51
|
Picard A, Berney X, Castillo-Armengol J, Tarussio D, Jan M, Sanchez-Archidona AR, Croizier S, Thorens B. Hypothalamic Irak4 is a genetically controlled regulator of hypoglycemia-induced glucagon secretion. Mol Metab 2022; 61:101479. [PMID: 35339728 PMCID: PMC9046887 DOI: 10.1016/j.molmet.2022.101479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Glucagon secretion to stimulate hepatic glucose production is the first line of defense against hypoglycemia. This response is triggered by so far incompletely characterized central hypoglycemia-sensing mechanisms, which control autonomous nervous activity and hormone secretion. The objective of this study was to identify novel hypothalamic genes controlling insulin-induced glucagon secretion. METHODS To obtain new information on the mechanisms of hypothalamic hypoglycemia sensing, we combined genetic and transcriptomic analysis of glucagon response to insulin-induced hypoglycemia in a panel of BXD recombinant inbred mice. RESULTS We identified two QTLs on chromosome 8 and chromosome 15. We further investigated the role of Irak4 and Cpne8, both located in the QTL on chromosome 15, in C57BL/6J and DBA/2J mice, the BXD mouse parental strains. We found that the poor glucagon response of DBA/2J mice was associated with higher hypothalamic expression of Irak4, which encodes a kinase acting downstream of the interleukin-1 receptor (Il-1R), and of Il-ß when compared with C57BL/6J mice. We showed that intracerebroventricular administration of an Il-1R antagonist in DBA/2J mice restored insulin-induced glucagon secretion; this was associated with increased c-fos expression in the arcuate and paraventricular nuclei of the hypothalamus and with higher activation of both branches of the autonomous nervous system. Whole body inactivation of Cpne8, which encodes a Ca++-dependent regulator of membrane trafficking and exocytosis, however, had no impact on insulin-induced glucagon secretion. CONCLUSIONS Collectively, our data identify Irak4 as a genetically controlled regulator of hypoglycemia-activated hypothalamic neurons and glucagon secretion.
Collapse
Affiliation(s)
- Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xavier Berney
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Judit Castillo-Armengol
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland; Novo Nordisk A/S, Måløv, Denmark
| | - David Tarussio
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Maxime Jan
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | | | - Sophie Croizier
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
52
|
shan L, xiaotong D, Qiyi W, Jingxian L, Tianmu H, Jianyong Z, Xiaofei L. Mechanisms underlying the activity of paederus in hepatocellular carcinoma: A network pharmacology and in vitro validation approach. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022; 3:100089. [DOI: 10.1016/j.prmcm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
53
|
Cumming IA, Degorce SL, Aagaard A, Braybrooke EL, Davies NL, Diène CR, Eatherton AJ, Felstead HR, Groombridge SD, Lenz EM, Li Y, Nai Y, Pearson S, Robb GR, Scott JS, Steward OR, Wu C, Xue Y, Zhang L, Zhang Y. Identification and optimisation of a pyrimidopyridone series of IRAK4 inhibitors. Bioorg Med Chem 2022; 63:116729. [PMID: 35439688 DOI: 10.1016/j.bmc.2022.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
In this article, we report the discovery of a series of pyrimidopyridones as inhibitors of IRAK4 kinase. From a previously disclosed 5-azaquinazoline series, we found that switching the pyridine ring for an N-substituted pyridone gave a novel hinge binding scaffold which retained potency against IRAK4. Importantly, introduction of the carbonyl established an internal hydrogen bond with the 4-NH, establishing a conformational lock and allowing truncation of the large basic substituent to a 1-methylcyclopyl group. Subsequent optimisation, facilitated by X-ray crystal structures, allowed identification of preferred substituents at both the pyridone core and pyrazole. Subsequent combinations of optimal groups allowed control of lipophilicity and identification of potent and selective inhibitors of IRAK4 with better in vitro permeability and lower clearance.
Collapse
Affiliation(s)
- Iain A Cumming
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom.
