51
|
Chen X, Li Q, Fu X, Li J, Deng J, Zhang Q, Qiu M, Lyu X, Cai L, Li H, Li X, Yao K, Wang J, Huang Z, Chen L, Zhang J, Li D. Tumor-Derived EBV-miR-BART2-5p Promotes Nasopharyngeal Carcinoma Metastasis by Inducing Premetastatic Endothelial Cell Pyroptosis. Mol Cancer Res 2025; 23:250-262. [PMID: 39545766 DOI: 10.1158/1541-7786.mcr-24-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Extravasation is a key step in tumor metastasis. Epstein‒Barr virus plays a crucial role in nasopharyngeal carcinoma (NPC) metastasis. However, the functions and molecular mechanisms of Epstein‒Barr virus during tumor cell extravasation remain unclear. Here, we showed that the expression of pyroptosis-associated proteins is greater in the endothelial cells of metastatic NPC tissues than in those of nontumor tissues exosomes derived from NPC cells promoted endothelial cell pyroptosis, vascular permeability, and tumor cell extravasation. Moreover, we found that BART2-5p is abundant in serum exosomes from patients with NPC metastasis and in NPC cells and that it regulates endothelial cell pyroptosis in premetastatic organs via MRE11A. Exosomes containing a BART2-5p inhibitor and AAV-MRE11A attenuated endothelial cell pyroptosis and tumor metastasis. Moreover, in the endothelial cells of metastatic tissues from patients with NPC, the BART2-5p level was positively associated with pyroptosis-related protein expression. Collectively, our findings suggest that exosomal BART2-5p is involved in premetastatic niche formation, identifying secreted BART2-5p as a potential therapeutic target for NPC metastasis. Implications: The finding that secreted BART2-5p is involved in premetastatic niche formation may aid the development of a potential therapeutic target for NPC metastasis.
Collapse
Affiliation(s)
- Xingrui Chen
- GuangDong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Qiqi Li
- Department of Pathology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Fu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jike Li
- GuangDong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Deng
- Department of Biologic Products of GuangDong Institute for Drug Control, NMPA Key Laboratory for Quality Control of Blood Product, Guangzhou, China
| | - Qianbing Zhang
- GuangDong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mengying Qiu
- GuangDong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Linbo Cai
- GuangDong Sanjiu Brain Hospital, Guangzhou, China
| | - Hainan Li
- GuangDong Sanjiu Brain Hospital, Guangzhou, China
| | - Xin Li
- 9ShenZhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), ShenZhen Hospital, Southern Medical University, Shenzhen, China
| | - Kaitai Yao
- GuangDong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiahong Wang
- GuangDong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongxi Huang
- GuangDong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Chen
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Jiangyu Zhang
- Department of Pathology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Dengke Li
- GuangDong Provincial Key Laboratory of Tumor Immunotherapy, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
52
|
Shakerian N, Tafazoli A, Razavinia A, Sadrzadeh Aghajani Z, Bana N, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of Therapeutic and Diagnostic Applications of Exosomes in Pancreatic Cancer. Pancreas 2025; 54:e255-e267. [PMID: 39661050 DOI: 10.1097/mpa.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Unusual symptoms, rapid progression, lack of reliable early diagnostic biomarkers, and lack of efficient treatment choices are the ongoing challenges of pancreatic cancer. Numerous research studies have demonstrated the correlation between exosomes and various aspects of pancreatic cancer. In light of these facts, exosomes possess the potential to play functional roles in the treatment, prognosis, and diagnosis of the pancreatic cancer. In the present study, we reviewed the most recent developments in approaches for exosome separation, modification, monitoring, and communication. Moreover, we discussed the clinical uses of exosomes as less invasive liquid biopsies and drug carriers and their contribution to the control of angiogenic activity of pancreatic cancer. Better investigation of exosome biology would help to effectively engineer therapeutic exosomes with certain nucleic acids, proteins, and even exogenous drugs as their cargo. Circulating exosomes have shown promise as reliable candidates for pancreatic cancer early diagnosis and monitoring in high-risk people without clinical cancer manifestation. Although we have tried to reflect the status of exosome applications in the treatment and detection of pancreatic cancer, it is evident that further studies and clinical trials are required before exosomes may be employed as a routine therapeutic and diagnostic tools for pancreatic cancer.
Collapse
Affiliation(s)
- Neda Shakerian
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Aida Tafazoli
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz
| | - Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, IR
| | | | - Nikoo Bana
- Kish International Campus, University of Teheran
| | - Maysam Mard-Soltani
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
53
|
Chen M, Liu H, Xiao Y, Liang R, Xu H, Hong B, Qian Y. Predictive biomarkers of pancreatic cancer metastasis: A comprehensive review. Clin Chim Acta 2025; 569:120176. [PMID: 39914505 DOI: 10.1016/j.cca.2025.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
This review provides a comprehensive overview of predictive biomarkers associated with metastasis in pancreatic cancer (PC), one of the most aggressive malignancies characterized by late-stage diagnosis and poor prognosis. Metastasis, particularly to the liver, lungs, and lymph nodes, significantly worsens patient outcomes by compromising organ function and promoting disease progression. Reliable biomarkers for predicting and detecting metastasis at early stages are critical for improving survival rates and guiding personalized therapies. This paper highlights both general and specific biomarkers, including genetic mutations, protein expression changes, and carbohydrate tumor markers such as CA19-9. Immunological factors, including PD-L1, inflammatory cytokines, and chemokines, further influence the metastatic process within the tumor microenvironment (TME). Specific biomarkers play pivotal roles in promoting metastasis through mechanisms such as epithelial-to-mesenchymal transition (EMT), tumor microenvironment remodeling, and immune evasion. Emerging markers such as circulating tumor cells (CTCs) and volatile organic compounds (VOCs) offer promising non-invasive tools for metastasis detection and monitoring. This review not only consolidates existing knowledge but also highlights the mechanisms through which specific biomarkers facilitate metastasis. Despite recent progress, challenges such as biomarker standardization, technical variability, and clinical validation remain, and addressing these hurdles is essential for integrating predictive biomarkers into clinical practice. Ultimately, this review contributes to advancing early detection strategies, personalized treatment options, and improved prognosis for PC patients.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ruijin Liang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Hong Xu
- Departments of Pathology, Quzhou Second People's Hospital, Quzhou 324022, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
54
|
Song J, Ye X, Xiao H. Liquid biopsy entering clinical practice: Past discoveries, current insights, and future innovations. Crit Rev Oncol Hematol 2025; 207:104613. [PMID: 39756526 DOI: 10.1016/j.critrevonc.2025.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
In recent years, liquid biopsy has gained prominence as an emerging biomarker in cancer research, providing critical insights into tumor biology and metastasis. Technological advancements have enabled its integration into clinical practice, with ongoing trials demonstrating encouraging outcomes. Key applications of liquid biopsy include early cancer detection, cancer staging, prognosis evaluation, and real-time monitoring of tumor progression to optimize treatment decisions. In this review, we present a comprehensive conceptual framework for liquid biopsy, discuss the challenges in its research and clinical application, and highlight its significant potential in identifying therapeutic targets and resistance mechanisms across various cancer types. Furthermore, we explore the emerging role of liquid biopsy-based multicancer screening, which has shown promising advancements. Looking ahead, standardization, multi-omics coanalysis, and the advancement of precision medicine and personalized treatments are expected to drive the future development and integration of liquid biopsy into routine clinical workflows, enhancing cancer diagnosis and treatment management.
Collapse
Affiliation(s)
- Jinghan Song
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Ye
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
55
|
Rahimian S, Mirkazemi K, Kamalinejad A, Doroudian M. Exosome-based advances in pancreatic cancer: The potential of mesenchymal stem cells. Crit Rev Oncol Hematol 2025; 207:104594. [PMID: 39732301 DOI: 10.1016/j.critrevonc.2024.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024] Open
Abstract
Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), is one of the most challenging clinical conditions due to its late-stage diagnosis and poor survival rates. Mesenchymal stem cells (MSCs), used for targeted therapies, are being explored as a promising treatment because of their tumor-homing properties and potential contributions to the pancreatic cancer microenvironment. Understanding these interactions is crucial for developing effective treatments. In this study, we investigated how MSCs exhibit tropism towards tumors, influence the microenvironment through paracrine effects, and serve as potential drug delivery vehicles. We also examined their role in progression and therapeutic resistance in pancreatic cancer therapy. The cytotoxic effects of certain compounds on tumor cells, the use of genetically modified MSCs as drug carriers, and the potential of exosomal biomarkers like miRNAs and riRNAs for diagnosis and monitoring of pancreatic cancer were analyzed. Overall, MSC-based therapies, coupled with insights into tumor-stromal interactions, offer new avenues for improving outcomes in pancreatic cancer treatment. Additionally, the use of MSC-based therapies in clinical trials is discussed. While MSCs show promising potential for pancreatic cancer monitoring, diagnosis, and treatment, results so far have been limited.
Collapse
Affiliation(s)
- Sana Rahimian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kimia Mirkazemi
- Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Armita Kamalinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
56
|
Patel B, Gaikwad S, Prasad S. Exploring the significance of extracellular vesicles: Key players in advancing cancer and possible theranostic tools. CANCER PATHOGENESIS AND THERAPY 2025; 3:109-119. [PMID: 40182121 PMCID: PMC11963151 DOI: 10.1016/j.cpt.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/05/2025]
Abstract
Metastasis remains a critical challenge in cancer treatment and the leading cause of cancer-related mortality. Ongoing research has demonstrated the key role of extracellular vesicles (EVs) in facilitating communication between distant organs. Cancer cells release a substantial number of EVs that carry distinct cargo molecules, including oncogenic proteins, DNA fragments, and various RNA species. Upon uptake, these cargo molecules profoundly influence the biology of both normal and cancerous cells. This review consolidates the understanding of how EVs promote tumorigenesis by regulating processes such as proliferation, migration, metastasis, angiogenesis, stemness, and immunity. The exploration of EVs as a non-invasive method for cancer detection holds great promise, given that different cancer types exhibit unique protein and RNA signatures that can serve as valuable biomarkers for early diagnosis. Furthermore, growing interest exists in the potential bioengineering EVs for use as prospective therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- Bhaumik Patel
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutic and Biotechnology, Texas Tech University Health Science Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
57
|
Qian L, Chen P, Zhang S, Wang Z, Guo Y, Koutouratsas V, Fleishman JS, Huang C, Zhang S. The uptake of extracellular vesicles: Research progress in cancer drug resistance and beyond. Drug Resist Updat 2025; 79:101209. [PMID: 39893749 DOI: 10.1016/j.drup.2025.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous vesicles released by donor cells that can be taken up by recipient cells, thus inducing cellular phenotype changes. Since their discovery decades ago, roles of EVs in modulating initiation, growth, survival and metastasis of cancer have been revealed. Recent studies from multifaceted perspectives have further detailed the contribution of EVs to cancer drug resistance; however, the role of EV uptake in conferring drug resistance seems to be overlooked. In this comprehensive review, we update the EV subtypes and approaches for determining EV uptake. The biological basis of EV uptake is systematically summarized. Moreover, we focus on the diverse uptake mechanisms by which EVs carry out the intracellular delivery of functional molecules and drug resistance signaling. Furthermore, we highlight how EV uptake confers drug resistance and identify potential strategies for targeting EV uptake to overcome drug resistance. Finally, we discuss the research gap on the role of EV uptake in promoting drug resistance. This updated knowledge provides a new avenue to overcome cancer drug resistance by targeting EV uptake.
