51
|
Espinosa-Medina I, Feliciano D, Belmonte-Mateos C, Linda Miyares R, Garcia-Marques J, Foster B, Lindo S, Pujades C, Koyama M, Lee T. TEMPO enables sequential genetic labeling and manipulation of vertebrate cell lineages. Neuron 2023; 111:345-361.e10. [PMID: 36417906 DOI: 10.1016/j.neuron.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
During development, regulatory factors appear in a precise order to determine cell fates over time. Consequently, to investigate complex tissue development, it is necessary to visualize and manipulate cell lineages with temporal control. Current strategies for tracing vertebrate cell lineages lack genetic access to sequentially produced cells. Here, we present TEMPO (Temporal Encoding and Manipulation in a Predefined Order), an imaging-readable genetic tool allowing differential labeling and manipulation of consecutive cell generations in vertebrates. TEMPO is based on CRISPR and powered by a cascade of gRNAs that drive orderly activation and inactivation of reporters and/or effectors. Using TEMPO to visualize zebrafish and mouse neurogenesis, we recapitulated birth-order-dependent neuronal fates. Temporally manipulating cell-cycle regulators in mouse cortex progenitors altered the proportion and distribution of neurons and glia, revealing the effects of temporal gene perturbation on serial cell fates. Thus, TEMPO enables sequential manipulation of molecular factors, crucial to study cell-type specification.
Collapse
Affiliation(s)
| | - Daniel Feliciano
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Carla Belmonte-Mateos
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona 08003, Spain
| | - Rosa Linda Miyares
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jorge Garcia-Marques
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid 28049, Spain
| | - Benjamin Foster
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sarah Lindo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona 08003, Spain
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
52
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
53
|
Sellahewa SG, Li JY, Xiao Q. Updated Perspectives on Direct Vascular Cellular Reprogramming and Their Potential Applications in Tissue Engineered Vascular Grafts. J Funct Biomater 2022; 14:21. [PMID: 36662068 PMCID: PMC9866165 DOI: 10.3390/jfb14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is a globally prevalent disease with far-reaching medical and socio-economic consequences. Although improvements in treatment pathways and revascularisation therapies have slowed disease progression, contemporary management fails to modulate the underlying atherosclerotic process and sustainably replace damaged arterial tissue. Direct cellular reprogramming is a rapidly evolving and innovative tissue regenerative approach that holds promise to restore functional vasculature and restore blood perfusion. The approach utilises cell plasticity to directly convert somatic cells to another cell fate without a pluripotent stage. In this narrative literature review, we comprehensively analyse and compare direct reprogramming protocols to generate endothelial cells, vascular smooth muscle cells and vascular progenitors. Specifically, we carefully examine the reprogramming factors, their molecular mechanisms, conversion efficacies and therapeutic benefits for each induced vascular cell. Attention is given to the application of these novel approaches with tissue engineered vascular grafts as a therapeutic and disease-modelling platform for cardiovascular diseases. We conclude with a discussion on the ethics of direct reprogramming, its current challenges, and future perspectives.
Collapse
Affiliation(s)
- Saneth Gavishka Sellahewa
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jojo Yijiao Li
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
54
|
A Device for Isolation of Selected Single Adherent Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4303586. [PMID: 36567910 PMCID: PMC9780011 DOI: 10.1155/2022/4303586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 10/29/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
In recent years, extensive research has been focused on the field of single cell analysis. The isolation of single cells is the first step in this type of research. However, the techniques used for direct isolation and acquisition of single adherent cells are limited. Here, we present a method of obtaining selected single adherent cells using a separation device. Compared with other single cell isolation methods, this method has the advantages of simple operation, low cost, minimal cell damage, and preservation of cell morphology. Our methodology is, therefore, suitable for the collection of selected single adherent cells.
Collapse
|
55
|
Fang W, Bell CM, Sapirstein A, Asami S, Leeper K, Zack DJ, Ji H, Kalhor R. Quantitative fate mapping: A general framework for analyzing progenitor state dynamics via retrospective lineage barcoding. Cell 2022; 185:4604-4620.e32. [PMID: 36423582 PMCID: PMC9708097 DOI: 10.1016/j.cell.2022.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
Natural and induced somatic mutations that accumulate in the genome during development record the phylogenetic relationships of cells; whether these lineage barcodes capture the complex dynamics of progenitor states remains unclear. We introduce quantitative fate mapping, an approach to reconstruct the hierarchy, commitment times, population sizes, and commitment biases of intermediate progenitor states during development based on a time-scaled phylogeny of their descendants. To reconstruct time-scaled phylogenies from lineage barcodes, we introduce Phylotime, a scalable maximum likelihood clustering approach based on a general barcoding mutagenesis model. We validate these approaches using realistic in silico and in vitro barcoding experiments. We further establish criteria for the number of cells that must be analyzed for robust quantitative fate mapping and a progenitor state coverage statistic to assess the robustness. This work demonstrates how lineage barcodes, natural or synthetic, enable analyzing progenitor fate and dynamics long after embryonic development in any organism.
Collapse
Affiliation(s)
- Weixiang Fang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Claire M Bell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abel Sapirstein
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Soichiro Asami
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kathleen Leeper
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald J Zack
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
56
|
Seidel S, Stadler T. TiDeTree: a Bayesian phylogenetic framework to estimate single-cell trees and population dynamic parameters from genetic lineage tracing data. Proc Biol Sci 2022; 289:20221844. [PMID: 36350216 PMCID: PMC9653226 DOI: 10.1098/rspb.2022.1844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The development of organisms and tissues is dictated by an elaborate balance between cell division, apoptosis and differentiation: the cell population dynamics. To quantify these dynamics, we propose a phylodynamic inference approach based on single-cell lineage recorder data. We developed a Bayesian phylogenetic framework-time-scaled developmental trees (TiDeTree)-that uses lineage recorder data to estimate time-scaled single-cell trees. By implementing TiDeTree within BEAST 2, we enable joint inference of the time-scaled trees and the cell population dynamics. We validated TiDeTree using simulations and showed that performance further improves when including multiple independent sources of information into the inference, such as frequencies of editing outcomes or experimental replicates. We benchmarked TiDeTree against state-of-the-art methods and show comparable performance in terms of tree topology, plus direct assessment of uncertainty and co-estimation of additional parameters. To demonstrate TiDeTree's use in practice, we analysed a public dataset containing lineage data from approximately 100 stem cell colonies. We estimated a time-scaled phylogeny for each colony; as well as the cell division and apoptosis rates underlying the growth dynamics of all colonies. We envision that TiDeTree will find broad application in the analysis of single-cell lineage tracing data, which will improve our understanding of cellular processes during development.
Collapse
Affiliation(s)
- Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
57
|
Serrano A, Berthelet J, Naik SH, Merino D. Mastering the use of cellular barcoding to explore cancer heterogeneity. Nat Rev Cancer 2022; 22:609-624. [PMID: 35982229 DOI: 10.1038/s41568-022-00500-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
Tumours are often composed of a multitude of malignant clones that are genomically unique, and only a few of them may have the ability to escape cancer therapy and grow as symptomatic lesions. As a result, tumours with a large degree of genomic diversity have a higher chance of leading to patient death. However, clonal fate can be driven by non-genomic features. In this context, new technologies are emerging not only to track the spatiotemporal fate of individual cells and their progeny but also to study their molecular features using various omics analysis. In particular, the recent development of cellular barcoding facilitates the labelling of tens to millions of cancer clones and enables the identification of the complex mechanisms associated with clonal fate in different microenvironments and in response to therapy. In this Review, we highlight the recent discoveries made using lentiviral-based cellular barcoding techniques, namely genetic and optical barcoding. We also emphasize the strengths and limitations of each of these technologies and discuss some of the key concepts that must be taken into consideration when one is designing barcoding experiments. Finally, we suggest new directions to further improve the use of these technologies in cancer research.