| | - Sébastien L Degorce
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Anna Aagaard
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - Erin L Braybrooke
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Nichola L Davies
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Coura R Diène
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Andrew J Eatherton
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Hannah R Felstead
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Sam D Groombridge
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Eva M Lenz
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Yunxia Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176 PR China
| | - Youfeng Nai
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176 PR China
| | - Stuart Pearson
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Graeme R Robb
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - James S Scott
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Oliver R Steward
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, United Kingdom
| | - Chengyan Wu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176 PR China
| | - Yafeng Xue
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-431 83 Mölndal, Sweden
| | - Lanping Zhang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176 PR China
| | - Yanxiu Zhang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176 PR China
| |
Collapse
|
54
|
Somani V, Zhang D, Dodhiawala PB, Lander VE, Liu X, Kang LI, Chen HP, Knolhoff BL, Li L, Grierson PM, Ruzinova MB, DeNardo DG, Lim KH. IRAK4 Signaling Drives Resistance to Checkpoint Immunotherapy in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2022; 162:2047-2062. [PMID: 35271824 PMCID: PMC9387774 DOI: 10.1053/j.gastro.2022.02.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Checkpoint immunotherapy is largely ineffective in pancreatic ductal adenocarcinoma (PDAC). The innate immune nuclear factor (NF)-κB pathway promotes PDAC cell survival and stromal fibrosis, and is driven by Interleukin-1 Receptor Associated Kinase-4 (IRAK4), but its impact on tumor immunity has not been directly investigated. METHODS We interrogated The Cancer Genome Atlas data to identify the correlation between NF-κB and T cell signature, and a PDAC tissue microarray (TMA) to correlate IRAK4 activity with CD8+ T cell abundance. We performed RNA sequencing (RNA-seq) on IRAK4-deleted PDAC cells, and single-cell RNA-seq on autochthonous KPC (p48-Cre/TP53f/f/LSL-KRASG12D) mice treated with an IRAK4 inhibitor. We generated conditional IRAK4-deleted KPC mice and complementarily used IRAK4 inhibitors to determine the impact of IRAK4 on T cell immunity. RESULTS We found positive correlation between NF-κB activity, IRAK4 and T cell exhaustion from The Cancer Genome Atlas. We observed inverse correlation between phosphorylated IRAK4 and CD8+ T cell abundance in a PDAC tissue microarray. Loss of IRAK4 abrogates NF-κB activity, several immunosuppressive factors, checkpoint ligands, and hyaluronan synthase 2, all of which drive T cell dysfunction. Accordingly, conditional deletion or pharmacologic inhibition of IRAK4 markedly decreased tumor desmoplasia and increased the abundance and activity of infiltrative CD4+ and CD8+ T cells in KPC tumors. Single-cell RNA-seq showed myeloid and fibroblast reprogramming toward acute inflammatory responses following IRAK4 inhibition. These changes set the stage for successful combination of IRAK4 inhibitors with checkpoint immunotherapy, resulting in excellent tumor control and markedly prolonged survival of KPC mice. CONCLUSION IRAK4 drives T cell dysfunction in PDAC and is a novel, promising immunotherapeutic target.
Collapse
Affiliation(s)
- Vikas Somani
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110,Corresponding author: Kian-Huat Lim, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8069, Saint Louis, MO 63110, Tel: 314-362-6157, Fax: 314-747-9329,
| | - Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110,Current address: School of Life Science, Anhui Medical University, Anhui, China,Corresponding author: Kian-Huat Lim, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8069, Saint Louis, MO 63110, Tel: 314-362-6157, Fax: 314-747-9329,
| | - Paarth B. Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Varintra E. Lander
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Xiuting Liu
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Liang-I Kang
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110,Department of Pathology and Immunology, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Hung-Po Chen
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Brett L. Knolhoff
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Patrick M. Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Mariana B. Ruzinova
- Department of Pathology and Immunology, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - David G. DeNardo
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
55
|
Umar S, Palasiewicz K, Meyer A, Kumar P, Prabhakar BS, Volin MV, Rahat R, Al-Awqati M, Chang HJ, Zomorrodi RK, Rehman J, Shahrara S. Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cell Mol Life Sci 2022; 79:301. [PMID: 35588018 PMCID: PMC9118817 DOI: 10.1007/s00018-022-04329-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
Abstract
