51
|
de Vries JJ, Laan DM, Frey F, Koenderink GH, de Maat MPM. A systematic review and comparison of automated tools for quantification of fibrous networks. Acta Biomater 2023; 157:263-274. [PMID: 36509400 DOI: 10.1016/j.actbio.2022.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fibrous networks are essential structural components of biological and engineered materials. Accordingly, many approaches have been developed to quantify their structural properties, which define their material properties. However, a comprehensive overview and comparison of methods is lacking. Therefore, we systematically searched for automated tools quantifying network characteristics in confocal, stimulated emission depletion (STED) or scanning electron microscopy (SEM) images and compared these tools by applying them to fibrin, a prototypical fibrous network in thrombi. Structural properties of fibrin such as fiber diameter and alignment are clinically relevant, since they influence the risk of thrombosis. Based on a systematic comparison of the automated tools with each other, manual measurements, and simulated networks, we provide guidance to choose appropriate tools for fibrous network quantification depending on imaging modality and structural parameter. These tools are often able to reliably measure relative changes in network characteristics, but absolute numbers should be interpreted with care. STATEMENT OF SIGNIFICANCE: Structural properties of fibrous networks define material properties of many biological and engineered materials. Many methods exist to automatically quantify structural properties, but an overview and comparison is lacking. In this work, we systematically searched for all publicly available automated analysis tools that can quantify structural properties of fibrous networks. Next, we compared them by applying them to microscopy images of fibrin networks. We also benchmarked the automated tools against manual measurements or synthetic images. As a result, we give advice on which automated analysis tools to use for specific structural properties. We anticipate that researchers from a large variety of fields, ranging from thrombosis and hemostasis to cancer research, and materials science, can benefit from our work.
Collapse
Affiliation(s)
- Judith J de Vries
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne M Laan
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Moniek P M de Maat
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
52
|
Wang D, Duan J, Liu J, Yi H, Zhang Z, Song H, Li Y, Zhang K. Stimuli-Responsive Self-Degradable DNA Hydrogels: Design, Synthesis, and Applications. Adv Healthc Mater 2023:e2203031. [PMID: 36708144 DOI: 10.1002/adhm.202203031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/11/2023] [Indexed: 01/29/2023]
Abstract
DNA hydrogels play an increasingly important role in biomedicine and bioanalysis applications. Due to their high programmability, multifunctionality and biocompatibility, they are often used as effective carriers for packing drugs, cells, or other bioactive cargoes in vitro and in vivo. However, the stability of the DNA hydrogels prevents their in-demand rapid release of cargoes to achieve a full therapeutic effect in time. For bioanalysis, the generation of signals sometimes needs the DNA hydrogel to be rapidly degraded when sensing target molecules. To meet these requirements, stimulus-responsive DNA hydrogels are designed. By responding to different stimuli, self-degradable DNA hydrogels can switch from gel to solution for quantitative bioanalysis and precision cargo delivery. This review summarizes the recently developed innovative methods for designing stimuli-responsive self-degradable DNA hydrogels and showed their applications in the bioanalysis and biomedicines fields. Challenges, as well as prospects, are also discussed.
Collapse
Affiliation(s)
- Danyu Wang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Duan
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingwen Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Yi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiwei Song
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
53
|
Xu J, Jiang Y, Gao L. Synthetic strain-stiffening hydrogels towards mechanical adaptability. J Mater Chem B 2023; 11:221-243. [PMID: 36507877 DOI: 10.1039/d2tb01743a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living organisms are made of wet, soft tissues. However, there is only one candidate to simultaneously replicate the mechanical and composition features of load-bearing tissues, that is, strain-stiffening hydrogels. The conventional mechanical match design principle is mostly limited to stiffness matching. However, this strategy cannot sufficiently and necessarily lead to mechanical matching over the whole physiologic deformation period for tissues and damages the tissues over time. In this review, we aim to provide a comprehensive summary of the reported synthetic strain-stiffening hydrogels and particularly focus on the relationship between their structure and performance. Initially, we present a brief introduction on the significance of strain-stiffening hydrogels in mimicking the mechanics of tissues, and then we discuss the qualitative evaluation of the strain-stiffening behaviors to guide the design of materials towards mimicking soft tissue. After distinguishing the mechanical testing methods, we focus on the methods for the preparation of typical strain-stiffening hydrogels based on categories, such as network without strand entanglement, semiflexible network, and anisotropic networks. Subsequently, we discuss the structural evolution of strain-stiffening hydrogels. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring strain-stiffening hydrogels as tissue-mimics for addressing the societal needs at various frontiers.
Collapse
Affiliation(s)
- Jingyu Xu
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yin Jiang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Liang Gao
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, China. .,Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
54
|
Hydrogels with intrinsic antibacterial activity prepared from naphthyl anthranilamide (NaA) capped peptide mimics. Sci Rep 2022; 12:22259. [PMID: 36564414 PMCID: PMC9789043 DOI: 10.1038/s41598-022-26426-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, we prepared antibacterial hydrogels through the self-assembly of naphthyl anthranilamide (NaA) capped amino acid based cationic peptide mimics. These ultra-short cationic peptide mimics were rationally designed with NaA as a capping group, L-phenylalanine, a short aliphatic linker, and a cationic group. The synthesized peptide mimics efficiently formed hydrogels with minimum gel concentrations between 0.1 and 0.3%w/v. The resulting hydrogels exhibited desirable viscoelastic properties which can be tuned by varying the cationic group, electronegative substituent, or counter anion. Importantly, nanofibers from the NaA-capped cationic hydrogels were found to be the source of hydrogels' potent bacteriacidal actvity against both Gram-positive and Gram-negative bacteria while remaining non-cytotoxic. These intrinsically antibacterial hydrogels are ideal candidates for further development in applications where bacterial contamination is problematic.
Collapse
|
55
|
Park J, Howard J, Edery A, DeMay M, Wereley N. Tunable Energy Absorbing Property of Bilayer Amorphous Glass Foam via Dry Powder Printing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9080. [PMID: 36556885 PMCID: PMC9784760 DOI: 10.3390/ma15249080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The research in this paper entails the design of material systems with tunable energy-absorbing properties. Hollow glass microspheres of different densities are layered using dry powder printing and subsequently sintered to form a cellular structure. The tunability of the bilayer foams is investigated using various combinations of hollow microspheres with different densities and different thickness ratios of the layers. The mechanical responses to quasi-static uniaxial compression of the bilayer foams are also investigated. These bilayer samples show different mechanical responses from uniform samples with a distinctive two-step stress-strain profile that includes a first and second plateau stress. The strain where the second plateau starts can be tuned by adjusting the thickness ratio of the two layers. The resulting tunable stress-strain profile demonstrates tunable energy absorption. The tunability is found to be more significant if the density values of each layer differ largely. For comparison, bilayer samples are fabricated using epoxy at the interface instead of a sintering process and a different mechanical response is shown from a sintered sample with the different stress-strain profile. Designing the layered foams allows tuning of the stress-strain profile, enabling desired energy-absorbing properties which are critical in diverse impact conditions.
