51
|
Bowen CH, Sargent CJ, Wang A, Zhu Y, Chang X, Li J, Mu X, Galazka JM, Jun YS, Keten S, Zhang F. Microbial production of megadalton titin yields fibers with advantageous mechanical properties. Nat Commun 2021; 12:5182. [PMID: 34462443 PMCID: PMC8405620 DOI: 10.1038/s41467-021-25360-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Manmade high-performance polymers are typically non-biodegradable and derived from petroleum feedstock through energy intensive processes involving toxic solvents and byproducts. While engineered microbes have been used for renewable production of many small molecules, direct microbial synthesis of high-performance polymeric materials remains a major challenge. Here we engineer microbial production of megadalton muscle titin polymers yielding high-performance fibers that not only recapture highly desirable properties of natural titin (i.e., high damping capacity and mechanical recovery) but also exhibit high strength, toughness, and damping energy - outperforming many synthetic and natural polymers. Structural analyses and molecular modeling suggest these properties derive from unique inter-chain crystallization of folded immunoglobulin-like domains that resists inter-chain slippage while permitting intra-chain unfolding. These fibers have potential applications in areas from biomedicine to textiles, and the developed approach, coupled with the structure-function insights, promises to accelerate further innovation in microbial production of high-performance materials.
Collapse
Affiliation(s)
- Christopher H Bowen
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Cameron J Sargent
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Ao Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Xinyuan Chang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Jingyao Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Xinyue Mu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA.
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA.
- Institute of Materials Science & Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, USA.
| |
Collapse
|
52
|
Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nat Commun 2021; 12:4976. [PMID: 34404790 PMCID: PMC8371096 DOI: 10.1038/s41467-021-25243-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
To construct a superior microbial cell factory for chemical synthesis, a major challenge is to fully exploit cellular potential by identifying and engineering beneficial gene targets in sophisticated metabolic networks. Here, we take advantage of CRISPR interference (CRISPRi) and omics analyses to systematically identify beneficial genes that can be engineered to promote free fatty acids (FFAs) production in Escherichia coli. CRISPRi-mediated genetic perturbation enables the identification of 30 beneficial genes from 108 targets related to FFA metabolism. Then, omics analyses of the FFAs-overproducing strains and a control strain enable the identification of another 26 beneficial genes that are seemingly irrelevant to FFA metabolism. Combinatorial perturbation of four beneficial genes involving cellular stress responses results in a recombinant strain ihfAL−-aidB+-ryfAM−-gadAH−, producing 30.0 g L−1 FFAs in fed-batch fermentation, the maximum titer in E. coli reported to date. Our findings are of help in rewiring cellular metabolism and interwoven intracellular processes to facilitate high-titer production of biochemicals. Identification of gene targets is one of the major challenges to construct superior microbial cell factory for chemical synthesis. Here, the authors employ CRISPRi and omics analyses for genome-scale target genes identification for high-titer production of free fatty acids in E. coli.
Collapse
|
53
|
Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat Commun 2021; 12:4975. [PMID: 34404791 PMCID: PMC8371099 DOI: 10.1038/s41467-021-25241-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Plant cell wall hydrolysates contain not only sugars but also substantial amounts of acetate, a fermentation inhibitor that hinders bioconversion of lignocellulose. Despite the toxic and non-consumable nature of acetate during glucose metabolism, we demonstrate that acetate can be rapidly co-consumed with xylose by engineered Saccharomyces cerevisiae. The co-consumption leads to a metabolic re-configuration that boosts the synthesis of acetyl-CoA derived bioproducts, including triacetic acid lactone (TAL) and vitamin A, in engineered strains. Notably, by co-feeding xylose and acetate, an enginered strain produces 23.91 g/L TAL with a productivity of 0.29 g/L/h in bioreactor fermentation. This strain also completely converts a hemicellulose hydrolysate of switchgrass into 3.55 g/L TAL. These findings establish a versatile strategy that not only transforms an inhibitor into a valuable substrate but also expands the capacity of acetyl-CoA supply in S. cerevisiae for efficient bioconversion of cellulosic biomass. Cellulosic hydrolysates contain substantial amounts of acetate, which is toxic to fermenting microorganisms. Here, the authors engineer Baker’s yeast to co-consume xylose and acetate for triacetic acid lactone production from a hemicellulose hydrolysate of switchgrass.
Collapse
|
54
|
Luo ZW, Ahn JH, Chae TU, Choi SY, Park SY, Choi Y, Kim J, Prabowo CPS, Lee JA, Yang D, Han T, Xu H, Lee SY. Metabolic Engineering of
Escherichia
coli. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
55
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
56
|
Zhang Y, Song X, Lai Y, Mo Q, Yuan J. High-Yielding Terpene-Based Biofuel Production in Rhodobacter capsulatus. ACS Synth Biol 2021; 10:1545-1552. [PMID: 34101430 DOI: 10.1021/acssynbio.1c00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Energy crisis and global climate change have driven an increased effort toward biofuel synthesis from renewable feedstocks. Herein, purple nonsulfur photosynthetic bacterium (PNSB) of Rhodobacter capsulatus was explored as a platform for high-titer production of a terpene-based advanced biofuel-bisabolene. A multilevel engineering strategy such as promoter screening, improving the NADPH availability, strengthening the precursor supply, suppressing the side pathways, and introducing a heterologous mevalonate pathway, was used to improve the bisabolene titer in R. capsulatus. The above strategies enabled a 35-fold higher titer of bisabolene than that of the starting strain, reaching 1089.7 mg/L from glucose in a shake flask. The engineered strain produced 9.8 g/L bisabolene with a yield of >0.196 g/g-glucose under the two-phase fed-batch fermentation, which corresponds to >78% of theoretical maximum. Taken together, our work represents one of the pioneering studies to demonstrate PNSB as a promising platform for terpene-based advanced biofuel production.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohui Song
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yumeng Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiwen Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
57
|
Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem 2021; 65:225-246. [PMID: 33956149 DOI: 10.1042/ebc20200172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Bio-based production of industrially important chemicals and materials from non-edible and renewable biomass has become increasingly important to resolve the urgent worldwide issues including climate change. Also, bio-based production, instead of chemical synthesis, of food ingredients and natural products has gained ever increasing interest for health benefits. Systems metabolic engineering allows more efficient development of microbial cell factories capable of sustainable, green, and human-friendly production of diverse chemicals and materials. Escherichia coli is unarguably the most widely employed host strain for the bio-based production of chemicals and materials. In the present paper, we review the tools and strategies employed for systems metabolic engineering of E. coli. Next, representative examples and strategies for the production of chemicals including biofuels, bulk and specialty chemicals, and natural products are discussed, followed by discussion on materials including polyhydroxyalkanoates (PHAs), proteins, and nanomaterials. Lastly, future perspectives and challenges remaining for systems metabolic engineering of E. coli are discussed.