Collapse
Affiliation(s)
- Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pangzhou Chen
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Zhenglu Wang
- Department of Pathology, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Centre Hospital, Tianjin 300192, China
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Vasili Koutouratsas
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chuanqiang Huang
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
58
|
Dong X, Lin Y, Li K, Liang G, Huang X, Pan J, Wang L, Zhang D, Liu T, Wang T, Yan X, Zhang L, Li X, Qu X, Jia D, Li Y, Zhang H. Consensus statement on extracellular vesicles in liquid biopsy for advancing laboratory medicine. Clin Chem Lab Med 2025; 63:465-482. [PMID: 38896030 DOI: 10.1515/cclm-2024-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Extracellular vesicles (EVs) represent a diverse class of nanoscale membrane vesicles actively released by cells. These EVs can be further subdivided into categories like exosomes and microvesicles, based on their origins, sizes, and physical attributes. Significantly, disease-derived EVs have been detected in virtually all types of body fluids, providing a comprehensive molecular profile of their cellular origins. As a result, EVs are emerging as a valuable addition to liquid biopsy techniques. In this collective statement, the authors share their current perspectives on EV-related research and product development, with a shared commitment to translating this newfound knowledge into clinical applications for cancer and other diseases, particularly as disease biomarkers. The consensus within this document revolves around the overarching recognition of the merits, unresolved questions, and existing challenges surrounding EVs. This consensus manuscript is a collaborative effort led by the Committee of Exosomes, Society of Tumor Markers, Chinese anti-Cancer Association, aimed at expediting the cultivation of robust scientific and clinically applicable breakthroughs and propelling the field forward with greater swiftness and efficacy.
Collapse
Affiliation(s)
- Xingli Dong
- 558113 Central Laboratory, Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen Clinical Research Center for hematologic disease, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Yusheng Lin
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Thoracic Surgery, 47885 The First Affiliated Hospital of Jinan University , Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Kai Li
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Gaofeng Liang
- 74623 School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology , Luoyang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang Province, Harbin, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Tong Wang
- 47885 MOE Key Laboratory of Tumor Molecular Biology, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Xiaomei Yan
- Department of Chemical Biology, 534787 MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, China
| | - Long Zhang
- 12377 MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University , Hangzhou, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, 558113 Shenzhen Key Laboratory, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Xiujuan Qu
- Department of Medical Oncology, 159407 The First Hospital of China Medical University , Shenyang, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
59
|
Luo X, McAndrews KM, Kalluri R. Natural and Bioengineered Extracellular Vesicles in Diagnosis, Monitoring and Treatment of Cancer. ACS NANO 2025; 19:5871-5896. [PMID: 39869032 PMCID: PMC12002402 DOI: 10.1021/acsnano.4c11630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Extracellular vesicles (EVs) are cell derived nanovesicles which are implicated in both physiological and pathological intercellular communication, including the initiation, progression, and metastasis of cancer. The exchange of biomolecules between stromal cells and cancer cells via EVs can provide a window to monitor cancer development in real time for better diagnostic and interventional strategies. In addition, the process of secretion and internalization of EVs by stromal and cancer cells in the tumor microenvironment (TME) can be exploited for delivering therapeutics. EVs have the potential to provide a targeted, biocompatible, and efficient delivery platform for the treatment of cancer and other diseases. Natural as well as engineered EVs as nanomedicine have immense potential for disease intervention. Here, we provide an overview of current knowledge of EVs' function in cancer progression, diagnostic and therapeutic applications for EVs in the cancer setting, as well as current EV engineering strategies.
Collapse
Affiliation(s)
- Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
60
|
He Q, Hu J, Ngo FY, Zhang H, He L, Huang H, Wu T, Pan Y, Yang Z, Jiang Y, Cho WC, Cheuk W, Tse GM, Tsang JY, Yang M, Zhang L, Wang X, Lo PC, Lau CG, Chin YR. Targeting TUBB2B inhibits triple-negative breast cancer growth and brain-metastatic colonization. J Exp Clin Cancer Res 2025; 44:55. [PMID: 39962586 PMCID: PMC11831766 DOI: 10.1186/s13046-025-03312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/01/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The triple-negative subtype of breast cancer is particularly challenging to treat due to its aggressiveness with a high risk of brain metastasis, and the lack of effective targeted therapies. Tubulin beta 2B class IIb (TUBB2B), a β-tubulin isoform regulating axon guidance during embryonic development, was found to be overexpressed in various types of cancers including triple-negative breast cancer (TNBC). However, its functional roles in breast cancer or metastasis remain unclear. METHODS To identify TUBB2B as a novel molecular target in TNBC, we performed bioinformatics analysis to assess the association of TUBB2B expression and survival of patients. RNAscope in situ hybridization was used to examine TUBB2B expression in clinical breast tumor samples. The effect of TUBB2B knockdown on TNBC growth and brain metastasis colonization was evaluated by in vitro and in vivo assays. Mass spectrometry (MS) and biochemical experiments were performed to explore the underlying mechanisms. Preclinical efficacy of targeting TUBB2B was determined in xenograft studies using the siRNA-gold nanoparticle (siRNA-AuNP) approach. RESULTS TUBB2B, but not other β-tubulin isoforms, is frequently overexpressed in TNBC primary tumors as well as brain metastases. We also find that upregulation of TUBB2B is associated with poor prognosis in breast cancer patients. Silencing TUBB2B induces tumor cell death and inhibits the outgrowth of brain metastasis. Mechanistically, we identify eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) as a novel interacting partner of TUBB2B, revealing a previously unexplored role of TUBB2B in translational regulation. In line with its neural-related functions, TUBB2B overexpression in TNBC cells activates astrocytes, which in turn upregulate TUBB2B in tumor cells. These findings suggest a feed-forward interaction between TUBB2B in TNBC cells and astrocytes that promotes brain metastatic colonization. Furthermore, we demonstrate the potent inhibition of TNBC xenograft growth as well as brain metastatic colonization using TUBB2B siRNA-AuNP treatment, indicating potential clinical applications of targeting TUBB2B for TNBC. CONCLUSIONS TUBB2B is a novel TNBC gene that plays a key role in promoting tumor cell survival and brain metastatic colonization, and can be targeted by siRNA-AuNPs as a treatment strategy.
Collapse
Affiliation(s)
- Qingling He
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
| | - Jianyang Hu
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
| | - Fung-Yin Ngo
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Huiqi Zhang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Lin He
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Hao Huang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Tan Wu
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yilin Pan
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Zihan Yang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yuanyuan Jiang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon Tong, Hong Kong
| | - Wah Cheuk
- Department of Pathology, Queen Elizabeth Hospital, Kowloon Tong, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Julia Y Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Mengsu Yang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Liang Zhang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Sha Tin, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Pui-Chi Lo
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
| | - C Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Y Rebecca Chin
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong.
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
61
|
Lim JU, Jung J, Kim YW, Kim CY, Lee SH, Park DW, Choi SI, Ji W, Yeo CD, Lee SH. Targeting the Tumor Microenvironment in EGFR-Mutant Lung Cancer: Opportunities and Challenges. Biomedicines 2025; 13:470. [PMID: 40002883 PMCID: PMC11852785 DOI: 10.3390/biomedicines13020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have transformed the treatment of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. However, treatment resistance remains a major challenge in clinical practice. The tumor microenvironment (TME) is a complex system composed of tumor cells, immune and non-immune cells, and non-cellular components. Evidence indicates that dynamic changes in TME during TKI treatment are associated with the development of resistance. Research has focused on identifying how each component of the TME interacts with tumors and TKIs to understand therapeutic targets that could address TKI resistance. In this review, we describe how TME components, such as immune cells, fibroblasts, blood vessels, immune checkpoint proteins, and cytokines, interact with EGFR-mutant tumors and how they can promote resistance to TKIs. Furthermore, we discuss potential strategies targeting TME as a novel therapeutic approach.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chi Young Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Won Park
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Sue In Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Wonjun Ji
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44610, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03083, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
62
|
Xu X, Long C, Li M, Shen C, Ye Q, Li Y, Li H, Cao X, Ma J. Systematic review and meta-analysis: diagnostic accuracy of exosomes in pancreatic cancer. World J Surg Oncol 2025; 23:51. [PMID: 39953585 PMCID: PMC11827209 DOI: 10.1186/s12957-025-03666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/19/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Early, non-invasive identification can generally enhance the survival rate for asymptomatic pancreatic cancer (PC). This systematic review and meta-analysis is conducted to evaluate the precision of diagnosing PC using serum and duodenal fluid exosomes. METHODS Following the guidelines of PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses), searches were conducted in the PubMed, Embase, Cochrane Library, and Web of Science databases in April 2024. A study was considered appropriate if it provided diagnostic precision and accuracy for patients with pancreatic cancer. The combined diagnostic impact was assessed by calculating the area beneath the aggregated SROC curve, and the quality of the studies included was evaluated using the QUADAS-2 checklist. All statistical evaluations and graphical representations utilized STATA 14.0. RESULTS Employing the terms "exosomes" and "pancreatic cancer" along with the search methodology, research was conducted across PubMed, Web of Science, Cochrane, and Embase databases. A total of 1202 studies were extracted from the databases, out of which nine were ultimately selected based on specific inclusion and exclusion standards. Across eight studies, exosomes were isolated from serum, while in a different one, they were taken from duodenal fluid. This document conducts subgroup analyses focusing on various types of exosome biomarkers, their origins, isolation techniques, and methods for analyzing biomarkers. Within the subset of exosome biomarker types, the group with exosomal cell surface proteoglycan exhibited the greatest combined sensitivity (0.96 (95% CI = 0.81-0.99) and specificity (0.90 (95% CI = 0.83-0.95)). Additionally, the set of exosomal cell surface proteoglycans showed the highest aggregated diagnostic ratio (215.92), combined positive likelihood ratio (9.96), area under the curve (0.93), and kombiniertes negative Likelihood-Ratio (0.05). The combined sensitivity of serum-derived exosomes stood at (0.86 (95% CI = 0.77-0.92)), the collective specificity at (0.83 (95% CI = 0.77-0.89)), the aggregate positive likelihood ratio at (5.22), the combined diagnostic ratio at (31.48), the overall area beneath the curve at (0.91), and the combined negative likelihood ratio at (0.17). Within the subgroup examination of exosome isolation techniques, ultracentrifugation emerged as the most sensitive method (0.90 (95% CI = 0.74-0.97)), the most specific method (0.89 (95% CI = 0.83-0.93)), the top positive likelihood ratio (8.35), the highest diagnostic ratio (76.48), the largest combined curve area (0.92), and the smallest negative likelihood ratio (0.11) in the aggregated data. Within the subset of biomarker analysis methods, the aggregate sensitivity via qRT-PCR was (0.84 (95% CI = 0.74-0.90)), the collective specificity (0.78 (95% CI = 0.64-0.87)), the aggregate diagnostic ratio (18.11), the aggregate area under the curve (0.88), the aggregate positive likelihood ratio (3.77), and the combined negative likelihood ratio (0.21). CONCLUSION Overall, exosomes are still valuable in the diagnosis of pancreatic cancer. In subgroup analyses, the proteoglycan found on exosomal cell surfaces is highly valuable for diagnosing pancreatic cancer. The more frequent separation method used in the nine included studies was ultracentrifugation, and it did demonstrate good data. Nonetheless, to verify their practicality and usefulness in clinical environments, a significant amount of clinical trials are still necessary.