Collapse
Affiliation(s)
- Jungjin Park
- Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
| | - John Howard
- Microsphere Material Solutions, Rockville, MD 20852, USA
| | - Avi Edery
- Microsphere Material Solutions, Rockville, MD 20852, USA
| | - Matthew DeMay
- Microsphere Material Solutions, Rockville, MD 20852, USA
| | - Norman Wereley
- Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
56
|
Blache U, Ford EM, Ha B, Rijns L, Chaudhuri O, Dankers PY, Kloxin AM, Snedeker JG, Gentleman E. Engineered hydrogels for mechanobiology. NATURE REVIEWS. METHODS PRIMERS 2022; 2:98. [PMID: 37461429 PMCID: PMC7614763 DOI: 10.1038/s43586-022-00179-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 07/20/2023]
Abstract
Cells' local mechanical environment can be as important in guiding cellular responses as many well-characterized biochemical cues. Hydrogels that mimic the native extracellular matrix can provide these mechanical cues to encapsulated cells, allowing for the study of their impact on cellular behaviours. Moreover, by harnessing cellular responses to mechanical cues, hydrogels can be used to create tissues in vitro for regenerative medicine applications and for disease modelling. This Primer outlines the importance and challenges of creating hydrogels that mimic the mechanical and biological properties of the native extracellular matrix. The design of hydrogels for mechanobiology studies is discussed, including appropriate choice of cross-linking chemistry and strategies to tailor hydrogel mechanical cues. Techniques for characterizing hydrogels are explained, highlighting methods used to analyze cell behaviour. Example applications for studying fundamental mechanobiological processes and regenerative therapies are provided, along with a discussion of the limitations of hydrogels as mimetics of the native extracellular matrix. The article ends with an outlook for the field, focusing on emerging technologies that will enable new insights into mechanobiology and its role in tissue homeostasis and disease.
Collapse
Affiliation(s)
- Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology and Fraunhofer Cluster of Excellence for Immune-Mediated Disease, Leipzig, Germany
| | - Eden M. Ford
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Laura Rijns
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Patricia Y.W. Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
- Department of Material Science and Engineering, University of Delaware, DE, USA
| | - Jess G. Snedeker
- University Hospital Balgrist and ETH Zurich, Zurich, Switzerland
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
57
|
Functional biomaterials for comprehensive periodontitis therapy. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
58
|
Cui J, Chen J, Ni Z, Dong W, Chen M, Shi D. High-Sensitivity Flexible Sensor Based on Biomimetic Strain-Stiffening Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47148-47156. [PMID: 36205693 DOI: 10.1021/acsami.2c15203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, flexible wearable and implantable electronic devices have attracted enormous interest in biomedical applications. However, current bioelectronic systems have not solved the problem of mechanical mismatch of tissue-electrode interfaces. Therefore, the biomimetic hydrogel with tissue-like mechanical properties is highly desirable for flexible electronic devices. Herein, we propose a strategy to fabricate a biomimetic hydrogel with strain-stiffening property via regional chain entanglements. The strain-stiffening property of the biomimetic hydrogel is realized by embedding highly swollen poly(acrylate sodium) microgels to act as the microregions of dense entanglement in the soft polyacrylamide matrix. In addition, poly(acrylate sodium) microgels can release Na+ ions, endowing hydrogel with electrical signals to serve as strain sensors for detecting different human movements. The resultant sensors own a low Young's modulus (22.61-112.45 kPa), high nominal tensile strength (0.99 MPa), and high sensitivity with a gauge factor up to 6.77 at strain of 300%. Based on its simple manufacture process, well mechanical matching suitability, and high sensitivity, the as-prepared sensor might have great potential for a wide range of large-scale applications such as wearable and implantable electronic devices.
Collapse
Affiliation(s)
- Jianbing Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Jiwei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Zhongbin Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| |
Collapse
|
59
|
Gudde AN, van Velthoven MJJ, Roovers JPWR, Kouwer PHJ, Guler Z. Polyisocyanides as a substrate to trigger vaginal fibroblast functioning in an in vitro model for prolapse repair. BIOMATERIALS ADVANCES 2022; 141:213104. [PMID: 36116187 DOI: 10.1016/j.bioadv.2022.213104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Pelvic organ prolapse (POP) is the descent of the bladder, uterus, and/or rectum into the vagina. POP is associated with altered vaginal fibroblast functionality and connective tissue composition in the vaginal wall. The results of surgical intervention are poor, which may be related to the lack of true restoration of the connective tissue. An innovative treatment addresses tissue repair after surgery by the introduction of a bioactive supplement that enhances the healing process through collagen and elastin deposition. As a novel strategy, we first studied the effects in an in vitro model. Here, we investigate how the presence of cell binding GRGDS (RGD) peptides on the highly biomimetic polyisocyanide (PIC) gel facilitates and promotes the function of primary vaginal fibroblasts isolated from a POP patient. Fibroblast function was analyzed in terms of morphology, proliferation, and extracellular matrix (ECM) deposition and remodeling. RGD modification of the gel facilitated cell spread and proliferation. Quantitative outcomes of the ECM content indicated increased production of collagen and elastin by fibroblasts on gels with the highest RGD density. The in vitro results suggest that PIC-RGD hydrogel application may translate into improved connective tissue healing in the pelvic floor, which is essential for its use as a regeneration promoting additive in surgery.
Collapse
Affiliation(s)
- Aksel N Gudde
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Melissa J J van Velthoven
- Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525, GA, Nijmegen, the Netherlands; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands
| | - Jan-Paul W R Roovers
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands.
| | - Zeliha Guler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development, Amsterdam University Medical Center-location AMC, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
60
|
Synthetic Extracellular Matrices for 3D Culture of Schwann Cells, Hepatocytes, and HUVECs. Bioengineering (Basel) 2022; 9:bioengineering9090453. [PMID: 36134999 PMCID: PMC9495567 DOI: 10.3390/bioengineering9090453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic hydrogels from polyisocyanides (PIC) are a type of novel thermoreversible biomaterials, which can covalently bind biomolecules such as adhesion peptides to provide a suitable extracellular matrix (ECM)-like microenvironment for different cells. Although we have demonstrated that PIC is suitable for three-dimensional (3D) culture of several cell types, it is unknown whether this hydrogel sustains the proliferation and passaging of cells originating from different germ layers. In the present study, we propose a 3D culture system for three representative cell sources: Schwann cells (ectoderm), hepatocytes (endoderm), and endothelial cells (mesoderm). Both Schwann cells and hepatocytes proliferated into multicellular spheroids and maintained their properties, regardless of the amount of cell-adhesive RGD motifs in long-term culture. Notably, Schwann cells grew into larger spheroids in RGD-free PIC than in PIC-RGD, while HL-7702 showed the opposite behavior. Endothelial cells (human umbilical vein endothelial cells, HUVECs) spread and formed an endothelial cell (EC) network only in PIC-RGD. Moreover, in a hepatocyte/HUVEC co-culture system, the characteristics of both cells were well kept for a long period in PIC-RGD. In all, our work highlights a simple ECM mimic that supports the growth and phenotype maintenance of cells from all germ layers in the long term. Our findings might contribute to research on biological development, organoid engineering, and in vitro drug screening.