Collapse
|
58
|
Li J, Zhao H, Zheng L, An W. Advances in Synthetic Biology and Biosafety Governance. Front Bioeng Biotechnol 2021; 9:598087. [PMID: 33996776 PMCID: PMC8120004 DOI: 10.3389/fbioe.2021.598087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/17/2021] [Indexed: 11/22/2022] Open
Abstract
Tremendous advances in the field of synthetic biology have been witnessed in multiple areas including life sciences, industrial development, and environmental bio-remediation. However, due to the limitations of human understanding in the code of life, any possible intended or unintended uses of synthetic biology, and other unknown reasons, the development and application of this technology has raised concerns over biosafety, biosecurity, and even cyberbiosecurity that they may expose public health and the environment to unknown hazards. Over the past decades, some countries in Europe, America, and Asia have enacted laws and regulations to control the application of synthetic biology techniques in basic and applied research and this has resulted in some benefits. The outbreak of the COVID-19 caused by novel coronavirus SARS-CoV-2 and various speculations about the origin of this virus have attracted more attention on bio-risk concerns of synthetic biology because of its potential power and uncertainty in the synthesis and engineering of living organisms. Therefore, it is crucial to scrutinize the control measures put in place to ensure appropriate use, promote the development of synthetic biology, and strengthen the governance of pathogen-related research, although the true origin of coronavirus remains hotly debated and unresolved. This article reviews the recent progress made in the field of synthetic biology and combs laws and regulations in governing bio-risk issues. We emphasize the urgent need for legislative and regulatory constraints and oversight to address the biological risks of synthetic biology.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huimiao Zhao
- College of Humanities and Law, Beijing University of Chemical Technology, Beijing, China
| | - Lanxin Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenlin An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
59
|
Sharma A, Yazdani SS. Microbial engineering to produce fatty alcohols and alkanes. J Ind Microbiol Biotechnol 2021; 48:6169711. [PMID: 33713132 DOI: 10.1093/jimb/kuab011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/14/2022]
Abstract
Owing to their high energy density and composition, fatty acid-derived chemicals possess a wide range of applications such as biofuels, biomaterials, and other biochemical, and as a consequence, the global annual demand for products has surpassed 2 million tons. With the exhausting petroleum reservoirs and emerging environmental concerns on using petroleum feedstock, it has become indispensable to shift to a renewable-based industry. With the advancement in the field of synthetic biology and metabolic engineering, the use of microbes as factories for the production of fatty acid-derived chemicals is becoming a promising alternative approach for the production of these derivatives. Numerous metabolic approaches have been developed for conditioning the microbes to improve existing or develop new methodologies capable of efficient oleochemical production. However, there still exist several limitations that need to be addressed for the commercial viability of the microbial cell factory production. Though substantial advancement has been made toward successfully producing these fatty acids derived chemicals, a considerable amount of work needs to be done for improving the titers. In the present review, we aim to address the roadblocks impeding the heterologous production, the engineering pathway strategies implemented across the range of microbes in a detailed manner, and the commercial readiness of these molecules of immense application.
Collapse
Affiliation(s)
- Ashima Sharma
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
60
|
Watcharawipas A, Sae-Tang K, Sansatchanon K, Sudying P, Boonchoo K, Tanapongpipat S, Kocharin K, Runguphan W. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield. FEMS Yeast Res 2021; 21:6226681. [PMID: 33856451 DOI: 10.1093/femsyr/foab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
D-lactic acid is a chiral three-carbon organic acid that can improve the thermostability of polylactic acid. Here, we systematically engineered Saccharomyces cerevisiae to produce D-lactic acid from glucose, a renewable carbon source, at near theoretical yield. Specifically, we screened D-lactate dehydrogenase (DLDH) variants from lactic acid bacteria in three different genera and identified the Leuconostoc pseudomesenteroides variant (LpDLDH) as having the highest activity in yeast. We then screened single-gene deletions to minimize the production of the side products ethanol and glycerol as well as prevent the conversion of D-lactic acid back to pyruvate. Based on the results of the DLDH screening and the single-gene deletions, we created a strain called ASc-d789M which overexpresses LpDLDH and contains deletions in glycerol pathway genes GPD1 and GPD2 and lactate dehydrogenase gene DLD1, as well as downregulation of ethanol pathway gene ADH1 using the L-methionine repressible promoter to minimize impact on growth. ASc-d789M produces D-lactic acid at a titer of 17.09 g/L in shake-flasks (yield of 0.89 g/g glucose consumed or 89% of the theoretical yield). Fed-batch fermentation resulted in D-lactic acid titer of 40.03 g/L (yield of 0.81 g/g glucose consumed). Altogether, our work represents progress towards efficient microbial production of D-lactic acid.
Collapse
Affiliation(s)
- Akaraphol Watcharawipas
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kittapong Sae-Tang
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kitisak Sansatchanon
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Pipat Sudying
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kriengsak Boonchoo
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kanokarn Kocharin
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
61
|
Shanmugam KT, Ingram LO. Principles and practice of designing microbial biocatalysts for fuel and chemical production. J Ind Microbiol Biotechnol 2021; 49:6158391. [PMID: 33686428 PMCID: PMC9118985 DOI: 10.1093/jimb/kuab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022]
Abstract
The finite nature of fossil fuels and the environmental impact of its use have raised interest in alternate renewable energy sources. Specifically, non-food carbohydrates, such as lignocellulosic biomass, can be used to produce next generation biofuels, including cellulosic ethanol and other non-ethanol fuels like butanol. However, currently there is no native microorganism that can ferment all lignocellulosic sugars to fuel molecules. Thus, research is focused on engineering improved microbial biocatalysts for production of liquid fuels at high productivity, titer and yield. A clear understanding and application of the basic principles of microbial physiology and biochemistry are crucial to achieve this goal. In this review, we present and discuss the construction of microbial biocatalysts that integrate these principles with ethanol-producing Escherichia coli as an example of metabolic engineering. These principles also apply to fermentation of lignocellulosic sugars to other chemicals that are currently produced from petroleum.
Collapse
Affiliation(s)
- K T Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Lonnie O Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
62
|
Lin R, Deng C, Zhang W, Hollmann F, Murphy JD. Production of Bio-alkanes from Biomass and CO 2. Trends Biotechnol 2021; 39:370-380. [PMID: 33451822 DOI: 10.1016/j.tibtech.2020.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Bioelectrochemical technologies such as electro-fermentation and microbial CO2 electrosynthesis are emerging interdisciplinary technologies that can produce renewable fuels and chemicals (such as carboxylic acids). The benefits of electrically driven bioprocesses include improved production rate, selectivity, and carbon conversion efficiency. However, the accumulation of products can lead to inhibition of biocatalysts, necessitating further effort in separating products. The recent discovery of a new photoenzyme, capable of converting carboxylic acids to bio-alkanes, has offered an opportunity for system integration, providing a promising approach for simultaneous product separation and valorisation. Combining the strengths of photo/bio/electrochemical catalysis, we discuss an innovative circular cascading system that converts biomass and CO2 to value-added bio-alkanes (CnH2n+2, n = 2 to 5) whilst achieving carbon circularity.
Collapse
Affiliation(s)
- Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland
| | - Chen Deng
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland.
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland.
| |
Collapse
|
63
|
Kim DI, Chae TU, Kim HU, Jang WD, Lee SY. Microbial production of multiple short-chain primary amines via retrobiosynthesis. Nat Commun 2021; 12:173. [PMID: 33420084 PMCID: PMC7794544 DOI: 10.1038/s41467-020-20423-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
Bio-based production of many chemicals is not yet possible due to the unknown biosynthetic pathways. Here, we report a strategy combining retrobiosynthesis and precursor selection step to design biosynthetic pathways for multiple short-chain primary amines (SCPAs) that have a wide range of applications in chemical industries. Using direct precursors of 15 target SCPAs determined by the above strategy, Streptomyces viridifaciens vlmD encoding valine decarboxylase is examined as a proof-of-concept promiscuous enzyme both in vitro and in vivo for generating SCPAs from their precursors. Escherichia coli expressing the heterologous vlmD produces 10 SCPAs by feeding their direct precursors. Furthermore, metabolically engineered E. coli strains are developed to produce representative SCPAs from glucose, including the one producing 10.67 g L-1 of iso-butylamine by fed-batch culture. This study presents the strategy of systematically designing biosynthetic pathways for the production of a group of related chemicals as demonstrated by multiple SCPAs as examples.
