51
|
Hutchings P. Potential loss of biodiversity and the critical importance of taxonomy-An Australian perspective. ADVANCES IN MARINE BIOLOGY 2021; 88:3-16. [PMID: 34119045 DOI: 10.1016/s0065-2881(21)00015-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Pat Hutchings
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia; Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
52
|
Joo MS, Choi KM, Cho DH, Choi HS, Min EY, Han HJ, Cho MY, Bae JS, Park CI. The molecular characterization, expression analysis and antimicrobial activity of theromacin from Asian polychaeta (Perinereis linea). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103773. [PMID: 32634521 DOI: 10.1016/j.dci.2020.103773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Antimicrobial peptides (AMPs) are molecular factors in innate immunity and are believed to play a key role in invertebrate host defence. We identified theromacin (TM) from an Asian polychaeta, Perinereis linea, using de novo RNA-seq analysis. TM, a typical AMP of invertebrates, is a cysteine-rich AMP with five disulfide bonds consisting of ten cysteine residues. In gene expression analysis, TM genes were constantly upregulated after lipopolysaccharide (LPS) stimulation. In contrast, after peptidoglycan (PGN) stimulation, it was upregulated initially and downregulated after 12 h. We synthesized a peptide based on the macin AMP in the TM amino acid sequence. The synthetic peptide showed antibacterial activity against some Gram-positive and Gram-negative bacteria. Therefore, the AMPs of P. linea might have broad roles in host defence and exhibit different degrees of activity.
Collapse
Affiliation(s)
- Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hye-Sung Choi
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Eun Young Min
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jin-Sol Bae
- National Fishery Products Quality Management Service (NFQS), 337, Yeongdo-gu, Busan, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
53
|
Lanza AR, Seaver EC. Activin/Nodal signaling mediates dorsal-ventral axis formation before third quartet formation in embryos of the annelid Chaetopterus pergamentaceus. EvoDevo 2020; 11:17. [PMID: 32788949 PMCID: PMC7418201 DOI: 10.1186/s13227-020-00161-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The clade of protostome animals known as the Spiralia (e.g., mollusks, annelids, nemerteans and polyclad flatworms) shares a highly conserved program of early development. This includes shared arrangement of cells in the early-stage embryo and fates of descendant cells into embryonic quadrants. In spiralian embryos, a single cell in the D quadrant functions as an embryonic organizer to pattern the body axes. The precise timing of the organizing signal and its cellular identity varies among spiralians. Previous experiments in the annelid Chaetopterus pergamentaceus Cuvier, 1830 demonstrated that the D quadrant possesses an organizing role in body axes formation; however, the molecular signal and exact cellular identity of the organizer were unknown. RESULTS In this study, the timing of the signal and the specific signaling pathway that mediates organizing activity in C. pergamentaceus was investigated through short exposures to chemical inhibitors during early cleavage stages. Chemical interference of the Activin/Nodal pathway but not the BMP or MAPK pathways results in larvae that lack a detectable dorsal-ventral axis. Furthermore, these data show that the duration of organizing activity encompasses the 16 cell stage and is completed before the 32 cell stage. CONCLUSIONS The timing and molecular signaling pathway of the C. pergamentaceus organizer is comparable to that of another annelid, Capitella teleta, whose organizing signal is required through the 16 cell stage and localizes to micromere 2d. Since C. pergamentaceus is an early branching annelid, these data in conjunction with functional genomic investigations in C. teleta hint that the ancestral state of annelid dorsal-ventral axis patterning involved an organizing signal that occurs one to two cell divisions earlier than the organizing signal identified in mollusks, and that the signal is mediated by Activin/Nodal signaling. Our findings have significant evolutionary implications within the Spiralia, and furthermore suggest that global body patterning mechanisms may not be as conserved across bilaterians as was previously thought.
Collapse
Affiliation(s)
- Alexis R. Lanza
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| |
Collapse
|
54
|
Erséus C, Williams BW, Horn KM, Halanych KM, Santos SR, James SW, Creuzé des Châtelliers M, Anderson FE. Phylogenomic analyses reveal a Palaeozoic radiation and support a freshwater origin for clitellate annelids. ZOOL SCR 2020. [DOI: 10.1111/zsc.12426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christer Erséus
- Department of Biological and Environmental Sciences University of Gothenburg Göteborg Sweden
| | - Bronwyn W. Williams
- School of Biological Sciences Southern Illinois University Carbondale IL USA
- Research Laboratory North Carolina Museum of Natural Sciences Raleigh NC USA
| | - Kevin M. Horn
- School of Biological Sciences Southern Illinois University Carbondale IL USA
- Division of Natural Sciences and Mathematics Kentucky Wesleyan College Owensboro Kentucky USA
| | - Kenneth M. Halanych
- Molette Biology Laboratory for Environmental and Climate Change Studies Department of Biological Sciences Auburn University Auburn AL USA
| | - Scott R. Santos
- Molette Biology Laboratory for Environmental and Climate Change Studies Department of Biological Sciences Auburn University Auburn AL USA
| | - Samuel W. James
- Sustainable Living Department Maharishi University of Management Fairfield IA USA
| | | | - Frank E. Anderson
- School of Biological Sciences Southern Illinois University Carbondale IL USA
| |
Collapse
|
55
|
Sur A, Renfro A, Bergmann PJ, Meyer NP. Investigating cellular and molecular mechanisms of neurogenesis in Capitella teleta sheds light on the ancestor of Annelida. BMC Evol Biol 2020; 20:84. [PMID: 32664907 PMCID: PMC7362552 DOI: 10.1186/s12862-020-01636-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diverse architectures of nervous systems (NSs) such as a plexus in cnidarians or a more centralized nervous system (CNS) in insects and vertebrates are present across Metazoa, but it is unclear what selection pressures drove evolution and diversification of NSs. One underlying aspect of this diversity lies in the cellular and molecular mechanisms driving neurogenesis, i.e. generation of neurons from neural precursor cells (NPCs). In cnidarians, vertebrates, and arthropods, homologs of SoxB and bHLH proneural genes control different steps of neurogenesis, suggesting that some neurogenic mechanisms may be conserved. However, data are lacking for spiralian taxa. RESULTS To that end, we characterized NPCs and their daughters at different stages of neurogenesis in the spiralian annelid Capitella teleta. We assessed cellular division patterns in the neuroectoderm using static and pulse-chase labeling with thymidine analogs (EdU and BrdU), which enabled identification of NPCs that underwent multiple rounds of division. Actively-dividing brain NPCs were found to be apically-localized, whereas actively-dividing NPCs for the ventral nerve cord (VNC) were found apically, basally, and closer to the ventral midline. We used lineage tracing to characterize the changing boundary of the trunk neuroectoderm. Finally, to start to generate a genetic hierarchy, we performed double-fluorescent in-situ hybridization (FISH) and single-FISH plus EdU labeling for neurogenic gene homologs. In the brain and VNC, Ct-soxB1 and Ct-neurogenin were expressed in a large proportion of apically-localized, EdU+ NPCs. In contrast, Ct-ash1 was expressed in a small subset of apically-localized, EdU+ NPCs and subsurface, EdU- cells, but not in Ct-neuroD+ or Ct-elav1+ cells, which also were subsurface. CONCLUSIONS Our data suggest a putative genetic hierarchy with Ct-soxB1 and Ct-neurogenin at the top, followed by Ct-ash1, then Ct-neuroD, and finally Ct-elav1. Comparison of our data with that from Platynereis dumerilii revealed expression of neurogenin homologs in proliferating NPCs in annelids, which appears different than the expression of vertebrate neurogenin homologs in cells that are exiting the cell cycle. Furthermore, differences between neurogenesis in the head versus trunk of C. teleta suggest that these two tissues may be independent developmental modules, possibly with differing evolutionary trajectories.
Collapse
Affiliation(s)
- A. Sur
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - A. Renfro
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - P. J. Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - N. P. Meyer
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| |
Collapse
|
56
|
Han YH, Ryu KB, Medina Jiménez BI, Kim J, Lee HY, Cho SJ. Muscular Development in Urechis unicinctus (Echiura, Annelida). Int J Mol Sci 2020; 21:ijms21072306. [PMID: 32225111 PMCID: PMC7178014 DOI: 10.3390/ijms21072306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
Echiura is one of the most intriguing major subgroups of phylum Annelida because, unlike most other annelids, echiuran adults lack metameric body segmentation. Urechis unicinctus lives in U-shape burrows of soft sediments. Little is known about the molecular mechanisms underlying the development of U. unicinctus. Herein, we overviewed the developmental process from zygote to juvenile U. unicinctus using immunohistochemistry and F-actin staining for the nervous and muscular systems, respectively. Through F-actin staining, we found that muscle fibers began to form in the trochophore phase and that muscles for feeding were produced first. Subsequently, in the segmentation larval stage, the transversal muscle was formed in the shape of a ring in an anterior-to-posterior direction with segment formation, as well as a ventromedian muscle for the formation of a ventral nerve cord. After that, many muscle fibers were produced along the entire body and formed the worm-shaped larva. Finally, we investigated the spatiotemporal expression of Uun_st-mhc, Uun_troponin I, Uun_calponin, and Uun_twist genes found in U. unicinctus. During embryonic development, the striated and smooth muscle genes were co-expressed in the same region. However, the adult body wall muscles showed differential gene expression of each muscle layer. The results of this study will provide the basis for the understanding of muscle differentiation in Echiura.
Collapse
Affiliation(s)
- Yong-Hee Han
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
| | - Kyoung-Bin Ryu
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
| | - Brenda I. Medina Jiménez
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
- Department of Earth Sciences, Paleobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Jung Kim
- Department of Molecular and Cell Biology, University of California, 539 LSA, Berkeley, CA 94720-3200, USA;
| | - Hae-Youn Lee
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
- Correspondence: (H.-Y.L.); (S.-J.C.); Tel.: +82-43-261-2294 (S.-J.C.)
| | - Sung-Jin Cho
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (Y.-H.H.); (K.-B.R.); (B.I.M.J.)