Collapse
Affiliation(s)
- Antonin Serrano
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean Berthelet
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Shalin H Naik
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia.
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
58
|
Chen C, Liao Y, Peng G. Connecting past and present: single-cell lineage tracing. Protein Cell 2022; 13:790-807. [PMID: 35441356 PMCID: PMC9237189 DOI: 10.1007/s13238-022-00913-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/06/2022] [Indexed: 01/16/2023] Open
Abstract
Central to the core principle of cell theory, depicting cells' history, state and fate is a fundamental goal in modern biology. By leveraging clonal analysis and single-cell RNA-seq technologies, single-cell lineage tracing provides new opportunities to interrogate both cell states and lineage histories. During the past few years, many strategies to achieve lineage tracing at single-cell resolution have been developed, and three of them (integration barcodes, polylox barcodes, and CRISPR barcodes) are noteworthy as they are amenable in experimentally tractable systems. Although the above strategies have been demonstrated in animal development and stem cell research, much care and effort are still required to implement these methods. Here we review the development of single-cell lineage tracing, major characteristics of the cell barcoding strategies, applications, as well as technical considerations and limitations, providing a guide to choose or improve the single-cell barcoding lineage tracing.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanxin Liao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangdun Peng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
59
|
Tyser RCV, Srinivas S. Recent advances in understanding cell types during human gastrulation. Semin Cell Dev Biol 2022; 131:35-43. [PMID: 35606274 PMCID: PMC7615356 DOI: 10.1016/j.semcdb.2022.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Gastrulation is a fundamental process during embryonic development, conserved across all multicellular animals [1]. In the majority of metazoans, gastrulation is characterised by large scale morphogenetic remodeling, leading to the conversion of an early pluripotent embryonic cell layer into the three primary 'germ layers': an outer ectoderm, inner endoderm and intervening mesoderm layer. The morphogenesis of these three layers of cells is closely coordinated with cellular diversification, laying the foundation for the generation of the hundreds of distinct specialized cell types in the animal body. The process of gastrulation has for a long time attracted tremendous attention in a broad range of experimental systems ranging from sponges to mice. In humans the process of gastrulation starts approximately 14 days after fertilization and continues for slightly over a week. However our understanding of this important process, as it pertains to human, is limited. Donations of human fetal material at these early stages are exceptionally rare, making it nearly impossible to study human gastrulation directly. Therefore, our understanding of human gastrulation is predominantly derived from animal models such as the mouse [2,3] and from studies of limited collections of fixed whole samples and histological sections of human gastrulae [4-7], some of which date back to over a century ago. More recently we have been gaining valuable molecular insights into human gastrulation using in vitro models of hESCs [8-12] and increasingly, in vitro cultured human and non-human primate embryos [13-16]. However, while methods have been developed to culture human embryos into this stage (and probably beyond), current ethical standards prohibit the culture of human embryos past 14 days again limiting our ability to experimentally probe human gastrulation. This review discusses recent molecular insights from the study of a rare CS 7 human gastrula obtained as a live sample and raises several questions arising from this recent study that it will be interesting to address in the future using emerging models of human gastrulation.
Collapse
Affiliation(s)
- Richard C V Tyser
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford , Oxford OX1 3QX, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, South Parks Road, University of Oxford , Oxford OX1 3QX, UK
| |
Collapse
|
60
|
Sankaran VG, Weissman JS, Zon LI. Cellular barcoding to decipher clonal dynamics in disease. Science 2022; 378:eabm5874. [PMID: 36227997 PMCID: PMC10111813 DOI: 10.1126/science.abm5874] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cellular barcodes are distinct DNA sequences that enable one to track specific cells across time or space. Recent advances in our ability to detect natural or synthetic cellular barcodes, paired with single-cell readouts of cell state, have markedly increased our knowledge of clonal dynamics and genealogies of the cells that compose a variety of tissues and organs. These advances hold promise to redefine our view of human disease. Here, we provide an overview of cellular barcoding approaches, discuss applications to gain new insights into disease mechanisms, and provide an outlook on future applications. We discuss unanticipated insights gained through barcoding in studies of cancer and blood cell production and describe how barcoding can be applied to a growing array of medical fields, particularly with the increasing recognition of clonal contributions in human diseases.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Division of Hematology and Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
61
|
Morgan DM, Shreffler WG, Love JC. Revealing the heterogeneity of CD4+ T cells through single-cell transcriptomics. J Allergy Clin Immunol 2022; 150:748-755. [DOI: 10.1016/j.jaci.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
|
62
|
Hughes NW, Qu Y, Zhang J, Tang W, Pierce J, Wang C, Agrawal A, Morri M, Neff N, Winslow MM, Wang M, Cong L. Machine-learning-optimized Cas12a barcoding enables the recovery of single-cell lineages and transcriptional profiles. Mol Cell 2022; 82:3103-3118.e8. [PMID: 35752172 PMCID: PMC10599400 DOI: 10.1016/j.molcel.2022.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/27/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
The development of CRISPR-based barcoding methods creates an exciting opportunity to understand cellular phylogenies. We present a compact, tunable, high-capacity Cas12a barcoding system called dual acting inverted site array (DAISY). We combined high-throughput screening and machine learning to predict and optimize the 60-bp DAISY barcode sequences. After optimization, top-performing barcodes had ∼10-fold increased capacity relative to the best random-screened designs and performed reliably across diverse cell types. DAISY barcode arrays generated ∼12 bits of entropy and ∼66,000 unique barcodes. Thus, DAISY barcodes-at a fraction of the size of Cas9 barcodes-achieved high-capacity barcoding. We coupled DAISY barcoding with single-cell RNA-seq to recover lineages and gene expression profiles from ∼47,000 human melanoma cells. A single DAISY barcode recovered up to ∼700 lineages from one parental cell. This analysis revealed heritable single-cell gene expression and potential epigenetic modulation of memory gene transcription. Overall, Cas12a DAISY barcoding is an efficient tool for investigating cell-state dynamics.
Collapse
Affiliation(s)
- Nicholas W Hughes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neuroscience Institute, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuanhao Qu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiaqi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Weijing Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justin Pierce
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chengkun Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Norma Neff
- Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Monte M Winslow
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mengdi Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA; Center for Statistics and Machine Learning, Princeton University, Princeton, NJ 08544, USA.
| | - Le Cong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neuroscience Institute, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
63
|
Hu B, Lelek S, Spanjaard B, El-Sammak H, Simões MG, Mintcheva J, Aliee H, Schäfer R, Meyer AM, Theis F, Stainier DYR, Panáková D, Junker JP. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat Genet 2022; 54:1227-1237. [PMID: 35864193 PMCID: PMC7613248 DOI: 10.1038/s41588-022-01129-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
The adult zebrafish heart has a high capacity for regeneration following injury. However, the composition of the regenerative niche has remained largely elusive. Here, we dissected the diversity of activated cell states in the regenerating zebrafish heart based on single-cell transcriptomics and spatiotemporal analysis. We observed the emergence of several transient cell states with fibroblast characteristics following injury, and we outlined the proregenerative function of collagen-12-expressing fibroblasts. To understand the cascade of events leading to heart regeneration, we determined the origin of these cell states by high-throughput lineage tracing. We found that activated fibroblasts were derived from two separate sources: the epicardium and the endocardium. Mechanistically, we determined Wnt signalling as a regulator of the endocardial fibroblast response. In summary, our work identifies specialized activated fibroblast cell states that contribute to heart regeneration, thereby opening up possible approaches to modulating the regenerative capacity of the vertebrate heart. Single-cell RNA sequencing and spatiotemporal analysis of the regenerating zebrafish heart identify transient proregenerative fibroblast-like cells that are derived from the epicardium and the endocardium. Wnt signalling regulates the endocardial fibroblast response.
