies camt-1. Our data suggest CAMTAs mediate a conserved and general mechanism that controls neuronal CaM levels, thereby regulating Ca2+ signaling, physiology, and behavior.
Collapse
Affiliation(s)
- Thanh Thi Vuong-Brender
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Sean Flynn
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Yvonne Vallis
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Saliha E Sönmez
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Mario de Bono
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
61
|
Reilly DK, McGlame EJ, Vandewyer E, Robidoux AN, Muirhead CS, Northcott HT, Joyce W, Alkema MJ, Gegear RJ, Beets I, Srinivasan J. Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone. Commun Biol 2021; 4:1018. [PMID: 34465863 PMCID: PMC8408276 DOI: 10.1038/s42003-021-02547-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.
Collapse
Affiliation(s)
- Douglas K. Reilly
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.429997.80000 0004 1936 7531Present Address: Tufts University, Medford, MA USA
| | - Emily J. McGlame
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,Present Address: AbbVie Foundational Neuroscience Center, Cambridge, MA USA
| | - Elke Vandewyer
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Annalise N. Robidoux
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Caroline S. Muirhead
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Haylea T. Northcott
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.423532.10000 0004 0516 8515Present Address: Optum, Hartford, CT USA
| | - William Joyce
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Mark J. Alkema
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Robert J. Gegear
- grid.266686.a0000000102217463Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA USA
| | - Isabel Beets
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jagan Srinivasan
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| |
Collapse
|
62
|
Davis L, Radman I, Goutou A, Tynan A, Baxter K, Xi Z, O'Shea JM, Chin JW, Greiss S. Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase. eLife 2021; 10:67075. [PMID: 34350826 PMCID: PMC8448529 DOI: 10.7554/elife.67075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted. Animal behaviour and movement emerges from the stimulation of nerve cells that are connected together like a circuit. Researchers use various tools to investigate these neural networks in model organisms such as roundworms, fruit flies and zebrafish. The trick is to activate some nerve cells, but not others, so as to isolate their specific role within the neural circuit. One way to do this is to switch genes on or off in individual cells as a way to control their neuronal activity. This can be achieved by building a photocaged version of the enzyme Cre recombinase which is designed to target specific genes. The modified Cre recombinase contains an amino acid (the building blocks of proteins) that inactivates the enzyme. When the cell is illuminated with UV light, a part of the amino acid gets removed allowing Cre recombinase to turn on its target gene. However, cells do not naturally produce these photocaged amino acids. To overcome this, researchers can use a technology called genetic code expansion which provides cells with the tools they need to build proteins containing these synthetic amino acids. Although this technique has been used in live animals, its application has been limited due to the small amount of proteins it produces. Davis et al. therefore set out to improve the efficiency of genetic code expansion so that it can be used to study single nerve cells in freely moving roundworms. In the new system, named LaserTAC, individual cells are targeted with UV light that ‘uncages’ the Cre recombinase enzyme so it can switch on a gene for a protein that controls neuronal activity. Davis et al. used this approach to stimulate a pair of neurons sensitive to touch to see how this impacted the roundworm’s behaviour. This revealed that individual neurons within this pair contribute to the touch response in different ways. However, input from both neurons is required to produce a robust reaction. These findings show that the LaserTAC system can be used to manipulate gene activity in single cells, such as neurons, using light. It allows researchers to precisely control in which cells and when a given gene is switched on or off. Also, with the improved efficiency of the genetic code expansion, this technology could be used to modify proteins other than Cre recombinase and be applied to other artificial amino acids that have been developed in recent years.
Collapse
Affiliation(s)
- Lloyd Davis
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Inja Radman
- Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Angeliki Goutou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ailish Tynan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kieran Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhiyan Xi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jack M O'Shea
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sebastian Greiss
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
63
|
Wasson JA, Harris G, Keppler-Ross S, Brock TJ, Dar AR, Butcher RA, Fischer SEJ, Kagias K, Clardy J, Zhang Y, Mango SE. Neuronal control of maternal provisioning in response to social cues. SCIENCE ADVANCES 2021; 7:7/34/eabf8782. [PMID: 34417172 PMCID: PMC8378817 DOI: 10.1126/sciadv.abf8782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/30/2021] [Indexed: 05/03/2023]
Abstract
Mothers contribute cytoplasmic components to their progeny in a process called maternal provisioning. Provisioning is influenced by the parental environment, but the molecular pathways that transmit environmental cues between generations are not well understood. Here, we show that, in Caenorhabditis elegans, social cues modulate maternal provisioning to regulate gene silencing in offspring. Intergenerational signal transmission depends on a pheromone-sensing neuron and neuronal FMRFamide (Phe-Met-Arg-Phe)-like peptides. Parental FMRFamide-like peptide signaling dampens oxidative stress resistance and promotes the deposition of mRNAs for translational components in progeny, which, in turn, reduces gene silencing. This study identifies a previously unknown pathway for intergenerational communication that links neuronal responses to maternal provisioning. We suggest that loss of social cues in the parental environment represents an adverse environment that stimulates stress responses across generations.
Collapse
Affiliation(s)
| | - Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Biology, California State University Channel Islands, Camarillo, CA, USA
| | | | | | - Abdul R Dar
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Sylvia E J Fischer
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Konstantinos Kagias
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Cambridge, MA, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Susan E Mango
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
64
|
Deficiency of innate immunity against P. aeruginosa enhances behavioral avoidance via the HECW-1/NPR-1 module in C. elegans. Infect Immun 2021; 89:e0006721. [PMID: 34310887 DOI: 10.1128/iai.00067-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To antagonize infection of pathogenic bacteria in soil and confer increased survival, Caenorhabditis elegans employs innate immunity and behavioral avoidance synchronously as the two main defensive strategies. Although both biological processes and their individual signaling pathways have been partially elucidated, knowledge of their interrelationship remains limited. The current study reveals that deficiency of innate immunity triggered by mutation of the classic immune gene pmk-1 promotes avoidance behavior in C. elegans; and vice versa. Restoration of pmk-1 expression using the tissue-specific promoters suggested that the functional loss of both intestinal and neuronal pmk-1 is necessary for the enhanced avoidance. Additionally, PMK-1 co-localized with the E3 ubiquitin ligase HECW-1 in OLL neurons and regulated the expressional level of the latter, which consequently affected the production of NPR-1, a G-protein-coupled receptor homologous to the mammalian neuropeptide Y receptor, in RMG neurons in a non-cell-autonomous manner. Collectively, our study illustrates, once the innate immunity is impaired when C. elegans antagonizes bacterial infection, the other defensive strategy of behavioral avoidance can be enhanced accordingly via the HECW-1/NPR-1 module, suggesting that GPCRs in neural circuits may receive the inputs from immune system and integrate those two systems for better adapting to the real-time status.