Escalated innate immunity plays a critical role in SARS-CoV-2 pathology; however, the molecular mechanism is incompletely understood. Thus, we aim to characterize the molecular mechanism by which SARS-CoV-2 Spike protein advances human macrophage (Mϴ) inflammatory and glycolytic phenotypes and uncover novel therapeutic strategies. We found that human Mϴs exposed to Spike protein activate IRAK4 phosphorylation. Blockade of IRAK4 in Spike protein-stimulated Mϴs nullifies signaling of IRAK4, AKT, and baseline p38 without affecting ERK and NF-κB activation. Intriguingly, IRAK4 inhibitor (IRAK4i) rescues the SARS-CoV-2-induced cytotoxic effect in ACE2+HEK 293 cells. Moreover, the inflammatory reprogramming of Mϴs by Spike protein was blunted by IRAK4i through IRF5 and IRF7, along with the reduction of monokines, IL-6, IL-8, TNFα, and CCL2. Notably, in Spike protein-stimulated Mϴs, suppression of the inflammatory markers by IRAK4i was coupled with the rebalancing of oxidative phosphorylation over metabolic activity. This metabolic adaptation promoted by IRAK4i in Spike protein-activated Mϴs was shown to be in part through constraining PFKBF3, HIF1α, cMYC, LDHA, lactate expression, and reversal of citrate and succinate buildup. IRAK4 knockdown could comparably impair Spike protein-enhanced inflammatory and metabolic imprints in human Mϴs as those treated with ACE2, TLR2, and TLR7 siRNA. Extending these results, in murine models, where human SARS-CoV-2 Spike protein was not recognized by mouse ACE2, TLRs were responsible for the inflammatory and glycolytic responses instigated by Spike protein and were dysregulated by IRAK4i therapy. In conclusion, IRAK4i may be a promising strategy for severe COVID-19 patients by counter-regulating ACE2 and TLR-mediated Mϴ hyperactivation. IRAK4i therapy counteracts Mϴ inflammatory and glycolytic reprogramming triggered by Spike protein. This study illustrates that SARS-CoV-2 Spike protein activates IRAK4 signaling via ACE2 as well as TLR2 and TLR7 sensing in human Mϴs. Remarkably, IRAK4i treatment can dysregulate both ACE-dependent and independent (via TLR sensing) SARS-CoV-2 Spike protein-activated inflammatory and metabolic imprints.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Rani Rahat
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA.
| |
Collapse
|
56
|
Rowley A, Brown BS, Stofega M, Hoh H, Mathew R, Marin V, Ding RX, McClure RA, Bittencourt FM, Chen J, Gururaja T, Kinoshita T, Wang X, Rivkin A, Woller KR. Targeting IRAK3 for Degradation to Enhance IL-12 Pro-inflammatory Cytokine Production. ACS Chem Biol 2022; 17:1315-1320. [PMID: 35580266 DOI: 10.1021/acschembio.2c00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin-1 receptor-associated kinase 3 (IRAK3) is a pseudokinase mediator in the human inflammatory pathway, and ablation of its function is associated with enhanced antitumor immunity. Traditionally, pseudokinases have eluded "druggability" and have not been considered tractable targets in the pharmaceutical industry. Herein we disclose a CRISPR/Cas9-mediated knockout of IRAK3 in monocyte-derived dendritic cells that results in an increase in IL-12 production upon lipopolysaccharide (LPS) stimulation. Furthermore, we disclose and characterize Degradomer D-1, which displays selective proteasomal degradation of IRAK3 and reproduces the 1L-12p40 increases observed in the CRISPR/Cas9 knockout.
Collapse
Affiliation(s)
- Ann Rowley
- Drug Discovery Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Brian S. Brown
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Mary Stofega
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Hana Hoh
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Rebecca Mathew
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Violeta Marin
- Drug Discovery Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Rong-Xian Ding
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Ryan A. McClure
- Drug Discovery Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | | | - Jun Chen
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Tarikere Gururaja
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Taisei Kinoshita
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Xueqing Wang
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Alexey Rivkin
- Oncology Discovery, AbbVie Inc., South San Francisco, California 94080, United States
| | - Kevin R. Woller
- Drug Discovery Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
57
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
58
|
Wu R, Liu J, Vu J, Huang Y, Dietz DM, Li JX. Interleukin-1 receptor-associated kinase 4 (IRAK4) in the nucleus accumbens regulates opioid-seeking behavior in male rats. Brain Behav Immun 2022; 101:37-48. [PMID: 34958862 PMCID: PMC8885906 DOI: 10.1016/j.bbi.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/09/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Opioid addiction remains a severe health problem. While substantial insights underlying opioid addiction have been yielded from neuron-centric studies, the contribution of non-neuronal mechanisms to opioid-related behavioral adaptations has begun to be recognized. Toll-like receptor 4 (TLR4), a pattern recognition receptor, has been widely suggested in opioid-related behaviors. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a kinase essential for TLR4 responses, However, the potential role of IRAK4 in opioid-related responses has not been examined. Here, we explored the role of IRAK4 in cue-induced opioid-seeking behavior in male rats. We found that morphine self-administration increased the phosphorylation level of IRAK4 in the nucleus accumbens (NAc) in rats; the IRAK4 signaling remained activated after morphine extinction and cue-induced reinstatement test. Both systemic and local inhibition of IRAK4 in the NAc core attenuated cue-induced morphine-seeking behavior without affecting the locomotor activity and cue-induced sucrose-seeking. In addition, inhibition of IRAK4 also reduced the cue-induced reinstatement of fentanyl-seeking. Our findings suggest an important role of IRAK4 in opioid relapse-like behaviors and provide novel evidence in the association between innate immunity and drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY,Medical College of Yangzhou University, Yangzhou, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Yufei Huang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