Collapse
Affiliation(s)
- Bo Hu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany
| | - Bastiaan Spanjaard
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hadil El-Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Mariana Guedes Simões
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Hananeh Aliee
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Ronny Schäfer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Alexander M Meyer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Fabian Theis
- Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Rhine/Main, Frankfurt, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research) partner site, Berlin, Germany.
| |
Collapse
|
64
|
Wang SW, Herriges MJ, Hurley K, Kotton DN, Klein AM. CoSpar identifies early cell fate biases from single-cell transcriptomic and lineage information. Nat Biotechnol 2022; 40:1066-1074. [PMID: 35190690 DOI: 10.1038/s41587-022-01209-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
A goal of single-cell genome-wide profiling is to reconstruct dynamic transitions during cell differentiation, disease onset and drug response. Single-cell assays have recently been integrated with lineage tracing, a set of methods that identify cells of common ancestry to establish bona fide dynamic relationships between cell states. These integrated methods have revealed unappreciated cell dynamics, but their analysis faces recurrent challenges arising from noisy, dispersed lineage data. In this study, we developed coherent, sparse optimization (CoSpar) as a robust computational approach to infer cell dynamics from single-cell transcriptomics integrated with lineage tracing. Built on assumptions of coherence and sparsity of transition maps, CoSpar is robust to severe downsampling and dispersion of lineage data, which enables simpler experimental designs and requires less calibration. In datasets representing hematopoiesis, reprogramming and directed differentiation, CoSpar identifies early fate biases not previously detected, predicting transcription factors and receptors implicated in fate choice. Documentation and detailed examples for common experimental designs are available at https://cospar.readthedocs.io/ .
Collapse
Affiliation(s)
- Shou-Wen Wang
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Michael J Herriges
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Kilian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
65
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
66
|
Toward the dissection of hematopoietic stem cell fates and their determinants. Curr Opin Genet Dev 2022; 75:101945. [PMID: 35753209 DOI: 10.1016/j.gde.2022.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022]
Abstract
Hematopoietic stem cell (HSC) functions have long been difficult to study under physiological conditions. Recently, genetic in vivo approaches have been developed for lineage tracing of differentiating progeny emerging from HSC over time (output), and for high-resolution, endogenous barcoding to uncover the lineages that HSC contribute to (fate). Such fate measurements have in principle led to the recognition of three major fate groups of HSC: multilineage, myelo-erythroid-restricted, and inactive, that is, no or no known progeny, in addition to a minor group of megakaryocyte-restricted HSC. The most recent RNA-barcoding experiments have begun to directly link fate measurements with transcriptome reading in HSC clones and single HSC, which yielded insights into transcriptional signatures associated with fate patterns. Here, we discuss these findings in light of the structure of the hematopoietic differentiation hierarchy, and we provide an outlook on strategies to dissect molecular determinants of HSC fates.
Collapse
|
67
|
Mo Y, Jiao Y. Advances and applications of single-cell omics technologies in plant research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1551-1563. [PMID: 35426954 DOI: 10.1111/tpj.15772] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Single-cell sequencing approaches reveal the intracellular dynamics of individual cells and answer biological questions with high-dimensional catalogs of millions of cells, including genomics, transcriptomics, chromatin accessibility, epigenomics, and proteomics data across species. These emerging yet thriving technologies have been fully embraced by the field of plant biology, with a constantly expanding portfolio of applications. Here, we introduce the current technical advances used for single-cell omics, especially single-cell genome and transcriptome sequencing. Firstly, we overview methods for protoplast and nucleus isolation and genome and transcriptome amplification. Subsequently, we use well-executed benchmarking studies to highlight advances made through the application of single-cell omics techniques. Looking forward, we offer a glimpse of additional hurdles and future opportunities that will introduce broad adoption of single-cell sequencing with revolutionary perspectives in plant biology.
Collapse
Affiliation(s)
- Yajin Mo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, 100871, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
68
|
Nusser A, Sagar, Swann JB, Krauth B, Diekhoff D, Calderon L, Happe C, Grün D, Boehm T. Developmental dynamics of two bipotent thymic epithelial progenitor types. Nature 2022; 606:165-171. [PMID: 35614226 PMCID: PMC9159946 DOI: 10.1038/s41586-022-04752-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/11/2022] [Indexed: 12/18/2022]
Abstract
T cell development in the thymus is essential for cellular immunity and depends on the organotypic thymic epithelial microenvironment. In comparison with other organs, the size and cellular composition of the thymus are unusually dynamic, as exemplified by rapid growth and high T cell output during early stages of development, followed by a gradual loss of functional thymic epithelial cells and diminished naive T cell production with age1-10. Single-cell RNA sequencing (scRNA-seq) has uncovered an unexpected heterogeneity of cell types in the thymic epithelium of young and aged adult mice11-18; however, the identities and developmental dynamics of putative pre- and postnatal epithelial progenitors have remained unresolved1,12,16,17,19-27. Here we combine scRNA-seq and a new CRISPR-Cas9-based cellular barcoding system in mice to determine qualitative and quantitative changes in the thymic epithelium over time. This dual approach enabled us to identify two principal progenitor populations: an early bipotent progenitor type biased towards cortical epithelium and a postnatal bipotent progenitor population biased towards medullary epithelium. We further demonstrate that continuous autocrine provision of Fgf7 leads to sustained expansion of thymic microenvironments without exhausting the epithelial progenitor pools, suggesting a strategy to modulate the extent of thymopoietic activity.
Collapse
Affiliation(s)
- Anja Nusser
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Sagar
- Quantitative Single Cell Biology Group, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Brigitte Krauth
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Dagmar Diekhoff
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Lesly Calderon
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Institute of Molecular Pathology, Vienna, Austria
| | - Christiane Happe
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Dominic Grün
- Quantitative Single Cell Biology Group, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
69
|
Yang D, Jones MG, Naranjo S, Rideout WM, Min KHJ, Ho R, Wu W, Replogle JM, Page JL, Quinn JJ, Horns F, Qiu X, Chen MZ, Freed-Pastor WA, McGinnis CS, Patterson DM, Gartner ZJ, Chow ED, Bivona TG, Chan MM, Yosef N, Jacks T, Weissman JS. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 2022; 185:1905-1923.e25. [PMID: 35523183 DOI: 10.1016/j.cell.2022.04.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022]
Abstract
Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.