Collapse
|
65
|
Dal Bello M, Pérez-Escudero A, Schroeder FC, Gore J. Inversion of pheromone preference optimizes foraging in C. elegans. eLife 2021; 10:58144. [PMID: 34227470 PMCID: PMC8260229 DOI: 10.7554/elife.58144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Foraging animals have to locate food sources that are usually patchily distributed and subject to competition. Deciding when to leave a food patch is challenging and requires the animal to integrate information about food availability with cues signaling the presence of other individuals (e.g., pheromones). To study how social information transmitted via pheromones can aid foraging decisions, we investigated the behavioral responses of the model animal Caenorhabditis elegans to food depletion and pheromone accumulation in food patches. We experimentally show that animals consuming a food patch leave it at different times and that the leaving time affects the animal preference for its pheromones. In particular, worms leaving early are attracted to their pheromones, while worms leaving later are repelled by them. We further demonstrate that the inversion from attraction to repulsion depends on associative learning and, by implementing a simple model, we highlight that it is an adaptive solution to optimize food intake during foraging.
Collapse
Affiliation(s)
- Martina Dal Bello
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Alfonso Pérez-Escudero
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, United States.,Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS; UPS, Toulouse, France
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, New York, United States
| | - Jeff Gore
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
66
|
Rawsthorne H, Calahorro F, Holden-Dye L, O’ Connor V, Dillon J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One 2021; 16:e0243121. [PMID: 34043629 PMCID: PMC8158995 DOI: 10.1371/journal.pone.0243121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.
Collapse
Affiliation(s)
- Helena Rawsthorne
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Vincent O’ Connor
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
67
|
GABAergic synapses suppress intestinal innate immunity via insulin signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2021; 118:2021063118. [PMID: 33972423 DOI: 10.1073/pnas.2021063118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GABAergic neurotransmission constitutes a major inhibitory signaling mechanism that plays crucial roles in central nervous system physiology and immune cell immunomodulation. However, its roles in innate immunity remain unclear. Here, we report that deficiency in the GABAergic neuromuscular junctions (NMJs) of Caenorhabditis elegans results in enhanced resistance to pathogens, whereas pathogen infection enhances the strength of GABAergic transmission. GABAergic synapses control innate immunity in a manner dependent on the FOXO/DAF-16 but not the p38/PMK-1 pathway. Our data reveal that the insulin-like peptide INS-31 level was dramatically decreased in the GABAergic NMJ GABAAR-deficient unc-49 mutant compared with wild-type animals. C. elegans with ins-31 knockdown or loss of function exhibited enhanced resistance to Pseudomonas aeruginosa PA14 exposure. INS-31 may act downstream of GABAergic NMJs and in body wall muscle to control intestinal innate immunity in a cell-nonautonomous manner. Our results reveal a signaling axis of synapse-muscular insulin-intestinal innate immunity in vivo.
Collapse
|
68
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
69
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
70
|
Abstract
Although Caenorhabditis elegans has been used as a model host for studying host-pathogen interactions for more than 20 years, the mechanisms by which it identifies pathogens are not well understood. This is largely due to its lack of most known pattern recognition receptors (PRRs) that recognize pathogen-derived molecules. Recent behavioral research in C. elegans indicates that its nervous system plays a major role in microbe sensing. With the increasing integration of neurobiology in immunological research, future studies may find that neuronal detection of pathogens is an integral part of C. elegans-pathogen interactions. Similar to that of mammals, the C. elegans nervous system regulates its immune system to maintain immunological homeostasis. Studies in the nematode have revealed unprecedented details regarding the molecules, cells, and signaling pathways involved in neural regulation of immunity. Notably, some of the studies indicate that some neuroimmune regulatory circuits need not be "activated" by pathogen infection because they are tonically active and that there could be a predetermined set point for internal immunity, around which the nervous system adjusts immune responses to internal or external environmental changes. Here, we review recent progress on the roles of the C. elegans nervous system in pathogen detection and immune regulation. Because of its advantageous characteristics, we expect that the C. elegans model will be critical for deciphering complex neuroimmune signaling mechanisms that integrate and process multiple sensory cues.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- Genomics Core, Washington State University, Spokane, Washington, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
71
|
Chemogenomic approach to identifying nematode chemoreceptor drug targets in the entomopathogenic nematode Heterorhabditis bacteriophora. Comput Biol Chem 2021; 92:107464. [PMID: 33667976 DOI: 10.1016/j.compbiolchem.2021.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
Parasitic nematodes constitute one of the major threats to human health, causing diseases of major socioeconomic importance worldwide. Recent estimates indicate that more than 1 billion people are infected with parasitic nematodes around the world. Current measures to combat parasitic nematode infections include anthelmintic drugs. However, heavy exposure to anthelmintics has selected populations of livestock parasitic nematodes that are no longer susceptible to the drugs, rendering several anthelmintics useless for parasitic nematode control in many areas of the world. The rapidity with which anthelmintic resistance developed in response to these drugs suggests that increasing the selective pressure on human parasitic nematodes will also rapidly generate resistant worm populations. Therefore, development of new anthelmintics is of major importance before resistance becomes widespread in human parasitic nematode populations. G-Protein Coupled Receptors (GPCRs) represent an important target for many pharmacological interventions due to their ubiquitous expression in various cell types. GPCRs contribute to numerous physiological processes, and their ligand binding sites located on cell surfaces make them accessible targets and attractive substrates in terms of druggability. In fact, ∼35 % of Food and Drug Administration (FDA) and European Medicines Agency (EMA) approved drugs target GPCRs and their associated proteins, with over 300 additional drugs targeting GPCRs at the clinical trial stage. Nematode Chemosensory GPCRs (NemChRs) are unique to nematodes, and therefore represent ideal substrates for target-based drug discovery. Here we set out to identify NemChRs that are transcriptionally active inside the host, and to use these NemChRs in a reverse pharmacological screen to impede parasitic development. Our data identified several NemChRs, and we focused on one that was expressed in neuronal cells and exhibited the highest fold change in transcription after host activation. Next, we performed homology modelling and molecular dynamics simulations of this NemChR in order to conduct a virtual screening campaign to identify candidate drug targets which were ranked and selected for experimental testing in bioassays. Taken together, our results identify and characterize a candidate NemChR drug target, and provide a chemogenomic pipeline for identifying nematicide substrates.