59
|
Singh S, Sahu K, Singh C, Singh A. Lipopolysaccharide induced altered signaling pathways in various neurological disorders. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:285-294. [PMID: 34989812 DOI: 10.1007/s00210-021-02198-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is defined as an inflammatory response within the brain or spinal cord, whereas the brain's innate immune system is triggered by various inflammatory challenges such as injury, infection, exposure to toxin (LPS) and ageing, which result in cognitive impairment and neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Lipopolysaccharide (LPS) is a main structural component of the outer membrane of gram-negative bacteria, widely used systematically to stimulate the immune system and to generate profound physiological and behavioural changes. It consists of three parts: lipid A, a core oligosaccharide and an O side chain. It is reported by several scientists that, besides the systemic alteration, LPS also induces neurodegeneration by promoting neuroinflammation upon binding with the stimulation of Toll-like receptor-4 (TLR4) receptors present on glial cells. The mammalian Toll-like receptor (TLR) family consists of 13 membranes and TLR was discovered as a crucial pattern recognition receptor (PPR) involved in the recognition of pathogen-associated molecular patterns (PAMPs). Future studies will show that damage/danger-associated molecular patterns (DAMPs) are recognised by the involvement of PPRs, generated by the host itself. The stimulation of TLR4 by lipopolysaccharide phosphorylates two signalling pathways, namely the MyD88-dependent pathway and the MyD88-independent pathway. This activation subsequently triggers the release of various pro-inflammatory cytokines that are necessary to activate innate immune responses, and then promotes neuroinflammation. In this review, we critically demonstrated the epidemiology of neuroinflammation, types of TLRs, the molecular mechanism of TLR4 and management of neuroinflammation.
Collapse
Affiliation(s)
- Sukhdev Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.,Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.,Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.,Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India. .,Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
60
|
Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:907757. [PMID: 35784531 PMCID: PMC9240190 DOI: 10.3389/fendo.2022.907757] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Collapse
Affiliation(s)
- Meng-ling Peng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chu-wen Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hang Ren
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Shan-shan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shan-shan Zhou,
| |
Collapse
|
61
|
Zhai L, Shen H, Sheng Y, Guo W, Guan Q, Zhu Y. Bioactive polypeptide improves neuroinflammation by regulating microglia polarization. J Cell Mol Med 2021; 26:945-949. [PMID: 34971209 PMCID: PMC8817143 DOI: 10.1111/jcmm.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Liping Zhai
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Heping Shen
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yongjia Sheng
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weiqun Guo
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiaobing Guan
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Zhu
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
62
|
Chinju A, Moriyama M, Kakizoe-Ishiguro N, Chen H, Miyahara Y, Haque ASMR, Furusho K, Sakamoto M, Kai K, Kibe K, Hatakeyama-Furukawa S, Ito-Ohta M, Maehara T, Nakamura S. CD163 + M2 macrophages promote fibrosis in IgG4-related disease via TLR7/IRAK4/NF-κB signaling. Arthritis Rheumatol 2021; 74:892-901. [PMID: 34907668 PMCID: PMC9322461 DOI: 10.1002/art.42043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/05/2022]
Abstract
Objective IgG4‐related disease (IgG4‐RD) is a fibro‐inflammatory condition that can affect multiple organs. We previously demonstrated that TLR7‐transgenic C57BL/6 mice showed elevated serum IgG1 levels and inflammation with fibrosis in the salivary glands (SGs), lungs, and pancreas. Moreover, we observed extensive Toll‐like receptor 7 (TLR‐7)–positive CD163+ M2 macrophage infiltration in SGs from IgG4‐RD patients. We undertook this study to examine the fibrotic mechanism via the TLR‐7 pathway. Methods Gene expression in SGs from human TLR7‐transgenic mice and IgG4‐RD patients was analyzed using DNA microarrays. We extracted the common up‐regulated TLR‐7–related genes in SGs from TLR7‐transgenic mice and IgG4‐RD patients. Finally, we investigated the interaction between CD163+ M2 macrophages and fibroblasts before and after stimulation with the TLR‐7 agonist loxoribine. Results In TLR7‐transgenic mice and IgG4‐RD patients, IRAK3 and IRAK4 were significantly overexpressed. Real‐time polymerase chain reaction validated the up‐regulation of only IRAK4 in IgG4‐RD patients compared with the other groups (P < 0.05). Interleukin‐1 receptor–associated kinase 4 (IRAK4) was strongly detected in and around germinal centers in SGs from patients with IgG4‐related dacryoadenitis and sialadenitis alone. Double immunofluorescence staining showed that IRAK4‐positive cells were mainly colocalized with CD163+ M2 macrophages in SGs (P < 0.05). After stimulation with loxoribine, CD163+ M2 macrophages exhibited significantly enhanced expression of IRAK4 and NF‐κB and increased supernatant concentrations of fibrotic cytokines. Finally, we confirmed that the number of fibroblasts was increased by culture with the supernatant of CD163+ M2 macrophages following stimulation with loxoribine (P < 0.05). Conclusion CD163+ M2 macrophages promote fibrosis in IgG4‐RD by increasing the production of fibrotic cytokines via TLR‐7/IRAK4/NF‐κB signaling.