Collapse
Affiliation(s)
- Dian Yang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Matthew G Jones
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kyung Hoi Joseph Min
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Raymond Ho
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer L Page
- Cell and Genome Engineering Core, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey J Quinn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Felix Horns
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaojie Qiu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Z Chen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Medical Scientist Training Program, Harvard Medical School, Boston, MA 02115, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher S McGinnis
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David M Patterson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg BioHub Investigator, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Cellular Construction, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Advanced Technology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michelle M Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg BioHub Investigator, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA; Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, USA.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
70
|
Yao M, Ren T, Pan Y, Xue X, Li R, Zhang L, Li Y, Huang K. A New Generation of Lineage Tracing Dynamically Records Cell Fate Choices. Int J Mol Sci 2022; 23:ijms23095021. [PMID: 35563412 PMCID: PMC9105840 DOI: 10.3390/ijms23095021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Reconstructing the development of lineage relationships and cell fate mapping has been a fundamental problem in biology. Using advanced molecular biology and single-cell RNA sequencing, we have profiled transcriptomes at the single-cell level and mapped cell fates during development. Recently, CRISPR/Cas9 barcode editing for large-scale lineage tracing has been used to reconstruct the pseudotime trajectory of cells and improve lineage tracing accuracy. This review presents the progress of the latest CbLT (CRISPR-based Lineage Tracing) and discusses the current limitations and potential technical pitfalls in their application and other emerging concepts.
Collapse
|
71
|
Konno N, Kijima Y, Watano K, Ishiguro S, Ono K, Tanaka M, Mori H, Masuyama N, Pratt D, Ideker T, Iwasaki W, Yachie N. Deep distributed computing to reconstruct extremely large lineage trees. Nat Biotechnol 2022; 40:566-575. [PMID: 34992246 PMCID: PMC9934975 DOI: 10.1038/s41587-021-01111-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Phylogeny estimation (the reconstruction of evolutionary trees) has recently been applied to CRISPR-based cell lineage tracing, allowing the developmental history of an individual tissue or organism to be inferred from a large number of mutated sequences in somatic cells. However, current computational methods are not able to construct phylogenetic trees from extremely large numbers of input sequences. Here, we present a deep distributed computing framework to comprehensively trace accurate large lineages (FRACTAL) that substantially enhances the scalability of current lineage estimation software tools. FRACTAL first reconstructs only an upstream lineage of the input sequences and recursively iterates the same produce for its downstream lineages using independent computing nodes. We demonstrate the utility of FRACTAL by reconstructing lineages from >235 million simulated sequences and from >16 million cells from a simulated experiment with a CRISPR system that accumulates mutations during cell proliferation. We also successfully applied FRACTAL to evolutionary tree reconstructions and to an experiment using error-prone PCR (EP-PCR) for large-scale sequence diversification.
Collapse
Affiliation(s)
- Naoki Konno
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yusuke Kijima
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,These authors contributed equally: Yusuke Kijima, Keito Watano, Soh Ishiguro
| | - Keito Watano
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,These authors contributed equally: Yusuke Kijima, Keito Watano, Soh Ishiguro
| | - Soh Ishiguro
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,These authors contributed equally: Yusuke Kijima, Keito Watano, Soh Ishiguro
| | - Keiichiro Ono
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mamoru Tanaka
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hideto Mori
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Nanami Masuyama
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Dexter Pratt
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Departments of Bioengineering and Computer Science, University of California San Diego, La Jolla, CA, USA
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan. .,School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada. .,Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan. .,Graduate School of Media and Governance, Keio University, Fujisawa, Japan.
| |
Collapse
|
72
|
Gong W, Kim HJ, Garry DJ, Kwak IY. Single cell lineage reconstruction using distance-based algorithms and the R package, DCLEAR. BMC Bioinformatics 2022; 23:103. [PMID: 35331133 PMCID: PMC8944039 DOI: 10.1186/s12859-022-04633-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background DCLEAR is an R package used for single cell lineage reconstruction. The advances of CRISPR-based gene editing technologies have enabled the prediction of cell lineage trees based on observed edited barcodes from each cell. However, the performance of existing reconstruction methods of cell lineage trees was not accessed until recently. In response to this problem, the Allen Institute hosted the Cell Lineage Reconstruction Dream Challenge in 2020 to crowdsource relevant knowledge from across the world. Our team won sub-challenges 2 and 3 in the challenge competition. Results The DCLEAR package contained the R codes, which was submitted in response to sub-challenges 2 and 3. Our method consists of two steps: (1) distance matrix estimation and (2) the tree reconstruction from the distance matrix. We proposed two novel methods for distance matrix estimation as outlined in the DCLEAR package. Using our method, we find that two of the more sophisticated distance methods display a substantially improved level of performance compared to the traditional Hamming distance method. DCLEAR is open source and freely available from R CRAN and from under the GNU General Public License, version 3. Conclusions DCLEAR is a powerful resource for single cell lineage reconstruction.
Collapse
Affiliation(s)
- Wuming Gong
- Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Hyunwoo J Kim
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, USA
| | - Il-Youp Kwak
- Department of Applied Statistics, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
73
|
Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:275-286. [PMID: 35322263 DOI: 10.1038/s41583-022-00572-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/18/2022]
Abstract
Genetic mosaicism is the result of the accumulation of somatic mutations in the human genome starting from the first postzygotic cell generation and continuing throughout the whole life of an individual. The rapid development of next-generation and single-cell sequencing technologies is now allowing the study of genetic mosaicism in normal tissues, revealing unprecedented insights into their clonal architecture and physiology. The somatic variant repertoire of an adult human neuron is the result of somatic mutations that accumulate in the brain by different mechanisms and at different rates during development and ageing. Non-pathogenic developmental mutations function as natural barcodes that once identified in deep bulk or single-cell sequencing can be used to retrospectively reconstruct human lineages. This approach has revealed novel insights into the clonal structure of the human brain, which is a mosaic of clones traceable to the early embryo that contribute differentially to the brain and distinct areas of the cortex. Some of the mutations happening during development, however, have a pathogenic effect and can contribute to some epileptic malformations of cortical development and autism spectrum disorder. In this Review, we discuss recent findings in the context of genetic mosaicism and their implications for brain development and disease.
Collapse
|
74
|
Parker J, Guslund NC, Jentoft S, Roth O. Characterization of Pipefish Immune Cell Populations Through Single-Cell Transcriptomics. Front Immunol 2022; 13:820152. [PMID: 35154138 PMCID: PMC8828949 DOI: 10.3389/fimmu.2022.820152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 01/16/2023] Open
Abstract
Teleost adaptive immune systems have evolved with more flexibility than previously assumed. A particularly enigmatic system to address immune system modifications in the evolutionary past is represented by the Syngnathids, the family of pipefishes, seahorses and seadragons. These small fishes with their unique male pregnancy have lost the spleen as an important immune organ as well as a functional major histocompatibility class II (MHC II) pathway. How these evolutionary changes have impacted immune cell population dynamics have up to this point remained unexplored. Here, we present the first immune cell repertoire characterization of a syngnathid fish (Syngnathus typhle) using single-cell transcriptomics. Gene expression profiles of individual cells extracted from blood and head-kidney clustered in twelve putative cell populations with eight belonging to those with immune function. Upregulated cell marker genes identified in humans and teleosts were used to define cell clusters. While the suggested loss of CD4+ T-cells accompanied the loss of the MHC II pathway was supported, the upregulation of specific subtype markers within the T-cell cluster indicates subpopulations of regulatory T-cells (il2rb) and cytotoxic T-cells (gzma). Utilizing single-cell RNA sequencing this report is the first to characterize immune cell populations in syngnathids and provides a valuable foundation for future cellular classification and experimental work within the lineage.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Marine Evolutionary Biology, Christian-Albrechts-University, Kiel, Germany
| | - Naomi Croft Guslund
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Marine Evolutionary Biology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
75
|
Jang H, Kim SH, Koh Y, Yoon KJ. Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. Int J Stem Cells 2022; 15:41-59. [PMID: 35220291 PMCID: PMC8889333 DOI: 10.15283/ijsc22004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seo Hyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Youmin Koh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KAIST-Wonjin Cell Therapy Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
76
|
Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nat Neurosci 2022; 25:285-294. [PMID: 35210624 PMCID: PMC8904259 DOI: 10.1038/s41593-022-01011-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023]
Abstract
The mammalian brain contains many specialized cells that develop from a thin sheet of neuroepithelial progenitor cells. Single-cell transcriptomics revealed hundreds of molecularly diverse cell types in the nervous system, but the lineage relationships between mature cell types and progenitor cells are not well understood. Here we show in vivo barcoding of early progenitors to simultaneously profile cell phenotypes and clonal relations in the mouse brain using single-cell and spatial transcriptomics. By reconstructing thousands of clones, we discovered fate-restricted progenitor cells in the mouse hippocampal neuroepithelium and show that microglia are derived from few primitive myeloid precursors that massively expand to generate widely dispersed progeny. We combined spatial transcriptomics with clonal barcoding and disentangled migration patterns of clonally related cells in densely labeled tissue sections. Our approach enables high-throughput dense reconstruction of cell phenotypes and clonal relations at the single-cell and tissue level in individual animals and provides an integrated approach for understanding tissue architecture. Ratz et al. present an easy-to-use method to barcode progenitor cells, enabling profiling of cell phenotypes and clonal relations using single-cell and spatial transcriptomics, providing an integrated approach for understanding brain architecture.