Collapse
Affiliation(s)
- Xinyi Xu
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China
| | - Chunyue Long
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng Li
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China
| | - Chen Shen
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China
| | - Qiuwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China
| | - Yong Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China
| | - Hongyang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China
| | - Xia Cao
- Central Laboratory, The Second Affiliated Hospital of Kunming Medical University, 374, Dianmian Road, Kunming, 650101, China.
| | - Jun Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519, Kunzhou Road, Kunming, 650105, China.
| |
Collapse
|
63
|
David P, Kouhestani D, Hansen FJ, Paul S, Czubayko F, Karabiber A, Weisel N, Klösch B, Merkel S, Ole-Baur J, Gießl A, Van Deun J, Vera J, Mittelstädt A, Weber GF. Exosomal CD40, CD25, and Serum CA19-9 as Combinatory Novel Liquid Biopsy Biomarker for the Diagnosis and Prognosis of Patients with Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2025; 26:1500. [PMID: 40003965 PMCID: PMC11854914 DOI: 10.3390/ijms26041500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is largely due to several challenges, such as late diagnosis, early metastasis, limited response to chemotherapy, aggressive tumor biology, and high rates of tumor recurrence. Therefore, the development of a non-invasive and effective method for early detection of PDAC is crucial to improving patient outcomes. Continued research and exploration in this area are essential to enhance early detection methods and ultimately improve the prognosis for individuals with PDAC. In this study, we examined 37 exosomal surface proteins through a multiplex flow cytometry test on peripheral plasma samples from a group of 51 clinical control individuals (including healthy volunteers and non-cancer patients (Cholecystectomy, Hernia, healthy volunteers)), 21 pancreatitis, and 48 patients diagnosed with PDAC. Our research findings revealed that the level of exosomal CD40 expression is significantly lower in patients with PDAC and pancreatitis compared to non-cancer patients (p < 0.0001). Additionally, pancreatitis patients exhibited higher levels of exosomal CD25 expression than PDAC patients (p = 0.0104). PDAC patients with higher exo-CD40 had worse survival than patients with lower exo-CD40 (p = 0.0035). Similarly, PDAC patients with higher exo-CD25 showed worse survival in comparison to patients with lower exo-CD25 (p = 0.04). Statistical analysis revealed that exosomal CD40 achieved an AUC of 0.827 in distinguishing PDAC from clinical controls. Combining exo-CD40 along with exo-CD25 and CA19-9 discriminated PDAC patients from clinical controls with an AUC of 0.92. Exo-CD40 and exo-CD25 proteins found in exosomes isolated from plasma can serve as excellent non-invasive biomarkers for the early diagnosis of PDAC. Further larger scale studies are needed to validate combined exo-CD40 and exo-CD25 as a diagnostic tool for the identification of PDAC patients through non-invasive liquid biopsy.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Dina Kouhestani
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Frederik J. Hansen
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Sushmita Paul
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
| | - Franziska Czubayko
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Alara Karabiber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Nadine Weisel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Bettina Klösch
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Jan Ole-Baur
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
- Medizinische Klinik IV (Hämatologie und Onkologie), Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Jan Van Deun
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
| | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.O.-B.); (J.V.)
| | - Anke Mittelstädt
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (P.D.); (D.K.); (F.J.H.); (F.C.); (A.K.); (N.W.); (B.K.); (S.M.); (A.M.)
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| |
Collapse
|
64
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
65
|
Wang Y, Mao Z, Hu X, Cao J, Gwak J, Lee J, Chen H. Nanopore Confinement Effect Mediated Heterogeneous Plasmonic Metasurfaces for Multifunctional Biosensing Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408705. [PMID: 39707664 DOI: 10.1002/smll.202408705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Plasmonic metasurfaces (PMs) exhibit extraordinary optical response due to surface lattice resonance, which is crucial for realizing high-performance photovoltaic device preparation. In this work, a nanopore confinement effect-mediated MOF@UsAu is proposed as a novel PM heterojunction for photovoltaic interfaces. 2D MOFs have the unique advantage of a tunable and ordered porous structure. Its nanopore confinement effect regulates in situ synthesis of AuNPs on the MOF surface in dimensions and regions. The interface delocalization induced by work function matching and the Schottky barrier formed by band bending enhance the ordered LSPR and photovoltaic response of PM heterojunctions, achieving a significant enhancement of SPR interface plasma electric field. Based on the bi-directional interaction design between the S-shaped multifunctional peptide and MOF@UsAu, a PMs-enhanced SPR biosensor is constructed for direct, real-time, and ultrasensitive analysis of tumor exosomes. This study is the first to use 2D MOFs as substrates for constructing PMs and designing customized in situ synthesis strategies for specific application scenarios. It provides new ideas for the design of novel PMs and the construction of customized photovoltaic interfaces, expected to be extended to various types of photovoltaic device applications.
Collapse
Affiliation(s)
- Yindian Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P.R. China
| | - Zhihui Mao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200444, P.R. China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jiarong Cao
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Juyong Gwak
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241002, P.R. China
| |
Collapse
|
66
|
Cao L, Duan Q, Zhu Z, Xu X, Liu J, Li B. Liquid biopsy technologies: innovations and future directions in breast cancer biomarker detection. Biomed Microdevices 2025; 27:4. [PMID: 39849252 DOI: 10.1007/s10544-025-00734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Globally, breast cancer is the most frequent type of cancer, and its early diagnosis and screening can significantly improve the probability of survival and quality of life of those affected. Liquid biopsy-based targets such as circulating tumor cells, circulating tumor DNA, and exosomes have been instrumental in the early discovery of cancer, and have been found to be effective in stage therapy, recurrence monitoring, and drug selection. Biosensors based on these target related biomarkers convert the tested substances into quantifiable signals such as electrical and optical signals through signal transduction, which has the advantages of high sensitivity, simple operation, and low invasiveness. This review provides an overview of the latest progress of liquid biopsy biomarkers in the diagnosis, prognosis and treatment of breast cancer, compares the application and advantages of different biosensors based on these biomarkers in the diagnosis of breast cancer, and analyzes the limitations and solutions of biosensor based methods.
Collapse
Affiliation(s)
- Linhong Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Qingli Duan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Zixin Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Xuejing Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China.
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China.
| | - Baolin Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China.
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China.
| |
Collapse
|
67
|
Du X, Li H, Shen S, Tian C, Cao X, Xu X, Xu N, Wang S, Tian Q. Labeling tumor-associated extracellular vesicles with antibody-DNA conjugates for quantitative analysis. Front Mol Biosci 2025; 12:1531108. [PMID: 39911266 PMCID: PMC11794122 DOI: 10.3389/fmolb.2025.1531108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) shed from tumor cells into peripheral circulation or other body fluids are promising biomarkers for cancer diagnosis with enormously long circulation. Consequently, precise methods for differentiating normal and tumor-associated EVs (TAEs) are required. Methods This study used quantifiable antibody-DNA conjugate-assisted quantitative methods combined with proximity ligation technology to detect TAEs. The antibody-DNA conjugate contained one antibody associated with three oligonucleotides for signal amplification. The antibody in the conjugate can recognize the surface tumor antigens of TAEs. Simultaneously, DNA in the conjugate is attached to the surfaces of TAEs and holds the signal amplification post, converting protein identities to DNA amplification for protein detection, even at the molecular level. Results These findings revealed that TAEs can be quantitatively detected using DNA-mediated quantitative polymerase chain reaction (qPCR). Antibody-DNA conjugates were used to recognize the epithelial cell adhesion molecule (EpCAM) antigen on the TAE surface and quantify the antigen using qPCR for cancer analysis. Discussion This method proposed a new quantitative detection approach for TAEs, which aim to identify specific EV-associated markers for diagnostic or therapeutic, this method could inspire a new idea for tumor diagnosis and detection of other diseases.