Collapse
Affiliation(s)
- Akira Chinju
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Noriko Kakizoe-Ishiguro
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hu Chen
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuka Miyahara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - A S M Rafiul Haque
- Department of Dental Anatomy, Udayan Dental College, Rajpara, Bangladesh
| | - Katsuhiro Furusho
- Sleep and Aging Regulation Research Project Team, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Mizuki Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kazuki Kai
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kotono Kibe
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sachiko Hatakeyama-Furukawa
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Miho Ito-Ohta
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
63
|
Khanfar MA. Structure-Based Pharmacophore Screening Coupled with QSAR Analysis Identified Potent Natural-Product-Derived IRAK-4 Inhibitors. Mol Inform 2021; 40:e2100025. [PMID: 34427398 DOI: 10.1002/minf.202100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022]
Abstract
Interleukin-1 Receptor-Associated Kinase 4 (IRAK-4) has crucial functions in inflammation, innate immunity, and malignancy. Structure-based pharmacophore modeling integrated with validated QSAR analysis was implemented to discover structurally novel IRAK-4 inhibitors from natural products database. The QSAR model combined molecular descriptors with structure-based pharmacophore capable of explaining bioactivity variation of structurally diverse IRAK-4 inhibitors. Manually built pharmacophore model, validated with receiver operating characteristic curve, and selected using the statistically optimum QSAR equation, was applied as a 3D-search query to mine AnalytiCon Discovery database of natural products. Experimental in vitro testing of highest-ranked hits identified uvaretin, saucerneol, and salvianolic acid B as active IRAK-4 inhibitors with IC50 values in low micromolar range.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, P.O. Box 50927, Riyadh 1, 1533, Saudi Arabia.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman, 11942, Jordan
| |
Collapse
|
64
|
Kaplan MJ. Targeting the Myddosome in Systemic Autoimmunity: Ready for Prime Time? Arthritis Rheumatol 2021; 73:2163-2165. [PMID: 34424598 DOI: 10.1002/art.41951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
65
|
Winkler A, Sun W, De S, Jiao A, Sharif MN, Symanowicz PT, Athale S, Shin JH, Wang J, Jacobson BA, Ramsey SJ, Dower K, Andreyeva T, Liu H, Hegen M, Homer BL, Brodfuehrer J, Tilley M, Gilbert SA, Danto SI, Beebe JJ, Barnes BJ, Pascual V, Lin LL, Kilty I, Fleming M, Rao VR. The Interleukin-1 Receptor-Associated Kinase 4 Inhibitor PF-06650833 Blocks Inflammation in Preclinical Models of Rheumatic Disease and in Humans Enrolled in a Randomized Clinical Trial. Arthritis Rheumatol 2021; 73:2206-2218. [PMID: 34423919 PMCID: PMC8671219 DOI: 10.1002/art.41953] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the role of PF-06650833, a highly potent and selective small-molecule inhibitor of interleukin-1-associated kinase 4 (IRAK4), in autoimmune pathophysiology in vitro, in vivo, and in the clinical setting. METHODS Rheumatoid arthritis (RA) inflammatory pathophysiology was modeled in vitro through 1) stimulation of primary human macrophages with anti-citrullinated protein antibody immune complexes (ICs), 2) RA fibroblast-like synoviocyte (FLS) cultures stimulated with Toll-like receptor (TLR) ligands, as well as 3) additional human primary cell cocultures exposed to inflammatory stimuli. Systemic lupus erythematosus (SLE) pathophysiology was simulated in human neutrophils, dendritic cells, B cells, and peripheral blood mononuclear cells stimulated with TLR ligands and SLE patient ICs. PF-06650833 was evaluated in vivo in the rat collagen-induced arthritis (CIA) model and the mouse pristane-induced and MRL/lpr models of lupus. Finally, RNA sequencing data generated with whole blood samples from a phase I multiple-ascending-dose clinical trial of PF-06650833 were used to test in vivo human pharmacology. RESULTS In vitro, PF-06650833 inhibited human primary cell inflammatory responses to physiologically relevant stimuli generated with RA and SLE patient plasma. In vivo, PF-06650833 reduced circulating autoantibody levels in the pristane-induced and MRL/lpr murine models of lupus and protected against CIA in rats. In a phase I clinical trial (NCT02485769), PF-06650833 demonstrated in vivo pharmacologic action pertinent to SLE by reducing whole blood interferon gene signature expression in healthy volunteers. CONCLUSION These data demonstrate that inhibition of IRAK4 kinase activity can reduce levels of inflammation markers in humans and provide confidence in the rationale for clinical development of IRAK4 inhibitors for rheumatologic indications.