Collapse
|
72
|
Structural and developmental principles of neuropil assembly in C. elegans. Nature 2021; 591:99-104. [PMID: 33627875 PMCID: PMC8385650 DOI: 10.1038/s41586-020-03169-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/12/2020] [Indexed: 01/31/2023]
Abstract
Neuropil is a fundamental form of tissue organization within the brain1, in which densely packed neurons synaptically interconnect into precise circuit architecture2,3. However, the structural and developmental principles that govern this nanoscale precision remain largely unknown4,5. Here we use an iterative data coarse-graining algorithm termed 'diffusion condensation'6 to identify nested circuit structures within the Caenorhabditis elegans neuropil, which is known as the nerve ring. We show that the nerve ring neuropil is largely organized into four strata that are composed of related behavioural circuits. The stratified architecture of the neuropil is a geometrical representation of the functional segregation of sensory information and motor outputs, with specific sensory organs and muscle quadrants mapping onto particular neuropil strata. We identify groups of neurons with unique morphologies that integrate information across strata and that create neural structures that cage the strata within the nerve ring. We use high resolution light-sheet microscopy7,8 coupled with lineage-tracing and cell-tracking algorithms9,10 to resolve the developmental sequence and reveal principles of cell position, migration and outgrowth that guide stratified neuropil organization. Our results uncover conserved structural design principles that underlie the architecture and function of the nerve ring neuropil, and reveal a temporal progression of outgrowth-based on pioneer neurons-that guides the hierarchical development of the layered neuropil. Our findings provide a systematic blueprint for using structural and developmental approaches to understand neuropil organization within the brain.
Collapse
|
73
|
Ge A, Hu L, Fan J, Ge M, Wang X, Wang S, Feng X, Du W, Liu BF. A low-cost microfluidic platform coupled with light emitting diode for optogenetic analysis of neuronal response in C. elegans. Talanta 2021; 223:121646. [PMID: 33303134 DOI: 10.1016/j.talanta.2020.121646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 11/24/2022]
Abstract
Optogenetic method is widely used for dissecting the neuronal function and connectivity in a specific neural circuit, which can help understanding how the animal process information and generate behavior. The nematode C. elegans has a simple but complete nervous system, making it an attractive model to study the dynamics signals of neural circuits. However, in vivo analysis on neural circuits usually rely on the complex and expensive optical equipment to allow optogenetic stimulating the neuron while recording its activities in such a freely moving animal. Hence, in this paper we reported a portable optofluidic platform that works based on optical fiber illumination and functional imaging for worm optogenetic manipulation. A light beam from LED laser pen crossing the 3D-printed optical fiber channel is used to activate the neurons specific-expressed with light sensitive proteins ChR-2. The imaging light path is perpendicular to the stimulation light, which allows activating neuron precisely and measuring cellular signals simultaneously. By using such an easy-to-assemble device, optical stimulation of the specific neurons and detection of dynamic calcium responses of other neurons could be proceeded simultaneously. Thus, the developed microfluidic platform puts forward a simple, rapid and low-cost strategy for further neural circuits studies.
Collapse
Affiliation(s)
- Anle Ge
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Single Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Liang Hu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - JiaXing Fan
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Minghai Ge
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xixian Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Single Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Shanshan Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
74
|
Driesschaert B, Mergan L, Temmerman L. Conditional gene expression in invertebrate animal models. J Genet Genomics 2021; 48:14-31. [PMID: 33814307 DOI: 10.1016/j.jgg.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications. Conditional expression allows for (ir)reversible switching of genes on or off, with the potential of spatial and/or temporal control. This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis, providing tools to answer a wider array of research questions across biological disciplines. Spatial and/or temporal control are granted primarily by (combinations of) specific promoters, temperature regimens, compound addition, or illumination. The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales, using organisms amenable to easy genetic manipulation. Recent years witnessed an exciting expansion and optimization of such tools, of which we provide a comprehensive overview and discussion regarding their use in invertebrates. The mechanism, applicability, benefits, and drawbacks of each of the systems, as well as further developments to be expected in the foreseeable future, are highlighted.
Collapse
Affiliation(s)
- Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
75
|
Wang M, Witvliet D, Wu M, Kang L, Shao Z. Temperature regulates synaptic subcellular specificity mediated by inhibitory glutamate signaling. PLoS Genet 2021; 17:e1009295. [PMID: 33428618 PMCID: PMC7822552 DOI: 10.1371/journal.pgen.1009295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/22/2021] [Accepted: 12/05/2020] [Indexed: 01/13/2023] Open
Abstract
Environmental factors such as temperature affect neuronal activity and development. However, it remains unknown whether and how they affect synaptic subcellular specificity. Here, using the nematode Caenorhabditis elegans AIY interneurons as a model, we found that high cultivation temperature robustly induces defects in synaptic subcellular specificity through glutamatergic neurotransmission. Furthermore, we determined that the functional glutamate is mainly released by the ASH sensory neurons and sensed by two conserved inhibitory glutamate-gated chloride channels GLC-3 and GLC-4 in AIY. Our work not only presents a novel neurotransmission-dependent mechanism underlying the synaptic subcellular specificity, but also provides a potential mechanistic insight into high-temperature-induced neurological defects.
Collapse
Affiliation(s)
- Mengqing Wang
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mengting Wu
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
76
|
Zhao M, Wickham JD, Zhao L, Sun J. Major ascaroside pheromone component asc-C5 influences reproductive plasticity among isolates of the invasive species pinewood nematode. Integr Zool 2020; 16:893-907. [PMID: 33264496 DOI: 10.1111/1749-4877.12512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pheromones are communication chemicals and regulatory signals used by animals and represent unique tools for organisms to mediate behaviors and make "decisions" to maximize their fitness. Phenotypic plasticity refers to the innate capacity of a species to tolerate a greater breadth of environmental conditions across which it adapts to improve its survival, reproduction, and fitness. The pinewood nematode, Bursaphelenchus xylophilus, an invasive nematode species, was accidentally introduced from North America into Japan, China, and Europe; however, few studies have investigated its pheromones and phenotypic plasticity as a natural model. Here, we demonstrated a novel phenomenon, in which nematodes under the condition of pheromone presence triggered increased reproduction in invasive strains (JP1, JP2, CN1, CN2, EU1, and EU2), while it simultaneously decreased reproduction in native strains (US1 and US2). The bidirectional effect on fecundity, mediated by presence/absence of pheromones, is henceforth termed pheromone-regulative reproductive plasticity (PRRP). We further found that synthetic ascaroside asc-C5 (ascr#9), the major pheromone component, plays a leading role in PRRP and identified 2 candidate receptor genes, Bxydaf-38 and Bxysrd-10, involved in perceiving asc-C5. These results suggest that plasticity of reproductive responses to pheromones in pinewood nematode may increase its fitness in novel environments following introduction. This opens up a new perspective for invasion biology and presents a novel strategy of invasion, suggesting that pheromones, in addition to their traditional roles in chemical signaling, can influence the reproductive phenotype among native and invasive isolates. In addition, this novel mechanism could broadly explain, through comparative studies of native and invasive populations of animals, a potential underlying factor behind of the success of other biological invasions.