Collapse
Affiliation(s)
- Xiao Du
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hongxiu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shiyi Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chao Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaohuan Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xingang Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Nan Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
68
|
Blanco-Agudín N, Ye S, González-Fernández S, Alcalde I, Merayo-Lloves J, Quirós LM. Exosomes in Ocular Health: Recent Insights into Pathology, Diagnostic Applications and Therapeutic Functions. Biomedicines 2025; 13:233. [PMID: 39857816 PMCID: PMC11762739 DOI: 10.3390/biomedicines13010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Exosomes are extracellular vesicles ranging from 30 to 150 nm in diameter that contain proteins, nucleic acids and other molecules. Produced by virtually all cell types, they travel throughout the body until they reach their target, where they can trigger a wide variety of effects by transferring the molecular cargo to recipient cells. In the context of ocular physiology, exosomes play a very important role in embryological development, the regulation of homeostasis and the immune system, which is crucial for normal vision. Consequently, in pathological situations, exosomes also undergo modifications in terms of quantity, composition and content, depending on the etiology of the disease. However, the mechanisms by which exosomes contribute to ocular pathology has not yet been studied in depth, and many questions remain unanswered. This review aims to summarize the most recent knowledge on the function of exosomes in the ocular system in healthy individuals and the role they play during pathological processes of a degenerative, infectious, neurodegenerative, vascular and inflammatory nature, such as keratoconus, keratitis, glaucoma, diabetic retinopathy and uveitis. Furthermore, given their unique characteristics, their potential as diagnostic biomarkers or therapeutic agents and their application in clinical ophthalmology are also explored, along with the main limitations that researchers face today in the field.
Collapse
Affiliation(s)
- Noelia Blanco-Agudín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (N.B.-A.); (S.Y.); (S.G.-F.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Suhui Ye
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (N.B.-A.); (S.Y.); (S.G.-F.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Sara González-Fernández
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (N.B.-A.); (S.Y.); (S.G.-F.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (N.B.-A.); (S.Y.); (S.G.-F.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
69
|
Zhan T, Betge J, Schulte N, Dreikhausen L, Hirth M, Li M, Weidner P, Leipertz A, Teufel A, Ebert MP. Digestive cancers: mechanisms, therapeutics and management. Signal Transduct Target Ther 2025; 10:24. [PMID: 39809756 PMCID: PMC11733248 DOI: 10.1038/s41392-024-02097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/20/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cancers of the digestive system are major contributors to global cancer-associated morbidity and mortality, accounting for 35% of annual cases of cancer deaths. The etiologies, molecular features, and therapeutic management of these cancer entities are highly heterogeneous and complex. Over the last decade, genomic and functional studies have provided unprecedented insights into the biology of digestive cancers, identifying genetic drivers of tumor progression and key interaction points of tumor cells with the immune system. This knowledge is continuously translated into novel treatment concepts and targets, which are dynamically reshaping the therapeutic landscape of these tumors. In this review, we provide a concise overview of the etiology and molecular pathology of the six most common cancers of the digestive system, including esophageal, gastric, biliary tract, pancreatic, hepatocellular, and colorectal cancers. We comprehensively describe the current stage-dependent pharmacological management of these malignancies, including chemo-, targeted, and immunotherapy. For each cancer entity, we provide an overview of recent therapeutic advancements and research progress. Finally, we describe how novel insights into tumor heterogeneity and immune evasion deepen our understanding of therapy resistance and provide an outlook on innovative therapeutic strategies that will shape the future management of digestive cancers, including CAR-T cell therapy, novel antibody-drug conjugates and targeted therapies.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Schulte
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Dreikhausen
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Hirth
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Moying Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philip Weidner
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antonia Leipertz
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany.
- Mannheim Cancer Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
70
|
Bala AA, Oukkache N, Sanchez EE, Suntravat M, Galan JA. Venoms and Extracellular Vesicles: A New Frontier in Venom Biology. Toxins (Basel) 2025; 17:36. [PMID: 39852989 PMCID: PMC11769160 DOI: 10.3390/toxins17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as environmental and biological toxins, contaminants, and drugs. Notably, EVs present a unique opportunity to deepen our understanding of the pathophysiology of envenomation by natural toxins. Recent advancements in isolating and purifying EV cargo, mass spectrometry techniques, and bioinformatics have positioned EVs as potential biomarkers that could elucidate biological signaling pathways and provide valuable information on the relationship between venomous toxins, their mechanisms of action, and the effectiveness of antivenoms. Additionally, EVs hold promise as proxies for various aspects of envenomation, including the toxin dosage, biological characterization, injury progression, and prognosis during therapeutic interventions. These aspects can be explored through multi-omics technology applied to EV contents from the plasma, saliva, or urine samples of envenomated individuals, offering a comprehensive integrative approach to understanding and managing envenomation cases.
Collapse
Affiliation(s)
- Auwal A. Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco;
| | - Elda E. Sanchez
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Montamas Suntravat
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Jacob A. Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| |
Collapse
|
71
|
Xie J, Lin X, Deng X, Tang H, Zou Y, Chen W, Xie X. Cancer-associated fibroblast-derived extracellular vesicles: regulators and therapeutic targets in the tumor microenvironment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:2. [PMID: 39935427 PMCID: PMC11810458 DOI: 10.20517/cdr.2024.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025]
Abstract
Cancer-associated fibroblasts (CAFs) constitute a critical component of the tumor microenvironment (TME). CAFs can be reprogrammed by cancer cells, leading to the production of extracellular vesicles (EVs). These EVs serve as carriers for bioactive substances, including proteins, nucleic acids, and metabolic products, thereby facilitating tumor progression. CAF-derived EVs exert substantial influence on tumor cell proliferation, invasion, and metastasis, the immunological environment, and the processes of lymphangiogenesis and angiogenesis. Despite their potential as non-invasive biomarkers and therapeutic delivery vehicles, the clinical application of CAF-derived EVs is currently limited by challenges in purification and precise targeting. This review delineates the diverse roles of CAF-derived EVs in tumor growth, metastasis, and immune evasion within the TME.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
- Authors contributed equally
| | - Xinmei Lin
- School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- Authors contributed equally
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
- Authors contributed equally
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| |
Collapse
|
72
|
Pian LL, Song MH, Wang TF, Qi L, Peng TL, Xie KP. Identification and analysis of pancreatic intraepithelial neoplasia: opportunities and challenges. Front Endocrinol (Lausanne) 2025; 15:1401829. [PMID: 39839479 PMCID: PMC11746065 DOI: 10.3389/fendo.2024.1401829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor lesion of pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis with a short median overall survival of 6-12 months and a low 5-year survival rate of approximately 3%. It is crucial to remove PanIN lesions to prevent the development of invasive PDAC, as PDAC spreads rapidly outside the pancreas. This review aims to provide the latest knowledge on PanIN risk, pathology, cellular origin, genetic susceptibility, and diagnosis, while identifying research gaps that require further investigation in this understudied area of precancerous lesions. PanINs are classified into PanIN 1, PanIN 2, and PanIN 3, with PanIN 3 having the highest likelihood of developing into invasive PDAC. Differentiating between PanIN 2 and PanIN 3 is clinically significant. Genetic alterations found in PDAC are also present in PanIN and increase with the grade of PanIN. Imaging methods alone are insufficient for distinguishing PanIN, necessitating the use of genetic and molecular tests for identification. In addition, metabolomics technologies and miRNAs are playing an increasingly important role in the field of cancer diagnosis, offering more possibilities for efficient identification of PanIN. Although detecting and stratifying the risk of PanIN poses challenges, the combined utilization of imaging, genetics, and metabolomics holds promise for improving patient survival in this field.
Collapse
Affiliation(s)
- Ling-ling Pian
- School of Medicine, The South China University of Technology, Guangzhou, Guangdong, China
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Mei-hui Song
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Teng-fei Wang
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Tie-li Peng
- Division of Gastroenterology, Institute of Digestive Disease, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
| | - Ke-ping Xie
- School of Medicine, The South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
73
|
Cheng X, Yu W, Liu Y, Jia S, Wang D, Hu L. Proteomic Characterization of Urinary Exosomes with Pancreatic Cancer by Phosphatidylserine Imprinted Polymer Enrichment and Mass Spectrometry Analysis. J Proteome Res 2025; 24:111-120. [PMID: 39392357 DOI: 10.1021/acs.jproteome.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Exosomes, as carriers of cell-to-cell communication, can serve as promising biomarkers for probing the early diagnosis of cancer. Pancreatic cancer is a common malignant tumor of the pancreas with an insidious onset and difficult early diagnosis. The aim of this study was to capture exosomes in urine samples by phosphatidylserine-molecularly imprinted polymers (PS-MIPs). Transmission electron microscopy and nanoparticle tracking analysis as well as Western blot showed that our molecularly imprinted material can effectively capture urinary exosomes. Three parallel tests verified the reproducibility of the mass spectrometry assay and the stability of the material capture efficiency. Mass Spectrometry with nontargeted proteomics was combined to show differentially expressed proteins in exosomes between 5 pancreatic cancer patients and 5 healthy controls. The most significant changes in the proteomic profile in pancreatic cancer patients compared to healthy controls were the overexpression of SLC9A3R1, SPAG9, and ferritin light chain (FTL) These proteins may have an important role in diagnosis and prognostic assessment, supporting further scientific and clinical studies on pancreatic cancer.
Collapse
Affiliation(s)
- Xianhui Cheng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenjing Yu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuanyuan Liu
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
- The π-HuB Project Infrastructure, International Academy of Phronesis Medicine, Guangzhou 510535, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
| | - Dongxue Wang
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
- The π-HuB Project Infrastructure, International Academy of Phronesis Medicine, Guangzhou 510535, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
74
|
Wang L, Gong Z, Wang M, Liang YZ, Zhao J, Xie Q, Wu XW, Li QY, Zhang C, Ma LY, Zheng SY, Jiang M, Yu X, Xu L. Rapid and unbiased enrichment of extracellular vesicles via a meticulously engineered peptide. Bioact Mater 2025; 43:292-304. [PMID: 39399836 PMCID: PMC11470464 DOI: 10.1016/j.bioactmat.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) have garnered significant attention in biomedical applications. However, the rapid, efficient, and unbiased separation of EVs from complex biological fluids remains a challenge due to their heterogeneity and low abundance in biofluids. Herein, we report a novel approach to reconfigure and modify an artificial insertion peptide for the unbiased and rapid isolation of EVs in 20 min with ∼80% recovery in neutral conditions. Moreover, the approach demonstrates exceptional anti-interference capability and achieves a high purity of EVs comparable to standard ultracentrifugation and other methods. Importantly, the isolated EVs could be directly applied for downstream protein and nucleic acid analyses, including proteomics analysis, exome sequencing analysis, as well as the detection of both epidermal growth factor receptor (EGFR) and V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) gene mutation in clinical plasma samples. Our approach offers great possibilities for utilizing EVs in liquid biopsy, as well as in various other biomedical applications.