- Correspondence: (H.-Y.L.); (S.-J.C.); Tel.: +82-43-261-2294 (S.-J.C.)
| |
Collapse
|
57
|
PONTI R, ARCONES A, VIEITES DR. Challenges in estimating ancestral state reconstructions: the evolution of migration in
Sylvia
warblers as a study case. Integr Zool 2020; 15:161-173. [DOI: 10.1111/1749-4877.12418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Raquel PONTI
- National Museum of Natural Sciences Madrid Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of Barcelona Barcelona Spain
- Biodiversity Research Institute (IRBIO)University of Barcelona Barcelona Spain
| | - Angel ARCONES
- National Museum of Natural Sciences Madrid Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of Barcelona Barcelona Spain
- Biodiversity Research Institute (IRBIO)University of Barcelona Barcelona Spain
| | | |
Collapse
|
58
|
Phillips AJ, Dornburg A, Zapfe KL, Anderson FE, James SW, Erséus C, Moriarty Lemmon E, Lemmon AR, Williams BW. Phylogenomic Analysis of a Putative Missing Link Sparks Reinterpretation of Leech Evolution. Genome Biol Evol 2020; 11:3082-3093. [PMID: 31214691 PMCID: PMC6598468 DOI: 10.1093/gbe/evz120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Leeches (Hirudinida) comprise a charismatic, yet often maligned group of worms. Despite their ecological, economic, and medical importance, a general consensus on the phylogenetic relationships of major hirudinidan lineages is lacking. This absence of a consistent, robust phylogeny of early-diverging lineages has hindered our understanding of the underlying processes that enabled evolutionary diversification of this clade. Here, we used an anchored hybrid enrichment-based phylogenomic approach, capturing hundreds of loci to investigate phylogenetic relationships among major hirudinidan lineages and their closest living relatives. We recovered Branchiobdellida as sister to a clade that includes all major lineages of hirudinidans and Acanthobdella, casting doubt on the utility of Acanthobdella as a “missing link” between hirudinidans and the clitellate group formerly known as Oligochaeta. Further, our results corroborate the reciprocal monophyly of jawed and proboscis-bearing leeches. Our phylogenomic resolution of early-diverging leeches provides a useful framework for illuminating the evolution of key adaptations and host–symbiont associations that have allowed leeches to colonize a wide diversity of habitats worldwide.
Collapse
Affiliation(s)
- Anna J Phillips
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences, Research Laboratory, Raleigh, North Carolina
| | - Katerina L Zapfe
- North Carolina Museum of Natural Sciences, Research Laboratory, Raleigh, North Carolina.,Department of Biological Sciences, Clemson University
| | | | | | - Christer Erséus
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | | | - Alan R Lemmon
- Department of Scientific Computing, Florida State University
| | - Bronwyn W Williams
- North Carolina Museum of Natural Sciences, Research Laboratory, Raleigh, North Carolina
| |
Collapse
|
59
|
Park HS, Nam SE, Rhee JS. Complete mitochondrial genome of the marine polychaete Hediste japonica (Phyllodocida, Nereididae). MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:850-851. [PMID: 33366780 PMCID: PMC7748599 DOI: 10.1080/23802359.2020.1717388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To date, only five species are registered in the genus Hediste, and complete mitochondrial genome is reported in one species, Hediste diadroma. In this study, a complete 15,783 bp genome for the marine polychaete H. japonica mitochondrion was assembled through Illumina HiSeq platform. The complete mitochondrial genome of H. japonica contained 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and one control region. Overall genomic structure and gene orientation of H. japonica mitogenome are identical to those of H. diadroma. Phylogenetic analysis using the maximum likelihood method validated the sister relationship between Hediste sp. and other polychaetes. This information will be useful to understand geographical distribution, phylogenetic relationship, and evolutionary history of marine polychates.
Collapse
Affiliation(s)
- Hyoung Sook Park
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea.,Research Institute of Basic Sciences, Incheon National University, Incheon, South Korea
| | - Sang-Eun Nam
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea.,Research Institute of Basic Sciences, Incheon National University, Incheon, South Korea
| |
Collapse
|
60
|
Guan DL, Yang J, Liu YK, Li Y, Mi D, Ma LB, Wang ZZ, Xu SQ, Qiu Q. Draft Genome of the Asian Buffalo Leech Hirudinaria manillensis. Front Genet 2020; 10:1321. [PMID: 32010187 PMCID: PMC6977106 DOI: 10.3389/fgene.2019.01321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The Asian Buffalo leech, Hirudinaria manillensis, is an aquatic sanguivorous species distributed widely in Southeast Asia. H. manillensis has long been used clinically for bloodletting and other medical purposes. Recent studies have focused on artificial culturing, strain optimization, and the identification and development new drugs based on the anticoagulant effects of H. manillensis bites; however, data regarding its genome remain unclear. This study aimed to determine the genome sequence of an adult Asian Buffalo leech. We generated a draft assembly of 151.8 Mb and a N50 scaffold of 2.28 Mb. Predictions indicated that the assembled genome contained 21,005 protein-coding genes. Up to 17,865 genes were annotated in multiple databases including Gene Ontology. Sixteen anticoagulant proteins with a Hirudin or Antistasin domain were identified. This study is the first to report the whole-genome sequence of the Asian Buffalo leech, an important sanguivorous leech of clinical significance. The quality of the assembly is comparable to those of other annelids. These data will help further the current understanding of the biological mechanisms and genetic characteristics of leeches and serve as a valuable resource for future studies.
Collapse
Affiliation(s)
- De-Long Guan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jie Yang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ying-Kui Liu
- College of Biomedical Sciences & Department of Biological Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuan Li
- Nextomics Biosciences Institute, Wuhan, China
| | - Da Mi
- Nextomics Biosciences Institute, Wuhan, China
| | - Li-Bin Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe-Zhi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Sheng-Quan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiang Qiu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
61
|
Wang HC, Susko E, Roger AJ. The Relative Importance of Modeling Site Pattern Heterogeneity Versus Partition-Wise Heterotachy in Phylogenomic Inference. Syst Biol 2020; 68:1003-1019. [PMID: 31140564 DOI: 10.1093/sysbio/syz021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/04/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Large taxa-rich genome-scale data sets are often necessary for resolving ancient phylogenetic relationships. But accurate phylogenetic inference requires that they are analyzed with realistic models that account for the heterogeneity in substitution patterns amongst the sites, genes and lineages. Two kinds of adjustments are frequently used: models that account for heterogeneity in amino acid frequencies at sites in proteins, and partitioned models that accommodate the heterogeneity in rates (branch lengths) among different proteins in different lineages (protein-wise heterotachy). Although partitioned and site-heterogeneous models are both widely used in isolation, their relative importance to the inference of correct phylogenies has not been carefully evaluated. We conducted several empirical analyses and a large set of simulations to compare the relative performances of partitioned models, site-heterogeneous models, and combined partitioned site heterogeneous models. In general, site-homogeneous models (partitioned or not) performed worse than site heterogeneous, except in simulations with extreme protein-wise heterotachy. Furthermore, simulations using empirically-derived realistic parameter settings showed a marked long-branch attraction (LBA) problem for analyses employing protein-wise partitioning even when the generating model included partitioning. This LBA problem results from a small sample bias compounded over many single protein alignments. In some cases, this problem was ameliorated by clustering similarly-evolving proteins together into larger partitions using the PartitionFinder method. Similar results were obtained under simulations with larger numbers of taxa or heterogeneity in simulating topologies over genes. For an empirical Microsporidia test data set, all but one tested site-heterogeneous models (with or without partitioning) obtain the correct Microsporidia+Fungi grouping, whereas site-homogenous models (with or without partitioning) did not. The single exception was the fully partitioned site-heterogeneous analysis that succumbed to the compounded small sample LBA bias. In general unless protein-wise heterotachy effects are extreme, it is more important to model site-heterogeneity than protein-wise heterotachy in phylogenomic analyses. Complete protein-wise partitioning should be avoided as it can lead to a serious LBA bias. In cases of extreme protein-wise heterotachy, approaches that cluster similarly-evolving proteins together and coupled with site-heterogeneous models work well for phylogenetic estimation.
Collapse
Affiliation(s)
- Huai-Chun Wang
- Department of Mathematics and Statistics, Dalhousie University, 6316 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, 6316 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
62
|
Karaseva NP, Rimskaya-Korsakova NN, Gantsevich MM, Malakhov VV. Obturacula of Vestimentifera (Annelida, Siboglinidae) Are Homological to the Dorsal Lips of the Polychaete of the Family Sabellidae. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2020; 490:16-18. [PMID: 32342320 DOI: 10.1134/s0012496620010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/11/2023]
Abstract
We have conducted comparative analysis of the structure of the dorsal lips of the polychaete Eudistylia polymorpha from the family Sabellidae and the obturacula of Oasisia alvinae (Vestimentifera). It has been concluded that the obturacula of Vestimentifera are homologs of the dorsal lips of Polychaete from the family Sabellidae. It has been suggested that the head lobe of siboglinids of the subfamily Frenulata is homologous to the fused obturacula of Vestimentifera.
Collapse
|
63
|
Springer MS, Foley NM, Brady PL, Gatesy J, Murphy WJ. Evolutionary Models for the Diversification of Placental Mammals Across the KPg Boundary. Front Genet 2019; 10:1241. [PMID: 31850081 PMCID: PMC6896846 DOI: 10.3389/fgene.2019.01241] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/08/2019] [Indexed: 01/29/2023] Open
Abstract
Deciphering the timing of the placental mammal radiation is a longstanding problem in evolutionary biology, but consensus on the tempo and mode of placental diversification remains elusive. Nevertheless, an accurate timetree is essential for understanding the role of important events in Earth history (e.g., Cretaceous Terrestrial Revolution, KPg mass extinction) in promoting the taxonomic and ecomorphological diversification of Placentalia. Archibald and Deutschman described three competing models for the diversification of placental mammals, which are the Explosive, Long Fuse, and Short Fuse Models. More recently, the Soft Explosive Model and Trans-KPg Model have emerged as additional hypotheses for the placental radiation. Here, we review molecular and paleontological evidence for each of these five models including the identification of general problems that can negatively impact divergence time estimates. The Long Fuse Model has received more support from relaxed clock studies than any of the other models, but this model is not supported by morphological cladistic studies that position Cretaceous eutherians outside of crown Placentalia. At the same time, morphological cladistics has a poor track record of reconstructing higher-level relationships among the orders of placental mammals including the results of new pseudoextinction analyses that we performed on the largest available morphological data set for mammals (4,541 characters). We also examine the strengths and weaknesses of different timetree methods (node dating, tip dating, and fossilized birth-death dating) that may now be applied to estimate the timing of the placental radiation. While new methods such as tip dating are promising, they also have problems that must be addressed if these methods are to effectively discriminate among competing hypotheses for placental diversification. Finally, we discuss the complexities of timetree estimation when the signal of speciation times is impacted by incomplete lineage sorting (ILS) and hybridization. Not accounting for ILS results in dates that are older than speciation events. Hybridization, in turn, can result in dates than are younger or older than speciation dates. Disregarding this potential variation in "gene" history across the genome can distort phylogenetic branch lengths and divergence estimates when multiple unlinked genomic loci are combined together in a timetree analysis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - Nicole M. Foley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Peggy L. Brady
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
64
|
Ahmed RB, Malota K, Jarosz N, Świątek P. Microscopic analysis of spermatogenesis and mature spermatozoa in the amphibian leech Batracobdella algira (Annelida, Clitellata, Hirudinida). PROTOPLASMA 2019; 256:1609-1627. [PMID: 31254071 DOI: 10.1007/s00709-019-01407-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Spermatogenesis and spermatozoa ultrastructure of the amphibian leech Batracobdella algira Moquin-Tandon, 1846 (Hirudinida: Glossiphoniidae) have been investigated by means of electron and fluorescent microscopy. In B. algira, there are seven pairs of testisacs (testes) that are located latero-ventrally throughout the body. Each testis contains numerous cysts with developing germ cells. The germ cells in a given cyst are in the same developmental stage (i.e., there are spermatogonial, spermatocytic, and spermatid cysts); however, there is no developmental synchrony between the cysts, and therefore, all of the developmental stages occur simultaneously in the same testis. In the cysts, each germ cell is connected to acentral cytoplasmic mass, the cytophore, by one intercellular bridge. The spermatozoa of the studied species conform to the general organization plan that is known for Hirudinida: they are filiform cells that are formed in sequence by an elongated and twisted acrosome that consists of an anterior and posterior acrosome, a fully condensed and helicoid nucleus, a midpiece composed of a single and twisted mitochondrion that is characteristically surrounded by an electron-dense sheath, and a flagellum with the conventional 9 × 2 + 2 axonemal pattern. Using a comprehensive approach, we compared our findings with the ultrastructural data that had been obtained from the spermatozoa of the other hirudinids that have been studied to date. Only minor differences in the length and shape of the studied organelles were found which seems to be connected with the different ways of insemination, specific properties of female reproductive tracts, and physiology of fertilization. Additionally, we studied the organization of the microtubular cytoskeleton in male germline cysts at consecutive stages of spermatogenesis using fluorescent and electron microscopy. By comparing the present data with those from Oligochaeta, Branchiobdellida, and Acanthobdellida, we found that only the presence of an anterior acrosome characterizes the true leeches and that, at present, should be regarded as an autapomorphic character of Hirudinida. Our results showed that the arrangement of the microtubules changed dynamically during spermatogenesis.