Collapse
|
61
|
Chen W, Kumari J, Yuan H, Yang F, Kouwer PHJ. Toward Tissue-Like Material Properties: Inducing In Situ Adaptive Behavior in Fibrous Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202057. [PMID: 35792703 DOI: 10.1002/adma.202202057] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The materials properties of biological tissues are unique. Nature is able to spatially and temporally manipulate (mechanical) properties while maintaining responsiveness toward a variety of cues; all without majorly changing the material's composition. Artificial mimics, synthetic or biomaterial-based are far less advanced and poorly reproduce the natural cell microenvironment. A viable strategy to generate materials with advanced properties combines different materials into nanocomposites. This work describes nanocomposites of a synthetic fibrous hydrogel, based on polyisocyanide (PIC), that is noncovalently linked to a responsive cross-linker. The introduction of the cross-linker transforms the PIC gel from a static fibrous extracellular matrix mimic to a highly dynamic material that maintains biocompatibility, as demonstrated by in situ modification of the (non)linear mechanical properties and efficient self-healing properties. Key in the material design is cross-linking at the fibrillar level using nanoparticles, which, simultaneously may be used to introduce more advanced properties.
Collapse
Affiliation(s)
- Wen Chen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, The Netherlands
| | - Jyoti Kumari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, The Netherlands
| | - Hongbo Yuan
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Fan Yang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, The Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, The Netherlands
| |
Collapse
|
62
|
Lou J, Mooney DJ. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem 2022; 6:726-744. [PMID: 37117490 DOI: 10.1038/s41570-022-00420-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Two-dimensional and three-dimensional cell culture systems are widely used for biological studies, and are the basis of the organoid, tissue engineering and organ-on-chip research fields in applications such as disease modelling and drug screening. The natural extracellular matrix of tissues, a complex scaffold with varying chemical and mechanical properties, has a critical role in regulating important cellular functions such as spreading, migration, proliferation and differentiation, as well as tissue morphogenesis. Hydrogels are biomaterials that are used in cell culture systems to imitate critical features of a natural extracellular matrix. Chemical strategies to synthesize and tailor the properties of these hydrogels in a controlled manner, and manipulate their biological functions in situ, have been developed. In this Review, we provide the rational design criteria for predictably engineering hydrogels to mimic the properties of the natural extracellular matrix. We highlight the advances in using biocompatible strategies to engineer hydrogels for cell culture along with recent developments to dynamically control the cellular environment by exploiting stimuli-responsive chemistries. Finally, future opportunities to engineer hydrogels are discussed, in which the development of novel chemical methods will probably have an important role.
Collapse
|
63
|
Wu J, Wu B, Xiong J, Sun S, Wu P. Entropy‐Mediated Polymer–Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angew Chem Int Ed Engl 2022; 61:e202204960. [DOI: 10.1002/anie.202204960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jia Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology & Center for Advanced Low-dimension Materials Donghua University Shanghai 201620 China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich Lichtenbergstr. 1 85748 Garching Germany
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology & Center for Advanced Low-dimension Materials Donghua University Shanghai 201620 China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology & Center for Advanced Low-dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
64
|
Wang C, Xu L, Zhou L, Liu N, Wu Z. Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One‐Handed Helical Supramolecular Polymers. Angew Chem Int Ed Engl 2022; 61:e202207028. [DOI: 10.1002/anie.202207028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Chao Wang
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Lei Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Li Zhou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology Hefei 230009 Anhui Province China
| | - Zong‐Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
65
|
Hu L, Yang Y, Hao J, Xu L. Dual-Driven Mechanically and Tribologically Adaptive Hydrogels Solely Constituted of Graphene Oxide and Water. NANO LETTERS 2022; 22:6004-6009. [PMID: 35704863 DOI: 10.1021/acs.nanolett.2c01489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although mythologies and fictions have recorded living creatures fully composed of inorganics, it is however hard to turn inorganic constituents into lifelike materials in reality as they usually do not possess characteristics required for constructing a living organism. Here, we report to our knowledge the first biomimetic hydrogel in response to both pH and temperature variations that solely comprises graphene oxide and water. The hydrogel is capable of abruptly and reversibly switching its mechanical and tribological properties by more than 10-fold and 5-fold magnitudes, respectively, as a result of pH- and/or thermal-induced topological reconfiguration of its internal microstructure and ordering. Such behavior closely mimics some natural living organisms such as muscles and sea cucumbers. The hydrogel also shows a low coefficient of friction at pH 2 and room temperature, indicating it a potent smart lubricant free of any flammable and toxic organic base oils and additives.
Collapse
Affiliation(s)
- Lulin Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Yi Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Jingcheng Hao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
- Key Laboratory of Colloid and Interface Chemistry and Key Laboratory of Special Aggregated Materials, Shandong University, Jinan 250100, China
| | - Lu Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| |
Collapse
|
66
|
Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci 2022; 10:4694-4723. [PMID: 35899853 DOI: 10.1039/d2bm00775d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of peptides demonstrates a great potential for designing highly ordered, finely tailored supramolecular arrangements enriched with high specificity, improved efficacy and biological activity. Along with natural peptides, hybrid peptide systems composed of natural and chemically diverse unnatural amino acids have been used in various fields, including drug delivery, wound healing, potent inhibition of diseases, and prevention of biomaterial related diseases to name a few. In this review, we provide a brief outline of various methods that have been utilized for obtaining fascinating structures that create an avenue to reproduce a range of functions resulting from these folds. An overview of different self-assembled structures as well as their applications will also be provided. We believe that this review is very relevant to the current scenario and will cover conformations of hybrid peptides and resulting self-assemblies from the late 20th century through 2022. This review aims to be a comprehensive and reliable account of the hybrid peptide-based self-assembly owing to its enormous influence in understanding and mimicking biological processes.
Collapse
Affiliation(s)
- Alpana Boruah
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arup Roy
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
67
|
Xu L, Gao B, Xu X, Zhou L, Liu N, Wu Z. Controlled Synthesis of Cyclic‐Helical Polymers with Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202204966. [DOI: 10.1002/anie.202204966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Bao‐Rui Gao
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering. Hefei University of Technology Hefei 230009, Anhui Province China
| | - Xun‐Hui Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering. Hefei University of Technology Hefei 230009, Anhui Province China
| | - Li Zhou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering. Hefei University of Technology Hefei 230009, Anhui Province China
| | - Na Liu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering. Hefei University of Technology Hefei 230009, Anhui Province China
| | - Zong‐Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
68
|
Chen W, Zhang Z, Kouwer PHJ. Magnetically Driven Hierarchical Alignment in Biomimetic Fibrous Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203033. [PMID: 35665598 DOI: 10.1002/smll.202203033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In vivo, natural biomaterials are frequently anisotropic, exhibiting directional microstructures and mechanical properties. It remains challenging to develop such anisotropy in synthetic materials. Here, a facile one-step approach for in situ fabrication of hydrogels with hierarchically anisotropic architectures and direction-dependent mechanical properties is proposed. The anisotropic hydrogels, composed of a fibrous gel network (0.1 wt%), cross-linked with magnetic nanoparticles (spheres, rods, and wires, <0.1 wt%) are readily formed in the presence of very low magnetic fields (<20 mT). The anisotropy of the nanoparticles is transduced to the polymer network, leading to macroscopic anisotropy, for instance, in mechanical properties. Electrostatic repulsion by the negatively charged nanoparticles induces an additional layer of order in the material, perpendicular to the magnetic field direction. The straightforward fabrication strategy allows for stepwise deposition of layers with different degrees or directions of anisotropy, which enables the formation of complex structures that are able to mimic some of the complex hierarchical architectures found in biology. It is anticipated that this approach of hydrogel alignment may serve as a guide for designing advanced biomaterials in tissue engineering.