Collapse
Affiliation(s)
- Le Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Zhong Liang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Xie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Wei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical Collage of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin-Ying Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cong Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Yun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-Yang Zheng
- Department of Electrical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
75
|
Xie H, Chen D, Lei M, Liu Y, Zhao X, Ren X, Shi J, Yuan H, Li P, Zhu X, Du W, Feng X, Liu X, Li Y, Chen P, Liu BF. Freeze-Thaw-Induced Patterning of Extracellular Vesicles with Artificial Intelligence for Breast Cancers Identifications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408871. [PMID: 39676518 DOI: 10.1002/smll.202408871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Extracellular vesicles (EVs) play a crucial role in the occurrence and progression of cancer. The efficient isolation and analysis of EVs for early cancer diagnosis and prognosis have gained significant attention. In this study, for the first time, a rapid and visually detectable method termed freeze-thaw-induced floating patterns of gold nanoparticles (FTFPA) is proposed, which surpasses current state-of-the-art technologies by achieving a 100 fold improvement in the limit of detection of EVs. Notably, it allows for multi-dimensional visualizations of EVs through site-specific oligonucleotide incorporation. This capability empowers FTFPA to accurately identify EVs derived from subtypes of breast cancers with artificial intelligence algorithms. Intriguingly, learning the freezing-thawing-microstructures of EVs with a random forest algorithm is not only able to distinguish their original cell lines (with an accuracy of 95.56%), but also succeed in processing clinical samples (n = 156) to identify EVs by their healthy donors, breast lump and breast cancer subtypes (Luminal A, Triple-negative breast cancer, and Luminal B) with an accuracy of 83.33%. Therefore, this AI-empowered micro-visualization method establishes a rapid and precise point-of-care platform that is applicable to both fundamental research and clinical settings.
Collapse
Affiliation(s)
- Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengcheng Lei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xueqing Ren
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyun Shi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xubing Zhu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
76
|
Huang P, Gao W, Fu C, Wang M, Li Y, Chu B, He A, Li Y, Deng X, Zhang Y, Kong Q, Yuan J, Wang H, Shi Y, Gao D, Qin R, Hunter T, Tian R. Clinical functional proteomics of intercellular signalling in pancreatic cancer. Nature 2025; 637:726-735. [PMID: 39537929 DOI: 10.1038/s41586-024-08225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an atypical, highly stromal tumour microenvironment (TME) that profoundly contributes to its poor prognosis1. Here, to better understand the intercellular signalling between cancer and stromal cells directly in PDAC tumours, we developed a multidimensional proteomic strategy called TMEPro. We applied TMEPro to profile the glycosylated secreted and plasma membrane proteome of 100 human pancreatic tissue samples to a great depth, define cell type origins and identify potential paracrine cross-talk, especially that mediated through tyrosine phosphorylation. Temporal dynamics during pancreatic tumour progression were investigated in a genetically engineered PDAC mouse model. Functionally, we revealed reciprocal signalling between stromal cells and cancer cells mediated by the stromal PDGFR-PTPN11-FOS signalling axis. Furthermore, we examined the generic shedding mechanism of plasma membrane proteins in PDAC tumours and revealed that matrix-metalloprotease-mediated shedding of the AXL receptor tyrosine kinase ectodomain provides an additional dimension of intercellular signalling regulation in the PDAC TME. Importantly, the level of shed AXL has a potential correlation with lymph node metastasis, and inhibition of AXL shedding and its kinase activity showed a substantial synergistic effect in inhibiting cancer cell growth. In summary, we provide TMEPro, a generically applicable clinical functional proteomic strategy, and a comprehensive resource for better understanding the PDAC TME and facilitating the discovery of new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peiwu Huang
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Weina Gao
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Changying Fu
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunguang Li
- Key Laboratory of Multi-Cell Systems, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bizhu Chu
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - An He
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Li
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Xiaomei Deng
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yehan Zhang
- Key Laboratory of Multi-Cell Systems, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Qian Kong
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Jingxiong Yuan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hebin Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Bristol Myers Squibb, San Diego, CA, USA.
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ruijun Tian
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
77
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
78
|
Liu Y, Du D, Gu X, He Q, Xiong B. miR-143-3p/TET1 Axis Regulates GPC1 Through DNA Methylation and Impairs the Malignant Biological Behaviour of HCC via the Hippo Signalling Pathway. J Cell Mol Med 2025; 29:e70282. [PMID: 39823268 PMCID: PMC11740985 DOI: 10.1111/jcmm.70282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 01/19/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumour that poses a serious threat to human health and places a heavy burden on individuals and society. However, the role of GPC1 in the malignant progression of HCC is unknown. In this study, we analysed the expression of GPC1 in HCC, and its association with poor patient prognosis. The effects of GPC1 on the proliferation, invasion and migration of HCC were analysed through cellular functional experiments in vitro and in vivo. Mechanistically, DNA methylation of GPC1 was analysed by DNA extraction, methylation-specific PCR and bisulfite Sanger sequencing (BSP), and the target genes TET1 and miRNA regulating DNA methylation of GPC1 were found through the bioinformatics database. The results revealed that GPC1 was highly expressed in HCC, and its high expression was significantly associated with poor prognosis of HCC patients. Inhibiting the expression of GPC1 can inhibit the proliferation, invasion and migration of HCC cells. GPC1 was hypomethylated in HCC, and its methylation level was regulated by TET1. miR-143-3p can significantly regulated the expression of TET1 and affect the methylation level and protein expression of GPC1. Furthermore, GPC1 also affects the malignant biological behaviour of HCC by regulating the expression of Hippo signalling pathway. In summary, miR-143-3p regulates the expression of TET1, affects the expression of GPC1 through DNA methylation and regulates the malignant progression of HCC via Hippo signalling pathway.
Collapse
Affiliation(s)
- Yan Liu
- Department of Interventional TreatmentThe Fifth People's Hospital of ChengduChengduSichuanChina
| | - Di Du
- Department of Interventional TreatmentThe Fifth People's Hospital of ChengduChengduSichuanChina
| | - Xue Gu
- Department of Interventional TreatmentThe Fifth People's Hospital of ChengduChengduSichuanChina
| | - Qing He
- Department of Interventional TreatmentThe Fifth People's Hospital of ChengduChengduSichuanChina
| | - Bin Xiong
- Department of Hepatobiliary SurgeryThe People's Hospital of Tongnan District Chongqing cityChongqingChina
- Department of General SurgeryChongqing Hospital of Traditional Chinese MedicineChongqingChina
| |
Collapse
|
79
|
Zhu Q, Chen Z, Tian M, Yan X, Gongye X, Liu Z, Zhao A, Yang Z, Yuan Y. Improved Predictability of Diagnosis and Prognosis Using Serum- and Tissue-Derived Extracellular Vesicles From Bulk mRNA Sequencing in Pancreatic Ductal Adenocarcinoma. Cancer Med 2025; 14:e70538. [PMID: 39812156 PMCID: PMC11733676 DOI: 10.1002/cam4.70538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Early-stage pancreatic ductal adenocarcinoma (PDAC) is frequently misdiagnosed, contributing to its high mortality rate. Exosomal microRNAs (miRNAs) have emerged as potential biomarkers for the early detection of PDAC. AIMS This study aimed to evaluate the feasibility of using exosomal miRNAs from PDAC tissues and serum as biomarkers for early detection and prognosis. MATERIALS & METHODS Exosomes were isolated from healthy individuals and PDAC patients via tissue and serum samples, then identified by analyzing their particle size and protein content. PDAC-specific exosomal miRNAs were identified using a microRNA array. A large cohort was subsequently recruited to validate these findings. The diagnostic capacity of the identified miRNAs was assessed using the Brier score and area under the curve (AUC). Verified miRNAs were also used to confirm intracellular mRNA change patterns. RESULTS The combination of miR142-3p, miR148a-3p, and CA199 showed a higher AUC (0.747) compared to CA199 alone (0.716) in ROC curve analysis. Gene Ontology (GO) annotations revealed that the two-miRNA panel was associated with multiple oncogenic pathways. DISCUSSION 142-3p and miR148a-3p were identified as specific to PDAC and, when combined with CA199, improved diagnostic accuracy. Their involvement in oncogenic pathways underscores their relevance as diagnostic and prognostic biomarkers. CONCLUSION MiR142-3p and miR148a-3p, alongside CA199, show promise as non-invasive biomarkers for early detection and prognosis of PDAC, improving diagnostic accuracy.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhanChina
| | - Zhang Chen
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ming Tian
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhanChina
| | - Xin Yan
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiangdong Gongye
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhicheng Liu
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Anbang Zhao
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhanChina
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei ProvinceWuhanChina
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
80
|
Wang Y, Xiong J, Ouyang K, Ling M, Luo J, Sun J, Xi Q, Chen T, Zhang Y. Extracellular vesicles: From large-scale production and engineering to clinical applications. J Tissue Eng 2025; 16:20417314251319474. [PMID: 40322740 PMCID: PMC12048759 DOI: 10.1177/20417314251319474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 05/08/2025] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising strategy for treating a wide spectrum of pathologies, as they can deliver their cargo to recipient cells and regulate the signaling pathway of these cells to modulate their fate. Despite the great potential of EVs in clinical applications, their low yield and the challenges of cargo loading remain significant obstacles, hindering their transition from experimental research to clinical practice. Therefore, promoting EV release and enhancing EV cargo-loading are promising fields with substantial research potential and broad application prospects. In this review, we summarize the clinical applications of EVs, the methods and technologies for their large-scale production, engineering, and modification, as well as the challenges that must be addressed during their development. We also discuss the future perspectives of this exciting field of research to facilitate its transformation from bench to clinical reality.