Collapse
Affiliation(s)
- Meiping Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
77
|
Li Q, Marcu DC, Palazzo O, Turner F, King D, Spires-Jones TL, Stefan MI, Busch KE. High neural activity accelerates the decline of cognitive plasticity with age in Caenorhabditis elegans. eLife 2020; 9:59711. [PMID: 33228848 PMCID: PMC7685709 DOI: 10.7554/elife.59711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to learn progressively declines with age. Neural hyperactivity has been implicated in impairing cognitive plasticity with age, but the molecular mechanisms remain elusive. Here, we show that chronic excitation of the Caenorhabditis elegans O2-sensing neurons during ageing causes a rapid decline of experience-dependent plasticity in response to environmental O2 concentration, whereas sustaining lower activity of O2-sensing neurons retains plasticity with age. We demonstrate that neural activity alters the ageing trajectory in the transcriptome of O2-sensing neurons, and our data suggest that high-activity neurons redirect resources from maintaining plasticity to sustaining continuous firing. Sustaining plasticity with age requires the K+-dependent Na+/Ca2+ (NCKX) exchanger, whereas the decline of plasticity with age in high-activity neurons acts through calmodulin and the scaffold protein Kidins220. Our findings demonstrate directly that the activity of neurons alters neuronal homeostasis to govern the age-related decline of neural plasticity and throw light on the mechanisms involved.
Collapse
Affiliation(s)
- Qiaochu Li
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel-Cosmin Marcu
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ottavia Palazzo
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Frances Turner
- Edinburgh Genomics (Genome Science), Ashworth Laboratories, The University of Edinburgh, Edinburgh, United Kingdom
| | - Declan King
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melanie I Stefan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,ZJU-UoE Institute, Zhejiang University, Haining, China
| | - Karl Emanuel Busch
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
78
|
Mata-Cabana A, Gómez-Delgado L, Romero-Expósito FJ, Rodríguez-Palero MJ, Artal-Sanz M, Olmedo M. Social Chemical Communication Determines Recovery From L1 Arrest via DAF-16 Activation. Front Cell Dev Biol 2020; 8:588686. [PMID: 33240886 PMCID: PMC7683423 DOI: 10.3389/fcell.2020.588686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
In a population, chemical communication determines the response of animals to changing environmental conditions, what leads to an enhanced resistance against stressors. In response to starvation, the nematode Caenorhabditis elegans arrest post-embryonic development at the first larval stage (L1) right after hatching. As arrested L1 larvae, C. elegans become more resistant to diverse stresses, allowing them to survive for several weeks expecting to encounter more favorable conditions. L1 arrested at high densities display an enhanced resistance to starvation, dependent on soluble compounds released beyond hatching and the first day of arrest. Here, we show that this chemical communication also influences recovery after prolonged periods in L1 arrest. Animals at high density recovered faster than animals at low density. We found that the density effect on survival depends on the final effector of the insulin signaling pathway, the transcription factor DAF-16. Moreover, DAF-16 activation was higher at high density, consistent with a lower expression of the insulin-like peptide DAF-28 in the neurons. The improved recovery of animals after arrest at high density depended on soluble compounds present in the media of arrested L1s. In an effort to find the nature of these compounds, we investigated the disaccharide trehalose as putative signaling molecule, since its production is enhanced during L1 arrest and it is able to activate DAF-16. We detected the presence of trehalose in the medium of arrested L1 larvae at a low concentration. The addition of this concentration of trehalose to animals arrested at low density was enough to rescue DAF-28 production and DAF-16 activation to the levels of animals arrested at high density. However, despite activating DAF-16, trehalose was not capable of reversing survival and recovery phenotypes, suggesting the participation of additional signaling molecules. With all, here we describe a molecular mechanism underlying social communication that allows C. elegans to maintain arrested L1 larvae ready to quickly recover as soon as they encounter nutrient sources.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Laura Gómez-Delgado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - María J. Rodríguez-Palero
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas – Junta de Andalucía – Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas – Junta de Andalucía – Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
79
|
Abstract
For the first 25 years after the landmark 1974 paper that launched the field, most C. elegans biologists were content to think of their subjects as solitary creatures. C. elegans presented no shortage of fascinating biological problems, but some of the features that led Brenner to settle on this species-in particular, its free-living, self-fertilizing lifestyle-also seemed to reduce its potential for interesting social behavior. That perspective soon changed, with the last two decades bringing remarkable progress in identifying and understanding the complex interactions between worms. The growing appreciation that C. elegans behavior can only be meaningfully understood in the context of its ecology and evolution ensures that the coming years will see similarly exciting progress.
Collapse
Affiliation(s)
- Douglas S Portman
- Departments of Biomedical Genetics, Neuroscience, and Biology, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
80
|
Signal Decoding for Glutamate Modulating Egg Laying Oppositely in Caenorhabditis elegans under Varied Environmental Conditions. iScience 2020; 23:101588. [PMID: 33089099 PMCID: PMC7567941 DOI: 10.1016/j.isci.2020.101588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Animals' ability to sense environmental cues and to integrate this information to control fecundity is vital for continuing the species lineage. In this study, we observed that the sensory neurons Amphid neuron (ASHs and ADLs) differentially regulate egg-laying behavior in Caenorhabditis elegans under varied environmental conditions via distinct neuronal circuits. Under standard culture conditions, ASHs tonically release a small amount of glutamate and inhibit Hermaphrodite specific motor neuron (HSN) activities and egg laying via a highly sensitive Glutamate receptor (GLR)-5 receptor. In contrast, under Cu2+ stimulation, ASHs and ADLs may release a large amount of glutamate and inhibit Amphid interneuron (AIA) interneurons via low-sensitivity Glutamate-gated chloride channel (GLC)-3 receptor, thus removing the inhibitory roles of AIAs on HSN activity and egg laying. However, directly measuring the amount of glutamate released by sensory neurons under different conditions and assaying the binding kinetics of receptors with the neurotransmitter are still required to support this study directly. Short-term exposure of CuSO4 evokes hyperactive egg laying ASHs inhibit HSNs and egg laying via GLR-5 receptor under no Cu2+ treatment AIA interneurons suppress HSNs and thus egg laying through ACR-14 signaling Under noxious Cu2+ treatment, ASHs and ADLs suppress AIAs and augment egg laying
Collapse
|
81
|
Ge MH, Wang W, Wu TH, Wen X, Al-Sheikh U, Chen LL, Yin SW, Wu JJ, Huang JH, He QQ, Liu H, Li R, Wang PZ, Wu ZX. Dual Recombining-out System for Spatiotemporal Gene Expression in C. elegans. iScience 2020; 23:101567. [PMID: 33083734 PMCID: PMC7549056 DOI: 10.1016/j.isci.2020.101567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023] Open
Abstract
Specific recording, labeling, and spatiotemporal manipulating neurons are essential for neuroscience research. In this study, we developed a tripartite spatiotemporal gene induction system in C. elegans, which is based on the knockout of two transcriptional terminators (stops in short) by two different recombinases FLP and CRE. The recombinase sites (loxP and FRT) flanked stops after a ubiquitous promoter terminate transcription of target genes. FLP and CRE, induced by two promoters of overlapping expression, remove the stops (subsequent FLP/CRE-out). The system provides an "AND" gate strategy for specific gene expression in single types of cell(s). Combined with an inducible promoter or element, the system can control the spatiotemporal expression of genes in defined cell types, especially in cells or tissues lacking a specific promoter. This tripartite FLP/CRE-out gene expression system is a simple, labor- and cost-saving toolbox for cell type-specific and inducible gene expression in C. elegans.