Collapse
Affiliation(s)
| | | | - Saurav De
- The Feinstein Institute, Manhasset, New York
| | | | | | | | - Shruti Athale
- Baylor Institute for Immunology Research, Dallas, Texas
| | | | - Ju Wang
- Pfizer, Cambridge, Massachusetts
| | | | | | | | | | - Heng Liu
- Pfizer, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Lentini G, Famà A, De Gaetano GV, Galbo R, Coppolino F, Venza M, Teti G, Beninati C. Role of Endosomal TLRs in Staphylococcus aureus Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1448-1455. [PMID: 34362834 DOI: 10.4049/jimmunol.2100389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/06/2021] [Indexed: 02/04/2023]
Abstract
Identification of the receptors involved in innate immune recognition of Staphylococcus aureus, a major cause of morbidity and mortality in humans, is essential to develop alternative strategies to treat infections caused by antibiotic-resistant strains. In the current study, we examine the role of endosomal TLRs, which sense the presence of prokaryotic-type nucleic acids, in anti-staphylococcal host defenses using infection models involving genetically defective mice. Single deficiencies in TLR7, 9, or 13 resulted in mild or no decrease in host defenses. However, the simultaneous absence of TLR7, 9, and 13 resulted in markedly increased susceptibility to cutaneous and systemic S. aureus infection concomitantly with decreased production of proinflammatory chemokines and cytokines, neutrophil recruitment to infection sites, and reduced production of reactive oxygen species. This phenotype was significantly more severe than that of mice lacking TLR2, which senses the presence of staphylococcal lipoproteins. Notably, the combined absence of TLR7, 9, and 13 resulted in complete abrogation of IL-12 p70 and IFN-β responses to staphylococcal stimulation in macrophages. Taken together, our data highlight the presence of a highly integrated endosomal detection system, whereby TLR7, 9, and 13 cooperate in sensing the presence of staphylococcal nucleic acids. We demonstrate that the combined absence of these receptors cannot be compensated for by cell surface-associated TLRs, such as TLR2, or cytosolic receptors. These data may be useful to devise strategies aimed at stimulating innate immune receptors to treat S. aureus infections.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Mario Venza
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy; and
| | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
67
|
Listeria Monocytogenes Meningoencephalitis Due to IRAK4 Deficiency. J Clin Immunol 2021; 41:1677-1680. [PMID: 34232442 DOI: 10.1007/s10875-021-01074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 10/20/2022]
|
68
|
Breen DM, Jagarlapudi S, Patel A, Zou C, Joaquim S, Li X, Kang L, Pang J, Hales K, Ziso-Qejvanaj E, Vera NB, Bennett D, He T, Lambert M, Kelleher K, Wu Z, Zhang BB, Lin L, Seeley RJ, Bezy O. Growth differentiation factor 15 neutralization does not impact anorexia or survival in lipopolysaccharide-induced inflammation. iScience 2021; 24:102554. [PMID: 34189431 PMCID: PMC8215224 DOI: 10.1016/j.isci.2021.102554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 02/02/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) causes anorexia and weight loss in animal models, and higher circulating levels are associated with cachexia and reduced survival in cancer and other chronic diseases such as sepsis. To investigate the role of sepsis-induced GDF15, we examined whether GDF15 neutralization via a validated and highly potent monoclonal antibody, mAB2, modulates lipopolysaccharide (LPS)-induced anorexia, weight loss, and mortality in rodents. LPS injection transiently increased circulating GDF15 in wild-type mice, decreased food intake and body weight, and increased illness behavior and mortality at a high dose. GDF15 neutralization with mAB2 did not prevent or exacerbate any of the effects of LPS. Similarly, in GDF15 knockout mice, the LPS effect on appetite and survival was comparable with that observed in wild-type controls. Therefore, effective inhibition of circulating active GDF15 via an antibody or via gene knockout demonstrated that survival in the LPS acute inflammation model was independent of GDF15.