Collapse
Affiliation(s)
- Raja Ben Ahmed
- Faculté des Sciences de Tunis, LR18ES41 Ecologie, Biologie et Physiologie des organismes aquatiques, 2092, Université de Tunis El Manar, Tunis, Tunisia.
| | - Karol Malota
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Natalia Jarosz
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
65
|
Carrillo-Baltodano AM, Boyle MJ, Rice ME, Meyer NP. Developmental architecture of the nervous system in Themiste lageniformis (Sipuncula): New evidence from confocal laser scanning microscopy and gene expression. J Morphol 2019; 280:1628-1650. [PMID: 31487090 DOI: 10.1002/jmor.21054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 11/09/2022]
Abstract
Sipuncula is a clade of unsegmented marine worms that are currently placed among the basal radiation of conspicuously segmented Annelida. Their new location provides a unique opportunity to reinvestigate the evolution and development of segmented body plans. Neural segmentation is clearly evident during ganglionic ventral nerve cord (VNC) formation across Sedentaria and Errantia, which includes the majority of annelids. However, recent studies show that some annelid taxa outside of Sedentaria and Errantia have a medullary cord, without ganglia, as adults. Importantly, neural development in these taxa is understudied and interpretation can vary widely. For example, reports in sipunculans range from no evidence of segmentation to vestigial segmentation as inferred from a few pairs of serially repeated neuronal cell bodies along the VNC. We investigated patterns of pan-neuronal, neuronal subtype, and axonal markers using immunohistochemistry and whole mount in situ hybridization (WMISH) during neural development in an indirect-developing sipunculan, Themiste lageniformis. Confocal imaging revealed two clusters of 5HT+ neurons, two pairs of FMRF+ neurons, and Tubulin+ peripheral neurites that appear to be serially positioned along the VNC, similar to other sipunculans, to other annelids, and to spiralian taxa outside of Annelida. WMISH of a synaptotagmin1 ortholog in T. lageniformis (Tl-syt1) showed expression throughout the centralized nervous system (CNS), including the VNC where it appears to correlate with mature 5HT+ and FMRF+ neurons. An ortholog of elav1 (Tl-elav1) showed expression in differentiated neurons of the CNS with continuous expression in the VNC, supporting evidence of a medullary cord, and refuting evidence of ontogenetic segmentation during formation of the nervous system. Thus, we conclude that sipunculans do not exhibit any signs of morphological segmentation during development.
Collapse
Affiliation(s)
| | - Michael J Boyle
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida
| | - Mary E Rice
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida
| | - Néva P Meyer
- Biology Department, Clark University, Worcester, Massachusetts
| |
Collapse
|
66
|
The anatomy and development of the nervous system in Magelonidae (Annelida) - insights into the evolution of the annelid brain. BMC Evol Biol 2019; 19:173. [PMID: 31462293 PMCID: PMC6714456 DOI: 10.1186/s12862-019-1498-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023] Open
Abstract
Background The annelid anterior central nervous system is often described to consist of a dorsal prostomial brain, consisting of several commissures and connected to the ventral ganglionic nerve cord via circumesophageal connectives. In the light of current molecular phylogenies, our assumptions on the primary design of the nervous system in Annelida has to be reconsidered. For that purpose we provide a detailed investigation of the adult nervous system of Magelonidae – a putatively basally branching annelid family - and studied early stages of the development of the latter. Results Our comparative investigation using an integrative morphological approach shows that the nervous system of Magelonidae is located inside the epidermis. The brain is composed of an anterior compact neuropil and posteriorly encircles the prostomial coelomic cavities. From the brain two lateral medullary cords branch off which fuse caudally. Prominent brain structures such as nuchal organs, ganglia or mushroom bodies are absent and the entire nervous system is medullary. Our investigations also contradict previous investigations and present an updated view on established assumptions and descriptions. Conclusion The comprehensive dataset presented herein enables a detailed investigation of the magelonid anterior central nervous system for the first time. The data reveal that early in annelid evolution complexity of brains and anterior sensory structures rises. Polymorphic neurons in clusters and distinct brain parts, as well as lateral organs - all of which are not present in outgroup taxa and in the putative magelonid sister group Oweniidae - already evolved in Magelonidae. Commissures inside the brain, ganglia and nuchal organs, however, most likely evolved in the stem lineage of Amphinomidae + Sipuncula and Pleistoannelida (Errantia+ Sedentaria). The investigation demonstrates the necessity to continuously question established descriptions and interpretations of earlier publications and the need for transparent datasets. Our results also hint towards a stronger inclusion of larval morphology and developmental investigations in order to understand adult morphological features, not only in Annelida. Electronic supplementary material The online version of this article (10.1186/s12862-019-1498-9) contains supplementary material, which is available to authorized users.
Collapse
|
67
|
|
68
|
Rodrigo AP, Costa PM. The hidden biotechnological potential of marine invertebrates: The Polychaeta case study. ENVIRONMENTAL RESEARCH 2019; 173:270-280. [PMID: 30928858 DOI: 10.1016/j.envres.2019.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Marine biotechnology is under the spotlight, as researchers and industrialists become aware that bioprospecting through the oceans' vast biodiversity can replace the painstaking process of designing synthetic compounds. Millions of years of Natural Selection provided an almost inexhaustible source of marine products that can interfere with specific bioprocesses while being cost-effective, safer and more environmentally friendly. Still, the number of commercial applications of marine compounds, especially from eumetazoans, can seem disappointing. In most part, this results from the challenges of dealing with an immense biodiversity and with poorly known organisms with uncanny physiology. Consequently, shifting the current perspective from descriptive science to actually proposing applications can be a major incentive to industry. With this in mind, the present review focuses on one of the least studied but most representative group of marine animals: the Polychaeta annelids. Occupying nearly every marine habitat, from the deep sea to the intertidal, they can offer a wide array of natural products that are just beginning to be understood, showing properties compatible with anaesthetics, fluorescent probes, and even antibiotics and pesticides, for instance. Altogether, they are a showcase for the ocean's real biotechnological deterrent, albeit our still wispy knowledge on this vast and ancient environment.
Collapse
Affiliation(s)
- Ana P Rodrigo
- UCIBIO - Research Unit on Applied Molecular Biosciences, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Pedro M Costa
- UCIBIO - Research Unit on Applied Molecular Biosciences, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
69
|
Ananjeva NB. Current State of the Problems in the Phylogeny of Squamate Reptiles (Squamata, Reptilia). ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s2079086419020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Nanglu K, Caron JB. A New Burgess Shale Polychaete and the Origin of the Annelid Head Revisited. Curr Biol 2019; 28:319-326.e1. [PMID: 29374441 DOI: 10.1016/j.cub.2017.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/11/2017] [Accepted: 12/08/2017] [Indexed: 11/28/2022]
Abstract
Annelida is one of the most speciose (∼17,000 species) and ecologically successful phyla. Key to this success is their flexible body plan with metameric trunk segments and bipartite heads consisting of a prostomium bearing sensory structures and a peristomium containing the mouth. The flexibility of this body plan has traditionally proven problematic for reconstructing the evolutionary relationships within the Annelida. Although recent phylogenies have focused on resolving the interrelationships of the crown group [1-3], many questions remain regarding the early evolution of the annelid body plan itself, including the origin of the head [4]. Here we describe an abundant and exceptionally well-preserved polychaete with traces of putative neural and vascular tissues for the first time in a fossilized annelid. Up to three centimeters in length, Kootenayscolex barbarensis gen. et sp. nov. is described based on more than 500 specimens from Marble Canyon [5] and several specimens from the original Burgess Shale site (both in British Columbia, Canada). K. barbarensis possesses biramous parapodia along the trunk, bearing similar elongate and thin notochaetae and neurochaetae. A pair of large palps and one median antenna project from the anteriormost dorsal margin of the prostomium. The mouth-bearing peristomium bears neuropodial chaetae, a condition that is also inferred in Canadia and Burgessochaeta from the Burgess Shale, suggesting a chaetigorous origin for the peristomial portion of the head and a secondary loss of peristomial parapodia and chaetae in modern polychaetes.
Collapse
Affiliation(s)
- Karma Nanglu
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 2J7, Canada.