Collapse
Affiliation(s)
- Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiali Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kun Ouyang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingwang Ling
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
81
|
Xia HF, Wang XL, Zhang HJ, Wang KM, Zhang LZ, Yang Y, Shi X, Chen G. PCBP2-dependent secretion of miRNAs via extracellular vesicles contributes to the EGFR-driven angiogenesis. Theranostics 2025; 15:1255-1271. [PMID: 39816681 PMCID: PMC11729547 DOI: 10.7150/thno.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: The EGFR-driven angiogenesis is crucial in solid tumors, particularly through the delivery of biomolecules via extracellular vesicles (EVs), but the mechanism by which EGFR regulates EV cargo is still unclear. Methods: First, cell co-culture and murine tumor models were employed to examine the impact of EGFR overexpression on the pro-angiogenic properties of small EVs (sEVs) derived from oral squamous cell carcinoma (OSCC). Small RNA sequencing was then used to compare the miRNA profiles of OSCC-sEVs with and without EGFR overexpression, followed by functional enrichment and motif analyses of the differentially expressed miRNAs. Next, miRNA pull-down assays were conducted to identify potential molecules involved in sorting these miRNAs. Finally, the role of the candidate sorting protein was validated using existing public database, tissue samples, cell lines, and murine tumor models. Results: EGFR overexpression significantly enhances the pro-angiogenic effects of OSCC-sEVs, accompanied by a marked increase in the content of nucleic acid cargo carried in these sEVs. Small-RNA sequencing identified a group of miRNAs that were significantly enriched in OSCC-sEVs due to EGFR overexpression, which primarily functioned in angiogenesis and shared a characteristic "GGGU" motif. EGFR overexpression also strengthened the binding of PCBP2 with miRNAs containing this "GGGU" motif, thereby promoting their secretion through sEVs to support tumor angiogenesis. Mechanismly, EGFR overexpression upregulates PCBP2 protein content by activating its transcription rather than regulating the mRNA stability in OSCC cells. Additionally, depletion of PCBP2 impaired the EGFR-driven tumor angiogenesis by inhibiting the secretion of pro-angiogenic miRNAs through sEVs. Conclusions: EGFR boosts PCBP2 expression via transcriptional regulation, which then promotes the loading of specific miRNAs into sEVs by binding to the "GGGU" motif, thereby driving tumor angiogenesis.
Collapse
Affiliation(s)
- Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xiao-Le Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - He-Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kui-Ming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
82
|
Huang C, Li J, Xie Z, Hu X, Huang Y. Relationship between exosomes and cancer: formation, diagnosis, and treatment. Int J Biol Sci 2025; 21:40-62. [PMID: 39744442 PMCID: PMC11667803 DOI: 10.7150/ijbs.95763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/02/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are a member of extracellular vesicles. However, their biological characteristics differ from those of other vesicles, and recently, their powerful functions as information molecules, biomarkers, and carriers have been demonstrated. Malignancies are the leading cause of high morbidity and mortality worldwide. The cure rate of malignancies can be improved by improving early screening rates and therapy. Moreover, a close correlation between exosomes and malignancies has been observed. An in-depth study of exosomes can provide new methods for diagnosing and treating tumors. Therefore, this study aimed to review, sort, and summarize such achievements, and present ideas and opinions on the application of exosomes in tumor treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajin Li
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zichuan Xie
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiangjun Hu
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China
- Research Laboratory for Prediction and Evaluation of Chronic Diseases in the Elderly, National Clinical Research Center for Geriatric Diseases, China
- General Practice Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
83
|
Sergazy S, Seydahmetova R, Gulyayev A, Shulgau Z, Aljofan M. The Role of Exosomes in Cancer Progression and Therapy. BIOLOGY 2025; 14:27. [PMID: 39857258 PMCID: PMC11763171 DOI: 10.3390/biology14010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are small extracellular vesicles and are crucial in intercellular communication. Interestingly, tumor-derived exosomes carry oncogenic molecules, such as proteins and microRNAs, which can reprogram recipient cells, promote angiogenesis, and stimulate cancer pre-metastatic niche, supporting cancer growth and metastasis. On the other hand, their biocompatibility, stability, and ability to cross biological barriers make them attractive candidates for drug delivery. Recent advances have shown the potential for exosomes to be used in early disease detection and in targeted drug therapy by delivering therapeutic agents specifically to tumor sites. Despite the promising applications, a number of challenges remain, including exosome isolation and characterization, as well as their inherent heterogeneity. Thus, the current review aims to describe the roles of exosomes in health and disease, and discuss the challenges that hinder their development into becoming useful medical tools.
Collapse
Affiliation(s)
- Shynggys Sergazy
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Roza Seydahmetova
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
| | - Alexandr Gulyayev
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zarina Shulgau
- LLP VICTUS PHARM, Astana 010000, Kazakhstan; (S.S.); (R.S.); (A.G.); (Z.S.)
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Mohamad Aljofan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Astana 010000, Kazakhstan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
84
|
Nashtahosseini Z, Nejatollahi M, Fazilat A, Zarif Fakoor E, Emamvirdizadeh A, Bahadori K, Hadian NS, Valilo M. The crosstalk between exosomal miRNA and ferroptosis: A narrative review. Biol Cell 2025; 117:e2400077. [PMID: 39853758 DOI: 10.1111/boc.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron. Exosomes are membrane-bound vesicles with a size of about 30 to 150 nm, contain various cellular components, including DNA, RNA, microRNAs (miRNAs), lipids, and proteins, which are genetically similar to their cells of origin. Exosomes are found in all bodily fluids, including blood, saliva, and urine. Cells often release exosomes after their fusion with the cell membrane. They play an important role in immune regulation and cell-cell communication. miRNAs, which are noncoding RNAs with a length of about 18 to 24 nucleotides, are involved in regulating gene expression after transcription. Emerging data suggests that exosomal miRNAs are implicated in various pathophysiological mechanisms of cells, including metastasis, drug resistance, and cell death. In addition, functional studies have indicated that exosomal miRNAs can play a key role in the modulation of cell death by regulating ferroptosis. Therefore, in this review, given the importance of exosomal miRNAs in ferroptosis, we decided to elucidate the relationship between exosomal miRNAs and ferroptosis in various diseases.
Collapse
Affiliation(s)
| | - Masoumeh Nejatollahi
- Research center for high school students, Education System Zanjan Province, Zanjan, Iran
| | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | | | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Bahadori
- Health center of Bahar, Hamadan University of Medical Science& Health Services, Hamadan, Iran
| | | | - Mohammad Valilo
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
85
|
Ebrahimi F, Kumari A, Ghadami S, Al Abdullah S, Dellinger K. The Potential for Extracellular Vesicles in Nanomedicine: A Review of Recent Advancements and Challenges Ahead. Adv Biol (Weinh) 2024:e2400623. [PMID: 39739455 DOI: 10.1002/adbi.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising tools in diagnostics and therapy for chronic diseases, including cancer and Alzheimer's. Small EVs, also called exosomes, are lipid-bound particles (≈30-150 nm) that play a role in healthy and pathophysiological interactions, including intercellular communication, by transporting bioactive molecules, including proteins, lipids, and nucleic acids. Their ability to cross biological barriers, such as the blood-brain barrier, makes them ideal candidates for targeted therapeutic interventions. In the context of chronic diseases, exosomes can be engineered to deliver active agents, including small molecules and siRNAs to specific target cells, providing a novel approach to precision medicine. Moreover, exosomes show great promise as repositories for diagnostic biomarkers. Their cargo can reflect the physiological and pathological status of the parent cells, making them valuable indicators of disease progression and response to treatment. This paper presents a comprehensive review of the application of exosomes in four chronic diseases: cancer, cardiovascular disease, neurodegenerative disease, and orthopedic disease, which significantly impact global public health due to their high prevalence and associated morbidity and mortality rates. Furthermore, the potential of exosomes as valuable tools for theranostics and disease management is highlighted. Finally, the challenges associated with exosomes and their demonstrated potential for advancing future nanomedicine applications are discussed.
Collapse
Affiliation(s)
- Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Anjali Kumari
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Samaneh Ghadami
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| |
Collapse
|
86
|
Sekar S, Srikanth S, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Vellingiri B, Renu K, Madhyastha H. Biogenesis and functional implications of extracellular vesicles in cancer metastasis. Clin Transl Oncol 2024:10.1007/s12094-024-03815-8. [PMID: 39704958 DOI: 10.1007/s12094-024-03815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Extracellular vesicles (EVs) play a crucial role in the complex process of cancer metastasis by facilitating cellular communication and influencing the microenvironment to promote the spread and establishment of cancer cells in distant locations. This paper explores the process of EV biogenesis, explaining their various sources that range from endosomal compartments to plasma membrane shedding. It also discusses the complex mechanisms that control the sorting of cargo within EVs, determining their chemical makeup. We investigate the several functions of EVs in promoting the spread of cancer to other parts of the body. These functions include influencing the immune system, creating environments that support the formation of metastases before they occur, and aiding in the transformation of cells from an epithelial to a mesenchymal state. Moreover, we explore the practical consequences of EV cargo, such as nucleic acids, proteins, and lipids, in influencing the spread of cancer cells, from the beginning of invasion to the creation of secondary tumor sites. Examining recent progress in the field of EV-based diagnostics and treatments, we explore the potential of EVs as highly promising biomarkers for predicting the course of cancer and as targets for therapeutic intervention. This review aims to provide a complete understanding of the biology of EVs in the context of cancer metastasis. By unravelling the nuances of EV biology, it seeks to pave the way for new tactics in cancer detection, treatment, and management.