Collapse
Affiliation(s)
- Wen Chen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Zhaobao Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
69
|
Laishram R, Sarkar S, Seth I, Khatun N, Aswal VK, Maitra U, George SJ. Secondary Nucleation-Triggered Physical Cross-Links and Tunable Stiffness in Seeded Supramolecular Hydrogels. J Am Chem Soc 2022; 144:11306-11315. [PMID: 35707951 DOI: 10.1021/jacs.2c03230] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanistic understanding and the control of molecular self-assembly at all hierarchical levels remain grand challenges in supramolecular chemistry. Functional realization of dynamic supramolecular materials especially requires programmed assembly at higher levels of molecular organization. Herein, we report an unprecedented molecular control on the fibrous network topology of supramolecular hydrogels and their resulting macroscopic properties by biasing assembly pathways of higher-order structures. The surface-catalyzed secondary nucleation process, a well-known mechanism in amyloid fibrilization and chiral crystallization of small molecules, is introduced as a non-covalent strategy to induce physical cross-links and bundling of supramolecular fibers, which influences the microstructure of gel networks and subsequent mechanical properties of hydrogels. In addition, seed-induced instantaneous gelation is realized in the kinetically controlled self-assembled system under this study, and more importantly, the extent of secondary nucleation events and network topology is manipulated by the concentration of seeds.
Collapse
Affiliation(s)
- Raju Laishram
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Indranil Seth
- Department of Organic Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Nurjahan Khatun
- Centre for Nano and Soft Matter Sciences (CeNS), Bangalore 562162, India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
70
|
Li T, Liu F, Yang X, Hao S, Cheng Y, Li S, Zhu H, Song H. Muscle-Mimetic Highly Tough, Conductive, and Stretchable Poly(ionic liquid) Liquid Crystalline Ionogels with Ultrafast Self-Healing, Super Adhesive, and Remarkable Shape Memory Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29261-29272. [PMID: 35699738 DOI: 10.1021/acsami.2c06662] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report a simple method for preparing muscle-mimetic highly tough, conductive, and stretchable liquid crystalline ionogels which contains only one poly(ionic liquid) (PIL) in an ionic liquid via in situ free radical photohomopolymerization by using nitrogen gas instead of air atmosphere. Due to eliminating the inhibition caused by dissolved oxygen, the polymerization under nitrogen gas has much higher molecular weight, lower critical sol-gel concentration, and stronger mechanical properties. More importantly, benefiting from the unique loofah-like microstructures along with the strong internal ionic interactions, entanglements of long PIL chains and liquid crystalline domains, the ionogels show special optical anisotropic, superstretchability (>8000%), high fracture strength (up to 16.52 MPa), high toughness (up to 39.22 MJ/m3), and have ultrafast self-healing, ultrastrong adhesive, and excellent shape memory properties. Due to its excellent stretchability and good conductive-strain responsiveness, the as-prepared ionogel can be easily applied for high-performance flexible and wearable sensors for motion detecting. Therefore, this paper provides an effective route and developed method to generate highly stretchable conductive liquid crystalline ionogels/elastomers that can be used in widespread flexible and wearable electronics.
Collapse
Affiliation(s)
- Tianci Li
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Fang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuemeng Yang
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Shuai Hao
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Yan Cheng
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Shuaijie Li
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongnan Zhu
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongzan Song
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| |
Collapse
|
71
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
72
|
Wu J, Wu B, Xiong J, Sun S, Wu P. Entropy‐Mediated Polymer‐Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia Wu
- Donghua University Chemistry CHINA
| | - Baohu Wu
- Forschungszentrum Julich ICG: Forschungszentrum Julich GmbH JCNS GERMANY
| | - Jiaqing Xiong
- Donghua University Innovation Center for Textile Science and Technology CHINA
| | | | - Peiyi Wu
- Fudan University Department of Macromolecular Science Handan Road 220 200433 Shanghai CHINA
| |
Collapse
|
73
|
Wang C, Xu L, Zhou L, Liu N, Wu ZQ. Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One‐handed Helical Supramolecular Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Wang
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Lei Xu
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Li Zhou
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Na Liu
- Hefei University of Technology Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Zong-Quan Wu
- Jilin University Polymer Chemistry and Physis Qianjin Street 2699 130012 Changchun CHINA
| |
Collapse
|
74
|
Liu Z, Fu J, Yuan H, Ma B, Cao Z, Chen Y, Xing C, Niu X, Li N, Wang H, An H. Polyisocyanide hydrogels with tunable nonlinear elasticity mediate liver carcinoma cell functional response. Acta Biomater 2022; 148:152-162. [PMID: 35718101 DOI: 10.1016/j.actbio.2022.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Hepatocellular carcinoma development is closely related to the changes in tissue mechanics induced by excess collagen deposition and crosslinking, which leads to liver fibrosis and malignant progression. The role of matrix stiffness has been widely assessed using various linearly elastic materials. However, the liver, like many soft tissues, also exhibits nonlinear elasticity by strain-stiffening, allowing cells to mechanically interact with their micromilieus which has attracted much attention in cellular processes recently. Here, we use a biomimetic hydrogel grafting of GRGDS peptide with tunable nonlinear mechanical properties, polyisocyanides (PIC), to investigate the influence of strain-stiffening on HepG2 liver cancer cell behavior by tuning PIC polymer length. Compared to short PIC polymer with lower critical stress, PIC hydrogels composed of long polymer with higher critical stress promote the motility and invasiveness of HepG2 cells, and induce more actin stress fibers and higher expression level of mechanotransducer YAP and its nuclear translocation. Strikingly, the expression of calcium-activated potassium channel KCa3.1, an important biomarker in hepatocellular carcinoma, is also affected by the mechanical property of PIC hydrogels. It was also shown that downregulating the KCa3.1 channel can be achieved by inhibiting the formation of actin fibers. Our findings imply that the strain-stiffening property of PIC hydrogels affects the expression of KCa3.1 potassium channel via mediating cytoskeletal stress fiber formation, and ultimately influences the liver carcinoma cell functional response. STATEMENT OF SIGNIFICANCE: The effect of nonlinear elasticity by strain-stiffening, is assessed in HepG2 liver cancer cell behavior by using a biomimetic hydrogel with tunable mechanical properties, polyisocyanides (PIC). PIC gels with higher critical stress promote the motility and invasiveness of HepG2 cells and induce upregulated expression levels of KCa3.1 potassium channel and YAP, but which can be suppressed by inhibiting the formation of actin fibers. Our findings imply that the strain-stiffening property of PIC gels influences the expression of KCa3.1 potassium channel via mediating cytoskeletal stress fiber formation and, ultimately affects the liver carcinoma cell functional response.