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 2J7, Canada; Department of Natural History Palaeobiology, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada; Department of Earth Sciences, University of Toronto, Toronto, ON M5S 3B1, Canada
| |
Collapse
|
71
|
Hou X, Wei M, Li Q, Zhang T, Zhou D, Kong D, Xie Y, Qin Z, Zhang Z. Transcriptome Analysis of Larval Segment Formation and Secondary Loss in the Echiuran Worm Urechis unicinctus. Int J Mol Sci 2019; 20:E1806. [PMID: 31013695 PMCID: PMC6514800 DOI: 10.3390/ijms20081806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/23/2019] [Accepted: 04/10/2019] [Indexed: 01/06/2023] Open
Abstract
The larval segment formation and secondary loss in echiurans is a special phenomenon, which is considered to be one of the important characteristics in the evolutionary relationship between the Echiura and Annelida. To better understand the molecular mechanism of this phenomenon, we revealed the larval transcriptome profile of the echiuran worm Urechis unicinctus using RNA-Seq technology. Twelve cDNA libraries of U. unicinctus larvae, late-trochophore (LT), early-segmentation larva (ES), segmentation larva (SL), and worm-shaped larva (WL) were constructed. Totally 243,381 unigenes were assembled with an average length of 1125 bp and N50 of 1836 bp, and 149,488 unigenes (61.42%) were annotated. We obtained 70,517 differentially expressed genes (DEGs) by pairwise comparison of the larval transcriptome data at different developmental stages and clustered them into 20 gene expression profiles using STEM software. Based on the typical profiles during the larval segment formation and secondary loss, eight signaling pathways were enriched, and five of which, mTOR, PI3K-AKT, TGF-β, MAPK, and Dorso-ventral axis formation signaling pathway, were proposed for the first time to be involved in the segment formation. Furthermore, we identified 119 unigenes related to the segment formation of annelids, arthropods, and chordates, in which 101 genes were identified in Drosophila and annelids. The function of most segment polarity gene homologs (hedgehog, wingless, engrailed, etc.) was conserved in echiurans, annelids, and arthropods based on their expression profiles, while the gap and pair-rule gene homologs were not. Finally, we verified that strong positive signals of Hedgehog were indeed located on the boundary of larval segments using immunofluorescence. Data in this study provide molecular evidence for the understanding of larval segment development in echiurans and may serve as a blueprint for segmented ancestors in future research.
Collapse
Affiliation(s)
- Xitan Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Maokai Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Qi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tingting Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Di Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Dexu Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yueyang Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
72
|
Iyer RG, Rogers DV, Levine M, Winchell CJ, Weisblat DA. Reproductive differences among species, and between individuals and cohorts, in the leech genus Helobdella (Lophotrochozoa; Annelida; Clitellata; Hirudinida; Glossiphoniidae), with implications for reproductive resource allocation in hermaphrodites. PLoS One 2019; 14:e0214581. [PMID: 30934006 PMCID: PMC6443171 DOI: 10.1371/journal.pone.0214581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/16/2019] [Indexed: 01/26/2023] Open
Abstract
Leeches and oligochaetes comprise a monophyletic group of annelids, the Clitellata, whose reproduction is characterized by simultaneous hermaphroditism. While most clitellate species reproduce by cross-fertilization, self-fertilization has been described within the speciose genus Helobdella. Here we document the reproductive life histories and reproductive capacities for three other Helobdella species. Under laboratory conditions, both H. robusta and H. octatestisaca exhibit uniparental reproduction, apparently reflecting self-fertility, and suggesting that this trait is ancestral for the genus. However, the third species, H. austinensis, seems incapable of reproduction by self-fertilization, so we inferred its reproductive life history by analyzing reproduction in breeding cohorts. Comparing the reproductive parameters for H. robusta reproducing in isolation and in cohorts revealed that reproduction in cohorts is dramatically delayed with respect to that of isolated individuals, and that cohorts of leeches coordinate their cocoon deposition in a manner that is not predicted from the reproductive parameters of individuals reproducing in isolation. Finally, our comparisons of reproductive capacity for individuals versus cohorts for H. robusta, and between different sizes of cohorts for H. austinensis, reveal differences in resource allocation between male and female reproductive roles that are consistent with evolutionary theory.
Collapse
Affiliation(s)
- Roshni G. Iyer
- Dept. of Electrical Engineering & Computer Sciences, Univ. of California, Berkeley, CA, United States of America
| | - D. Valle Rogers
- Dept. of Molecular & Cell Biology, Univ. of California, Berkeley, CA, United States of America
| | - Michelle Levine
- Dept. of Molecular & Cell Biology, Univ. of California, Berkeley, CA, United States of America
| | - Christopher J. Winchell
- Dept. of Molecular & Cell Biology, Univ. of California, Berkeley, CA, United States of America
| | - David A. Weisblat
- Dept. of Molecular & Cell Biology, Univ. of California, Berkeley, CA, United States of America
| |
Collapse
|
73
|
Holzer AS, Bartošová-Sojková P, Born-Torrijos A, Lövy A, Hartigan A, Fiala I. The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Mol Ecol 2019; 27:1651-1666. [PMID: 29575260 DOI: 10.1111/mec.14558] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/01/2018] [Accepted: 03/03/2018] [Indexed: 01/03/2023]
Abstract
The relationships between parasites and their hosts are intimate, dynamic and complex; the evolution of one is inevitably linked to the other. Despite multiple origins of parasitism in the Cnidaria, only parasites belonging to the Myxozoa are characterized by a complex life cycle, alternating between fish and invertebrate hosts, as well as by high species diversity. This inspired us to examine the history of adaptive radiations in myxozoans and their hosts by determining the degree of congruence between their phylogenies and by timing the emergence of myxozoan lineages in relation to their hosts. Recent genomic analyses suggested a common origin of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes, and the Myxozoa, and proposed fish as original hosts for both sister lineages. We demonstrate that the Myxozoa emerged long before fish populated Earth and that phylogenetic congruence with their invertebrate hosts is evident down to the most basal branches of the tree, indicating bryozoans and annelids as original hosts and challenging previous evolutionary hypotheses. We provide evidence that, following invertebrate invasion, fish hosts were acquired multiple times, leading to parallel cospeciation patterns in all major phylogenetic lineages. We identify the acquisition of vertebrate hosts that facilitate alternative transmission and dispersion strategies as reason for the distinct success of the Myxozoa, and identify massive host specification-linked parasite diversification events. The results of this study transform our understanding of the origins and evolution of parasitism in the most basal metazoan parasites known.
Collapse
Affiliation(s)
- Astrid S Holzer
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Pavla Bartošová-Sojková
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ana Born-Torrijos
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic.,Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Alena Lövy
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic.,Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ashlie Hartigan
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ivan Fiala
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| |
Collapse
|
74
|
Langeneck J, Barbieri M, Maltagliati F, Castelli A. Molecular phylogeny of Paraonidae (Annelida). Mol Phylogenet Evol 2019; 136:1-13. [PMID: 30936028 DOI: 10.1016/j.ympev.2019.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 11/27/2022]
Abstract
A molecular phylogeny of the family Paraonidae was reconstructed on the basis of 16S rDNA, COI and 18S rDNA sequences obtained from 66 individuals belonging to 38 nominal species and subspecies. In agreement with previous findings, Paraonidae represent a monophyletic group, closely related to Sternaspidae. The topology obtained by the Bayesian and Maximum Likelihood analyses on the combined dataset was not consistent with the traditional view on Paraonidae evolution, nor with a recent cladistic analysis. According to our results, Paraonidae are divided in five clades. The earliest branching clade (Clade I) included five species of the genera Cirrophorus and Paradoneis, whereas the remaining species of these genera were included in the Clade II. The genus Levinsenia is monophyletic and represents the sister group of a highly supported clade including some morphologically homogeneous species previously assigned to the genus Aricidea, which is here described as Blakeia n. gen. The remaining species of Aricidea clustered in a clade that included Paraonis as well. Paraonis can be interpreted as a pedomorphic form of Aricidea, accounting for the strong morphological divergence between the two genera. For priority rules, Aricidea should be considered a junior synonym of Paraonis. None of the subgenera traditionally recognised within Aricidea were monophyletic; in addition, the shallow molecular divergence identified among species, in particular for 18S rDNA sequences, suggests that the adaptive radiation of the genus Aricidea is relatively recent. Phylogenetic relationships suggested that the median antenna is an ancestral character, which has been independently lost several times, though a long, cirriform antenna only occurs in the genus Aricidea. The ancestral number of pre-branchial chaetigers is most likely three, even though arrangements with a higher number of chaetigers have been probably achieved at least twice independently. Notopodial modified chaetae appear to be a plesiomorphy of Paraonidae and they have been lost subsequently, whereas neuropodial modified chaetae have been acquired at least thrice independently through the evolutionary history of the family. Paraonidae show a strikingly high occurrence of cryptic and pseudocryptic species; results of the present work suggest that environmental features play a crucial role in the diversification of this family, whereas the influence of geographical distance appears less pronounced. Lastly, despite their importance in deep-water environments, Paraonidae probably are a primarily shallow-water family, that radiated in the deep sea secondarily.
Collapse
Affiliation(s)
- Joachim Langeneck
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy.
| | - Michele Barbieri
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy.
| | | | - Alberto Castelli
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy.
| |
Collapse
|
75
|
Han J, Conway Morris S, Hoyal Cuthill JF, Shu D. Sclerite-bearing annelids from the lower Cambrian of South China. Sci Rep 2019; 9:4955. [PMID: 30894583 PMCID: PMC6426949 DOI: 10.1038/s41598-019-40841-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Cambrian annelids are strikingly diverse and reveal important details of annelid character acquisition. Their contribution, however, to a wider understanding of the evolution of the trochozoans (encompassing the annelids as well as such groups as the brachiopods and molluscs) remains limited. Thus the early annelids had been linked to a variety of cataphract Cambrian metazoans, notably Wiwaxia and the halkieriids, but recent work assigns such fossils to stem-group molluscs. Here we report two new annelids from the Lower Cambrian Chengjiang Lagerstätte, South China. Ipoliknus avitus n. gen., n. sp. is biramous with neurochaetae and notochaetae, but significantly also bears dorsal spinose sclerites and dorso-lateral dentate sclerites. Adelochaeta sinensis n. gen., n. sp. is unique amongst Cambrian polychaetes in possessing the rod-like supports of the parapodia known as aciculae. This supports phylogenetic placement of Adelochaeta as sister to some more derived aciculate Palaeozoic taxa, but in contrast Ipoliknus is recovered as the most basal of the stem-group annelids. Sclerites and chaetae of I. avitus are interpreted respectively as the remnants and derivatives of a once more extensive cataphract covering that was a characteristic of more primitive trochozoans. The two sets of chaetae (noto- and neurochaetae) and two sets of sclerites (spinose and dentate) suggest that in a pre-annelid an earlier and more complete scleritome may have consisted of four zones of sclerites. Other cataphract taxa from the Lower Palaeozoic show a variety of scleritome configurations but establishing direct links with such basal annelids as Ipoliknus at present must remain conjectural.
Collapse
Affiliation(s)
- Jian Han
- Shaanxi Key Laboratory of Early Life and Environment, State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, 229 Taibai Road, Xi'an, 710069, P.R. China
| | - Simon Conway Morris
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.
| | - Jennifer F Hoyal Cuthill
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.,Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Degan Shu
- Shaanxi Key Laboratory of Early Life and Environment, State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, 229 Taibai Road, Xi'an, 710069, P.R. China.
| |
Collapse
|
76
|
Qin Z, Li X, Liu D, Wang Q, Lu L, Zhang Z. Analysis of chromosome karyotype and genome size in echiuran Urechisunicinctus Drasche, 1880 (Polychaeta, Urechidae). COMPARATIVE CYTOGENETICS 2019; 13:75-85. [PMID: 30918599 PMCID: PMC6426825 DOI: 10.3897/compcytogen.v13i1.31448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Karyotype and genome size are two primary cytogenetic characteristics of species, which are of great significance to the study of cytogenetics, taxonomy, phylogenesis, evolution as well as molecular biology. However, this basic cytogenetic information in echiurans is lacking. Therefore, we analyzed characteristics of karyotype and genome size in the echiuran worm Urechisunicinctus Drasche, 1880. In this study, coelomic cells of U.unicinctus were used for analyzing the genome size by a flow cytometry with chicken erythrocytes as DNA standard, and the 2C DNA content was determined to be 1.85 pg, which was corresponded to the genome size of 904.58 Mbp approximately. Furthermore, trochophores of U.unicinctus were dissociated and cells were utilized for preparing the chromosomes stained with DAPI, and the karyotype was determined as 2n = 30 (10m + 6sm + 6st + 8t), FN=52. Our data provided the basic cytogenetic information of U.unicinctus, which could be utilized in taxonomic study and whole-genome sequencing in future.