Collapse
|
77
|
Mukund A, Bintu L. Temporal signaling, population control, and information processing through chromatin-mediated gene regulation. J Theor Biol 2022; 535:110977. [PMID: 34919934 PMCID: PMC8757591 DOI: 10.1016/j.jtbi.2021.110977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 12/05/2021] [Indexed: 01/02/2023]
Abstract
Chromatin regulation is a key pathway cells use to regulate gene expression in response to temporal stimuli, and is becoming widely used as a platform for synthetic biology applications. Here, we build a mathematical framework for analyzing the response of genetic circuits containing chromatin regulators to temporal signals in mammalian cell populations. Chromatin regulators can silence genes in an all-or-none fashion at the single-cell level, with individual cells stochastically transitioning between active, reversibly silent, and irreversibly silent gene states at constant rates over time. We integrate this mode of regulation with classical gene regulatory motifs, such as autoregulatory and incoherent feedforward loops, to determine the types of responses achievable with duration-dependent signaling. We demonstrate that repressive regulators without long-term epigenetic memory can filter out high frequency noise, and as part of an autoregulatory loop can precisely tune the fraction of cells in a population that expresses a gene of interest. Additionally, we find that repressive regulators with epigenetic memory can sum up and encode the total duration of their recruitment in the fraction of cells irreversibly silenced and, when included in a feed forward loop, enable perfect adaptation. Last, we use an information theoretic approach to show that all-or-none stochastic silencing can be used by populations to transmit information reliably and with high fidelity even in very simple genetic circuits. Altogether, we show that chromatin-mediated gene control enables a repertoire of complex cell population responses to temporal signals and can transmit higher information levels than previously measured in gene regulation.
Collapse
Affiliation(s)
- Adi Mukund
- Biophysics Program, Stanford University, Stanford, CA 94305, USA.
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
78
|
Leigh ND, Currie JD. Re-building limbs, one cell at a time. Dev Dyn 2022; 251:1389-1403. [PMID: 35170828 PMCID: PMC9545806 DOI: 10.1002/dvdy.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
New techniques for visualizing and interrogating single cells hold the key to unlocking the underlying mechanisms of salamander limb regeneration.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Sweden
| | - Joshua D Currie
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, USA
| |
Collapse
|
79
|
Spatial components of molecular tissue biology. Nat Biotechnol 2022; 40:308-318. [PMID: 35132261 DOI: 10.1038/s41587-021-01182-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Methods for profiling RNA and protein expression in a spatially resolved manner are rapidly evolving, making it possible to comprehensively characterize cells and tissues in health and disease. To maximize the biological insights obtained using these techniques, it is critical to both clearly articulate the key biological questions in spatial analysis of tissues and develop the requisite computational tools to address them. Developers of analytical tools need to decide on the intrinsic molecular features of each cell that need to be considered, and how cell shape and morphological features are incorporated into the analysis. Also, optimal ways to compare different tissue samples at various length scales are still being sought. Grouping these biological problems and related computational algorithms into classes across length scales, thus characterizing common issues that need to be addressed, will facilitate further progress in spatial transcriptomics and proteomics.
Collapse
|
80
|
Ding J, Sharon N, Bar-Joseph Z. Temporal modelling using single-cell transcriptomics. Nat Rev Genet 2022; 23:355-368. [PMID: 35102309 DOI: 10.1038/s41576-021-00444-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Methods for profiling genes at the single-cell level have revolutionized our ability to study several biological processes and systems including development, differentiation, response programmes and disease progression. In many of these studies, cells are profiled over time in order to infer dynamic changes in cell states and types, sets of expressed genes, active pathways and key regulators. However, time-series single-cell RNA sequencing (scRNA-seq) also raises several new analysis and modelling issues. These issues range from determining when and how deep to profile cells, linking cells within and between time points, learning continuous trajectories, and integrating bulk and single-cell data for reconstructing models of dynamic networks. In this Review, we discuss several approaches for the analysis and modelling of time-series scRNA-seq, highlighting their steps, key assumptions, and the types of data and biological questions they are most appropriate for.
Collapse
|
81
|
Chan JTH, Kadri S, Köllner B, Rebl A, Korytář T. RNA-Seq of Single Fish Cells - Seeking Out the Leukocytes Mediating Immunity in Teleost Fishes. Front Immunol 2022; 13:798712. [PMID: 35140719 PMCID: PMC8818700 DOI: 10.3389/fimmu.2022.798712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023] Open
Abstract
The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.
Collapse
Affiliation(s)
- Justin T. H. Chan
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Safwen Kadri
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Regenerative Biology and Medicine, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Tomáš Korytář
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
82
|
McGarvey AC, Kopp W, Vučićević D, Mattonet K, Kempfer R, Hirsekorn A, Bilić I, Gil M, Trinks A, Merks AM, Panáková D, Pombo A, Akalin A, Junker JP, Stainier DY, Garfield D, Ohler U, Lacadie SA. Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. CELL GENOMICS 2022; 2:100083. [PMID: 36777038 PMCID: PMC9903790 DOI: 10.1016/j.xgen.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many genes regulating embryonic development have been identified, the underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we produced a multimodal resource and genomic regulatory map for the zebrafish community, which integrates single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo. We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for ∼23,000 single nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmentation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization and identified new regulatory principles between chromatin modalities prevalent during zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and establishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs, providing a valuable open resource for genomics, developmental, molecular, and computational biology.