Collapse
Affiliation(s)
- Zixin Liu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Jingxuan Fu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China; College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China; School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, PR China
| | - Hongbo Yuan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - Biao Ma
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhanshuo Cao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Yafei Chen
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Xuezhi Niu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Ning Li
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Hui Wang
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China; College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China.
| | - Hailong An
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
75
|
Song X, Li YX, Zhou L, Liu N, Wu ZQ. Controlled Synthesis of One-Handed Helical Polymers Carrying Achiral Organoiodine Pendants for Enantioselective Synthesis of Quaternary All-Carbon Stereogenic Centers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
76
|
Moncure PJ, Simon ZC, Millstone JE, Laaser JE. Relationship between Gel Mesh and Particle Size in Determining Nanoparticle Diffusion in Hydrogel Nanocomposites. J Phys Chem B 2022; 126:4132-4142. [PMID: 35609342 DOI: 10.1021/acs.jpcb.2c00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The diffusion of poly(ethylene glycol) methyl ether thiol (PEGSH)-functionalized gold nanoparticles (NPs) was measured in polyacrylamide gels with various cross-linking densities. The molecular weight of the PEGSH ligand and particle core size were both varied to yield particles with hydrodynamic diameters ranging from 7 to 21 nm. The gel mesh size was varied from approximately 36 to 60 nm by controlling the cross-linking density of the gel. Because high-molecular-weight ligands are expected to yield more compressible particles, we expected the diffusion constants of the NPs to depend on their hard/soft ratios (where the hard component of the particle consists of the particle core and the soft component of the particle consists of the ligand shell). However, our measurements revealed that NP diffusion coefficients resulted primarily from changes in the overall hydrodynamic diameter and not the ratio of particle core size to ligand size. Across all particles and gels, we found that the diffusion coefficient was well predicted by the confinement ratio calculated from the diameter of the particle and an estimate of the gel mesh size obtained from the elastic blob model and was well described using a hopping model for nanoparticle diffusion. These results suggest that the elastic blob model provides a reasonable estimate of the mesh size that particles "see" as they diffuse through the gel. This work brings new insights into the factors that dictate how NPs move through polymer gels and will inform the development of hydrogel nanocomposites for applications such as drug delivery in heterogeneous, viscoelastic biological materials.
Collapse
Affiliation(s)
- Paige J Moncure
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zoe C Simon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer E Laaser
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
77
|
Xu L, Gao BR, Xu XH, Zhou L, Liu N, Wu ZQ. Controlled Synthesis of Cyclic‐Helical Polymers with Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Xu
- Jilin University Polymer Chemistry and Physis CHINA
| | - Bao-Rui Gao
- Hefei University of Technology Polymer Science and Engineering CHINA
| | - Xun-Hui Xu
- Hefei University of Technology Polymer Science and Engineering CHINA
| | - Li Zhou
- Hefei University of Technology Polymer Science and Engineering CHINA
| | - Na Liu
- Hefei University of Technology Polymer Science and Engineering CHINA
| | - Zong-Quan Wu
- Jilin University Polymer Chemistry and Physis Qianjin Street 2699 130012 Changchun CHINA
| |
Collapse
|
78
|
Self-Assembly of Alkylamido Isophthalic Acids toward the Design of a Supergelator: Phase-Selective Gelation and Dye Adsorption. Gels 2022; 8:gels8050285. [PMID: 35621583 PMCID: PMC9140382 DOI: 10.3390/gels8050285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
A new series of 5-alkylamido isophthalic acid (ISA) derivatives with varying single and twin alkyl chain lengths were designed and synthesized as potential supramolecular organogelators. 5-alkylamido ISAs with linear or branched alkyl tail-groups of different lengths were effective gelators for low polarity solvents. In particular, among the presented series, a derivative with a branched, 24 carbon atom tail-group behaves as a “supergelator” with up to twenty organic solvents forming gels that are highly stable over time. The gelation behavior was analyzed using Hansen solubility parameters, and the thermal stability and viscoelastic properties of select gels were characterized. Microscopy, spectroscopy, powder X-ray diffraction, and computer modeling studies were consistent with a hierarchical self-assembly process involving the formation of cyclic H-bonded hexamers via the ISA carboxylic acid groups, which stack into elementary fibers stabilized by H-bonding of the amide linker groups and π–π stacking of the aromatic groups. These new nanomaterials exhibited potential for the phase-selective gelation of oil from oil–water mixtures and dye uptake from contaminated water. The work expands upon the design and synthesis of supramolecular self-assembled nanomaterials and their application in water purification/remediation.
Collapse
|
79
|
Kumari J, Wagener FADTG, Kouwer PHJ. Novel Synthetic Polymer-Based 3D Contraction Assay: A Versatile Preclinical Research Platform for Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19212-19225. [PMID: 35468292 PMCID: PMC9073832 DOI: 10.1021/acsami.2c02549] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The driving factors causing fibrosis and scar formation include fibroblast differentiation into myofibroblasts and hampered myofibroblast apoptosis, which ultimately results in collagen accumulation and tissue contraction. Currently, only very few drugs are available for fibrosis treatment, and there is an urgent demand for new pharmaceutical products. High-throughput in vitro fibrosis models are necessary to develop such drugs. In this study, we developed such a novel model based on synthetic polyisocyanide (PIC-RGD) hydrogels. The model not only measures contraction but also allows for subsequent molecular and cellular analysis. Fibroblasts were seeded in small (10 μL) PIC-RGD gels in the absence or presence of TGFβ1, the latter to induce myofibroblast differentiation. The contraction model clearly differentiates fibroblasts and myofibroblasts. Besides a stronger contraction, we also observed α-smooth muscle actin (αSMA) production and higher collagen deposition for the latter. The results were supported by mRNA expression experiments of αSMA, Col1α1, P53, and Ki67. As proof of principle, the effects of FDA-approved antifibrotic drugs nintedanib and pirfenidone were tested in our newly developed fibrosis model. Both drugs clearly reduce myofibroblast-induced contraction. Moreover, both drugs significantly decrease myofibroblast viability. Our low-volume synthetic PIC-RGD hydrogel platform is an attractive tool for high-throughput in vitro antifibrotic drug screening.
Collapse
Affiliation(s)
- Jyoti Kumari
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department
of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
| | - Frank A. D. T. G. Wagener
- Department
of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Centre, 6525 EX Nijmegen, The Netherlands
- (F.A.D.T.G.W.)
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- (P.H.J.K.)
| |
Collapse
|
80
|
Zhang Z, Chen W, Tiemessen DM, Oosterwijk E, Kouwer PHJ. A Temperature-Based Easy-Separable (TempEasy) 3D Hydrogel Coculture System. Adv Healthc Mater 2022; 11:e2102389. [PMID: 35029325 PMCID: PMC11469334 DOI: 10.1002/adhm.202102389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Interactions between different cell types are crucial for their behavior in tissues, but are rarely considered in 3D in vitro cell culture experiments. One reason is that such coculture experiments are sometimes difficult to perform in 3D or require specialized equipment or know-how. Here, a new 3D cell coculture system is introduced, TempEasy, which is readily applied in any cell culture lab. The matrix material is based on polyisocyanide hydrogels, which closely resemble the mechanical characteristics of the natural extracellular matrix. Gels with different gelation temperatures, seeded with different cells, are placed on top of each other to form an indirect coculture. Cooling reverses gelation, allowing cell harvesting from each layer separately, which benefits downstream analysis. To demonstrate the potential of TempEasy , human adipose stem cells (hADSCs) with vaginal epithelial fibroblasts are cocultured. The analysis of a 7-day coculture shows that hADSCs promote cell-cell interaction of fibroblasts, while fibroblasts promote proliferation and differentiation of hADSCs. TempEasy provides a straightforward operational platform for indirect cocultures of cells of different lineages in well-defined microenvironments.