Collapse
Affiliation(s)
- Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Hong Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Umar Al-Sheikh
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Li Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-Wu Yin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hao Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qing-Qin He
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
82
|
Takeishi A, Yeon J, Harris N, Yang W, Sengupta P. Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity. eLife 2020; 9:e61167. [PMID: 33074105 PMCID: PMC7644224 DOI: 10.7554/elife.61167] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
Internal state alters sensory behaviors to optimize survival strategies. The neuronal mechanisms underlying hunger-dependent behavioral plasticity are not fully characterized. Here we show that feeding state alters C. elegans thermotaxis behavior by engaging a modulatory circuit whose activity gates the output of the core thermotaxis network. Feeding state does not alter the activity of the core thermotaxis circuit comprised of AFD thermosensory and AIY interneurons. Instead, prolonged food deprivation potentiates temperature responses in the AWC sensory neurons, which inhibit the postsynaptic AIA interneurons to override and disrupt AFD-driven thermotaxis behavior. Acute inhibition and activation of AWC and AIA, respectively, restores negative thermotaxis in starved animals. We find that state-dependent modulation of AWC-AIA temperature responses requires INS-1 insulin-like peptide signaling from the gut and DAF-16/FOXO function in AWC. Our results describe a mechanism by which functional reconfiguration of a sensory network via gut-brain signaling drives state-dependent behavioral flexibility.
Collapse
Affiliation(s)
- Asuka Takeishi
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Jihye Yeon
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
83
|
Abstract
With a nervous system that has only a few hundred neurons, Caenorhabditis elegans was initially not regarded as a model for studies on learning. However, the collective effort of the C. elegans field in the past several decades has shown that the worm displays plasticity in its behavioral response to a wide range of sensory cues in the environment. As a bacteria-feeding worm, C. elegans is highly adaptive to the bacteria enriched in its habitat, especially those that are pathogenic and pose a threat to survival. It uses several common forms of behavioral plasticity that last for different amounts of time, including imprinting and adult-stage associative learning, to modulate its interactions with pathogenic bacteria. Probing the molecular, cellular and circuit mechanisms underlying these forms of experience-dependent plasticity has identified signaling pathways and regulatory insights that are conserved in more complex animals.
Collapse
Affiliation(s)
- He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
84
|
Abstract
The last few decades have seen the structural and functional elucidation of small-molecule chemical signals called ascarosides in C. elegans. Ascarosides mediate several biological processes in worms, ranging from development, to behavior. These signals are modular in their design architecture, with their building blocks derived from metabolic pathways. Behavioral responses are not only concentration dependent, but also are influenced by the current physiological state of the animal. Cellular and circuit-level analyses suggest that these signals constitute a complex communication system, employing both synergistic molecular elements and sex-specific neuronal circuits governing the response. In this review, we discuss research from multiple laboratories, including our own, that detail how these chemical signals govern several different social behaviors in C. elegans. We propose that the ascaroside repertoire represents a link between diverse metabolic and neurobiological life-history traits and governs the survival of C. elegans in its natural environment.
Collapse
Affiliation(s)
- Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
85
|
Salzberg Y, Gat A, Oren-Suissa M. One template, two outcomes: How does the sex-shared nervous system generate sex-specific behaviors? Curr Top Dev Biol 2020; 144:245-268. [PMID: 33992155 DOI: 10.1016/bs.ctdb.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sex-specific behaviors are common in nature and are crucial for reproductive fitness and species survival. A key question in the field of sex/gender neurobiology is whether and to what degree the sex-shared nervous system differs between the sexes in the anatomy, connectivity and molecular identity of its components. An equally intriguing issue is how does the same sex-shared neuronal template diverge to mediate distinct behavioral outputs in females and males. This chapter aims to present the most up-to-date understanding of how this task is achieved in C. elegans. The vast majority of neurons in C. elegans are shared among the two sexes in terms of their lineage history, anatomical position and neuronal identity. Yet a substantial amount of evidence points to the hermaphrodite-male counterparts of some neurons expressing different genes and forming different synaptic connections. This, in turn, enables the same cells and circuits to transmit discrete signals in the two sexes and ultimately execute different functions. We review the various sex-shared behavioral paradigms that have been shown to be sexually dimorphic in recent years, discuss the mechanisms that underlie these examples, refer to the developmental regulation of neuronal dimorphism and suggest evolutionary concepts that emerge from the data.
Collapse
Affiliation(s)
- Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Gat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
86
|
Alcedo J, Prahlad V. Neuromodulators: an essential part of survival. J Neurogenet 2020; 34:475-481. [PMID: 33170042 PMCID: PMC7811185 DOI: 10.1080/01677063.2020.1839066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
The coordination between the animal's external environment and internal state requires constant modulation by chemicals known as neuromodulators. Neuromodulators, such as biogenic amines, neuropeptides and cytokines, promote organismal homeostasis. Over the past several decades, Caenorhabditiselegans has grown into a powerful model organism that allows the elucidation of the mechanisms of action of neuromodulators that are conserved across species. In this perspective, we highlight a collection of articles in this issue that describe how neuromodulators optimize C. elegans survival.