Collapse
Affiliation(s)
- Sneha Sekar
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sandhya Srikanth
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, 151401, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
87
|
Bockorny B, Muthuswamy L, Huang L, Hadisurya M, Maria Lim C, Tsai LL, Gill RR, Wei JL, Bullock AJ, Grossman JE, Besaw RJ, Narasimhan S, Tao WA, Perea S, Sawhney MS, Freedman SD, Hildago M, Iliuk A, Muthuswamy SK. A large-scale proteomics resource of circulating extracellular vesicles for biomarker discovery in pancreatic cancer. eLife 2024; 12:RP87369. [PMID: 39693144 DOI: 10.7554/elife.87369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using 'liquid biopsies' offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Bruno Bockorny
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, United States
- Harvard Medical School, Boston, United States
| | | | - Ling Huang
- Henry Ford Cancer Institute, Detroit, United States
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University West Lafayette, West Lafayette, United States
| | | | - Leo L Tsai
- Harvard Medical School, Boston, United States
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Ritu R Gill
- Harvard Medical School, Boston, United States
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Jesse L Wei
- Harvard Medical School, Boston, United States
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Andrea J Bullock
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, United States
- Harvard Medical School, Boston, United States
| | | | - Robert J Besaw
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, United States
| | | | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University West Lafayette, West Lafayette, United States
| | - Sofia Perea
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Mandeep S Sawhney
- Harvard Medical School, Boston, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Steven D Freedman
- Harvard Medical School, Boston, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, United States
| | - Manuel Hildago
- Division of Hematology-Oncology, Weill Cornell Medical College, New York, United States
- New York-Presbyterian Hospital, New York, United States
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, United States
| | | |
Collapse
|
88
|
Saleem M, Shahzad KA, Marryum M, Singh S, Zhou Q, Du S, Wang S, Shao C, Shaikh II. Exosome-based therapies for inflammatory disorders: a review of recent advances. Stem Cell Res Ther 2024; 15:477. [PMID: 39695750 DOI: 10.1186/s13287-024-04107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Exosomes, small extracellular vesicles secreted by cells, have emerged as focal mediators in intercellular communication and therapeutic interventions across diverse biomedical fields. Inflammatory disorders, including inflammatory bowel disease, acute liver injury, lung injury, neuroinflammation, and myocardial infarction, are complex conditions that require innovative therapeutic approaches. This review summarizes recent advances in exosome-based therapies for inflammatory disorders, highlighting their potential as diagnostic biomarkers and therapeutic agents. Exosomes have shown promise in reducing inflammation, promoting tissue repair, and improving functional outcomes in preclinical models of inflammatory disorders. However, further research is needed to overcome the challenges associated with exosome isolation, characterization, and delivery, as well as to fully understand their mechanisms of action. Current limitations and future directions in exosome research underscore the need for enhanced isolation techniques and deeper mechanistic insights to harness exosomes' full therapeutic potential in clinical applications. Despite these challenges, exosome-based therapies hold great potential for the treatment of inflammatory disorders and may offer a new paradigm for personalized medication.
Collapse
Affiliation(s)
- Mavra Saleem
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Munazzah Marryum
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shekhar Singh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Quan Zhou
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Siting Du
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Shuanghu Wang
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Chuxiao Shao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Imran Ibrahim Shaikh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
89
|
Zhang R, Hao R, Fang J. Functional Immunoaffinity 3D Magnetic Core-Shell Nanometallic Structure for High-Efficiency Separation and Label-Free SERS Detection of Exosomes. ACS APPLIED BIO MATERIALS 2024; 7:8398-8407. [PMID: 39536159 DOI: 10.1021/acsabm.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tumor exosomes, known as maternal cell messengers, play an important role in cancer occurrence, proliferation, metastasis, immune escape, drug resistance, and other processes and are an entry point for cancer research. However, there is still a lack of an efficient detection technology for exosomes. In this study, the ultrahigh sensitivity SERS nanoprobe with a three dimensional (3D) magnetic core/Au nanocolumn/Au nanoparticles shell strongly coupling multistage structure (Fe3O4@NR-NPs) was constructed by crystal growth of nanocrystals in the confined space of a central radiating single particle mesoporous molecular sieve channel and strong coupling secondary growth of gold particles. The exosomes were confined onto the "hot spot" of plasmonic nanoparticles and rapidly enriched by CD63 antibody functional-Fe3O4@NR-NPs to achieve high sensitivity detection, with the limit of detection of 1 × 103 particles/mL (S/N = 3). The spectral data set of different exosomes is applied to train for multivariate classification of cell types and to estimate how the normal exosome data resemble cancer cell exosomes by principal component analysis (PCA). Finally, this detection method has also been successfully employed for the detection of exosomes in complex samples; this proves that the proposed SERS-based method is a promising tool for clinical cancer screening.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Rui Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jixiang Fang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
90
|
Vitale F, Zileri Dal Verme L, Paratore M, Negri M, Nista EC, Ainora ME, Esposto G, Mignini I, Borriello R, Galasso L, Alfieri S, Gasbarrini A, Zocco MA, Nicoletti A. The Past, Present, and Future of Biomarkers for the Early Diagnosis of Pancreatic Cancer. Biomedicines 2024; 12:2840. [PMID: 39767746 PMCID: PMC11673965 DOI: 10.3390/biomedicines12122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with a very poor 5-year survival rate and reduced therapeutic options when diagnosed in an advanced stage. The dismal prognosis of pancreatic cancer has guided significant efforts to discover novel biomarkers in order to anticipate diagnosis, increasing the population of patients who can benefit from curative surgical treatment. CA 19-9 is the reference biomarker that supports the diagnosis and guides the response to treatments. However, it has significant limitations, a low specificity, and is inefficient as a screening tool. Several potential biomarkers have been discovered in the serum, urine, feces, and pancreatic juice of patients. However, most of this evidence needs further validation in larger cohorts. The advent of advanced omics sciences and liquid biopsy techniques has further enhanced this field of research. The aim of this review is to analyze the historical evolution of the research on novel biomarkers for the early diagnosis of pancreatic cancer, focusing on the current evidence for the most promising biomarkers from different body fluids and the novel trends in research, such as omics sciences and liquid biopsy, in order to favor the application of modern personalized medicine.
Collapse
Affiliation(s)
- Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Enrico Celestino Nista
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Elena Ainora
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Raffaele Borriello
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Linda Galasso
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| |
Collapse
|
91
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
92
|
Xi Y, Zhao Z, Wang F, Zhang D, Guo Y. IRTIDP: A simple integrated real-time isolation and detection platform for small extracellular vesicles Glypican-1 in pancreatic cancer patients. Talanta 2024; 280:126766. [PMID: 39191106 DOI: 10.1016/j.talanta.2024.126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Glypican-1 (GPC-1) protein-positive small extracellular vesicles (GPC-1+-sEV) have been proposed as potential biomarkers for early diagnosis of pancreatic cancer. In this study, we present an integrated real-time isolation and detection platform (IRTIDP) to capture and analyze GPC-1+-sEV directly from sera of pancreatic cancer patients. First, CD63 antibody-modified metal-organic framework (MOF) materials were utilized to enrich sEVs with a capture efficiency of 93.93 %. Second, a SERS probe was constructed by Raman reporter 4-MBA and GPC-1 antibody modified SERS active silver nanoparticles (AgNPs), which formed a sandwich complex structure of "MOFs@GPC-1+-sEV@AgNPs-4-MBA" with MOFs-enriched sEVs. The IRTSDP can complete the capture and detection process within 35 min, with a detection limit for 1 GPC-1+-sEV/μL, and linear range between 105∼109 GPC-1+-sEV/mL. Furthermore, this approach has been applied to quantify serum sEV GPC-1 in clinical pancreatic cancer patients. Based on the SERS intensity analysis, pancreatic cancer patients can be distinguished from pancreatic cystadenoma patients and healthy individuals effectively using this innovative platform that provides highly specific and sensitive means for early diagnosis of pancreatic cancer as well as other tumor types.
Collapse
Affiliation(s)
- Yuge Xi
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China; Department of Laboratory Medicine, The People's Hospital of Chongging Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China
| | - Zijun Zhao
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Fen Wang
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Dan Zhang
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital,Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
93
|
Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol 2024; 50:102121. [PMID: 39278189 PMCID: PMC11418158 DOI: 10.1016/j.tranon.2024.102121] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Exosomes are small, round vesicles in the 30 and 120 nm diameter range released by all living cell types. Exosomes play many essential functions in intercellular communication and tissue crosstalk in the human body. They can potentially be used as strong biomarkers and therapeutic agents for early diagnosis, therapy response, and prognosis of different diseases. The main requirements for exosomal large-scale clinical practice application are rapid, easy, high-yield, high purity, characterization, safety, low cost, and therapeutic efficacy. Depending on the sample types, environmental insults, and exosome quantity, exosomes can be isolated from various sources, including body fluids, solid tissues, and cell culture medium using different procedures. This study comprehensively analyzed the current research progress in exosome isolation and characterization strategies along with their advantages and disadvantages. The provided information will make it easier to select exosome separation methods based on the types of biological samples available, and it will facilitate the use of exosomes in translational and clinical research, particularly in cancer. Lay abstract Exosomes have recently received much attention due to their potential to function as biomarkers and novel therapeutic agents for early diagnosis, therapeutic response, and prognosis in various diseases. This review summarizes many approaches for isolating and characterizing exosomes, focusing on developing technologies, and provides an in-depth comparison and analysis of each method, including its principles, advantages, and limitations.
Collapse
Affiliation(s)
- Nihat Dilsiz
- Experimental Medicine Application and Research Center (EMARC) Validebag Research Park, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
94
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
95
|
Palaniyandi T, Ravi M, Sivaji A, Baskar G, Viswanathan S, Wahab MRA, Surendran H, Nedunchezhian S, Ahmad I, Veettil VN. Recent advances in microfluidic chip technologies for applications as preclinical testing devices for the diagnosis and treatment of triple-negative breast cancers. Pathol Res Pract 2024; 264:155711. [PMID: 39536540 DOI: 10.1016/j.prp.2024.155711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The leading cause of cancer-related death among female patients is breast cancer. Among all the types of breast cancer, triple-negative breast cancer (TNBC) is the most dangerous molecular subtype of breast cancer characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression. Since there is no particular therapeutic strategy for TNBC that has been shown to worsen the disease prognosis, 3D models are superior to 2D models as a predictive tool for drug discovery because they more accurately reflect the in vivo biological components of humans. Importantly, all 3D models struggle to gather many high-quality tumour cells from clinical tumours. Physicians may not get huge tumour tissues from patients, and clinical tumours may have necrosis, fat, and blood vessel components. Therefore, there is an immediate need to find an efficient method to consistently and quickly produce a large number of homogeneous tumour models for individual treatment without cell wastage. Microfluidic technologies, which are specifically engineered to manipulate small quantities of fluids, have been utilised to produce particles for drug delivery applications. This development is indicative of a recent trend, as it provides the ability to regulate particle size and material composition. This review focuses on the topic of tumor-on-a-chip, microfluidic chip manufacturing, and drug screening for triple-negative breast cancer. Particular emphasis is placed on cancer biomarker diagnostics, 3D preclinical model development, and treatment strategies for triple-negative breast cancer.