Collapse
Affiliation(s)
- Danna M. Breen
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Srinath Jagarlapudi
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Anita Patel
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chang Zou
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Stephanie Joaquim
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Xiangping Li
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Liya Kang
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Jincheng Pang
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Katherine Hales
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Enida Ziso-Qejvanaj
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Nicholas B. Vera
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Donald Bennett
- Biostatistics, Early Clinical Development, Pfizer Inc, 1 Portland St, Cambridge, MA, USA
| | - Tao He
- Biomedicine Design, Pfizer Inc, 1 Portland St, Cambridge, MA, USA
| | - Matthew Lambert
- Biomedicine Design, Pfizer Inc, 1 Portland St, Cambridge, MA, USA
| | - Kerry Kelleher
- Biomedicine Design, Pfizer Inc, 1 Portland St, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Bei B. Zhang
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| | - Laura Lin
- Biomedicine Design, Pfizer Inc, 1 Portland St, Cambridge, MA, USA
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Bezy
- Internal Medicine Research Unit, Pfizer Inc, 1 Portland St, Cambridge, MA 02139, USA
| |
Collapse
|
69
|
Zhang YC, Xiao JH, Deng SJ, Yi GL. IRAK-4 in macrophages contributes to inflammatory osteolysis of wear particles around loosened hip implants. Innate Immun 2021; 27:470-482. [PMID: 34139893 PMCID: PMC8504263 DOI: 10.1177/17534259211018740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
TLRs recognizing PAMPS play a role in local immunity and participate in implant-associated loosening. TLR-mediated signaling is primarily regulated by IL-1 receptor associated kinase-M (IRAK-M) negatively and IRAK-4 positively. Our previous studies have proved that wear particles promote endotoxin tolerance in macrophages by inducing IRAK-M. However, whether IRAK-4 is involved in inflammatory osteolysis of wear particles basically, and the specific mechanism of IRAK-4 around loosened hip implants, is still unclear. IRAK-4 was studied in the interface membranes from patients in vivo and in particle-stimulated macrophages to clarify its role. Also, IL-1β and TNF-α levels were measured after particle and LPS stimulation in macrophages with or without IRAK-4 silenced by siRNA. Our results showed that the interface membranes around aseptic and septic loosened prosthesis expressed more IRAK-4 compared with membranes from osteoarthritic patients. IRAK-4 in macrophages increased upon particle and LPS stimulation. In the former, IL-1β and TNF-α levels were lower compared with those of LPS stimulation, and IRAK-4 siRNA could suppress production of pro-inflammatory cytokines. These findings suggest that besides IRAK-M, IRAK-4 also plays an important role in the local inflammatory reaction and contributes to prosthesis loosening.
Collapse
Affiliation(s)
- Yang-chun Zhang
- Department of Orthopedics, People’s Hospital of Shenzhen Baoan District, China
- Department of Orthopedics, The First Affiliated Hospital of University of South China, China
| | - Jian-hong Xiao
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, China
| | - Shao-jie Deng
- Department of Orthopedics, People’s Hospital of Shenzhen Baoan District, China
| | - Guo-liang Yi
- Department of Orthopedics, The First Affiliated Hospital of University of South China, China
- Guo-liang Yi, Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China.
| |
Collapse
|
70
|
Chen Y, Sun D, Yang R, Lim J, Sondey C, Presland J, Rakhilina L, Addona G, Kariv I, Chen H. Establishing and Validating Cellular Functional Target Engagement Assay for Selective IRAK4 Inhibitor Discovery. SLAS DISCOVERY 2021; 26:1040-1054. [PMID: 34130529 DOI: 10.1177/24725552211021074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the main reasons for the lack of drug efficacy in late-stage clinical trials is the lack of specific and selective target engagement. To increase the likelihood of success of new therapeutics, one approach is to conduct proximal target engagement testing during the early phases of preclinical drug discovery. To identify and optimize selective IRAK4 inhibitors, a kinase that has been implicated in multiple inflammatory and autoimmune diseases, we established an electrochemiluminescence (ECL)-based cellular endogenous IRAK1 activation assay as the most proximal functional evaluation of IRAK4 engagement to support structure-activity relationship (SAR) studies. Since IRAK1 activation is dependent on both the IRAK4 scaffolding function in Myddosome formation and IRAK4 kinase activity for signal transduction, this assay potentially captures inhibitors with different mechanisms of action. Data from this IRAK1 assay with compounds representing different structural classes showed statistically significant correlations when compared with results from both IRAK4 biochemical kinase activity and functional peripheral blood mononuclear cell (PBMC)-derived tumor necrosis factor α (TNFα) secretion assays, validating the biological relevancy of the IRAK1 target engagement as a biomarker of the IRAK4 activity. Plate uniformity and potency reproducibility evaluations demonstrated that this assay is amenable to high throughput. Using Bland-Altman assay agreement analysis, we demonstrated that incorporating such proximal pharmacological assessment of cellular target engagement to an in vitro screening funnel for SAR studies can prevent compound optimization toward off-target activity.