Collapse
Affiliation(s)
- Zhaobao Zhang
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Wen Chen
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Dorien M. Tiemessen
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Egbert Oosterwijk
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
81
|
Liu Y, Lin SH, Chuang WT, Dai NT, Hsu SH. Biomimetic Strain-Stiffening in Chitosan Self-Healing Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16032-16046. [PMID: 35321544 DOI: 10.1021/acsami.2c01720] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The strain-stiffening and self-healing capabilities of biological tissues enable them to preserve the structures and functions from deformation and damage. However, biodegradable hydrogel materials with both of these biomimetic characteristics have not been explored. Here, a series of strain-stiffened, self-healing hydrogels are developed through dynamic imine crosslinking of semiflexible O-carboxymethyl chitosan (main chain) and flexible dibenzaldehyde-terminated telechelic poly(ethylene glycol) (crosslinker). The biomimetic hydrogels can be reversibly stiffened to resist the deformation and can even recover to their original state after repeated damages. The mechanical properties and stiffening responses of the hydrogels are tailored by varying the component contents (1-3%) and the crosslinker length (4 or 8 kDa). A combinatorial system of in situ coherent small-angle X-ray scattering with rheological testing is developed to investigate the network structures (in sizes 1.5-160 nm) of hydrogels under shear strains and reveals that the strain-stiffening originates from the fibrous chitosan network with poly(ethylene glycol) crosslinking fixation. The biomimetic hydrogels with biocompatibility and biodegradability promote wound healing. The study provides an insight into the nanoscale design of biomimetic strain-stiffening self-healing hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C
| | - Shih-Ho Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R.O.C
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan 11490, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan 35053, R.O.C
| |
Collapse
|
82
|
Cao Z, Yuan H, Li N, Liu X, Qu X, Xing C. The preparation of biomineralized PIC/HA hybrid composites with strain-stiffening and the effect on MC3T3-E1 cells. Macromol Rapid Commun 2022; 43:e2200135. [PMID: 35365902 DOI: 10.1002/marc.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Indexed: 11/10/2022]
Abstract
The development of biomimetic extracellular matrix (ECM) with fibrous structure and complex nonlinear mechanics has been attracting intensive attention over the past decades both in material science and tissue engineering. Polyisocyanopeptide (PIC) hydrogels are a class of fully synthetic materials that can mimic biogels, such as fibrin and collagen, in nearly all aspects, particularly the micron-sized gel network and the strong strain-stiffening behavior in the biological regime. Here, we constructed a biomimetic PIC/hydroxyapatite (HA) hybrid composite through an enzymatic biomineralization strategy. HA biominerals grew on PIC bundles in situ catalyzed by the embedded alkaline phosphatase (ALP) which further crosslinked the gel networks and reinforced the mechanical property of PIC hydrogels. Significantly, PIC/HA composites exhibited ultra-responsive nonlinear mechanics with higher sensitivity to mechanical stress compared with those without biomineralization. As a consequence, the presence of HA can provide cell adhesion sites for PIC gels and induce osteogenic differentiation of pre-osteoblasts by virtue of the changes in mechanical properties. With these outstanding properties, therefore, PIC/HA composites present promising prospects in bone tissue engineering as biomimetic ECM. polyisocyanopeptide hydrogel; strain-stiffening; biomimetic extracellular matrix; biomineralization This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhanshuo Cao
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China.,School of Chemical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Hongbo Yuan
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ning Li
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaoning Liu
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiongwei Qu
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China.,School of Chemical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Molecular Biophysics, Institute of biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China.,School of Chemical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
83
|
Li Z, Li G, Xu J, Li C, Han S, Zhang C, Wu P, Lin Y, Wang C, Zhang J, Li X. Hydrogel Transformed from Nanoparticles for Prevention of Tissue Injury and Treatment of Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109178. [PMID: 35195940 DOI: 10.1002/adma.202109178] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Functional hydrogels responsive to physiological and pathological signals have extensive biomedical applications owing to their multiple advanced attributes. Herein, engineering of functional hydrogels is reported via transformable nanoparticles in response to the physiologically and pathologically acidic microenvironment. These nanoparticles are assembled by a multivalent hydrophobic, pH-responsive cyclodextrin host material and a multivalent hydrophilic guest macromolecule. Driven by protons, the pH-responsive host-guest nanoparticles can be transformed into hydrogel, resulting from proton-triggered hydrolysis of the host material, generation of a hydrophilic multivalent host compound, and simultaneously enhanced inclusion interactions between host and guest molecules. By in situ forming a hydrogel barrier, the orally delivered transformable nanoparticles protect mice from ethanol- or drug-induced gastric injury. In addition, this type of nanoparticles can serve as responsive and transformable nanovehicles for therapeutic agents to achieve triggerable and sustained drug delivery, thereby effectively treating typical inflammatory diseases, including periodontitis and arthritis in rats. With combined advantages of nanoparticles and hydrogels, together with their good in vivo safety, the engineered transformable nanoparticles hold great promise in tissue injury protection and site-specific/local delivery of molecular and cellular therapeutic agents.
Collapse
Affiliation(s)
- Zimeng Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, P. R. China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jiajia Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, P. R. China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Songling Han
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Chunfan Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Peng Wu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- College of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723000, P. R. China
| | - Yongyao Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Chenping Wang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Xiaodong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, P. R. China
| |
Collapse
|
84
|
Baker MB, Bosman T, Cox MAJ, Dankers P, Dias A, Jonkheijm P, Kieltyka R. Supramolecular Biomaterials in the Netherlands. Tissue Eng Part A 2022; 28:511-524. [PMID: 35316128 DOI: 10.1089/ten.tea.2022.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synthetically designed biomaterials strive to recapitulate and mimic the complex environment of natural systems. Using natural materials as a guide, the ability to create high performance biomaterials that control cell fate, and support the next generation of cell and tissue-based therapeutics, is starting to emerge. Supramolecular chemistry takes inspiration from the wealth of non-covalent interactions found in natural materials that are inherently complex, and using the skills of synthetic and polymer chemistry, recreates simple systems to imitate their features. Within the past decade, supramolecular biomaterials have shown utility in tissue engineering and the progress predicts a bright future. On this 30th anniversary of the Netherlands Biomaterials and Tissue Engineering society, we will briefly recount the state of supramolecular biomaterials in the Dutch academic and industrial research and development context. This review will provide the background, recent advances, industrial successes and challenges, as well as future directions of the field, as we see it. Throughout this work, we notice the intricate interplay between simplicity and complexity in creating more advanced solutions. We hope that the interplay and juxtaposition between these two forces can propel the field forward.