Collapse
Affiliation(s)
- Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Maduravoyal, Chennai 600095, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600 116, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Sandhya Nedunchezhian
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, Tamil Nadu 600095, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Health and Medical Research Center, King Khalid University, AlQura'a, Abha, Saudi Arabia
| | - Vajid Nettoor Veettil
- Iqraa Centre for Research and Development, IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India
| |
Collapse
|
96
|
Richard M, Moreau R, Croyal M, Mathiot L, Frénel J, Campone M, Dupont A, Gavard J, André‐Grégoire G, Guével L. Monitoring concentration and lipid signature of plasma extracellular vesicles from HR + metastatic breast cancer patients under CDK4/6 inhibitors treatment. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70013. [PMID: 39691590 PMCID: PMC11650302 DOI: 10.1002/jex2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 12/19/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived small membrane structures that transport various molecules. They have emerged as potential circulating biomarkers for monitoring responses to cancer therapies. This study aimed to comprehensively characterize plasma-carried EVs in hormone receptor-positive (HR+) metastatic breast cancer (MBC) patients treated with first-line CDK4/6 inhibitors (iCDK4/6) combined with endocrine therapy. MBC patients were classified into three groups based on their response to therapy: resistant, intermediate or sensitive. In a prospective cohort, we monitored the concentration of circulating EVs, analyzed their lipid signature and correlated these factors with treatment response. To facilitate the translation of EV research to clinical practice, we established a three-step procedure: (1) EVs were isolated from plasma using semi-automatized size exclusion chromatography (SEC); (2) EV concentration, termed vesiclemia, was determined by drop counting via interferometric light microscopy (ILM); and (3) EV lipid composition was analyzed by mass spectrometry. ILM-based vesiclemia values were highly fluctuating upon iCDK4/6 treatment, while early increase associated with accelerated progression. Of note, vesiclemia remained a steady parameter over a 1-year period in age-matched healthy women. Additionally, analysis of the EV cargo unveiled a distinct sphingolipid profile, characterized by increased levels of ceramides and sphingomyelins in resistant patients within the first 2 months of treatment. Based on 16 sphingolipid species, sensitive and resistant patients were correctly classified with an overall accuracy of 82%. This specific sphingolipid pattern was exclusively discernible within EVs, and not in plasma, highlighting the significance of EVs in the early prediction of individual responses to iCDK4/6 and disease progression. Overall, this study provides insights of the longitudinal characterization of plasma-borne EVs in both a healthy group and HR+ MBC patients under iCDK4/6 therapies. Combined vesiclemia and EV sphingolipid profile emphasize the promising potential of EVs as non-invasive biomarkers for monitoring early treatment response.
Collapse
Affiliation(s)
- Mathilde Richard
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
| | - Rosalie Moreau
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERMNantesFrance
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556NantesFrance
- CRNH‐Ouest Mass Spectrometry Core FacilityNantesFrance
| | - Laurent Mathiot
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | | | - Mario Campone
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | - Aurélien Dupont
- SFR UMS CNRS 3480, INSERM 018, Biosit biologie, santé, innovation technologiqueRennesFrance
| | - Julie Gavard
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | - Gwennan André‐Grégoire
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | - Laëtitia Guével
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
| |
Collapse
|
97
|
Wu SY, Hung YC, Chou CC, Chen C, Cheng CM, Chen C, Liou JC, Hsu MY. Isolation of three different sizes of exosomes in an Asian population with different retinal diseases before and after treatment: preliminary results. Bioengineered 2024; 15:2297320. [PMID: 38155415 PMCID: PMC10761085 DOI: 10.1080/21655979.2023.2297320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2023] [Indexed: 12/30/2023] Open
Abstract
Exosomes are membranous structures measuring between 40-120 nm that are secreted by various cells of the human body into the body fluid system. Exosomes contain proteins, mRNA, miRNA, and signaling molecules, and physiologically they assist in the intercellular transport of proteins and RNA molecules. In this study, we used an immunoaffinity filter paper platform combined with scanning electron microscopy and microfluidic systems to detect the size of exosomes within the aqueous humor. Eight aqueous humor samples showed three distinct sizes of exosomes that were significantly different on scanning electron microscopy(P < 0.01). We further used nanoparticle tracking analysis to assess the size distribution of exosomes within the aqueous humor. We found significantly different distributions of exosomes between patients with three different ocular diseases and patients with normal cataracts as controls. An obvious peak of exomeres(size around 35 nm)was found in the patients with central retinal vein occlusion and vitreous hemorrhage. Flare-ups of large exosomes(size 90-120 nm)were found in the patients with the inflammatory ocular disease pars planitis. No obvious peaks in exomeres or large exosomes were found in the control group. There was a high association between the distribution of exosomes and the pathogenesis of ocular diseases. After intravitreal anti-vascular endothelial growth factor treatment, the aqueous humor from the patients with neovascular diseases showed a significant reduction in exosomes in nanoparticle tracking analysis. These findings suggest that at least three distinct sizes of exosomes exist in the aqueous humor:(1)exomeres:<35 nm;(2)small exosomes:60-80 nm; and (3)large exosomes:90-120 nm. Different sizes of exosomes may have different implications in normal or diseased eyes.
Collapse
Affiliation(s)
- Sung-Yu Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Chien Hung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Chih Chou
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Connie Chen
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chihchen Chen
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jyh-Cheng Liou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Min-Yen Hsu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
98
|
Oh C, Mazan-Mamczarz K, Gorospe M, Noh JH, Kim KM. Impact of UPF2 on the levels of CD81 on extracellular vesicles. Front Cell Dev Biol 2024; 12:1469080. [PMID: 39655046 PMCID: PMC11625909 DOI: 10.3389/fcell.2024.1469080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Extracellular vesicles (EVs) are involved in cell-to-cell communication. Following uptake, EV cargo molecules, including DNA, RNA, lipids, and proteins, influence gene expression and molecular signaling in recipient cells. Although various studies have identified disease-specific EV molecules, further research into their biogenesis and secretion mechanisms is needed for clinical application. Here, we investigated the role of UPF2 in regulating the biogenesis and components of EVs. Notably, UPF2 promoted the expression of CD81, a membrane protein marker of EVs, as UPF2 silencing decreased CD81 levels in EVs, both inside the cell and secreted. In contrast, the expression levels of CD63 increased, without altering the size or numbers of EVs. In addition, reducing UPF2 levels did not affect the total number of EVs but lowered production of CD81-positive EVs and reduced the efficiency of uptake by recipient cells. Collectively, our findings uncover a novel function for UPF2 in regulating the production of CD81 and changing EV properties.
Collapse
Affiliation(s)
- Chaehwan Oh
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Ji Heon Noh
- Molecular Aging Biology Laboratory (MABL), Department of Biochemistry, College of Natural Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung Mi Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
99
|
Hong S, Su Z, Zhang Y, Hu G, Zhang Q, Ji Z, Wang L, Yu S, Zhu X, Yuan F, Jia G. Exosomal miRNAs as Participators of Hexavalent Chromium-Induced Genotoxicity and Immunotoxicity: A Two-Stage Population Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39565106 DOI: 10.1021/acs.est.4c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Genotoxic and immunosuppressive characteristics are central to the carcinogenic profile of hexavalent chromium [Cr(VI)], with dysregulation of circulating exosomal miRNA potentially acting as oncogenes or tumor suppressors or participating in the carcinogenic landscape of heavy metals through immunomodulation. In this two-stage epidemiological investigation, we unveiled for the first time the perturbations of exosomal miRNAs among individuals exposed to Cr(VI), alongside their significant correlations with biomarkers of genetic injury (γ-H2AX positivity in circulating lymphocytes and the urinary 8-OHdG levels) and immunological indicators (immunosuppressive PD-1 expression), which was supported by validation in an external cohort. Employing a support vector machine model, we discerned that exosomal miRNAs, particularly miR-4467, miR-345-5p, miR-144-3p, and miR-206, exhibited a remarkable capacity to delineate the genetic damage stratum within the population with high precision, and the target genes predicted of these miRNAs further elucidated their intricate regulatory interplay with the effector biomarkers. Additionally, employing a Bayesian mediation framework, we observed the intermediary function of miR-4467 in the nexus between chromium exposure and the escalation of urinary 8-OHdG levels (mediation effect: 0.47, P < 0.05). Although our findings suggested a link between extracellular miRNAs and immunosuppressive biomarkers, this association did not achieve validation in the external cohort, possibly due to population heterogeneity. Collectively, this study advanced our understanding of the epigenetic orchestration of health hazards of Cr(VI) by exosomal miRNAs, shedding light on their expression signatures and their intricate interplay with Cr(VI)-induced genetic and immunological perturbations, thus providing novel perspectives on the toxic pathways of heavy metals.
Collapse
Affiliation(s)
- Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Zhiqiang Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Li Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou, Inner Mongolia 014040, China
| | - Shanfa Yu
- Henan Institute for Occupational Medicine, Zhengzhou City, Henan Province 450052, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, Beijing 102308, China
| | - Fang Yuan
- Department of Occupational Health and Radiological Health, Chongqing Centers for Disease Control and Prevention, Chongqing 400042, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| |
Collapse
|
100
|
Ma YN, Hu X, Karako K, Song P, Tang W, Xia Y. Exploring the multiple therapeutic mechanisms and challenges of mesenchymal stem cell-derived exosomes in Alzheimer's disease. Biosci Trends 2024; 18:413-430. [PMID: 39401895 DOI: 10.5582/bst.2024.01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder, and the current treatment options are limited. Mesenchymal stem cell-derived exosomes (MSC-Exos) have garnered significant attention due to their unique biological properties, showcasing tremendous potential as an acellular alternative therapy for AD. MSC-Exos exhibit excellent biocompatibility and low immunogenicity, enabling them to effectively cross the blood-brain barrier (BBB) and deliver therapeutic molecules directly to target cells. They are highly efficacious in delivering nucleic acid-based drugs. Moreover, the production process of MSC-Exos benefits from a high proliferation capacity and multilineage differentiation potential, allowing for production while maintaining a stable composition. Despite the significant theoretical advantages of MSC-Exos, their clinical use still faces multiple challenges, including cross-contamination during isolation and purification processes, the complexity of their components, and the presence of potential adverse paracrine factors. Future research needs to focus on optimizing separation and purification techniques, enhancing delivery methods to improve therapeutic efficacy, and performing detailed analyses of the components of MSC-Exos. In summary, MSC-Exos hold promise as an effective option for the treatment of AD and other neurodegenerative diseases, driving their clinical research and use in related fields.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Kenji Karako
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Peipei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| |
Collapse
|