Collapse
Affiliation(s)
- Dong In Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Tong Un Chae
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
64
|
Liu H, Song Y, Fan X, Wang C, Lu X, Tian Y. Yarrowia lipolytica as an Oleaginous Platform for the Production of Value-Added Fatty Acid-Based Bioproducts. Front Microbiol 2021; 11:608662. [PMID: 33469452 PMCID: PMC7813756 DOI: 10.3389/fmicb.2020.608662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023] Open
Abstract
The microbial fermentation process has been used as an alternative pathway to the production of value-added natural products. Of the microorganisms, Yarrowia lipolytica, as an oleaginous platform, is able to produce fatty acid-derived biofuels and biochemicals. Nowadays, there are growing progresses on the production of value-added fatty acid-based bioproducts in Y. lipolytica. However, there are fewer reviews performing the metabolic engineering strategies and summarizing the current production of fatty acid-based bioproducts in Y. lipolytica. To this end, we briefly provide the fatty acid metabolism, including fatty acid biosynthesis, transportation, and degradation. Then, we introduce the various metabolic engineering strategies for increasing bioproduct accumulation in Y. lipolytica. Further, the advanced progress in the production of fatty acid-based bioproducts by Y. lipolytica, including nutraceuticals, biofuels, and biochemicals, is summarized. This review will provide attractive thoughts for researchers working in the field of Y. lipolytica.
Collapse
Affiliation(s)
- Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yulan Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiao Fan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
65
|
Abstract
Carbon redox chemistry plays a fundamental role in biology. However, the thermodynamic and physicochemical principles underlying the rise of metabolites involved in redox biochemistry remain poorly understood. Our work introduces the theory and techniques that allow us to quantify and understand the global energy landscape of carbon redox biochemistry. We analyze the space of all possible oxidation states of linear-chain molecules with two to five carbon atoms and generate a detailed atlas of the thermodynamic stability of metabolites in comparison to nonbiological molecules. Although the emergence of life required the underlying chemistry to bootstrap itself out of equilibrium, a quantitative understanding of the environment-dependent thermodynamic landscape of prebiotic molecules will be extremely valuable for future origins of life models. Redox biochemistry plays a key role in the transduction of chemical energy in living systems. However, the compounds observed in metabolic redox reactions are a minuscule fraction of chemical space. It is not clear whether compounds that ended up being selected as metabolites display specific properties that distinguish them from nonbiological compounds. Here, we introduce a systematic approach for comparing the chemical space of all possible redox states of linear-chain carbon molecules to the corresponding metabolites that appear in biology. Using cheminformatics and quantum chemistry, we analyze the physicochemical and thermodynamic properties of the biological and nonbiological compounds. We find that, among all compounds, aldose sugars have the highest possible number of redox connections to other molecules. Metabolites are enriched in carboxylic acid functional groups and depleted of ketones and aldehydes and have higher solubility than nonbiological compounds. Upon constructing the energy landscape for the full chemical space as a function of pH and electron-donor potential, we find that metabolites tend to have lower Gibbs energies than nonbiological molecules. Finally, we generate Pourbaix phase diagrams that serve as a thermodynamic atlas to indicate which compounds are energy minima in redox chemical space across a set of pH values and electron-donor potentials. While escape from thermodynamic equilibrium toward kinetically driven states is a hallmark of life and its origin, we envision that a deeper quantitative understanding of the environment-dependent thermodynamic landscape of putative prebiotic molecules will provide a crucial reference for future origins-of-life models.
Collapse
|
66
|
Synthesis of high-titer alka(e)nes in Yarrowia lipolytica is enabled by a discovered mechanism. Nat Commun 2020; 11:6198. [PMID: 33273473 PMCID: PMC7713262 DOI: 10.1038/s41467-020-19995-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Alka(e)nes are ideal fuel components for aviation, long-distance transport, and shipping. They are typically derived from fossil fuels and accounting for 24% of difficult-to-eliminate greenhouse gas emissions. The synthesis of alka(e)nes in Yarrowia lipolytica from CO2-neutral feedstocks represents an attractive alternative. Here we report that the high-titer synthesis of alka(e)nes in Yarrowia lipolytica harboring a fatty acid photodecarboxylase (CvFAP) is enabled by a discovered pathway. We find that acyl-CoAs, rather than free fatty acids (FFAs), are the preferred substrate for CvFAP. This finding allows us to debottleneck the pathway and optimize fermentation conditions so that we are able to redirect 89% of acyl-CoAs from the synthesis of neutral lipids to alka(e)nes and reach titers of 1.47 g/L from glucose. Two other CO2-derived substrates, wheat straw and acetate, are also demonstrated to be effective in producing alka(e)nes. Overall, our technology could advance net-zero emissions by providing CO2-neutral and energy-dense liquid biofuels. Alka(e)nes with chain lengths in C5-C23 range are ideal fuel components. Here, the authors report that high-titer production of alak(e)nes in pathway engineered Yarrowia lipolytica, which is enabled by the finding that acyl-CoA is another substrate of fatty acid photodecarboxylase (FAP).
Collapse
|
67
|
Li S, Zhang Q, Wang J, Liu Y, Zhao Y, Deng Y. Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 2020; 325:83-90. [PMID: 33278463 DOI: 10.1016/j.jbiotec.2020.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
To reduce dependence on petroleum, the biosynthesis of important chemicals from simple substrates using industrial microorganisms has attracted increased attention. Metabolic engineering of Saccharomyces cerevisiae offers a sustainable and flexible alternative for the production of various chemicals. As a key metabolic intermediate, malonyl-CoA is a precursor for many useful compounds. However, the productivity of malonyl-CoA derivatives is restricted by the low cellular level of malonyl-CoA and enzymatic performance. In this review, we focused on how to increase the intracellular malonyl-CoA level and summarize the recent advances in different metabolic engineering strategies for directing intracellular malonyl-CoA to the desired malonyl-CoA derivatives, including strengthening the malonyl-CoA supply, reducing malonyl-CoA consumption, and precisely controlling the intracellular malonyl-CoA level. These strategies provided new insights for further improving the synthesis of malonyl-CoA derivatives in microorganisms.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiyue Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
68
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Cyanobacterial aldehyde deformylating oxygenase: Structure, function, and potential in biofuels production. Int J Biol Macromol 2020; 164:3155-3162. [PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022]
Abstract
The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
69
|
Amer M, Toogood H, Scrutton NS. Engineering nature for gaseous hydrocarbon production. Microb Cell Fact 2020; 19:209. [PMID: 33187524 PMCID: PMC7661322 DOI: 10.1186/s12934-020-01470-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
The development of sustainable routes to the bio-manufacture of gaseous hydrocarbons will contribute widely to future energy needs. Their realisation would contribute towards minimising over-reliance on fossil fuels, improving air quality, reducing carbon footprints and enhancing overall energy security. Alkane gases (propane, butane and isobutane) are efficient and clean-burning fuels. They are established globally within the transportation industry and are used for domestic heating and cooking, non-greenhouse gas refrigerants and as aerosol propellants. As no natural biosynthetic routes to short chain alkanes have been discovered, de novo pathways have been engineered. These pathways incorporate one of two enzymes, either aldehyde deformylating oxygenase or fatty acid photodecarboxylase, to catalyse the final step that leads to gas formation. These new pathways are derived from established routes of fatty acid biosynthesis, reverse β-oxidation for butanol production, valine biosynthesis and amino acid degradation. Single-step production of alkane gases in vivo is also possible, where one recombinant biocatalyst can catalyse gas formation from exogenously supplied short-chain fatty acid precursors. This review explores current progress in bio-alkane gas production, and highlights the potential for implementation of scalable and sustainable commercial bioproduction hubs.