Collapse
Affiliation(s)
- Matthew B Baker
- Maastricht University, 5211, Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, 6211LK, Limburg, Netherlands.,Maastricht University, 5211, MERLN/CTR, Maastricht, Limburg, Netherlands;
| | | | - Martijn A J Cox
- Xeltis BV, Lismortel 31, PO Box 80, Eindhoven, Netherlands, 5600AB;
| | - Patricia Dankers
- Eindhoven University of Technology, 3169, Department of Pathology, Eindhoven, Noord-Brabant, Netherlands;
| | | | - Pascal Jonkheijm
- MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente , Molecular Nanofabrication group, Enschede, Netherlands;
| | | |
Collapse
|
85
|
Liu K, Wiendels M, Yuan H, Ruan C, Kouwer PH. Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioact Mater 2022; 9:316-331. [PMID: 34820573 PMCID: PMC8586441 DOI: 10.1016/j.bioactmat.2021.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3D) matrix models using hydrogels are powerful tools to understand and predict cell behavior. The interactions between the cell and its matrix, however is highly complex: the matrix has a profound effect on basic cell functions but simultaneously, cells are able to actively manipulate the matrix properties. This (mechano)reciprocity between cells and the extracellular matrix (ECM) is central in regulating tissue functions and it is fundamentally important to broadly consider the biomechanical properties of the in vivo ECM when designing in vitro matrix models. This manuscript discusses two commonly used biopolymer networks, i.e. collagen and fibrin gels, and one synthetic polymer network, polyisocyanide gel (PIC), which all possess the characteristic nonlinear mechanics in the biological stress regime. We start from the structure of the materials, then address the uses, advantages, and limitations of each material, to provide a guideline for tissue engineers and biophysicists in utilizing current materials and also designing new materials for 3D cell culture purposes.
Collapse
Affiliation(s)
- Kaizheng Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Maury Wiendels
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, PR China
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Paul H.J. Kouwer
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| |
Collapse
|
86
|
Yuan J, Lu X, Zhang S, Zheng F, Deng Q, Han L, Lu Q. Molecular Chirality and Morphological Structural Chirality of Exogenous Chirality-Induced Liquid Crystalline Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianan Yuan
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Xuemin Lu
- Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Songyang Zhang
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Feng Zheng
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Quanzheng Deng
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Lu Han
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| | - Qinghua Lu
- School of Chemical Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
87
|
Constantinou AP, Nele V, Doutch JJ, S. Correia J, Moiseev RV, Cihova M, Gaboriau DCA, Krell J, Khutoryanskiy VV, Stevens MM, Georgiou TK. Investigation of the Thermogelation of a Promising Biocompatible ABC Triblock Terpolymer and Its Comparison with Pluronic F127. Macromolecules 2022; 55:1783-1799. [PMID: 35431333 PMCID: PMC9007541 DOI: 10.1021/acs.macromol.1c02123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/27/2022] [Indexed: 01/15/2023]
Abstract
![]()
Thermoresponsive polymers with the
appropriate structure form physical
networks upon changes in temperature, and they find utility in formulation
science, tissue engineering, and drug delivery. Here, we report a
cost-effective biocompatible alternative, namely OEGMA30015-b-BuMA26-b-DEGMA13, which forms gels at low concentrations (as low as 2% w/w);
OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl
ether methacrylate (MM = 300 g mol–1), n-butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate,
respectively. This polymer is investigated in depth and is compared
to its commercially available counterpart, Poloxamer P407 (Pluronic
F127). To elucidate the differences in their macroscale gelling behavior,
we investigate their nanoscale self-assembly by means of small-angle
neutron scattering and simultaneously recording their rheological
properties. Two different gelation mechanisms are revealed. The triblock
copolymer inherently forms elongated micelles, whose length increases
by temperature to form worm-like micelles, thus promoting gelation.
In contrast, Pluronic F127’s micellization is temperature-driven,
and its gelation is attributed to the close packing of the micelles.
The gel structure is analyzed through cryogenic scanning and transmission
electron microscopy. Ex vivo gelation study upon intracameral injections
demonstrates excellent potential for its application to improve drug
residence in the eye.
Collapse
Affiliation(s)
| | - Valeria Nele
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 ODE, UK
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Roman V. Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Martina Cihova
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - David C. A. Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Imperial College London, London SW7 2AZ, UK
| | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - Vitaliy V. Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
88
|
Li GW, Wang XJ, Lei X, Liu N, Wu ZQ. Self-assembly of Helical Polymers and Oligomers to Create Liquid Crystalline Alignment for Anisotropic NMR Parameters. Macromol Rapid Commun 2022; 43:e2100898. [PMID: 35076973 DOI: 10.1002/marc.202100898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Indexed: 11/07/2022]
Abstract
The measurement of anisotropic residual dipolar couplings (RDCs) parameters for the structure elucidation of organic molecules relies on suitable alignment media. Employment of self-assembled liquid crystalline systems to create anisotropic alignment can be an effective way to realize aligned samples and acquire RDCs. This Mini-review highlights the recent advances on amino acid-based helical polymers and supramolecular oligomers forming rigid, rod-like structures that aggregate into ordered liquid crystalline phases, including amino acid-based helical polyisocyanides, polyacetylenes, polypeptides, and oligopeptides assembled alignment media. The methodology for the determination of anisotropic liquid crystals was briefly discussed, and a summary of recent research progress in the enantiodifferentiation of helical polymers aligned media was followed. In addition, the self-assembled mechanism of oligopeptides and their RDCs structural analysis were also described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gao-Wei Li
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xiao-Juan Wang
- College of Chemistry and Chemical Engineering, and Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu, Henan Province, 476000, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, China
| |
Collapse
|
89
|
|
90
|
Wesp S, Wolf K, Immel S, Reggelin M. Poly(arylisocyanides) as Versatile, Enantiodiscriminating Alignment Media for Small Molecules. Chempluschem 2022; 87:e202100507. [PMID: 35072980 DOI: 10.1002/cplu.202100507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/02/2022] [Indexed: 11/08/2022]
Abstract
Lyotropic liquid crystalline (LLC) phases of amino acid derived polyarylisocyanides were employed as chiral alignment media for the measurement of residual dipolar couplings (RDCs) of small chiral organic molecules. Anisotropic samples in CDCl3 displayed quadrupolar splittings of the deuterium signal in the range of several hundreds of Hertz. The LLC phases showed excellent orienting properties for a broad range of analytes bearing various functional groups. The precise extraction of RDCs in the range of up to ±40 Hertz from F2-coupled HSQC spectra was possible. Additionally, the chiral environment offers the opportunity for diastereomorphous interactions with the enantiomers of chiral analytes leading to two different sets of RDCs. This differential order effect was particularly pronounced with ketones and alcohols.
Collapse
Affiliation(s)
- Svenja Wesp
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Kai Wolf
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Stefan Immel
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Michael Reggelin
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| |
Collapse
|
91
|
Fan Y, Yang W, Qiao C, Liu Q, Yao J, Zhang C. Synthesis and properties of helical polystyrene derivatives with amino acid side groups. Polym Chem 2022. [DOI: 10.1039/d2py00648k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of polystyrene derivatives with chiral amide groups with a controlled molecular weight and narrow molecular weight distribution were synthesized by reversible addition–fragmentation chain transfer (RAFT) radical polymerization.