Collapse
Affiliation(s)
- Alison C. McGarvey
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Wolfgang Kopp
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Dubravka Vučićević
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Antje Hirsekorn
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Ilija Bilić
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Marine Gil
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Alexandra Trinks
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Anne Margarete Merks
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Jan Philipp Junker
- Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - David Garfield
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany,Corresponding author
| | - Scott Allen Lacadie
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Berlin Institute of Health, Berlin 10178, Germany,Corresponding author
| |
Collapse
|
83
|
Abstract
The Tabula Gallus is a proposed project that aims to create a map of every cell type in the chicken body and chick embryos. Chickens (Gallus gallus) are one of the most recognized model animals that recapitulate the development and physiology of mammals. The Tabula Gallus will generate a compendium of single-cell transcriptome data from Gallus gallus, characterize each cell type, and provide tools for the study of the biology of this species, similar to other ongoing cell atlas projects (Tabula Muris and Tabula Sapiens/Human Cell Atlas for mice and humans, respectively). The Tabula Gallus will potentially become an international collaboration between many researchers. This project will be useful for the basic scientific study of Gallus gallus and other birds (e.g., cell biology, molecular biology, developmental biology, neuroscience, physiology, oncology, virology, behavior, ecology, and evolution). It will eventually be beneficial for a better understanding of human health and diseases.
Collapse
|
84
|
Belmonte-Mateos C, Pujades C. From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Front Neurosci 2022; 15:781160. [PMID: 35046768 PMCID: PMC8761814 DOI: 10.3389/fnins.2021.781160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
The central nervous system (CNS) exhibits an extraordinary diversity of neurons, with the right cell types and proportions at the appropriate sites. Thus, to produce brains with specific size and cell composition, the rates of proliferation and differentiation must be tightly coordinated and balanced during development. Early on, proliferation dominates; later on, the growth rate almost ceases as more cells differentiate and exit the cell cycle. Generation of cell diversity and morphogenesis takes place concomitantly. In the vertebrate brain, this results in dramatic changes in the position of progenitor cells and their neuronal derivatives, whereas in the spinal cord morphogenetic changes are not so important because the structure mainly grows by increasing its volume. Morphogenesis is under control of specific genetic programs that coordinately unfold over time; however, little is known about how they operate and impact in the pools of progenitor cells in the CNS. Thus, the spatiotemporal coordination of these processes is fundamental for generating functional neuronal networks. Some key aims in developmental neurobiology are to determine how cell diversity arises from pluripotent progenitor cells, and how the progenitor potential changes upon time. In this review, we will share our view on how the advance of new technologies provides novel data that challenge some of the current hypothesis. We will cover some of the latest studies on cell lineage tracing and clonal analyses addressing the role of distinct progenitor cell division modes in balancing the rate of proliferation and differentiation during brain morphogenesis. We will discuss different hypothesis proposed to explain how progenitor cell diversity is generated and how they challenged prevailing concepts and raised new questions.
Collapse
Affiliation(s)
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
85
|
Single-cell delineation of lineage and genetic identity in the mouse brain. Nature 2022; 601:404-409. [PMID: 34912118 PMCID: PMC8770128 DOI: 10.1038/s41586-021-04237-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023]
Abstract
During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia1,2. The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level.
Collapse
|
86
|
Lohoff T, Ghazanfar S, Missarova A, Koulena N, Pierson N, Griffiths JA, Bardot ES, Eng CHL, Tyser RCV, Argelaguet R, Guibentif C, Srinivas S, Briscoe J, Simons BD, Hadjantonakis AK, Göttgens B, Reik W, Nichols J, Cai L, Marioni JC. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat Biotechnol 2022; 40:74-85. [PMID: 34489600 PMCID: PMC8763645 DOI: 10.1038/s41587-021-01006-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Molecular profiling of single cells has advanced our knowledge of the molecular basis of development. However, current approaches mostly rely on dissociating cells from tissues, thereby losing the crucial spatial context of regulatory processes. Here, we apply an image-based single-cell transcriptomics method, sequential fluorescence in situ hybridization (seqFISH), to detect mRNAs for 387 target genes in tissue sections of mouse embryos at the 8-12 somite stage. By integrating spatial context and multiplexed transcriptional measurements with two single-cell transcriptome atlases, we characterize cell types across the embryo and demonstrate that spatially resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain-hindbrain boundary (MHB) and the developing gut tube. We uncover axes of cell differentiation that are not apparent from single-cell RNA-sequencing (scRNA-seq) data, such as early dorsal-ventral separation of esophageal and tracheal progenitor populations in the gut tube. Our method provides an approach for studying cell fate decisions in complex tissues and development.
Collapse
Affiliation(s)
- T Lohoff
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - S Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - A Missarova
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - N Koulena
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - N Pierson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - J A Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Genomics Plc, Cambridge, UK
| | - E S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C-H L Eng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - R C V Tyser
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - R Argelaguet
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - C Guibentif
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - S Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J Briscoe
- The Francis Crick Institute, London, UK
| | - B D Simons
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- The Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - B Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - W Reik
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| | - J Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - L Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - J C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
87
|
Prodromidou K, Matsas R. Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cell Mol Life Sci 2021; 79:56. [PMID: 34921638 PMCID: PMC11071749 DOI: 10.1007/s00018-021-04063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The human cerebral cortex is a uniquely complex structure encompassing an unparalleled diversity of neuronal types and subtypes. These arise during development through a series of evolutionary conserved processes, such as progenitor cell proliferation, migration and differentiation, incorporating human-associated adaptations including a protracted neurogenesis and the emergence of novel highly heterogeneous progenitor populations. Disentangling the unique features of human cortical development involves elucidation of the intricate developmental cell transitions orchestrated by progressive molecular events. Crucially, developmental timing controls the fine balance between cell cycle progression/exit and the neurogenic competence of precursor cells, which undergo morphological transitions coupled to transcriptome-defined temporal states. Recent advances in bulk and single-cell transcriptomic technologies suggest that alongside protein-coding genes, non-coding RNAs exert important regulatory roles in these processes. Interestingly, a considerable number of novel long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have appeared in human and non-human primates suggesting an evolutionary role in shaping cortical development. Here, we present an overview of human cortical development and highlight the marked diversification and complexity of human neuronal progenitors. We further discuss how lncRNAs and miRNAs constitute critical components of the extended epigenetic regulatory network defining intermediate states of progenitors and controlling cell cycle dynamics and fate choices with spatiotemporal precision, during human neurodevelopment.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece.
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| |
Collapse
|
88
|
Mircea M, Semrau S. How a cell decides its own fate: a single-cell view of molecular mechanisms and dynamics of cell-type specification. Biochem Soc Trans 2021; 49:2509-2525. [PMID: 34854897 PMCID: PMC8786291 DOI: 10.1042/bst20210135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
On its path from a fertilized egg to one of the many cell types in a multicellular organism, a cell turns the blank canvas of its early embryonic state into a molecular profile fine-tuned to achieve a vital organismal function. This remarkable transformation emerges from the interplay between dynamically changing external signals, the cell's internal, variable state, and tremendously complex molecular machinery; we are only beginning to understand. Recently developed single-cell omics techniques have started to provide an unprecedented, comprehensive view of the molecular changes during cell-type specification and promise to reveal the underlying gene regulatory mechanism. The exponentially increasing amount of quantitative molecular data being created at the moment is slated to inform predictive, mathematical models. Such models can suggest novel ways to manipulate cell types experimentally, which has important biomedical applications. This review is meant to give the reader a starting point to participate in this exciting phase of molecular developmental biology. We first introduce some of the principal molecular players involved in cell-type specification and discuss the important organizing ability of biomolecular condensates, which has been discovered recently. We then review some of the most important single-cell omics methods and relevant findings they produced. We devote special attention to the dynamics of the molecular changes and discuss methods to measure them, most importantly lineage tracing. Finally, we introduce a conceptual framework that connects all molecular agents in a mathematical model and helps us make sense of the experimental data.