Collapse
Affiliation(s)
- Mohamed Amer
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK
| | - Helen Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
70
|
Cheng Z, McCann S, Faraone N, Clarke JA, Hudson EA, Cloonan K, Hillier NK, Tahlan K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020; 8:microorganisms8111767. [PMID: 33187102 PMCID: PMC7697265 DOI: 10.3390/microorganisms8111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - E. Abbie Hudson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Kevin Cloonan
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
- Correspondence: (N.K.H.); (K.T.)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
- Correspondence: (N.K.H.); (K.T.)
| |
Collapse
|
71
|
Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C, Zhang X. CRISPR-based metabolic pathway engineering. Metab Eng 2020; 63:148-159. [PMID: 33152516 DOI: 10.1016/j.ymben.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
A highly effective metabolic pathway is the key for an efficient cell factory. However, the engineered homologous or heterologous multi-gene pathway may be unbalanced, inefficient and causing the accumulation of potentially toxic intermediates. Therefore, pathways must be constructed optimally to minimize these negative effects and maximize catalytic efficiency. With the development of CRISPR technology, some of the problems of previous pathway engineering and genome editing techniques were resolved, providing higher efficiency, lower cost, and easily customizable targets. Moreover, CRISPR was demonstrated as robust and effective in various organisms including both prokaryotes and eukaryotes. In recent years, researchers in the field of metabolic engineering and synthetic biology have exploited various CRISPR-based pathway engineering approaches, which are both effective and convenient, as well as valuable from a theoretical standpoint. In this review, we systematically summarize novel pathway engineering techniques and strategies based on CRISPR nucleases system, CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa), including figures and descriptions for easy understanding, with the aim to facilitate their broader application among fellow researchers.
Collapse
Affiliation(s)
- Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hang Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Naxin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ting Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
72
|
Foo JL, Rasouliha BH, Susanto AV, Leong SSJ, Chang MW. Engineering an Alcohol-Forming Fatty Acyl-CoA Reductase for Aldehyde and Hydrocarbon Biosynthesis in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:585935. [PMID: 33123518 PMCID: PMC7573125 DOI: 10.3389/fbioe.2020.585935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
Aldehydes are a class of highly versatile chemicals that can undergo a wide range of chemical reactions and are in high demand as starting materials for chemical manufacturing. Biologically, fatty aldehydes can be produced from fatty acyl-CoA by the action of fatty acyl-CoA reductases. The aldehydes produced can be further converted enzymatically to other valuable derivatives. Thus, metabolic engineering of microorganisms for biosynthesizing aldehydes and their derivatives could provide an economical and sustainable platform for key aldehyde precursor production and subsequent conversion to various value-added chemicals. Saccharomyces cerevisiae is an excellent host for this purpose because it is a robust organism that has been used extensively for industrial biochemical production. However, fatty acyl-CoA-dependent aldehyde-forming enzymes expressed in S. cerevisiae thus far have extremely low activities, hence limiting direct utilization of fatty acyl-CoA as substrate for aldehyde biosynthesis. Toward overcoming this challenge, we successfully engineered an alcohol-forming fatty acyl-CoA reductase for aldehyde production through rational design. We further improved aldehyde production through strain engineering by deleting competing pathways and increasing substrate availability. Subsequently, we demonstrated alkane and alkene production as one of the many possible applications of the aldehyde-producing strain. Overall, by protein engineering of a fatty acyl-CoA reductase to alter its activity and metabolic engineering of S. cerevisiae, we generated strains with the highest reported cytosolic aliphatic aldehyde and alkane/alkene production to date in S. cerevisiae from fatty acyl-CoA.
Collapse
Affiliation(s)
- Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Bahareh Haji Rasouliha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Adelia Vicanatalita Susanto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| | - Susanna Su Jan Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.,Singapore Institute of Technology, Singapore, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
73
|
Multi-strain volatile profiling of pathogenic and commensal cutaneous bacteria. Sci Rep 2020; 10:17971. [PMID: 33087843 PMCID: PMC7578783 DOI: 10.1038/s41598-020-74909-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The detection of volatile organic compounds (VOC) emitted by pathogenic bacteria has been proposed as a potential non-invasive approach for characterising various infectious diseases as well as wound infections. Studying microbial VOC profiles in vitro allows the mechanisms governing VOC production and the cellular origin of VOCs to be deduced. However, inter-study comparisons of microbial VOC data remains a challenge due to the variation in instrumental and growth parameters across studies. In this work, multiple strains of pathogenic and commensal cutaneous bacteria were analysed using headspace solid phase micro-extraction coupled with gas chromatography-mass spectrometry. A kinetic study was also carried out to assess the relationship between bacterial VOC profiles and the growth phase of cells. Comprehensive bacterial VOC profiles were successfully discriminated at the species-level, while strain-level variation was only observed in specific species and to a small degree. Temporal emission kinetics showed that the emission of particular compound groups were proportional to the respective growth phase for individual S. aureus and P. aeruginosa samples. Standardised experimental workflows are needed to improve comparability across studies and ultimately elevate the field of microbial VOC profiling. Our results build on and support previous literature and demonstrate that comprehensive discriminative results can be achieved using simple experimental and data analysis workflows.
Collapse
|
74
|
Cho IJ, Choi KR, Lee SY. Microbial production of fatty acids and derivative chemicals. Curr Opin Biotechnol 2020; 65:129-141. [DOI: 10.1016/j.copbio.2020.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
|
75
|
Passarini MRZ, E Silva TR, Bernal SPF, Cecchet NL, Sartoratto A, Boroski M, Duarte AWF, Ottoni JR, Rosa LH, de Oliveira VM. Undecane production by cold-adapted bacteria from Antarctica. Extremophiles 2020; 24:863-873. [PMID: 32944821 DOI: 10.1007/s00792-020-01200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022]
Abstract
In the last decades, efforts to reduce the use of fossil fuels have increased the search for alternative sustainable sources of renewable energy. In this scenario, hydrocarbons derived from fatty acids are among the compounds that have been drawing attention. The intracellular production of hydrocarbons by bacteria derived from cold environments such as the Antarctic continent is currently poorly investigated, as extremophilic microorganisms provide a great range of metabolic capabilities and may represent a key tool in the production of biofuels. The aim of this study was to explore the ability of bacterial cells derived from extreme environments to produce hydrocarbons with potential for further use as biofuels. Seven bacteria isolated from Antarctic samples were evaluated for hydrocarbon production using GC-MS approaches. Two isolates, identified as Arthrobacter livingstonensis 593 and Pseudoalteromonas arctica 628, were able to produce the hydrocarbon undecane (CH3-(CH2)9-CH3) in concentrations of 1.39 mg L-1 and 1.81 mg L-1, respectively. Results from the present work encourage further research focusing on the optimization of hydrocarbon production by the isolates identified as producers, which may be used in further aircraft biofuel production. This is the first report on the production of the undecane compound by bacteria isolated from waterlogged soil and sponge from Antarctica.