Collapse
Affiliation(s)
- Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Xueyu Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Qing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Li Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, ChinaOcean University of ChinaQingdaoChina
| |
Collapse
|
77
|
Beckers P, Helm C, Purschke G, Worsaae K, Hutchings P, Bartolomaeus T. The central nervous system of Oweniidae (Annelida) and its implications for the structure of the ancestral annelid brain. Front Zool 2019; 16:6. [PMID: 30911320 PMCID: PMC6417257 DOI: 10.1186/s12983-019-0305-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
Background Recent phylogenomic analyses congruently reveal a basal clade which consists of Oweniidae and Mageloniidae as sister group to the remaining Annelida. These results indicate that the last common ancestor of Annelida was a tube-dwelling organism. They also challenge traditional evolutionary hypotheses of different organ systems, among them the nervous system. In textbooks the central nervous system is described as consisting of a ganglionic ventral nervous system and a dorsally located brain with different tracts that connect certain parts of the brain to each other. Only limited information on the fine structure, however, is available for Oweniidae, which constitute the sister group (possibly together with Magelonidae) to all remaining annelids. Results The brain of Oweniidae is ring- shaped and basiepidermal. Ganglia, higher brain centers or complex sensory organs do not exist; instead the central nervous system is medullary. Posterior to the brain the ventral medullary cord arises directly from the ventral region of the brain in Myriowenia sp. while in Owenia fusiformis two medullary cords arise perpendicular to the brain ring, extend caudally and fuse posterior. The central nervous system is composed of a central neuropil and surrounding somata of the neurons. According to ultrastructural and histological data only one type of neuron is present in the central nervous system. Conclusion The central nervous system of Oweniidae is the simplest in terms of enlargement of the dorsal part of the brain and neuron distribution found among Annelida. Our investigation suggests that neither ganglia nor commissures inside the brain neuropil or clusters of polymorphic neurons were present in the annelid stem species. These structures evolved later within Annelida, most likely in the stem lineage of Amphinomidae, Sipuncula and Pleistoannelida. Palps were supposedly present in the last common ancestor of annelids and innervated by two nerves originating in the dorsal part of the brain. A broader comparison with species of each major spiralian clade shows the medullary nervous system to be a common feature and thus possibly representing the ancestral state of the spiralian nervous system. Moreover, ganglia and clusters of polymorphic neurons seemingly evolved independently in the compared taxa of Spiralia and Annelida. Electronic supplementary material The online version of this article (10.1186/s12983-019-0305-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick Beckers
- 1Institute of Evolutionary Biology, University of Bonn, 53121 Bonn, Germany
| | - Conrad Helm
- 2Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology Animal Evolution and Biodiversity, University of Göttingen, 37073 Göttingen, Germany
| | - Günter Purschke
- 3Department of Developmental Biology and Zoology, University of Osnabrück, 49069 Osnabrück, Germany
| | - Katrine Worsaae
- 4Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Pat Hutchings
- 5Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010 Australia.,6Department of Biological Sciences, Macquarie University, North Ryde, 2109 Australia
| | | |
Collapse
|
78
|
Amano M, Amiya N, Yokoyama T. Immunohistochemical localization of GnRH-immunoreactive cell bodies and fibers in the nerve ganglion of Perinereis aibuhitensis (Annelida: Polychaeta). Acta Histochem 2019; 121:234-239. [PMID: 30616841 DOI: 10.1016/j.acthis.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/05/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) gene sequence has been identified in an annelid polychaete marine worm using continual genome sequencing. The distribution of GnRH immunoreactive (ir) cell bodies and fibers in the nerve ganglion of the clam worm Perinereis aibuhitensis (Polychaeta) was examined by immunohistochemistry using a newly produced rabbit polyclonal antibody raised against the marine worm GnRH (mwGnRH). The specificity of the antibody was confirmed by dot blot assay. The antibody cross-reacted with mwGnRH, but not with other forms of GnRH such as octopus GnRH, tunicate GnRH-I, II, owl limpet GnRH, and lamprey GnRH-II. In P. aibuhitensis, mwGnRH-ir cell bodies were detected in the nuclei 15-22, the caudal part of the cerebral ganglion. Furthermore, mwGnRH-ir fibers were mainly observed in the optic neuropil, but mwGnRH-ir fibers were also detected in the central neuropil region, the subpharyngeal ganglion, and the ventral nerve cord. These results indicate that mwGnRH is synthesized in the cerebral ganglion, is transported through the subpharyngeal ganglion and the ventral nerve cord, and functions either as a neurotransmitter or neuromodulator.
Collapse
Affiliation(s)
- Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | - Noriko Amiya
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Takehiko Yokoyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
79
|
Wanninger A, Wollesen T. The evolution of molluscs. Biol Rev Camb Philos Soc 2019; 94:102-115. [PMID: 29931833 PMCID: PMC6378612 DOI: 10.1111/brv.12439] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 01/24/2023]
Abstract
Molluscs are extremely diverse invertebrate animals with a rich fossil record, highly divergent life cycles, and considerable economical and ecological importance. Key representatives include worm-like aplacophorans, armoured groups (e.g. polyplacophorans, gastropods, bivalves) and the highly complex cephalopods. Molluscan origins and evolution of their different phenotypes have largely remained unresolved, but significant progress has been made over recent years. Phylogenomic studies revealed a dichotomy of the phylum, resulting in Aculifera (shell-less aplacophorans and multi-shelled polyplacophorans) and Conchifera (all other, primarily uni-shelled groups). This challenged traditional hypotheses that proposed that molluscs gradually evolved complex phenotypes from simple, worm-like animals, a view that is corroborated by developmental studies that showed that aplacophorans are secondarily simplified. Gene expression data indicate that key regulators involved in anterior-posterior patterning (the homeobox-containing Hox genes) lost this function and were co-opted into the evolution of taxon-specific novelties in conchiferans. While the bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signalling pathway, that mediates dorso-ventral axis formation, and molecular components that establish chirality appear to be more conserved between molluscs and other metazoans, variations from the common scheme occur within molluscan sublineages. The deviation of various molluscs from developmental pathways that otherwise appear widely conserved among metazoans provides novel hypotheses on molluscan evolution that can be tested with genome editing tools such as the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein9) system.
Collapse
Affiliation(s)
- Andreas Wanninger
- Department of Integrative ZoologyUniversity of ViennaAlthanstrasse 14, 1090 ViennaAustria
| | - Tim Wollesen
- Department of Integrative ZoologyUniversity of ViennaAlthanstrasse 14, 1090 ViennaAustria
| |
Collapse
|
80
|
Starunov VV. The organization of musculature and the nervous system in the pygidial region of phyllodocid annelids. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-018-00430-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
81
|
Świątek P, Urbisz AZ. Architecture and Life History of Female Germ-Line Cysts in Clitellate Annelids. Results Probl Cell Differ 2019; 68:515-551. [PMID: 31598870 DOI: 10.1007/978-3-030-23459-1_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animal female and male germ-line cells often form syncytial units termed cysts, clusters, or clones. Within these cysts, the cells remain interconnected by specific cell junctions known as intercellular bridges or ring canals, which enable cytoplasm to be shared and macromolecules and organelles to be exchanged between cells. Numerous analyses have shown that the spatial organization of cysts and their functioning may differ between the sexes and taxa. The vast majority of our knowledge about the formation and functioning of germ-line cysts comes from studies of model species (mainly Drosophila melanogaster); the other systems of the cyst organization and functioning are much less known and are sometimes overlooked. Here, we present the current state of the knowledge of female germ-line cysts in clitellate annelids (Clitellata), which is a monophyletic taxon of segmented worms (Annelida). The organization of germ-line cysts in clitellates differs markedly from that of the fruit fly and vertebrates. In Clitellata, germ cells are not directly connected one to another, but, as a rule, each cell has one ring canal that connects it to an anuclear central cytoplasmic core, a cytophore. Thus, this pattern of cell distribution is similar to the germ-line cysts of Caenorhabditis elegans. The last decade of studies has revealed that although clitellate female germ-line cysts have a strong morphological plasticity, e.g., cysts may contain from 16 to as many as 2500 cells, the oogenesis always shows a meroistic mode, i.e., the interconnected cells take on different fates; a few (sometimes only one) become oocytes, whereas the rest play the role of supporting (nurse) cells and do not continue oogenesis.This is the first comprehensive summary of the current knowledge on the organization and functioning of female germ-line cysts in clitellate annelids.
Collapse
Affiliation(s)
- Piotr Świątek
- Faculty of Biology and Environmental Protection, Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland.
| | - Anna Z Urbisz
- Faculty of Biology and Environmental Protection, Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
82
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
83
|
Rimskaya-Korsakova NN, Galkin SV, Malakhov VV. The neuroanatomy of the siboglinid Riftia pachyptila highlights sedentarian annelid nervous system evolution. PLoS One 2018; 13:e0198271. [PMID: 30543637 PMCID: PMC6292602 DOI: 10.1371/journal.pone.0198271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/24/2018] [Indexed: 12/28/2022] Open
Abstract
Tracing the evolution of the siboglinid group, peculiar group of marine gutless annelids, requires the detailed study of the fragmentarily explored central nervous system of vestimentiferans and other siboglinids. 3D reconstructions of the neuroanatomy of Riftia revealed that the "brain" of adult vestimentiferans is a fusion product of the supraesophageal and subesophageal ganglia. The supraesophageal ganglion-like area contains the following neural structures that are homologous to the annelid elements: the peripheral perikarya of the brain lobes, two main transverse commissures, mushroom-like structures, commissural cell cluster, and the circumesophageal connectives with two roots which give rise to the palp neurites. Three pairs of giant perikarya are located in the supraesophageal ganglion, giving rise to the paired giant axons. The circumesophageal connectives run to the VNC. The subesophageal ganglion-like area contains a tripartite ventral aggregation of perikarya (= the postoral ganglion of the VNC) interconnected by the subenteral commissure. The paired VNC is intraepidermal, not ganglionated over most of its length, associated with the ciliary field, and comprises the giant axons. The pairs of VNC and the giant axons fuse posteriorly. Within siboglinids, the vestimentiferans are distinguished by a large and considerably differentiated brain. This reflects the derived development of the tentacle crown. The tentacles of vestimentiferans are homologous to the annelid palps based on their innervation from the dorsal and ventral roots of the circumesophageal connectives. Neuroanatomy of the vestimentiferan brains is close to the brains of Cirratuliiformia and Spionida/Sabellida, which have several transverse commissures, specific position of the giant somata (if any), and palp nerve roots (if any). The palps and palp neurite roots originally developed in all main annelid clades (basally branching, errantian and sedentarian annelids), show the greatest diversity in their number in sedentarian species. Over the course of evolution of Sedentaria, the number of palps and their nerve roots either dramatically increased (as in vestimentiferan siboglinids) or were lost.