Collapse
Affiliation(s)
- Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
87
|
Sensory neurons expressing the atypical olfactory receptor guanylyl cyclase D are required for the acquisition of odor preferences by mice in diverse social contexts. Physiol Behav 2020; 227:113150. [PMID: 32841674 DOI: 10.1016/j.physbeh.2020.113150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
Animals use social communication to learn important information from conspecifics that can guide appropriate behavioral choices. For example, during the social transmission of food preference (STFP), conspecific semiochemicals detected by mouse olfactory sensory neurons (OSNs) expressing the atypical olfactory receptor guanylyl cyclase D (GC-D+ OSNs) promote the acquisition of food preferences in the recipient animal, mitigating the risk of ingesting food contaminated with toxins or pathogens. However, it is unclear if GC-D+ OSNs mediate preference learning outside this specific context. Here, we report that GC-D+ OSNs are required for the acquisition of odor preferences by both adult and juvenile mice, and that GC-DD-dependent preference could be formed for conditionally aversive odors. We used a two-choice olfactory behavioral test to assess odor preferences in adult Gucy2d +/+, +/- and -/- mice that encountered novel odors together with GC-D+ OSN stimuli (guanylin family peptides), during social investigation of a live conspecific, or during suckling as pups. Gucy2d +/+ and +/- mice (which express functional GC-D), but not Gucy2d -/- littermates, successfully acquire a preference for the demonstrated odor in any of these behavioral paradigms. Mice could even acquire a GC-D-dependent preference for odors to which they had recently formed a conditioned aversion. Together, these results demonstrate that GC-D+ OSNs mediate the acquisition of socially-transmitted odor preferences in different social and experiential contexts and at different life stages.
Collapse
|
88
|
Abstract
Caenorhabditis elegans secretes a complex cocktail of small chemicals collectively called ascaroside pheromones which serves as a chemical language for intra-species communication. Subsets of ascarosides have been shown to mediate a broad spectrum of C. elegans behavior and development, such as gender-specific attraction, repulsion, aggregation, olfactory plasticity, and dauer formation. Recent studies show that specific components of ascarosides elicit a rapid avoidance response that allows animals to avoid predators and escape from unfavorable conditions. Moreover, this avoidance behavior is modulated by external conditions, internal states, and previous experience, indicating that pheromone avoidance behavior is highly plastic. In this review, we describe molecular and circuit mechanisms underlying plasticity in pheromone avoidance behavior which pave a way to better understanding circuit mechanisms underlying behavioral plasticity in higher animals, including humans.
Collapse
Affiliation(s)
- YongJin Cheon
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Hyeonjeong Hwang
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
89
|
Abstract
Microbes are ubiquitous in the natural environment of Caenorhabditis elegans. Bacteria serve as a food source for C. elegans but may also cause infection in the nematode host. The sensory nervous system of C. elegans detects diverse microbial molecules, ranging from metabolites produced by broad classes of bacteria to molecules synthesized by specific strains of bacteria. Innate recognition through chemosensation of bacterial metabolites or mechanosensation of bacteria can induce immediate behavioral responses. The ingestion of nutritive or pathogenic bacteria can modulate internal states that underlie long-lasting behavioral changes. Ingestion of nutritive bacteria leads to learned attraction and exploitation of the bacterial food source. Infection, which is accompanied by activation of innate immunity, stress responses, and host damage, leads to the development of aversive behavior. The integration of a multitude of microbial sensory cues in the environment is shaped by experience and context. Genetic, chemical, and neuronal studies of C. elegans behavior in the presence of bacteria have defined neural circuits and neuromodulatory systems that shape innate and learned behavioral responses to microbial cues. These studies have revealed the profound influence that host-microbe interactions have in governing the behavior of this simple animal host.
Collapse
Affiliation(s)
- Dennis H Kim
- Division of Infectious Diseases, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Steven W Flavell
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
90
|
Lorenzo R, Onizuka M, Defrance M, Laurent P. Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes. Nucleic Acids Res 2020; 48:7119-7134. [PMID: 32542321 PMCID: PMC7367206 DOI: 10.1093/nar/gkaa486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) of the Caenorhabditis elegans nervous system offers the unique opportunity to obtain a partial expression profile for each neuron within a known connectome. Building on recent scRNA-seq data and on a molecular atlas describing the expression pattern of ∼800 genes at the single cell resolution, we designed an iterative clustering analysis aiming to match each cell-cluster to the ∼100 anatomically defined neuron classes of C. elegans. This heuristic approach successfully assigned 97 of the 118 neuron classes to a cluster. Sixty two clusters were assigned to a single neuron class and 15 clusters grouped neuron classes sharing close molecular signatures. Pseudotime analysis revealed a maturation process occurring in some neurons (e.g. PDA) during the L2 stage. Based on the molecular profiles of all identified neurons, we predicted cell fate regulators and experimentally validated unc-86 for the normal differentiation of RMG neurons. Furthermore, we observed that different classes of genes functionally diversify sensory neurons, interneurons and motorneurons. Finally, we designed 15 new neuron class-specific promoters validated in vivo. Amongst them, 10 represent the only specific promoter reported to this day, expanding the list of neurons amenable to genetic manipulations.
Collapse
Affiliation(s)
- Ramiro Lorenzo
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Michiho Onizuka
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
91
|
Ding SS, Muhle LS, Brown AEX, Schumacher LJ, Endres RG. Comparison of solitary and collective foraging strategies of Caenorhabditis elegans in patchy food distributions. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190382. [PMID: 32713303 DOI: 10.1098/rstb.2019.0382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Collective foraging has been shown to benefit organisms in environments where food is patchily distributed, but whether this is true in the case where organisms do not rely on long-range communications to coordinate their collective behaviour has been understudied. To address this question, we use the tractable laboratory model organism Caenorhabditis elegans, where a social strain (npr-1 mutant) and a solitary strain (N2) are available for direct comparison of foraging strategies. We first developed an on-lattice minimal model for comparing collective and solitary foraging strategies, finding that social agents benefit from feeding faster and more efficiently simply owing to group formation. Our laboratory foraging experiments with npr-1 and N2 worm populations, however, show an advantage for solitary N2 in all food distribution environments that we tested. We incorporated additional strain-specific behavioural parameters of npr-1 and N2 worms into our model and computationally identified N2's higher feeding rate to be the key factor underlying its advantage, without which it is possible to recapitulate the advantage of collective foraging in patchy environments. Our work highlights the theoretical advantage of collective foraging owing to group formation alone without long-range interactions and the valuable role of modelling to guide experiments. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Institute of Clinical Sciences, Imperial College London, London, UK.,MRC London Institute of Medical Sciences, London, UK
| | - Leah S Muhle
- Department of Life Sciences, Imperial College London, London, UK.,Department of Physics, Faculty of Science, Eberhard-Karls-Universität, Tübingen, Germany
| | - André E X Brown
- Institute of Clinical Sciences, Imperial College London, London, UK.,MRC London Institute of Medical Sciences, London, UK
| | | | - Robert G Endres
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
92
|
Eliáš S, Hurychová J, Toubarro D, Frias J, Kunc M, Dobeš P, Simões N, Hyršl P. Bioactive Excreted/Secreted Products of Entomopathogenic Nematode Heterorhabditis bacteriophora Inhibit the Phenoloxidase Activity during the Infection. INSECTS 2020; 11:insects11060353. [PMID: 32516962 PMCID: PMC7349556 DOI: 10.3390/insects11060353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Entomopathogenic nematodes (EPNs) are efficient insect parasites, that are known for their mutualistic relationship with entomopathogenic bacteria and their use in biocontrol. EPNs produce bioactive molecules referred to as excreted/secreted products (ESPs), which have come to the forefront in recent years because of their role in the process of host invasion and the modulation of its immune response. In the present study, we confirmed the production of ESPs in the EPN Heterorhabditis bacteriophora, and investigated their role in the modulation of the phenoloxidase cascade, one of the key components of the insect immune system. ESPs were isolated from 14- and 21-day-old infective juveniles of H. bacteriophora, which were found to be more virulent than newly emerged nematodes, as was confirmed by mortality assays using Galleria mellonella larvae. The isolated ESPs were further purified and screened for the phenoloxidase-inhibiting activity. In these products, a 38 kDa fraction of peptides was identified as the main candidate source of phenoloxidase-inhibiting compounds. This fraction was further analyzed by mass spectrometry and the de novo sequencing approach. Six peptide sequences were identified in this active ESP fraction, including proteins involved in ubiquitination and the regulation of a Toll pathway, for which a role in the regulation of insect immune response has been proposed in previous studies.