Collapse
Affiliation(s)
- Michel Rodrigo Zambrano Passarini
- UNILA-Universidade Federal da Integração Latino-Americana. Laboratório de Biotecnologia Ambiental, Av. Tarquínio Joslin dos Santos, 1000-Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil.
| | - Tiago Rodrigues E Silva
- CPQBA/UNICAMP-Divisão de Recursos Microbianos, Rua Alexandre Caselatto 999, Vila Betel, CP 6171, Campinas, SP, 13083-970, Brazil
| | - Suzan Prado Fernandes Bernal
- UNILA-Universidade Federal da Integração Latino-Americana. Laboratório de Biotecnologia Ambiental, Av. Tarquínio Joslin dos Santos, 1000-Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Nathália Luana Cecchet
- UNILA-Universidade Federal da Integração Latino-Americana. Laboratório de Biotecnologia Ambiental, Av. Tarquínio Joslin dos Santos, 1000-Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Adilson Sartoratto
- CPQBA/UNICAMP-Divisão de Química Orgânica e Farmacêutica, Rua Alexandre Caselatto 999, Vila Betel, CP 6171, Campinas, SP, 13083-970, Brazil
| | - Marcela Boroski
- UNILA-Universidade Federal da Integração Latino-Americana. Laboratório de Química, Av. Tancredo Neves 6731- Conjunto B, Foz do Iguaçu, PR, 85867-970, Brazil
| | - Alysson Wagner Fernandes Duarte
- UFAL-Universidade Federal de Alagoas, Av. Manoel Severino Barbosa-Rodovia AL-115, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Júlia Ronzella Ottoni
- UDC-Centro Universitário Dinâmica das Cataratas, Rua Castelo Branco, 349, Centro, Foz do Iguaçu, PR, Brazil
| | - Luiz Henrique Rosa
- UFMG-Departamento de Microbiologia, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Valéria Maia de Oliveira
- CPQBA/UNICAMP-Divisão de Recursos Microbianos, Rua Alexandre Caselatto 999, Vila Betel, CP 6171, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
76
|
Arias DB, Gomez Pinto KA, Cooper KK, Summers ML. Transcriptomic analysis of cyanobacterial alkane overproduction reveals stress-related genes and inhibitors of lipid droplet formation. Microb Genom 2020; 6. [PMID: 32941127 PMCID: PMC7660261 DOI: 10.1099/mgen.0.000432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cyanobacterium Nostoc punctiforme can form lipid droplets (LDs), internal inclusions containing triacylglycerols, carotenoids and alkanes. LDs are enriched for a 17 carbon-long alkane in N. punctiforme, and it has been shown that the overexpression of the aar and ado genes results in increased LD and alkane production. To identify transcriptional adaptations associated with increased alkane production, we performed comparative transcriptomic analysis of an alkane overproduction strain. RNA-seq data identified a large number of highly upregulated genes in the overproduction strain, including genes potentially involved in rRNA processing, mycosporine-glycine production and synthesis of non-ribosomal peptides, including nostopeptolide A. Other genes encoding helical carotenoid proteins, stress-induced proteins and those for microviridin synthesis were also upregulated. Construction of N. punctiforme strains with several upregulated genes or operons on multi-copy plasmids resulted in reduced alkane accumulation, indicating possible negative regulators of alkane production. A strain containing four genes for microviridin biosynthesis completely lost the ability to synthesize LDs. This strain exhibited wild-type growth and lag phase recovery under standard conditions, and slightly faster growth under high light. The transcriptional changes associated with increased alkane production identified in this work will provide the basis for future experiments designed to use cyanobacteria as a production platform for biofuel or high-value hydrophobic products.
Collapse
Affiliation(s)
- Daisy B. Arias
- California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330, USA
| | - Kevin A. Gomez Pinto
- California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330, USA
| | - Kerry K. Cooper
- University of Arizona, 1117 E. Lowell St, Tucson, AZ 85721, USA
| | - Michael L. Summers
- California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330, USA
- *Correspondence: Michael L. Summers,
| |
Collapse
|
77
|
A kinetic rationale for functional redundancy in fatty acid biosynthesis. Proc Natl Acad Sci U S A 2020; 117:23557-23564. [PMID: 32883882 DOI: 10.1073/pnas.2013924117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells build fatty acids with biocatalytic assembly lines in which a subset of enzymes often exhibit overlapping activities (e.g., two enzymes catalyze one or more identical reactions). Although the discrete enzymes that make up fatty acid pathways are well characterized, the importance of catalytic overlap between them is poorly understood. We developed a detailed kinetic model of the fatty acid synthase (FAS) of Escherichia coli and paired that model with a fully reconstituted in vitro system to examine the capabilities afforded by functional redundancy in fatty acid synthesis. The model captures-and helps explain-the effects of experimental perturbations to FAS systems and provides a powerful tool for guiding experimental investigations of fatty acid assembly. Compositional analyses carried out in silico and in vitro indicate that FASs with multiple partially redundant enzymes enable tighter (i.e., more independent and/or broader range) control of distinct biochemical objectives-the total production, unsaturated fraction, and average length of fatty acids-than FASs with only a single multifunctional version of each enzyme (i.e., one enzyme with the catalytic capabilities of two partially redundant enzymes). Maximal production of unsaturated fatty acids, for example, requires a second dehydratase that is not essential for their synthesis. This work provides a kinetic, control-theoretic rationale for the inclusion of partially redundant enzymes in fatty acid pathways and supplies a valuable framework for carrying out detailed studies of FAS kinetics.
Collapse
|
78
|
Soh YNA, Kunacheva C, Webster RD, Stuckey DC. Composition and biotransformational changes in soluble microbial products (SMPs) along an anaerobic baffled reactor (ABR). CHEMOSPHERE 2020; 254:126775. [PMID: 32320833 DOI: 10.1016/j.chemosphere.2020.126775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
This work examined the production and catabolism/biotransformation dynamics of SMPs down the length of an eight-compartment-anaerobic baffled reactor (ABR) which physically separates the biological processes, in contrast to completely mixed reactors which do not enable these dynamics to measured, and this is totally novel. SMPs were extracted and characterised by gas and liquid chromatography coupled mass spectrometry to determine their composition and production/catabolism. 60%-70% of the feed compounds decreased from the first to fourth compartment; the increase in SMPs after the fourth compartment suggested a mixture of degraded and biotransformed compounds, and microbial products. High concentrations of low MW alkanes and alkenes, and higher MW (up to 2000 Da) lipids and amino acid derivatives accumulate in the last compartment at pseudo-steady state, and past work identifying polysaccharides/peptides as major membrane biofoulants have excluded these lipids. In addition, lipids and changes detected during feed transients have not been noted before in previous work. Finally, feed step-increases also increased some amino acid derivatives used in cell-signalling. Interestingly, some natural products from plant and fungal extracts were also found in the fourth compartment, where methanogenesis was the dominant process.