Collapse
Affiliation(s)
| | - Sergey V. Galkin
- Laboratory of Ocean Benthic Fauna, Shirshov Institute of Oceanology of the Russian Academy of Science, Moscow, Russia
| | - Vladimir V. Malakhov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
84
|
Park C, Han YH, Lee SG, Ry KB, Oh J, Kern EMA, Park JK, Cho SJ. The developmental transcriptome atlas of the spoon worm Urechis unicinctus (Echiurida: Annelida). Gigascience 2018; 7:1-7. [PMID: 29618045 PMCID: PMC5863216 DOI: 10.1093/gigascience/giy007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 02/01/2018] [Indexed: 11/15/2022] Open
Abstract
Background Echiurida is one of the most intriguing major subgroups of annelida because, unlike most other annelids, echiurids lack metameric body segmentation as adults. For this reason, transcriptome analyses from various developmental stages of echiurid species can be of substantial value for understanding precise expression levels and the complex regulatory networks during early and larval development. Results A total of 914 million raw RNA-Seq reads were produced from 14 developmental stages of Urechis unicinctus and were de novo assembled into contigs spanning 63,928,225 bp with an N50 length of 2700 bp. The resulting comprehensive transcriptome database of the early developmental stages of U. unicinctus consists of 20,305 representative functional protein-coding transcripts. Approximately 66% of unigenes were assigned to superphylum-level taxa, including Lophotrochozoa (40%). The completeness of the transcriptome assembly was assessed using benchmarking universal single-copy orthologs; 75.7% of the single-copy orthologs were presented in our transcriptome database. We observed 3 distinct patterns of global transcriptome profiles from 14 developmental stages and identified 12,705 genes that showed dynamic regulation patterns during the differentiation and maturation of U. unicinctus cells. Conclusions We present the first large-scale developmental transcriptome dataset of U. unicinctus and provide a general overview of the dynamics of global gene expression changes during its early developmental stages. The analysis of time-course gene expression data is a first step toward understanding the complex developmental gene regulatory networks in U. unicinctus and will furnish a valuable resource for analyzing the functions of gene repertoires in various developmental phases.
Collapse
Affiliation(s)
- Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Hee Han
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung-Gwon Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoung-Bin Ry
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jooseong Oh
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Elizabeth M A Kern
- Division of EcoScience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joong-Ki Park
- Division of EcoScience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Jin Cho
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
85
|
Planques A, Malem J, Parapar J, Vervoort M, Gazave E. Morphological, cellular and molecular characterization of posterior regeneration in the marine annelid Platynereis dumerilii. Dev Biol 2018; 445:189-210. [PMID: 30445055 DOI: 10.1016/j.ydbio.2018.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023]
Abstract
Regeneration, the ability to restore body parts after an injury or an amputation, is a widespread but highly variable and complex phenomenon in animals. While having fascinated scientists for centuries, fundamental questions about the cellular basis of animal regeneration as well as its evolutionary history remain largely unanswered. Here, we present a study of regeneration of the marine annelid Platynereis dumerilii, an emerging comparative developmental biology model, which, like many other annelids, displays important regenerative abilities. When P. dumerilii worms are amputated, they are able to regenerate the posteriormost differentiated part of their body and a stem cell-rich growth zone that allows the production of new segments replacing the amputated ones. We show that posterior regeneration is a rapid process that follows a well reproducible path and timeline, going through specific stages that we thoroughly defined. Wound healing is achieved one day after amputation and a regeneration blastema forms one day later. At this time point, some tissue specification already occurs, and a functional posterior growth zone is re-established as early as three days after amputation. Regeneration timing is only influenced, in a minor manner, by worm size. Comparable regenerative abilities are found for amputations performed at different positions along the antero-posterior axis of the worm, except when amputation planes are very close to the pharynx. Regenerative abilities persist upon repeated amputations without important alterations of the process. We also show that intense cell proliferation occurs during regeneration and that cell divisions are required for regeneration to proceed normally. Finally, 5-ethynyl-2'-deoxyuridine (EdU) pulse and chase experiments suggest that blastemal cells mostly derive from the segment immediately abutting the amputation plane. The detailed characterization of P. dumerilii posterior body regeneration presented in this article provides the foundation for future mechanistic and comparative studies of regeneration in this species.
Collapse
Affiliation(s)
- Anabelle Planques
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Julien Malem
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Julio Parapar
- Departamento de Bioloxía, Universidade da Coruña, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
86
|
Kuo DH, Lai YT. On the origin of leeches by evolution of development. Dev Growth Differ 2018; 61:43-57. [PMID: 30393850 DOI: 10.1111/dgd.12573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
Abstract
Leeches are a unique group of annelids arising from an ancestor that would be characterized as a freshwater oligochaete worm. Comparative biology of the oligochaetes and the leeches reveals that body plan changes in the oligochaete-to-leech transition probably occurred by addition or modification of the terminal steps in embryonic development and that they were likely driven by a change in the feeding behavior in the ancestor of leeches. In this review article, developmental changes that are associated with the evolution of several leech-specific traits are discussed. These include (1) the evolution of suckers, (2) the loss of chaetae, (3) the loss of septa, and (4) a fixed number of segments. An altered developmental fate of the teloblast is further proposed to be a key factor contributing to the fixation of the segment number, and the evolutionary change in teloblast development may also account for the loss of the ability to regenerate the lost body segments in the leech.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Te Lai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
87
|
Tomioka S, Kakui K, Kajihara H. Molecular Phylogeny of the Family Capitellidae (Annelida). Zoolog Sci 2018; 35:436-445. [PMID: 30298787 DOI: 10.2108/zs180009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Capitellids have emerged as monophyletic in most but not all recent molecular phylogenies, indicating that more extensive taxon sampling is necessary. In addition, monophyly of most or all capitellid genera was questionable, as some diagnostic characters vary ontogenetically within individuals. We tested the monophyly of Capitellidae and eight capitellid genera using phylogenetic analyses of combined 18S, 28S, H3, and COI gene sequences from 36 putative capitellid species. In our trees, Capitellidae formed a monophyletic sister group to Echiura, and Capitella was also monophyletic, separated by a long branch from other capitellids. Well-supported clades each containing representatives of different genera, or containing a subset of species within a genus, indicated that Barantolla, Heteromastus, and Notomastus are likely not monophyletic. We mapped three morphological characters traditionally used to define capitellid genera (head width relative to width of first segment, number of thoracic segments, and number of segments with capillary chaetae) onto our tree. While Capitella showed unique character states, states in the other genera were decidedly not phylogenetically informative. Morphology-based capitellid taxonomy will require a fine-scale reevaluation of character states and detection of new characters.
Collapse
Affiliation(s)
- Shinri Tomioka
- 1 Rishiri Town Museum, Senhoshi, Rishiri Is., Hokkaido 097-0311, Japan
| | - Keiichi Kakui
- 2 Department of Biological Sciences, Faculty of Science, Hokkaido University, N10 W8, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroshi Kajihara
- 2 Department of Biological Sciences, Faculty of Science, Hokkaido University, N10 W8, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
88
|
Helm C, Beckers P, Bartolomaeus T, Drukewitz SH, Kourtesis I, Weigert A, Purschke G, Worsaae K, Struck TH, Bleidorn C. Convergent evolution of the ladder-like ventral nerve cord in Annelida. Front Zool 2018; 15:36. [PMID: 30275868 PMCID: PMC6161469 DOI: 10.1186/s12983-018-0280-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A median, segmented, annelid nerve cord has repeatedly been compared to the arthropod and vertebrate nerve cords and became the most used textbook representation of the annelid nervous system. Recent phylogenomic analyses, however, challenge the hypothesis that a subepidermal rope-ladder-like ventral nerve cord (VNC) composed of a paired serial chain of ganglia and somata-free connectives represents either a plesiomorphic or a typical condition in annelids. RESULTS Using a comparative approach by combining phylogenomic analyses with morphological methods (immunohistochemistry and CLSM, histology and TEM), we compiled a comprehensive dataset to reconstruct the evolution of the annelid VNC. Our phylogenomic analyses generally support previous topologies. However, the so far hard-to-place Apistobranchidae and Psammodrilidae are now incorporated among the basally branching annelids with high support. Based on this topology we reconstruct an intraepidermal VNC as the ancestral state in Annelida. Thus, a subepidermal ladder-like nerve cord clearly represents a derived condition. CONCLUSIONS Based on the presented data, a ladder-like appearance of the ventral nerve cord evolved repeatedly, and independently of the transition from an intraepidermal to a subepidermal cord during annelid evolution. Our investigations thereby propose an alternative set of neuroanatomical characteristics for the last common ancestor of Annelida or perhaps even Spiralia.
Collapse
Affiliation(s)
- Conrad Helm
- Animal Evolution and Biodiversity, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Patrick Beckers
- Institute of Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany
| | - Thomas Bartolomaeus
- Institute of Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany
| | | | - Ioannis Kourtesis
- Animal Evolution and Biodiversity, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Anne Weigert
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Günter Purschke
- Department of Developmental Biology and Zoology, University of Osnabrück, 49069 Osnabrück, Germany
| | - Katrine Worsaae
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Torsten H. Struck
- Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318 Oslo, Norway
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Georg-August-University Göttingen, 37073 Göttingen, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
89
|
Oh HY, Kim CH, Go HJ, Park NG. Isolation of an invertebrate-type lysozyme from the nephridia of the echiura, Urechis unicinctus, and its recombinant production and activities. FISH & SHELLFISH IMMUNOLOGY 2018; 79:351-362. [PMID: 29753144 DOI: 10.1016/j.fsi.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 05/26/2023]
Abstract
Invertebrates, unlike vertebrates which have adaptive immune system, rely heavily on the innate immune system for the defense against pathogenic bacteria. Lysozymes, along with other immune effectors, are regarded as an important group in this defense. An invertebrate-type (i-type) lysozyme, designated Urechis unicinctus invertebrate-type lysozyme, Uu-ilys, has been isolated from nephridia of Urechis unicinctus using a series of high performance liquid chromatography (HPLC), and ultrasensitive radial diffusion assay (URDA) as a bioassay system. Analyses of the primary structure and cDNA cloning revealed that Uu-ilys was approximately 14 kDa and composed of 122 amino acids (AAs) of which the precursor had a total of 160 AAs containing a signal peptide of 18 AAs and a pro-sequence of 20 AAs encoded by the nucleotide sequence of 714 bp that comprises a 5' untranslated region (UTR) of 42 bp, an open reading frame (ORF) of 483 bp, and a 3' UTR of 189 bp. Multiple sequence alignment showed Uu-ilys has high homology to i-type lysozymes from several annelids. Relatively high transcriptional expression levels of Uu-ilys was detected in nephridia, anal vesicle, and intestine. The native Uu-ilys exhibited comparable lysozyme enzymatic and antibacterial activities to hen egg white lysozyme. Collectively, these data suggest that Uu-ilys, the isolated antibacterial protein, plays a role in the immune defense mechanism of U. unicinctus. Recombinant Uu-ilys (rUu-ilys) produced in a bacterial expression system showed significantly decreased lysozyme lytic activity from that of the native while its potency on radial diffusion assay detecting antibacterial activity was retained, which may indicate the non-enzymatic antibacterial capacity of Uu-ilys.