Collapse
Affiliation(s)
- Yinghao Fan
- Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenke Yang
- Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Congde Qiao
- Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qinze Liu
- Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jinshui Yao
- Shandong Provincial Key Laboratory of Processing & Testing Technology of Glass and Functional Ceramics, School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Changbin Zhang
- Center for Ecological and Environmental Research, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| |
Collapse
|
92
|
Whitaker DJ, Park J, Ueda C, Wu G, Harada A, Matsuba G, Takashima Y, Scherman OA. Water content and guest size dictate the mechanical properties of cyclodextrin mediated hydrogels. Polym Chem 2022. [DOI: 10.1039/d2py00769j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Steric bulkiness and water content plays an important role in mechanical properties of supramolecular hydrogels consisting of host-guest complexation as cross-links. With low and high water contents, the network mobility and the kinetics of the cross-links become dominant to the mechanical properties, respectively.
Collapse
Affiliation(s)
- Daniel J. Whitaker
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Chiharu Ueda
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Guanglu Wu
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Akira Harada
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
93
|
Leguizamon SC, Scott TF. Mimicking DNA Functions with Abiotic, Sequence-Defined Polymers. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2014519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Samuel C. Leguizamon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy F. Scott
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
94
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
95
|
Wang L, Li J, Xiong Y, Wu Y, Yang F, Guo Y, Chen Z, Gao L, Deng W. Ultrashort Peptides and Hyaluronic Acid-Based Injectable Composite Hydrogels for Sustained Drug Release and Chronic Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58329-58339. [PMID: 34860513 DOI: 10.1021/acsami.1c16738] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Peptide hydrogels are widely used for biomedical applications owing to their good biocompatibility and unique advantages in terms of amino acid-based structures and functions. However, the exploration of the peptide/saccharide composite hydrogels as potential biomaterials for chronic diabetic wound healing is still limited. Herein, hyaluronic acid (HA) was incorporated into diphenylalanine (FF) conjugated with different aromatic moieties by a one-pot reaction. Our results showed that the dipeptide derivatives modified by benzene (B), naphthalene (N), and pyrene (P) self-assembled into composite hydrogels with uniform distribution and good mechanical properties in the presence of HA. The obtained N-FF/HA composite hydrogel exhibited greatly improved self-healing properties via injection syringe needle operation and good biocompatibility on human skin fibroblast (HSF) cells. Besides, the structure of thinner nanofibers and honeycomb networks inside the composite hydrogel allowed for a longer sustained release of curcumin, a hydrophobic drug for anti-inflammation and wound healing. The curcumin-loaded N-FF/HA composite hydrogels could promote chronic wound healing in the streptozotocin-induced type I diabetic mouse model. The results suggested that our developed saccharide-peptide hydrogels could serve as very promising synthetic biomaterials for applications in both drug delivery and wound healing in the future.
Collapse
Affiliation(s)
- Ling Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jing Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yue Xiong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Ying Guo
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
96
|
Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chem Soc Rev 2021; 51:28-42. [PMID: 34846055 DOI: 10.1039/d1cs00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.
Collapse
Affiliation(s)
- Simone I S Hendrikse
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia. .,School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | |
Collapse
|
97
|
Baumgarten K, Tighe BP. Moduli and modes in the Mikado model. SOFT MATTER 2021; 17:10286-10293. [PMID: 34151919 PMCID: PMC8612360 DOI: 10.1039/d1sm00551k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
We determine how low frequency vibrational modes control the elastic shear modulus of Mikado networks, a minimal mechanical model for semi-flexible fiber networks. From prior work it is known that when the fiber bending modulus is sufficiently small, (i) the shear modulus of 2D Mikado networks scales as a power law in the fiber line density, G ∼ ρα+1, and (ii) the networks also possess an anomalous abundance of soft (low-frequency) vibrational modes with a characteristic frequency ωκ ∼ ρβ/2. While it has been suggested that α and β are identical, the preponderance of evidence indicates that α is larger than theoretical predictions for β. We resolve this inconsistency by measuring the vibrational density of states in Mikado networks for the first time. Supported by these results, we then demonstrate analytically that α = β + 1. In so doing, we uncover new insights into the coupling between soft modes and shear, as well as the origin of the crossover from bending- to stretching-dominated response.
Collapse
Affiliation(s)
- Karsten Baumgarten
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| |
Collapse
|
98
|
Shi M, Yeatman EM. A comparative review of artificial muscles for microsystem applications. MICROSYSTEMS & NANOENGINEERING 2021; 7:95. [PMID: 34858630 PMCID: PMC8611050 DOI: 10.1038/s41378-021-00323-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 05/28/2023]
Abstract
Artificial muscles are capable of generating actuation in microsystems with outstanding compliance. Recent years have witnessed a growing academic interest in artificial muscles and their application in many areas, such as soft robotics and biomedical devices. This paper aims to provide a comparative review of recent advances in artificial muscle based on various operating mechanisms. The advantages and limitations of each operating mechanism are analyzed and compared. According to the unique application requirements and electrical and mechanical properties of the muscle types, we suggest suitable artificial muscle mechanisms for specific microsystem applications. Finally, we discuss potential strategies for energy delivery, conversion, and storage to promote the energy autonomy of microrobotic systems at a system level.
Collapse
Affiliation(s)
- Mayue Shi
- Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Eric M. Yeatman
- Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| |
Collapse
|
99
|
A novel aptasensor based on DNA hydrogel for sensitive visual detection of ochratoxin A. Mikrochim Acta 2021; 188:395. [PMID: 34709464 DOI: 10.1007/s00604-021-05000-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
A novel visual detection mode is proposed to improve the detection sensitivity for the determination of ochratoxin A (OTA). The mode is based on aptamer recognition and the signal amplification of rolling circle amplification (RCA) products self-assembled DNA hydrogel. Moreover, gold nanoparticles (AuNPs) were directly assembled inside the DNA hydrogel by adjusting the padlock probe sequences to achieve a stronger binding force between the DNA hydrogel and AuNPs; this avoids the need for modification of AuNPs with DNA sequences. In the presence of OTA, DNA hydrogel is formed. With higher concentrations of OTA, a larger amount of DNA hydrogel is formed. When AuNPs are added to the DNA hydrogel, AuNPs can be enclosed inside the DNA hydrogel. With more DNA hydrogel, there is less AuNPs in the supernatant. Thus, the absorbance of the supernatant is anti-correlated with the concentration of OTA. After optimization of the experimental conditions, the change in the absorbance of the supernatant was linearly correlated with the concentration of OTA, in the range 0.05 to 10 ng/mL; the limit of detection was 0.005 ng/mL. The good specificity of the developed biosensor was confirmed in the presence of other mycotoxins that are coexistent with or analogues of OTA. By comparing the developed method with the ELISA method, the accuracy and stability of this new method were also verified, with good performance obtained in real samples. Diagram of the principle of the colorimetric aptasensor for OTA detection based on rolling circle amplification product self-assembled DNA hydrogel.
Collapse
|
100
|
Abakumov S, Deschaume O, Bartic C, Lang C, Korculanin O, Dhont JKG, Lettinga MP. Uncovering Log Jamming in Semidilute Suspensions of Quasi-Ideal Rods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sergey Abakumov
- Laboratory for Molecular Imaging and Photonics, KU Leuven, B-3001 Leuven, Belgium
| | - Olivier Deschaume
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
| | - Carmen Bartic
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
| | - Christian Lang
- JCNS-4, Forschungzentrum Jülich, DE 85748 Jülich, Germany
| | | | | | - Minne Paul Lettinga
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
- IBI-4, Forschungzentrum Jülich, DE 52425 Jülich, Germany
| |
Collapse
|