Collapse
Affiliation(s)
- Yan Ni Annie Soh
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore, 637141, Singapore; Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 61 Nanyang Drive, Academic Block North, ABN-01b-11, Singapore, 637335, Singapore
| | - Chinagarn Kunacheva
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore, 637141, Singapore
| | - Richard D Webster
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore, 637141, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
79
|
Increased Accumulation of Medium-Chain Fatty Acids by Dynamic Degradation of Long-Chain Fatty Acids in Mucor circinelloides. Genes (Basel) 2020; 11:genes11080890. [PMID: 32764225 PMCID: PMC7464202 DOI: 10.3390/genes11080890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Concerns about global warming, fossil-fuel depletion, food security, and human health have promoted metabolic engineers to develop tools/strategies to overproduce microbial functional oils directly from renewable resources. Medium-chain fatty acids (MCFAs, C8–C12) have been shown to be important sources due to their diverse biotechnological importance, providing benefits ranging from functional lipids to uses in bio-fuel production. However, oleaginous microbes do not carry native pathways for the production of MCFAs, and therefore, diverse approaches have been adapted to compensate for the requirements of industrial demand. Mucor circinelloides is a promising organism for lipid production (15–36% cell dry weight; CDW) and the investigation of mechanisms of lipid accumulation; however, it mostly produces long-chain fatty acids (LCFAs). To address this challenge, we genetically modified strain M. circinelloides MU758, first by integrating heterologous acyl-ACP thioesterase (TE) into fatty acid synthase (FAS) complex and subsequently by modifying the β-oxidation pathway by disrupting the acyl-CoA oxidase (ACOX) and/or acyl-CoA thioesterase (ACOT) genes with a preference for medium-chain acyl-CoAs, to elevate the yield of MCFAs. The resultant mutant strains (M-1, M-2, and M-3, respectively) showed a significant increase in lipid production in comparison to the wild-type strain (WT). MCFAs in M-1 (47.45%) was sharply increased compared to the wild type strain (2.25%), and it was further increased in M-2 (60.09%) suggesting a negative role of ACOX in MCFAs production. However, MCFAs in M-3 were much decreased compared to M-1,suggesting a positive role of ACOT in MCFAs production. The M-2 strain showed maximum lipid productivity (~1800 milligram per liter per day or mg/L.d) and MCFAs productivity (~1100 mg/L.d). Taken together, this study elaborates on how the combination of two multidimensional approaches, TE gene over-expression and modification of the β-oxidation pathway via substantial knockout of specific ACOX gene, significantly increased the production of MCFAs. This synergistic approach ultimately offers a novel opportunity for synthetic/industrial biologists to increase the content of MCFAs.
Collapse
|
80
|
Metabolic engineering of E. coli for producing phloroglucinol from acetate. Appl Microbiol Biotechnol 2020; 104:7787-7799. [PMID: 32737536 DOI: 10.1007/s00253-020-10591-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Phloroglucinol is a three-hydroxyl phenolic compound and has diverse physiological and pharmacological activities such as antivirus and anti-inflammatory activities. Chemical synthesis of phloroglucinol suffered from many drawbacks such as high cost and environmental pollution. To avoid the above issues, microbial phloroglucinol biosynthesis was successfully accomplished in this study, while the abundant and low-cost acetate was used as the main carbon source. Firstly, the toxicity of phloroglucinol was tested, and E. coli BL21(DE3) could tolerate 5 g/L phloroglucinol. The ability of phloroglucinol synthase (PhlD) for catalyzing malonyl-CoA to phloroglucinol was confirmed, and E. coli BL21(DE3) expressing PhlD and acetyl-CoA carboxylase (ACCase) could produce 1107 ± 12 mg/L phloroglucinol from glucose. Then, E. coli BL21(DE3) was engineered to utilize acetate to produce 228 ± 15 mg/L phloroglucinol. Then, the endogenous citrate synthase (GltA) which could catalyze oxaloacetate and acetyl-CoA generated from acetate to citrate was knocked down by CRISPRi system in order to enhance the carbon flux for phloroglucinol production, and the titer was improved to 284 ± 8 mg/L. This work demonstrated that acetate could be used as low-cost substrate to achieve the biosynthesis of phloroglucinol and provided an example of effective utilization of acetate.
Collapse
|
81
|
Bacterial synthesis of C3-C5 diols via extending amino acid catabolism. Proc Natl Acad Sci U S A 2020; 117:19159-19167. [PMID: 32719126 DOI: 10.1073/pnas.2003032117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amino acids are naturally occurring and structurally diverse metabolites in biological system, whose potentials for chemical expansion, however, have not been fully explored. Here, we devise a metabolic platform capable of producing industrially important C3-C5 diols from amino acids. The presented platform combines the natural catabolism of charged amino acids with a catalytically efficient and thermodynamically favorable diol formation pathway, created by expanding the substrate scope of the carboxylic acid reductase toward noncognate ω-hydroxylic acids. Using the established platform as gateways, seven different diol-convertible amino acids are converted to diols including 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol. Particularly, we afford to optimize the production of 1,4-butanediol and demonstrate the de novo production of 1,5-pentanediol from glucose, with titers reaching 1.41 and 0.97 g l-1, respectively. Our work presents a metabolic platform that enriches the pathway repertoire for nonnatural diols with feedstock flexibility to both sugar and protein hydrolysates.
Collapse
|
82
|
Jeucken A, Molenaar MR, van de Lest CHA, Jansen JWA, Helms JB, Brouwers JF. A Comprehensive Functional Characterization of Escherichia coli Lipid Genes. Cell Rep 2020; 27:1597-1606.e2. [PMID: 31042483 DOI: 10.1016/j.celrep.2019.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/25/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid membranes are the border between living cells and their environments. The membrane's lipid composition defines fluidity, thickness, and protein activity and is controlled by the intricate actions of lipid gene-encoded enzymes. However, a comprehensive analysis of each protein's contribution to the lipidome is lacking. Here, we present such a comprehensive and functional overview of lipid genes in Escherichia coli by individual overexpression or deletion of these genes. We developed a high-throughput lipidomic platform, combining growth analysis, one-step lipid extraction, rapid LC-MS, and bioinformatic analysis into one streamlined procedure. This allowed the processing of more than 300 samples per day and revealed interesting functions of known enzymes and distinct effects of individual proteins on the phospholipidome. Our data demonstrate the plasticity of the phospholipidome and unexpected relations between lipid classes and cell growth. Modeling of lipidomic responses to short-chain alcohols provides a rationale for targeted membrane engineering.
Collapse
Affiliation(s)
- Aike Jeucken
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Martijn R Molenaar
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Chris H A van de Lest
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Jeroen W A Jansen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, the Netherlands.
| |
Collapse
|
83
|
Promdonkoy P, Mhuantong W, Champreda V, Tanapongpipat S, Runguphan W. Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering. ACTA ACUST UNITED AC 2020; 47:497-510. [DOI: 10.1007/s10295-020-02281-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Abstract
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
Collapse
Affiliation(s)
- Peerada Promdonkoy
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Wuttichai Mhuantong
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Verawat Champreda
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Sutipa Tanapongpipat
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Weerawat Runguphan
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| |
Collapse
|
84
|
Li C, Zhang R, Wang J, Wilson LM, Yan Y. Protein Engineering for Improving and Diversifying Natural Product Biosynthesis. Trends Biotechnol 2020; 38:729-744. [PMID: 31954530 PMCID: PMC7274900 DOI: 10.1016/j.tibtech.2019.12.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Proteins found in nature have traditionally been the most frequently used biocatalysts to produce numerous natural products ranging from commodity chemicals to pharmaceuticals. Protein engineering has emerged as a powerful biotechnological toolbox in the development of metabolic engineering, particularly for the biosynthesis of natural products. Recently, protein engineering has become a favored method to improve enzymatic activity, increase enzyme stability, and expand product spectra in natural product biosynthesis. This review summarizes recent advances and typical strategies in protein engineering, highlighting the paramount role of protein engineering in improving and diversifying the biosynthesis of natural products. Future prospects and research directions are also discussed.