Collapse
Affiliation(s)
- Hye Young Oh
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Chan-Hee Kim
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
90
|
Buffet JP, Corre E, Duvernois-Berthet E, Fournier J, Lopez PJ. Adhesive gland transcriptomics uncovers a diversity of genes involved in glue formation in marine tube-building polychaetes. Acta Biomater 2018; 72:316-328. [PMID: 29597026 DOI: 10.1016/j.actbio.2018.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
Tube-building sabellariid polychaetes are hermatypic organisms capable of forming vast reefs in highly turbulent marine habitats. Sabellariid worms assemble their tube by gluing together siliceous and calcareous clastic particles using a polyelectrolytic biocement. Here, we performed transcriptomic analyses to investigate the genes that are differentially expressed in the parathorax region, which contains the adhesive gland and tissues, from the rest of the body. We found a large number of candidate genes to be involved in the composition and formation of biocement in two species: Sabellaria alveolata and Phragmatopoma caudata. Our results indicate that the glue is likely to be composed by a large diversity of cement-related proteins, including Poly(S), GY-rich, H-repeat and miscellaneous categories. However, sequences divergence and differences in expression profiles between S. alveolata and P. caudata of cement-related proteins may reflect adaptation to the type of substratum used to build their tube, and/or to their habitat (temperate vs tropical, amplitude of pH, salinity …). Related to the L-DOPA metabolic pathways and linked with the genes that were differentially expressed in the parathorax region, we found that tyrosinase and peroxidase gene families may have undergone independent expansion in the two Sabellariidae species investigated. Our data also reinforce the importance of protein modifications in cement formation. Altogether these new genomic resources help to identify novel transcripts encoding for cement-related proteins, but also important enzymes putatively involved in the chemistry of the adhesion process, such as kinases, and may correspond to new targets to develop biomimetic approaches. STATEMENTS OF SIGNIFICANCE The diversity of bioadhesives elaborated by marine invertebrates is a tremendous source of inspiration to develop biomimetic approaches for biomedical and technical applications. Recent studies on the adhesion system of mussel, barnacle and sea star had highlighted the usefulness of high-throughput RNA sequencing in accelerating the development of biomimetic adhesives. Adhesion in sandcastle worms, which involves catechol and phosphate chemistries, polyelectrolyte complexes, supramolecular architectures, and a coacervation process, is a useful model to develop multipurpose wet adhesives. Using transcriptomic tools, we have explored the diversity of genes encoding for structural and catalytic proteins involved in cement formation of two sandcastle worm species, Sabellaria alveolata and Phragmatopoma caudata. The important genomic resource generated should help to design novel "blue" adhesives.
Collapse
Affiliation(s)
- Jean-Philippe Buffet
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques, MNHN/CNRS-7208 Sorbonne Université/IRD-207/UCN /UA, 43 rue Cuvier, Paris 75005, France
| | - Erwan Corre
- Station Biologique - FR 2424, CNRS/Sorbonne Université, ABiMS, Roscoff 29680, France
| | | | - Jérôme Fournier
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques, MNHN/CNRS-7208 Sorbonne Université/IRD-207/UCN /UA, 43 rue Cuvier, Paris 75005, France
| | - Pascal Jean Lopez
- UMR Biologie des Organismes et des Ecosystèmes Aquatiques, MNHN/CNRS-7208 Sorbonne Université/IRD-207/UCN /UA, 43 rue Cuvier, Paris 75005, France.
| |
Collapse
|
91
|
Zhang Y, Sun J, Rouse GW, Wiklund H, Pleijel F, Watanabe HK, Chen C, Qian PY, Qiu JW. Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms (Aphroditiformia, Annelida). Mol Phylogenet Evol 2018; 125:220-231. [PMID: 29625228 DOI: 10.1016/j.ympev.2018.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 04/02/2018] [Indexed: 01/07/2023]
Abstract
Next-generation sequencing (NGS) has become a powerful tool in phylogenetic and evolutionary studies. Here we applied NGS to recover two ribosomal RNA genes (18S and 28S) from 16 species and 15 mitochondrial genomes from 16 species of scale worms representing six families in the suborder Aphroditiformia (Phyllodocida, Annelida), a complex group of polychaetes characterized by the presence of dorsal elytra or scales. The phylogenetic relationship of the several groups of scale worms remains unresolved due to insufficient taxon sampling and low resolution of individual gene markers. Phylogenetic tree topology based on mitochondrial genomes is comparable with that based on concatenated sequences from two mitochondrial genes (cox1 and 16S) and two ribosomal genes (18S and 28S) genes, but has higher statistical support for several clades. Our analyses show that Aphroditiformia is monophyletic, indicating the presence of elytra is an apomorphic trait. Eulepethidae and Aphroditidae together form the sister group to all other families in this suborder, whereas Acoetidae is sister to Iphionidae. Polynoidae is monophyletic, but within this family the deep-sea subfamilies Branchinotogluminae and Macellicephalinae are paraphyletic. Mitochondrial genomes in most scale-worm families have a conserved gene order, but within Polynoidae there are two novel arrangement patterns in the deep-sea clade. Mitochondrial protein-coding genes in polynoids as a whole have evolved under strong purifying selection, but substitution rates in deep-sea species are much higher than those in shallow-water species, indicating that purifying selection is relaxed in deep-sea polynoids. There are positive selected amino acids for some mitochondrial genes of the deep-sea clade, indicating they may involve in the adaption of deep-sea polynoids. Overall, our study (1) provided more evidence for reconstruction of the phylogeny of Aphroditiformia, (2) provided evidence to refute the assumption that mitochondrial gene order in Errantia is conserved, and (3) indicated that the deep-sea extreme environment may have affected the mitochondrial genome evolution rate and gene order arrangement in Polynoidae.
Collapse
Affiliation(s)
- Yanjie Zhang
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Hong Kong, China.
| | - Jin Sun
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Greg W Rouse
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Helena Wiklund
- Zoology Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Fredrik Pleijel
- Department of Marine Sciences, University of Gothenburg, Tjärnö, SE-452 96 Strömstad, Sweden.
| | - Hiromi K Watanabe
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Chong Chen
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China.
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Hong Kong, China.
| |
Collapse
|
92
|
Sharma PP. Chelicerates and the Conquest of Land: A View of Arachnid Origins Through an Evo-Devo Spyglass. Integr Comp Biol 2018; 57:510-522. [PMID: 28957520 DOI: 10.1093/icb/icx078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The internal phylogeny of Chelicerata and the attendant evolutionary scenario of arachnid terrestrialization have a long and contentious history. Previous studies of developmental gene expression data have suggested that respiratory systems of spiders, crustaceans, and insects are all serially homologous structures derived from the epipods (outer appendage rami) of the arthropod ancestor, corresponding to an ancestral gill. A separate body of evidence has suggested that the respiratory systems of arachnids are modified, inverted telopods (inner rami, or legs). Here I review these dissonant homology statements and compare the developmental genetic basis for respiratory system development in insects and arachnids. I show that the respiratory primordia of arachnids are not positionally homologous to those of insects. I further demonstrate that candidate genes critical to tracheal fate specification in Drosophila melanogaster are expressed very differently in arachnid exemplars. Taken together, these data suggest that mechanisms of respiratory system development are not derived from homologous structures or mechanisms in insects and arachnids, and that different terrestrial arthropod lineages have solved the challenge of aerial respiration using different developmental mechanisms.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 352 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
93
|
Wang HC, Minh BQ, Susko E, Roger AJ. Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation. Syst Biol 2018; 67:216-235. [PMID: 28950365 DOI: 10.1093/sysbio/syx068] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 08/02/2017] [Indexed: 11/14/2022] Open
Abstract
Proteins have distinct structural and functional constraints at different sites that lead to site-specific preferences for particular amino acid residues as the sequences evolve. Heterogeneity in the amino acid substitution process between sites is not modeled by commonly used empirical amino acid exchange matrices. Such model misspecification can lead to artefacts in phylogenetic estimation such as long-branch attraction. Although sophisticated site-heterogeneous mixture models have been developed to address this problem in both Bayesian and maximum likelihood (ML) frameworks, their formidable computational time and memory usage severely limits their use in large phylogenomic analyses. Here we propose a posterior mean site frequency (PMSF) method as a rapid and efficient approximation to full empirical profile mixture models for ML analysis. The PMSF approach assigns a conditional mean amino acid frequency profile to each site calculated based on a mixture model fitted to the data using a preliminary guide tree. These PMSF profiles can then be used for in-depth tree-searching in place of the full mixture model. Compared with widely used empirical mixture models with $k$ classes, our implementation of PMSF in IQ-TREE (http://www.iqtree.org) speeds up the computation by approximately $k$/1.5-fold and requires a small fraction of the RAM. Furthermore, this speedup allows, for the first time, full nonparametric bootstrap analyses to be conducted under complex site-heterogeneous models on large concatenated data matrices. Our simulations and empirical data analyses demonstrate that PMSF can effectively ameliorate long-branch attraction artefacts. In some empirical and simulation settings PMSF provided more accurate estimates of phylogenies than the mixture models from which they derive.
Collapse
Affiliation(s)
- Huai-Chun Wang
- Department of Mathematics and Statistics, 6316 Coburg Road.,Department of Biochemistry and Molecular Biology, 5850 College Street, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Bui Quang Minh
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Austria
| | - Edward Susko
- Department of Mathematics and Statistics, 6316 Coburg Road.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, 5850 College Street, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
94
|
Gong J, Zhao R, Deng J, Zhao Y, Zuo J, Huang L, Jing M. Genetic diversity and population structure of penis fish (Urechis unicinctus) based on mitochondrial and nuclear gene markers. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1261-1268. [PMID: 29482423 DOI: 10.1080/24701394.2018.1444039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urechis unicinctus is distributed only in Bohai Gulf of China and Korean and Japanese coast. The wild populations of this species have sharply declined in China and Japan. We collected 105 samples from six localities of Bohai Gulf and Korea coast, and investigated genetic diversity and population structure with mitochondrial COI, 16S-rRNA and nuclear 28S-rRNA gene fragments. Genetic diversity of U. unicinctus based on COI sequences was still high (Hd: 0.9595, π: 0.0101), however, 28S-rRNA gene sequences showed low level of genetic diversity (Hd: 0.4084, π: 0.0007). Based on COI sequences, FST values between populations ranged from -0.00204 to 0.05210, and 99.12% genetic diversity was contributed by different individuals within population. Both phylogenetic trees and median-joining network did not show clear geographic cluster, haplotypes from different populations were mixed. Our results indicated low level of genetic divergence among different localities of U. unicinctus, and this species should be treated as a whole population among China, Japan and Korea coast during species conservation.