Collapse
Affiliation(s)
- Maria Mircea
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
89
|
Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches. Neuron 2021; 110:366-393. [PMID: 34921778 DOI: 10.1016/j.neuron.2021.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Differentiated cells have long been considered fixed in their identity. However, about 20 years ago, the first direct conversion of glial cells into neurons in vitro opened the field of "direct neuronal reprogramming." Since then, neuronal reprogramming has achieved the generation of fully functional, mature neurons with remarkable efficiency, even in diseased brain environments. Beyond their clinical implications, these discoveries provided basic insights into crucial mechanisms underlying conversion of specific cell types into neurons and maintenance of neuronal identity. Here we discuss such principles, including the importance of the starter cell for shaping the outcome of neuronal reprogramming. We further highlight technical concerns for in vivo reprogramming and propose a code of conduct to avoid artifacts and pitfalls. We end by pointing out next challenges for development of less invasive cell replacement therapies for humans.
Collapse
|
90
|
Kremer LP, Cerrizuela S, Dehler S, Stiehl T, Weinmann J, Abendroth H, Kleber S, Laure A, El Andari J, Anders S, Marciniak-Czochra A, Grimm D, Martin-Villalba A. High throughput screening of novel AAV capsids identifies variants for transduction of adult NSCs within the subventricular zone. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:33-50. [PMID: 34553001 PMCID: PMC8427210 DOI: 10.1016/j.omtm.2021.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The adult mammalian brain entails a reservoir of neural stem cells (NSCs) generating glial cells and neurons. However, NSCs become increasingly quiescent with age, which hampers their regenerative capacity. New means are therefore required to genetically modify adult NSCs for re-enabling endogenous brain repair. Recombinant adeno-associated viruses (AAVs) are ideal gene-therapy vectors due to an excellent safety profile and high transduction efficiency. We thus conducted a high-throughput screening of 177 intraventricularly injected barcoded AAV variants profiled by RNA sequencing. Quantification of barcoded AAV mRNAs identified two synthetic capsids, peptide-modified derivative of wild-type AAV9 (AAV9_A2) and peptide-modified derivative of wild-type AAV1 (AAV1_P5), both of which transduce active and quiescent NSCs. Further optimization of AAV1_P5 by judicious selection of the promoter and dose of injected viral genomes enabled labeling of 30%–60% of the NSC compartment, which was validated by fluorescence-activated cell sorting (FACS) analyses and single-cell RNA sequencing. Importantly, transduced NSCs readily produced neurons. The present study identifies AAV variants with a high regional tropism toward the ventricular-subventricular zone (v-SVZ) with high efficiency in targeting adult NSCs, thereby paving the way for preclinical testing of regenerative gene therapy.
Collapse
Affiliation(s)
- Lukas P.M. Kremer
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Santiago Cerrizuela
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Dehler
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Stiehl
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weinmann
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Heike Abendroth
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Kleber
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Laure
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jihad El Andari
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Corresponding author: Ana Martin-Villalba, Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
91
|
Gui P, Bivona TG. Evolution of metastasis: new tools and insights. Trends Cancer 2021; 8:98-109. [PMID: 34872888 DOI: 10.1016/j.trecan.2021.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is an evolutionary process occurring across multiple organs and timescales. Due to its continuous and dynamic nature, this multifaceted process has been challenging to investigate and remains incompletely understood, in part due to the lack of tools capable of probing genomic evolution at high enough resolution. However, technological advances in genetic sequencing and editing have provided new and powerful methods to refine our understanding of the complex series of events that lead to metastatic dissemination. In this review, we summarize the latest genetic and lineage-tracing approaches developed to unravel the genetic evolution of metastasis. The findings that have emerged have enhanced our comprehension of the mechanistic trajectories and timescales of metastasis and could provide new strategies for therapy.
Collapse
Affiliation(s)
- Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
92
|
Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat Methods 2021; 18:1506-1514. [PMID: 34857936 DOI: 10.1038/s41592-021-01325-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Mapping the cell phylogeny of a complex multicellular organism relies on somatic mutations accumulated from zygote to adult. Available cell barcoding methods can record about three mutations per barcode, enabling only low-resolution mapping of the cell phylogeny of complex organisms. Here we developed SMALT, a substitution mutation-aided lineage-tracing system that outperforms the available cell barcoding methods in mapping cell phylogeny. We applied SMALT to Drosophila melanogaster and obtained on average more than 20 mutations on a three-kilobase-pair barcoding sequence in early-adult cells. Using the barcoding mutations, we obtained high-quality cell phylogenetic trees, each comprising several thousand internal nodes with 84-93% median bootstrap support. The obtained cell phylogenies enabled a population genetic analysis that estimates the longitudinal dynamics of the number of actively dividing parental cells (Np) in each organ through development. The Np dynamics revealed the trajectory of cell births and provided insight into the balance of symmetric and asymmetric cell division.
Collapse
|
93
|
Rahbaran M, Razeghian E, Maashi MS, Jalil AT, Widjaja G, Thangavelu L, Kuznetsova MY, Nasirmoghadas P, Heidari F, Marofi F, Jarahian M. Cloning and Embryo Splitting in Mammalians: Brief History, Methods, and Achievements. Stem Cells Int 2021; 2021:2347506. [PMID: 34887927 PMCID: PMC8651392 DOI: 10.1155/2021/2347506] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/01/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Embryo splitting is one of the newest developed methods in reproductive biotechnology. In this method, after splitting embryos in 2-, 4-, and even 8-cell stages, every single blastomere can be developed separately, but the embryos are genetically identical. Embryo splitting, as an approach in reproductive cloning, is extensively employed in reproductive medicine studies, such as investigating human diseases, treating sterility, embryo donation, and gene therapy. In the present study, cloning in mammalians and cloning approaches are briefly reviewed. In addition, embryo splitting and the methods commonly used in embryo splitting and recent achievements in this field, as well as the applications of embryo splitting into livestock species, primate animals, and humans, are outlined. Finally, a perspective of embryo splitting is provided as the conclusion.
Collapse
Affiliation(s)
- Mohaddeseh Rahbaran
- Animal Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| | | | | | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farid Heidari
- Animal Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| |
Collapse
|
94
|
Avagyan S, Henninger JE, Mannherz WP, Mistry M, Yoon J, Yang S, Weber MC, Moore JL, Zon LI. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 2021; 374:768-772. [PMID: 34735227 DOI: 10.1126/science.aba9304] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- S Avagyan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - J E Henninger
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - M Mistry
- Harvard Chan Bioinformatics Core, Boston, MA, USA
| | - J Yoon
- Harvard Chan Bioinformatics Core, Boston, MA, USA
| | - S Yang
- Boston Children's Hospital, Boston, MA, USA
| | - M C Weber
- Boston Children's Hospital, Boston, MA, USA
| | - J L Moore
- Boston Children's Hospital, Boston, MA, USA
| | - L I Zon
- Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
95
|
Endo M, Maruoka H, Okabe S. Advanced Technologies for Local Neural Circuits in the Cerebral Cortex. Front Neuroanat 2021; 15:757499. [PMID: 34803616 PMCID: PMC8595196 DOI: 10.3389/fnana.2021.757499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
The neural network in the brain can be viewed as an integrated system assembled from a large number of local neural circuits specialized for particular brain functions. Activities of neurons in local neural circuits are thought to be organized both spatially and temporally under the rules optimized for their roles in information processing. It is well perceived that different areas of the mammalian neocortex have specific cognitive functions and distinct computational properties. However, the organizational principles of the local neural circuits in different cortical regions have not yet been clarified. Therefore, new research principles and related neuro-technologies that enable efficient and precise recording of large-scale neuronal activities and synaptic connections are necessary. Innovative technologies for structural analysis, including tissue clearing and expansion microscopy, have enabled super resolution imaging of the neural circuits containing thousands of neurons at a single synapse resolution. The imaging resolution and volume achieved by new technologies are beyond the limits of conventional light or electron microscopic methods. Progress in genome editing and related technologies has made it possible to label and manipulate specific cell types and discriminate activities of multiple cell types. These technologies will provide a breakthrough for multiscale analysis of the structure and function of local neural circuits. This review summarizes the basic concepts and practical applications of the emerging technologies and new insight into local neural circuits obtained by these technologies.