Collapse
Affiliation(s)
- Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Ruihua Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jian Wang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Lauren Marie Wilson
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
85
|
Dutta S. Hydro(deoxygenation) Reaction Network of Lignocellulosic Oxygenates. CHEMSUSCHEM 2020; 13:2894-2915. [PMID: 32134557 DOI: 10.1002/cssc.202000247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Hydrodeoxygenation (HDO) is a key transformation step to convert lignocellulosic oxygenates into drop-in and functional high-value hydrocarbons through controlled oxygen removal. Nevertheless, the mechanistic insights of HDO chemistry have been scarcely investigated as opposed to a significant extent of hydrodesulfurization chemistry. Current requirements emphasize certain underexplored events of HDO of oxygenates, which include 1) interactions of oxygenates of varied molecular size with active sites of the catalysts, 2) determining the conformation of oxygenates on the active site at the point of interaction, and 3) effects of oxygen contents of oxygenates on the reaction rate of HDO. It is realized that the molecular interactions of oxygenates with the surface of the catalyst dominates the degree and nature of deoxygenation to derive products with desired selectivity by overcoming complex separation processes in a biorefinery. Those oxygenates with high carbon numbers (>C10), multiple furan rings, and branched architectures are even more complex to understand. This article aims to focus on concise mechanistic analysis of biorefinery oxygenates (C10-35 ) for their deoxygenation processes, with a special emphasis on their interactions with active sites in a complex chemical environment. This article also addresses differentiation of the mode of interactions based on the molecular size of oxygenates. Deoxygenation processes coupled with or without ring opening of furan-based oxygenates and site-substrate cooperativity dictate the formation of diverse value-added products. Oxygen removal has been the key step for microbial deoxygenation by the use of oxygen-removing decarbonylase enzymes. However, challenges to obtain branched and long-chain hydrocarbons remain, which require special attention, including the invention of newer techniques to upgrade the process for combined depolymerization-HDO from real biomass.
Collapse
Affiliation(s)
- Saikat Dutta
- Molecular Catalysis & Energy (MCR) Laboratory, Amity Institute Click Chemistry Research & Studies (AICCRS), Amity University, Sector 125, Noida, 201303, India
| |
Collapse
|
86
|
Hu Y, Zhu Z, Nielsen J, Siewers V. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals. Open Biol 2020; 9:190049. [PMID: 31088249 PMCID: PMC6544985 DOI: 10.1098/rsob.190049] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, in particular ethanol, a biofuel produced in large quantities. With a need for high-energy-density fuels for jets and heavy trucks, there is, however, much interest in the biobased production of hydrocarbons that can be derived from fatty acids. Fatty acids also serve as precursors to a number of oleochemicals and hence provide interesting platform chemicals. Here, we review the recent strategies applied to metabolic engineering of S. cerevisiae for the production of fatty acid-derived biofuels and for improvement of the titre, rate and yield (TRY). This includes, for instance, redirection of the flux towards fatty acids through engineering of the central carbon metabolism, balancing the redox power and varying the chain length of fatty acids by enzyme engineering. We also discuss the challenges that currently hinder further TRY improvements and the potential solutions in order to meet the requirements for commercial application.
Collapse
Affiliation(s)
- Yating Hu
- 1 Department of Biology and Biological Engineering, Chalmers University of Technology , 41296 Gothenburg , Sweden.,2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Zhiwei Zhu
- 1 Department of Biology and Biological Engineering, Chalmers University of Technology , 41296 Gothenburg , Sweden.,2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , 41296 Gothenburg , Sweden
| | - Jens Nielsen
- 1 Department of Biology and Biological Engineering, Chalmers University of Technology , 41296 Gothenburg , Sweden.,2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , 41296 Gothenburg , Sweden.,3 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , 2800 Kgs Lyngby , Denmark.,4 BioInnovation Institute , Ole Måløes Vej, 2200 Copenhagen N , Denmark
| | - Verena Siewers
- 1 Department of Biology and Biological Engineering, Chalmers University of Technology , 41296 Gothenburg , Sweden.,2 Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , 41296 Gothenburg , Sweden
| |
Collapse
|
87
|
Deng X, Chen L, Hei M, Liu T, Feng Y, Yang GY. Structure-guided reshaping of the acyl binding pocket of 'TesA thioesterase enhances octanoic acid production in E. coli. Metab Eng 2020; 61:24-32. [PMID: 32339761 DOI: 10.1016/j.ymben.2020.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022]
Abstract
Medium-chain fatty acids (C6-C10) have attracted much attention recently for their unique properties compared to their long-chain counterparts, including low melting points and relatively higher carbon conversion yield. Thioesterase enzymes, which can catalyze the hydrolysis of acyl-ACP (acyl carrier protein) to release free fatty acids (FAs), regulate both overall FA yields and acyl chain length distributions in bacterial and yeast fermentation cultures. These enzymes typically prefer longer chain substrates. Herein, seeking to increase bacterial production of MCFAs, we conducted structure-guided mutational screening of multiple residues in the substrate-binding pocket of the E. coli thioesterase enzyme 'TesA. Confirming our hypothesis that enhancing substrate selectivity for medium-chain acyl substrates would promote overall MCFA production, we found that replacement of residues lining the bottom of the pocket with more hydrophobic residues strongly promoted the C8 substrate selectivity of 'TesA. Specifically, two rounds of saturation mutagenesis led to the identification of the 'TesARD-2 variant that exhibited a 133-fold increase in selectivity for the C8-ACP substrate as compared to C16-ACP substrate. Moreover, the recombinant expression of this variant in an E. coli strain with a blocked β-oxidation pathway led to a 1030% increase in the in vivo octanoic acid (C8) production titer. When this strain was fermented in a 5-L fed-batch bioreactor, it produced 2.7 g/L of free C8 (45%, molar fraction) and 7.9 g/L of total free FAs, which is the highest-to-date free C8 titer to date reported using the E. coli type II fatty acid synthetic pathway. Thus, reshaping the substrate binding pocket of a bacterial thioesterase enzyme by manipulating the hydrophobicity of multiple residues altered the substrate selectivity and therefore fatty acid product distributions in cells. Our study demonstrates the relevance of this strategy for increasing titers of industrially attractive MCFAs as fermentation products.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuqing Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mohan Hei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
88
|
Siripong W, Angela C, Tanapongpipat S, Runguphan W. Metabolic engineering of Pichia pastoris for production of isopentanol (3-Methyl-1-butanol). Enzyme Microb Technol 2020; 138:109557. [PMID: 32527534 DOI: 10.1016/j.enzmictec.2020.109557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
In recent years, the increasingly serious and clear effects of climate change have increased interest in renewable fuels and platform chemicals. Microbial platforms that can produce these compounds in an economically efficient way have emerged as an attractive alternative to the traditional production approaches. Here, we engineered the industrially-relevant yeast Pichia pastoris to produce the platform chemical 3-methyl-1-butanol (3M1B, isopentanol) directly from the renewable carbon source glucose. Specifically, we overexpressed the endogenous valine and leucine biosynthetic pathways to increase the production of the key pathway intermediate, 2-ketoisocaproate (2-KIC). Overexpression of the artificial keto-acid degradation pathway converted 2-KIC into 3M1B. Down-regulation of the side-product ethanol production using the CRISPR/Cas9 system led to a strain that is able to produce 3M1B at a titer of 191.0 ± 9.6 mg/L, the highest titer reported to date in a non-conventional yeast. We envision that our yeast system will pave the way for an efficient production system for this important class of platform compounds.