Collapse
Affiliation(s)
- Jie Gong
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Ruoping Zhao
- b State Key Laboratory of Genetic Resources and Evolution , Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , Yunnan , P. R. China
| | - Jiaheng Deng
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Yancui Zhao
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Jincheng Zuo
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Ling Huang
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| | - Meidong Jing
- a School of Life Sciences , Ludong University , Yantai , Shandong , P. R. China
| |
Collapse
|
95
|
Kuo DH, Hsiao YH. Duplicated FoxA genes in the leech Helobdella: Insights into the evolution of direct development in clitellate annelids. Dev Dyn 2018; 247:763-778. [PMID: 29396890 DOI: 10.1002/dvdy.24621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND As an adaptation to the land, the clitellate annelid had reorganized its embryogenesis to develop "directly" without the ancestral planktonic larval stage. To study the evolution of gut development in the directly developing clitellates, we characterized the expression pattern of the conserved gut gene, FoxA, in the embryonic development of the leech. RESULTS The leech has three FoxA paralogs. Hau-FoxA1 is first expressed in a subset of endoderm cells and then in the foregut and the midgut. Hau-FoxA2 is expressed in the stomodeum, which is secondarily derived from the anterior ectoderm in the clitellates rather than the tissue around the blastopore, the ancestral site of mouth formation in Phylum Annelida. Hau-FoxA3 is expressed during the morphogenesis of segmental ganglia from the ectodermal teloblast lineages, a clitellate-specific trait. Hau-FoxA1 and Hau-FoxA2 are also expressed during the morphogenesis of the leech-specific front sucker. CONCLUSIONS The expression patterns suggested that Hau-FoxA1 carries out most of the conserved function in the endoderm and gut development, while the other two duplicates appear to have evolved unique novel functions in the directly developing clitellate embryos. Therefore, neofunctionalization and co-option of FoxA might have made a significant contribution to the evolution of direct development in Clitellata. Developmental Dynamics 247:763-778, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Hsiao
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
96
|
Kocot KM, Struck TH, Merkel J, Waits DS, Todt C, Brannock PM, Weese DA, Cannon JT, Moroz LL, Lieb B, Halanych KM. Phylogenomics of Lophotrochozoa with Consideration of Systematic Error. Syst Biol 2018; 66:256-282. [PMID: 27664188 DOI: 10.1093/sysbio/syw079] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/24/2016] [Indexed: 01/13/2023] Open
Abstract
Phylogenomic studies have improved understanding of deep metazoan phylogeny and show promise for resolving incongruences among analyses based on limited numbers of loci. One region of the animal tree that has been especially difficult to resolve, even with phylogenomic approaches, is relationships within Lophotrochozoa (the animal clade that includes molluscs, annelids, and flatworms among others). Lack of resolution in phylogenomic analyses could be due to insufficient phylogenetic signal, limitations in taxon and/or gene sampling, or systematic error. Here, we investigated why lophotrochozoan phylogeny has been such a difficult question to answer by identifying and reducing sources of systematic error. We supplemented existing data with 32 new transcriptomes spanning the diversity of Lophotrochozoa and constructed a new set of Lophotrochozoa-specific core orthologs. Of these, 638 orthologous groups (OGs) passed strict screening for paralogy using a tree-based approach. In order to reduce possible sources of systematic error, we calculated branch-length heterogeneity, evolutionary rate, percent missing data, compositional bias, and saturation for each OG and analyzed increasingly stricter subsets of only the most stringent (best) OGs for these five variables. Principal component analysis of the values for each factor examined for each OG revealed that compositional heterogeneity and average patristic distance contributed most to the variance observed along the first principal component while branch-length heterogeneity and, to a lesser extent, saturation contributed most to the variance observed along the second. Missing data did not strongly contribute to either. Additional sensitivity analyses examined effects of removing taxa with heterogeneous branch lengths, large amounts of missing data, and compositional heterogeneity. Although our analyses do not unambiguously resolve lophotrochozoan phylogeny, we advance the field by reducing the list of viable hypotheses. Moreover, our systematic approach for dissection of phylogenomic data can be applied to explore sources of incongruence and poor support in any phylogenomic data set. [Annelida; Brachiopoda; Bryozoa; Entoprocta; Mollusca; Nemertea; Phoronida; Platyzoa; Polyzoa; Spiralia; Trochozoa.].
Collapse
Affiliation(s)
- Kevin M Kocot
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Biological Sciences and Alabama Museum of Natural History, 307 Mary Harmon Bryant Hall, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Torsten H Struck
- Natural History Museum, Department of Research and Collections, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway
| | - Julia Merkel
- Johannes Gutenberg University, Institute of Zoology, 55099 Mainz, Germany
| | - Damien S Waits
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| | - Christiane Todt
- University Museum of Bergen, The Natural History Collections, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Pamela M Brannock
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| | - David A Weese
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Biological and Environmental Sciences, Georgia College and State University, Campus Box 81, Milledgeville, GA 31061 USA
| | - Johanna T Cannon
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA.,Department of Zoology, Naturhistoriska riksmuseet, Box 50007, 104 05 Stockholm, Sweden
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA
| | - Bernhard Lieb
- Johannes Gutenberg University, Institute of Zoology, 55099 Mainz, Germany
| | - Kenneth M Halanych
- Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
97
|
Hutchings P, Kupriyanova E. Cosmopolitan polychaetes – fact or fiction? Personal and historical perspectives. INVERTEBR SYST 2018. [DOI: 10.1071/is17035] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the biogeographical and taxonomical literature before the 1980s there was a wide perception that widespread, often referred to as ‘cosmopolitan’, species were very common among polychaetes. Here we discuss the origins of this perception, how it became challenged, and our current understanding of marine annelid distributions today. We comment on the presence of widely distributed species in the deep sea and on artificially extended ranges of invasive species that have been dispersed by anthropogenic means. We also suggest the measures needed to revolve the status of species with reported cosmopolitan distributions and stress the value of museum collections and vouchers to be associated with DNA sequences in resolving species distributions.
Collapse
|
98
|
Worsaae K, Giribet G, Martínez A. The role of progenesis in the diversification of the interstitial annelid lineage Psammodrilidae. INVERTEBR SYST 2018. [DOI: 10.1071/is17063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Psammodrilidae constitutes a family of understudied, nearly completely ciliated, small-sized annelids, whose systematic position in Annelida remains unsettled and whose internal phylogeny is here investigated for the first time. Psammodrilids possess hooked chaetae typical of macroscopic tube-dwelling semi-sessile annelids, such as Arenicolidae. Yet, several minute members resemble, with their conspicuous gliding by ciliary motion and vagile lifestyle, interstitial fauna, adapted to move between sand grains. Moreover, psammodrilids exhibit a range of unique features, for example, bendable aciculae, a collar region with polygonal unciliated cells, and a muscular pumping pharynx. We here present a combined phylogeny of Psammodrilidae including molecular and morphological data of all eight described species (two described herein as Psammodrilus didomenicoi, sp. nov. and P. norenburgi, sp. nov.) as well as four undescribed species. Ancestral character state reconstruction suggests the ancestor of Psammodrilidae was a semi-sessile larger form. Miniaturisation seems to have occurred multiple times independently within Psammodrilidae, possibly through progenesis, yielding small species with resemblance to a juvenile stage of the larger species. We find several new cryptic species and generally reveal an unexpected diversity and distribution of this small family. This success may be favoured by their adaptive morphology, here indicated to be genetically susceptible to progenesis.
Collapse
|
99
|
Özpolat BD, Handberg-Thorsager M, Vervoort M, Balavoine G. Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid Platynereis dumerilii. eLife 2017; 6:30463. [PMID: 29231816 PMCID: PMC5764573 DOI: 10.7554/elife.30463] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
Cell lineage, cell cycle, and cell fate are tightly associated in developmental processes, but in vivo studies at single-cell resolution showing the intricacies of these associations are rare due to technical limitations. In this study on the marine annelid Platynereis dumerilii, we investigated the lineage of the 4d micromere, using high-resolution long-term live imaging complemented with a live-cell cycle reporter. 4d is the origin of mesodermal lineages and the germline in many spiralians. We traced lineages at single-cell resolution within 4d and demonstrate that embryonic segmental mesoderm forms via teloblastic divisions, as in clitellate annelids. We also identified the precise cellular origins of the larval mesodermal posterior growth zone. We found that differentially-fated progeny of 4d (germline, segmental mesoderm, growth zone) display significantly different cell cycling. This work has evolutionary implications, sets up the foundation for functional studies in annelid stem cells, and presents newly established techniques for live imaging marine embryos.
Collapse
|
100
|
Gazave E, Lemaître QIB, Balavoine G. The Notch pathway in the annelid Platynereis: insights into chaetogenesis and neurogenesis processes. Open Biol 2017; 7:rsob.160242. [PMID: 28148821 PMCID: PMC5356439 DOI: 10.1098/rsob.160242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Notch is a key signalling pathway playing multiple and varied functions during development. Notch regulates the selection of cells with a neurogenic fate and maintains a pool of yet uncommitted precursors through lateral inhibition, both in insects and in vertebrates. Here, we explore the functions of Notch in the annelid Platynereis dumerilii (Lophotrochozoa). Conserved components of the pathway are identified and a scenario for their evolution in metazoans is proposed. Unexpectedly, neither Notch nor its ligands are expressed in the neurogenic epithelia of the larva at the time when massive neurogenesis begins. Using chemical inhibitors and neural markers, we demonstrate that Notch plays no major role in the general neurogenesis of larvae. Instead, we find Notch components expressed in nascent chaetal sacs, the organs that produce the annelid bristles. Impairing Notch signalling induces defects in chaetal sac formation, abnormalities in chaetae producing cells and a change of identity of chaeta growth accessory cells. This is the first bilaterian species in which the early neurogenesis processes appear to occur without a major involvement of the Notch pathway. Instead, Notch is co-opted to pattern annelid-specific organs, likely through a lateral inhibition process. These features reinforce the view that Notch signalling has been recruited multiple times in evolution due to its remarkable ‘toolkit’ nature.
Collapse
Affiliation(s)
- Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Quentin I B Lemaître
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|