Collapse
Affiliation(s)
| | | | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
96
|
Jiang M, Xiao Y, E W, Ma L, Wang J, Chen H, Gao C, Liao Y, Guo Q, Peng J, Han X, Guo G. Characterization of the Zebrafish Cell Landscape at Single-Cell Resolution. Front Cell Dev Biol 2021; 9:743421. [PMID: 34660600 PMCID: PMC8517238 DOI: 10.3389/fcell.2021.743421] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Zebrafish have been found to be a premier model organism in biological and regeneration research. However, the comprehensive cell compositions and molecular dynamics during tissue regeneration in zebrafish remain poorly understood. Here, we utilized Microwell-seq to analyze more than 250,000 single cells covering major zebrafish cell types and constructed a systematic zebrafish cell landscape. We revealed single-cell compositions for 18 zebrafish tissue types covering both embryo and adult stages. Single-cell mapping of caudal fin regeneration revealed a unique characteristic of blastema population and key genetic regulation involved in zebrafish tissue repair. Overall, our single-cell datasets demonstrate the utility of zebrafish cell landscape resources in various fields of biological research.
Collapse
Affiliation(s)
- Mengmeng Jiang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weigao E
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haide Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Liao
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qile Guo
- ZJU-UOE Institute, Zhejiang University School of Medicine, Haining, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoping Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoji Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
97
|
Hung RJ, Li JSS, Liu Y, Perrimon N. Defining cell types and lineage in the Drosophila midgut using single cell transcriptomics. CURRENT OPINION IN INSECT SCIENCE 2021; 47:12-17. [PMID: 33609768 DOI: 10.1016/j.cois.2021.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The Drosophila midgut has emerged in recent years as a model system to study stem cell renewal and differentiation and tissue homeostasis. Histological, genetic and gene expression studies have provided a wealth of information on gut cell types, regionalization, genes and pathways involved in cell proliferation and differentiation, stem cell renewal, and responses to changes in environmental factors such as the microbiota and nutrients. Here, we review the contribution of single cell transcriptomic methods to our understanding of gut cell type diversity, lineage and behavior.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Joshua Shing Shun Li
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
98
|
Chaligne R, Gaiti F, Silverbush D, Schiffman JS, Weisman HR, Kluegel L, Gritsch S, Deochand SD, Gonzalez Castro LN, Richman AR, Klughammer J, Biancalani T, Muus C, Sheridan C, Alonso A, Izzo F, Park J, Rozenblatt-Rosen O, Regev A, Suvà ML, Landau DA. Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat Genet 2021; 53:1469-1479. [PMID: 34594037 PMCID: PMC8675181 DOI: 10.1038/s41588-021-00927-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Single-cell RNA sequencing has revealed extensive transcriptional cell state diversity in cancer, often observed independently of genetic heterogeneity, raising the central question of how malignant cell states are encoded epigenetically. To address this, here we performed multiomics single-cell profiling-integrating DNA methylation, transcriptome and genotype within the same cells-of diffuse gliomas, tumors characterized by defined transcriptional cell state diversity. Direct comparison of the epigenetic profiles of distinct cell states revealed key switches for state transitions recapitulating neurodevelopmental trajectories and highlighted dysregulated epigenetic mechanisms underlying gliomagenesis. We further developed a quantitative framework to directly measure cell state heritability and transition dynamics based on high-resolution lineage trees in human samples. We demonstrated heritability of malignant cell states, with key differences in hierarchal and plastic cell state architectures in IDH-mutant glioma versus IDH-wild-type glioblastoma, respectively. This work provides a framework anchoring transcriptional cancer cell states in their epigenetic encoding, inheritance and transition dynamics.
Collapse
Affiliation(s)
- Ronan Chaligne
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Federico Gaiti
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Dana Silverbush
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Joshua S Schiffman
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Hannah R Weisman
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lloyd Kluegel
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Simon Gritsch
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sunil D Deochand
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - L Nicolas Gonzalez Castro
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alyssa R Richman
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | | | - Christoph Muus
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | | | - Franco Izzo
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jane Park
- New York Genome Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
99
|
Menche C, Farin HF. Strategies for genetic manipulation of adult stem cell-derived organoids. Exp Mol Med 2021; 53:1483-1494. [PMID: 34663937 PMCID: PMC8569115 DOI: 10.1038/s12276-021-00609-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/21/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Organoid technology allows the expansion of primary epithelial cells from normal and diseased tissues, providing a unique model for human (patho)biology. In a three-dimensional environment, adult stem cells self-organize and differentiate to gain tissue-specific features. Accessibility to genetic manipulation enables the investigation of the molecular mechanisms underlying cell fate regulation, cell differentiation and cell interactions. In recent years, powerful methodologies using lentiviral transgenesis, CRISPR/Cas9 gene editing, and single-cell readouts have been developed to study gene function and carry out genetic screens in organoids. However, the multicellularity and dynamic nature of stem cell-derived organoids also present challenges for genetic experimentation. In this review, we focus on adult gastrointestinal organoids and summarize the state-of-the-art protocols for successful transgenesis. We provide an outlook on emerging genetic techniques that could further increase the applicability of organoids and enhance the potential of organoid-based techniques to deepen our understanding of gene function in tissue biology.
Collapse
Affiliation(s)
- Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
100
|
Capdevila C, Trifas M, Miller J, Anderson T, Sims PA, Yan KS. Cellular origins and lineage relationships of the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2021; 321:G413-G425. [PMID: 34431400 PMCID: PMC8560372 DOI: 10.1152/ajpgi.00188.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/31/2023]
Abstract
Knowledge of the development and hierarchical organization of tissues is key to understanding how they are perturbed in injury and disease, as well as how they may be therapeutically manipulated to restore homeostasis. The rapidly regenerating intestinal epithelium harbors diverse cell types and their lineage relationships have been studied using numerous approaches, from classical label-retaining and genetic lineage tracing methods to novel transcriptome-based annotations. Here, we describe the developmental trajectories that dictate differentiation and lineage specification in the intestinal epithelium. We focus on the most recent single-cell RNA-sequencing (scRNA-seq)-based strategies for understanding intestinal epithelial cell lineage relationships, underscoring how they have refined our view of the development of this tissue and highlighting their advantages and limitations. We emphasize how these technologies have been applied to understand the dynamics of intestinal epithelial cells in homeostatic and injury-induced regeneration models.
Collapse
Affiliation(s)
- Claudia Capdevila
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| | - Maria Trifas
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| | - Jonathan Miller
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| | - Troy Anderson
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, New York
| | - Kelley S Yan
- Columbia Stem Cell Initiative, Division of Digestive and Liver Diseases, Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, New York
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|