Collapse
Affiliation(s)
- Wiparat Siripong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Clara Angela
- Indonesia International Institute for Life-Sciences, Jl. Pulomas Barat Kav. 88, Kayu Putih, Pulo Gadung, Jakarta Timur, 13210, Indonesia
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
89
|
Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering. Curr Opin Biotechnol 2020; 62:7-14. [DOI: 10.1016/j.copbio.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/07/2019] [Accepted: 07/21/2019] [Indexed: 02/01/2023]
|
90
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
91
|
Wichmann J, Lauersen KJ, Kruse O. Green algal hydrocarbon metabolism is an exceptional source of sustainable chemicals. Curr Opin Biotechnol 2020; 61:28-37. [DOI: 10.1016/j.copbio.2019.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
92
|
Jaroensuk J, Intasian P, Wattanasuepsin W, Akeratchatapan N, Kesornpun C, Kittipanukul N, Chaiyen P. Enzymatic reactions and pathway engineering for the production of renewable hydrocarbons. J Biotechnol 2020; 309:1-19. [DOI: 10.1016/j.jbiotec.2019.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
|
93
|
Liu Y, Chen J, Khusnutdinova AN, Correia K, Diep P, Batyrova KA, Nemr K, Flick R, Stogios P, Yakunin AF, Mahadevan R. A novel C-terminal degron identified in bacterial aldehyde decarbonylases using directed evolution. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:114. [PMID: 32612677 PMCID: PMC7325246 DOI: 10.1186/s13068-020-01753-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/16/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Aldehyde decarbonylases (ADs), which convert acyl aldehydes into alkanes, supply promising solution for producing alkanes from renewable feedstock. However the instability of ADs impedes their further application. Therefore, the current study aimed to investigate the degradation mechanism of ADs and engineer it towards high stability. RESULTS Here, we describe the discovery of a degradation tag (degron) in the AD from marine cyanobacterium Prochlorococcus marinus using error-prone PCR-based directed evolution system. Bioinformatic analysis revealed that this C-terminal degron is common in bacterial ADs and identified a conserved C-terminal motif, RMSAYGLAAA, representing the AD degron (ADcon). Furthermore, we demonstrated that the ATP-dependent proteases ClpAP and Lon are involved in the degradation of AD-tagged proteins in E. coli, thereby limiting alkane production. Deletion or modification of the degron motif increased alkane production in vivo. CONCLUSION This work revealed the presence of a novel degron in bacterial ADs responsible for its instability. The in vivo experiments proved eliminating or modifying the degron could stabilize AD, thereby producing higher titers of alkanes.
Collapse
Affiliation(s)
- Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Khorcheska A. Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Kayla Nemr
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, LL57 2UW UK
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
- Institute of Biomedical Engineering, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| |
Collapse
|
94
|
Li G, Huang D, Sui X, Li S, Huang B, Zhang X, Wu H, Deng Y. Advances in microbial production of medium-chain dicarboxylic acids for nylon materials. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00338j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medium-chain dicarboxylic acids (MDCAs) are widely used in the production of nylon materials, and among which, succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic acids are particularly important for that purpose.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Dixuan Huang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Xue Sui
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Bing Huang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| |
Collapse
|
95
|
Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources. Nat Commun 2019; 10:5060. [PMID: 31699986 PMCID: PMC6838201 DOI: 10.1038/s41467-019-13071-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Engineered enzyme cascades offer powerful tools to convert renewable resources into value-added products. Man-made catalysts give access to new-to-nature reactivities that may complement the enzyme’s repertoire. Their mutual incompatibility, however, challenges their integration into concurrent chemo-enzymatic cascades. Herein we show that compartmentalization of complex enzyme cascades within E. coli whole cells enables the simultaneous use of a metathesis catalyst, thus allowing the sustainable one-pot production of cycloalkenes from oleic acid. Cycloheptene is produced from oleic acid via a concurrent enzymatic oxidative decarboxylation and ring-closing metathesis. Cyclohexene and cyclopentene are produced from oleic acid via either a six- or eight-step enzyme cascade involving hydration, oxidation, hydrolysis and decarboxylation, followed by ring-closing metathesis. Integration of an upstream hydrolase enables the usage of olive oil as the substrate for the production of cycloalkenes. This work highlights the potential of integrating organometallic catalysis with whole-cell enzyme cascades of high complexity to enable sustainable chemistry. Cycloalkenes are bulk petrochemicals that are currently obtained from fossil fuels. Here, the authors developed multi enzyme pathways in combination with a Ru-catalyzed metathesis reaction for the one-pot production of cyclopentene, cyclohexene, and cycloheptene from olive oil-derived intermediates.
Collapse
|
96
|
Systems biology based metabolic engineering for non-natural chemicals. Biotechnol Adv 2019; 37:107379. [DOI: 10.1016/j.biotechadv.2019.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/23/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
|
97
|
Mahajan D, Sengupta S, Sen S. Strategies to improve microbial lipid production: Optimization techniques. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
98
|
Promdonkoy P, Siripong W, Downes JJ, Tanapongpipat S, Runguphan W. Systematic improvement of isobutanol production from D-xylose in engineered Saccharomyces cerevisiae. AMB Express 2019; 9:160. [PMID: 31599368 PMCID: PMC6787123 DOI: 10.1186/s13568-019-0885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 11/11/2022] Open
Abstract
As the importance of reducing carbon emissions as a means to limit the serious effects of global climate change becomes apparent, synthetic biologists and metabolic engineers are looking to develop renewable sources for transportation fuels and petroleum-derived chemicals. In recent years, microbial production of high-energy fuels has emerged as an attractive alternative to the traditional production of transportation fuels. In particular, the Baker’s yeast Saccharomyces cerevisiae, a highly versatile microbial chassis, has been engineered to produce a wide array of biofuels. Nevertheless, a key limitation of S. cerevisiae is its inability to utilize xylose, the second most abundant sugar in lignocellulosic biomass, for both growth and chemical production. Therefore, the development of a robust S. cerevisiae strain that is able to use xylose is of great importance. Here, we engineered S. cerevisiae to efficiently utilize xylose as a carbon source and produce the advanced biofuel isobutanol. Specifically, we screened xylose reductase (XR) and xylose dehydrogenase (XDH) variants from different xylose-metabolizing yeast strains to identify the XR–XDH combination with the highest activity. Overexpression of the selected XR–XDH variants, a xylose-specific sugar transporter, xylulokinase, and isobutanol pathway enzymes in conjunction with the deletions of PHO13 and GRE3 resulted in an engineered strain that is capable of producing isobutanol at a titer of 48.4 ± 2.0 mg/L (yield of 7.0 mg/g d-xylose). This is a 36-fold increase from the previous report by Brat and Boles and, to our knowledge, is the highest isobutanol yield from d-xylose in a microbial system. We hope that our work will set the stage for an economic route for the production of advanced biofuel isobutanol and enable efficient utilization of lignocellulosic biomass.
Collapse
|
99
|
Continuous photoproduction of hydrocarbon drop-in fuel by microbial cell factories. Sci Rep 2019; 9:13713. [PMID: 31548626 PMCID: PMC6757031 DOI: 10.1038/s41598-019-50261-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/09/2019] [Indexed: 11/20/2022] Open
Abstract
Use of microbes to produce liquid transportation fuels is not yet economically viable. A key point to reduce production costs is the design a cell factory that combines the continuous production of drop-in fuel molecules with the ability to recover products from the cell culture at low cost. Medium-chain hydrocarbons seem ideal targets because they can be produced from abundant fatty acids and, due to their volatility, can be easily collected in gas phase. However, pathways used to produce hydrocarbons from fatty acids require two steps, low efficient enzymes and/or complex electron donors. Recently, a new hydrocarbon-forming route involving a single enzyme called fatty acid photodecarboxylase (FAP) was discovered in microalgae. Here, we show that in illuminated E. coli cultures coexpression of FAP and a medium-chain fatty acid thioesterase results in continuous release of volatile hydrocarbons. Maximum hydrocarbon productivity was reached under low/medium light while higher irradiance resulted in decreased amounts of FAP. It was also found that the production rate of hydrocarbons was constant for at least 5 days and that 30% of total hydrocarbons could be collected in the gas phase of the culture. This work thus demonstrates that the photochemistry of the FAP can be harnessed to design a simple cell factory that continuously produces hydrocarbons easy to recover and in pure form.
Collapse
|
100
|
Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends Biotechnol 2019; 37:817-837. [DOI: 10.1016/j.tibtech.2019.01.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
|