Collapse
Affiliation(s)
- Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Jorge Frias
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| | - Nelson Simões
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| |
Collapse
|
93
|
Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol 2020; 18:e3000723. [PMID: 32511224 PMCID: PMC7302863 DOI: 10.1371/journal.pbio.3000723] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/18/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.
Collapse
Affiliation(s)
- Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis Mann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
94
|
Wong SS, Yu J, Schroeder FC, Kim DH. Population Density Modulates the Duration of Reproduction of C. elegans. Curr Biol 2020; 30:2602-2607.e2. [PMID: 32442457 DOI: 10.1016/j.cub.2020.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Population density can modulate the developmental trajectory of Caenorhabditis elegans larvae by promoting entry into dauer diapause, which is characterized by metabolic and anatomical remodeling and stress resistance [1, 2]. Genetic analysis of dauer formation has identified the involvement of evolutionarily conserved endocrine signaling pathways, including the DAF-2/insulin-like receptor signaling pathway [3-7]. Chemical and metabolomic analysis of dauer-inducing pheromone has identified a family of small molecules, ascarosides, which act potently to communicate increased population density and promote dauer formation [1, 8-10]. Here, we show that adult animals respond to ascarosides produced under conditions of increased population density by increasing the duration of reproduction. We observe that the ascarosides that promote dauer entry of larvae also act on adult animals to attenuate expression of the insulin peptide INS-6 from the ASI chemosensory neurons, resulting in diminished neuroendocrine insulin signaling that extends the duration of reproduction. Genetic analysis of ins-6 and corresponding insulin-signaling pathway mutants showed that the effect of increased population density on reproductive span was mimicked by ins-6 loss of function that exerted effects on duration of reproduction through the canonical DAF-2-DAF-16 pathway. We further observed that the effect of population density on reproductive span acted through DAF-16-dependent and DAF-16-independent pathways upstream of DAF-12, paralleling in adults what has been observed for the dauer developmental decision of larvae. Our data suggest that, under conditions of increased population density, C. elegans animals prolong the duration of reproductive egg laying, which may enable the subsequent development of progeny under more favorable conditions.
Collapse
Affiliation(s)
- Spencer S Wong
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Dennis H Kim
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
95
|
Flynn SM, Chen C, Artan M, Barratt S, Crisp A, Nelson GM, Peak-Chew SY, Begum F, Skehel M, de Bono M. MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity. Nat Commun 2020; 11:2099. [PMID: 32350248 PMCID: PMC7190641 DOI: 10.1038/s41467-020-15872-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/26/2020] [Indexed: 12/27/2022] Open
Abstract
Besides pro-inflammatory roles, the ancient cytokine interleukin-17 (IL-17) modulates neural circuit function. We investigate IL-17 signaling in neurons, and the extent it can alter organismal phenotypes. We combine immunoprecipitation and mass spectrometry to biochemically characterize endogenous signaling complexes that function downstream of IL-17 receptors in C. elegans neurons. We identify the paracaspase MALT-1 as a critical output of the pathway. MALT1 mediates signaling from many immune receptors in mammals, but was not previously implicated in IL-17 signaling or nervous system function. C. elegans MALT-1 forms a complex with homologs of Act1 and IRAK and appears to function both as a scaffold and a protease. MALT-1 is expressed broadly in the C. elegans nervous system, and neuronal IL-17-MALT-1 signaling regulates multiple phenotypes, including escape behavior, associative learning, immunity and longevity. Our data suggest MALT1 has an ancient role modulating neural circuit function downstream of IL-17 to remodel physiology and behavior.
Collapse
Affiliation(s)
- Sean M Flynn
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Changchun Chen
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Umeå Center for Molecular Medicine, Wallenberg Center for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Murat Artan
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Stephen Barratt
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Alastair Crisp
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Geoffrey M Nelson
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sew-Yeu Peak-Chew
- Biological Mass Spectrometry and Proteomics, Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Farida Begum
- Biological Mass Spectrometry and Proteomics, Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Mark Skehel
- Biological Mass Spectrometry and Proteomics, Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Mario de Bono
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
96
|
Abstract
Nervous systems allow animals to acutely respond and behaviorally adapt to changes and recurring patterns in their environment at multiple timescales-from milliseconds to years. Behavior is further shaped at intergenerational timescales by genetic variation, drift, and selection. This sophistication and flexibility of behavior makes it challenging to measure behavior consistently in individual subjects and to compare it across individuals. In spite of these challenges, careful behavioral observations in nature and controlled measurements in the laboratory, combined with modern technologies and powerful genetic approaches, have led to important discoveries about the way genetic variation shapes behavior. A critical mass of genes whose variation is known to modulate behavior in nature is finally accumulating, allowing us to recognize emerging patterns. In this review, we first discuss genetic mapping approaches useful for studying behavior. We then survey how variation acts at different levels-in environmental sensation, in internal neuronal circuits, and outside the nervous system altogether-and then discuss the sources and types of molecular variation linked to behavior and the mechanisms that shape such variation. We end by discussing remaining questions in the field.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| |
Collapse
|
97
|
Demir E, Yaman YI, Basaran M, Kocabas A. Dynamics of pattern formation and emergence of swarming in Caenorhabditis elegans. eLife 2020; 9:52781. [PMID: 32250243 PMCID: PMC7202895 DOI: 10.7554/elife.52781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/05/2020] [Indexed: 01/10/2023] Open
Abstract
Many animals collectively form complex patterns to tackle environmental difficulties. Several biological and physical factors, such as animal motility, population densities, and chemical cues, play significant roles in this process. However, very little is known about how sensory information interplays with these factors and controls the dynamics of pattern formation. Here, we study the direct relation between oxygen sensing, pattern formation, and emergence of swarming in active Caenorhabditis elegans aggregates. We find that when thousands of animals gather on food, bacteria-mediated decrease in oxygen level slows down the animals and triggers motility-induced phase separation. Three coupled factors—bacterial accumulation, aerotaxis, and population density—act together and control the entire dynamics. Furthermore, we find that biofilm-forming bacterial lawns including Bacillus subtilis and Pseudomonas aeruginosa strongly alter the collective dynamics due to the limited diffusibility of bacteria. Additionally, our theoretical model captures behavioral differences resulting from genetic variations and oxygen sensitivity.
Collapse
Affiliation(s)
- Esin Demir
- Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey
| | - Y Ilker Yaman
- Department of Physics, Koç University, Sarıyer, Istanbul, Turkey
| | - Mustafa Basaran
- Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey
| | - Askin Kocabas
- Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey.,Department of Physics, Koç University, Sarıyer, Istanbul, Turkey.,Koç University Surface Science and Technology Center, Koç University, Sarıyer, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul, Turkey
| |
Collapse
|
98
|
Zarin AA, Mark B, Cardona A, Litwin-Kumar A, Doe CQ. A multilayer circuit architecture for the generation of distinct locomotor behaviors in Drosophila. eLife 2019; 8:e51781. [PMID: 31868582 PMCID: PMC6994239 DOI: 10.7554/elife.51781] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/22/2019] [Indexed: 12/22/2022] Open
Abstract
Animals generate diverse motor behaviors, yet how the same motor neurons (MNs) generate two distinct or antagonistic behaviors remains an open question. Here, we characterize Drosophila larval muscle activity patterns and premotor/motor circuits to understand how they generate forward and backward locomotion. We show that all body wall MNs are activated during both behaviors, but a subset of MNs change recruitment timing for each behavior. We used TEM to reconstruct a full segment of all 60 MNs and 236 premotor neurons (PMNs), including differentially-recruited MNs. Analysis of this comprehensive connectome identified PMN-MN 'labeled line' connectivity; PMN-MN combinatorial connectivity; asymmetric neuronal morphology; and PMN-MN circuit motifs that could all contribute to generating distinct behaviors. We generated a recurrent network model that reproduced the observed behaviors, and used functional optogenetics to validate selected model predictions. This PMN-MN connectome will provide a foundation for analyzing the full suite of larval behaviors.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| | - Brandon Mark
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ashok Litwin-Kumar
- Mortimer B Zuckerman Mind Brain Behavior Institute, Department of NeuroscienceColumbia UniversityNew YorkUnited States
| | - Chris Q Doe
- Institute of NeuroscienceHoward Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
99
|
Wu T, Duan F, Yang W, Liu H, Caballero A, Fernandes de Abreu DA, Dar AR, Alcedo J, Ch'ng Q, Butcher RA, Zhang Y. Pheromones Modulate Learning by Regulating the Balanced Signals of Two Insulin-like Peptides. Neuron 2019; 104:1095-1109.e5. [PMID: 31676170 PMCID: PMC7009321 DOI: 10.1016/j.neuron.2019.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/09/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Social environment modulates learning through unknown mechanisms. Here, we report that a pheromone mixture that signals overcrowding inhibits C. elegans from learning to avoid pathogenic bacteria. We find that learning depends on the balanced signaling of two insulin-like peptides (ILPs), INS-16 and INS-4, which act respectively in the pheromone-sensing neuron ADL and the bacteria-sensing neuron AWA. Pheromone exposure inhibits learning by disrupting this balance: it activates ADL and increases expression of ins-16, and this cellular effect reduces AWA activity and AWA-expressed ins-4. The activities of the sensory neurons are required for learning and the expression of the ILPs. Interestingly, pheromones also promote the ingestion of pathogenic bacteria while increasing resistance to the pathogen. Thus, the balance of the ILP signals integrates social information into the learning process as part of a coordinated adaptive response that allows consumption of harmful food during times of high population density.
Collapse
Affiliation(s)
- Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Fengyun Duan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Antonio Caballero
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Diana Andrea Fernandes de Abreu
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - QueeLim Ch'ng
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
100
|
Bouagnon AD, Lin L, Srivastava S, Liu CC, Panda O, Schroeder FC, Srinivasan S, Ashrafi K. Intestinal peroxisomal fatty acid β-oxidation regulates neural serotonin signaling through a feedback mechanism. PLoS Biol 2019; 17:e3000242. [PMID: 31805041 PMCID: PMC6917301 DOI: 10.1371/journal.pbio.3000242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/17/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
The ability to coordinate behavioral responses with metabolic status is fundamental to the maintenance of energy homeostasis. In numerous species including Caenorhabditis elegans and mammals, neural serotonin signaling regulates a range of food-related behaviors. However, the mechanisms that integrate metabolic information with serotonergic circuits are poorly characterized. Here, we identify metabolic, molecular, and cellular components of a circuit that links peripheral metabolic state to serotonin-regulated behaviors in C. elegans. We find that blocking the entry of fatty acyl coenzyme As (CoAs) into peroxisomal β-oxidation in the intestine blunts the effects of neural serotonin signaling on feeding and egg-laying behaviors. Comparative genomics and metabolomics revealed that interfering with intestinal peroxisomal β-oxidation results in a modest global transcriptional change but significant changes to the metabolome, including a large number of changes in ascaroside and phospholipid species, some of which affect feeding behavior. We also identify body cavity neurons and an ether-a-go-go (EAG)-related potassium channel that functions in these neurons as key cellular components of the circuitry linking peripheral metabolic signals to regulation of neural serotonin signaling. These data raise the possibility that the effects of serotonin on satiety may have their origins in feedback, homeostatic metabolic responses from the periphery.
Collapse
Affiliation(s)
- Aude D. Bouagnon
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Shubhi Srivastava
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Chung-Chih Liu
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Oishika Panda
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Supriya Srinivasan
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|