Collapse
Affiliation(s)
- Yiping Chen
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Dongyu Sun
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Ruojing Yang
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Jongwon Lim
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Christopher Sondey
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Jeremy Presland
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Larissa Rakhilina
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - George Addona
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Ilona Kariv
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Hongmin Chen
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|
71
|
Deliz-Aguirre R, Cao F, Gerpott FHU, Auevechanichkul N, Chupanova M, Mun Y, Ziska E, Taylor MJ. MyD88 oligomer size functions as a physical threshold to trigger IL1R Myddosome signaling. J Cell Biol 2021; 220:212080. [PMID: 33956941 PMCID: PMC8105725 DOI: 10.1083/jcb.202012071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022] Open
Abstract
A recurring feature of innate immune receptor signaling is the self-assembly of signaling proteins into oligomeric complexes. The Myddosome is an oligomeric complex that is required to transmit inflammatory signals from TLR/IL1Rs and consists of MyD88 and IRAK family kinases. However, the molecular basis for how Myddosome proteins self-assemble and regulate intracellular signaling remains poorly understood. Here, we developed a novel assay to analyze the spatiotemporal dynamics of IL1R and Myddosome signaling in live cells. We found that MyD88 oligomerization is inducible and initially reversible. Moreover, the formation of larger, stable oligomers consisting of more than four MyD88s triggers the sequential recruitment of IRAK4 and IRAK1. Notably, genetic knockout of IRAK4 enhanced MyD88 oligomerization, indicating that IRAK4 controls MyD88 oligomer size and growth. MyD88 oligomer size thus functions as a physical threshold to trigger downstream signaling. These results provide a mechanistic basis for how protein oligomerization might function in cell signaling pathways.
Collapse
Affiliation(s)
| | - Fakun Cao
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | - YeVin Mun
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Elke Ziska
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | |
Collapse
|
72
|
Stoy N. Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Front Immunol 2021; 12:638446. [PMID: 33936053 PMCID: PMC8085890 DOI: 10.3389/fimmu.2021.638446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5 (IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor and/or multiple TLRs located either on plasma or endosomal membranes. Activated IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially required for the production of proinflammatory cytokines in the innate immune response to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the induction of the signature cytokines and chemokines of the hyperinflammatory state associated with severe morbidity and mortality in COVID-19. Here a case is made for considering IRAK4 or IRF5 inhibitors as potential therapies for the "cytokine storm" of COVID-19.
Collapse
Affiliation(s)
- Nicholas Stoy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
73
|
A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization. iScience 2021; 24:102112. [PMID: 33659877 PMCID: PMC7895754 DOI: 10.1016/j.isci.2021.102112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophages are highly plastic immune cells that dynamically integrate microenvironmental signals to shape their own functional phenotypes, a process known as polarization. Here we develop a large-scale mechanistic computational model that for the first time enables a systems-level characterization, from quantitative, temporal, dose-dependent, and single-cell perspectives, of macrophage polarization driven by a complex multi-pathway signaling network. The model was extensively calibrated and validated against literature and focused on in-house experimental data. Using the model, we generated dynamic phenotype maps in response to numerous combinations of polarizing signals; we also probed into an in silico population of model-based macrophages to examine the impact of polarization continuum at the single-cell level. Additionally, we analyzed the model under an in vitro condition of peripheral arterial disease to evaluate strategies that can potentially induce therapeutic macrophage repolarization. Our model is a key step toward the future development of a network-centric, comprehensive "virtual macrophage" simulation platform.
Collapse
|
74
|
Dodhiawala PB, Khurana N, Zhang D, Cheng Y, Li L, Wei Q, Seehra K, Jiang H, Grierson PM, Wang-Gillam A, Lim KH. TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations. J Clin Invest 2021; 130:4771-4790. [PMID: 32573499 DOI: 10.1172/jci137660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB transcription factors, driven by the IRAK/IKK cascade, confer treatment resistance in pancreatic ductal adenocarcinoma (PDAC), a cancer characterized by near-universal KRAS mutation. Through reverse-phase protein array and RNA sequencing we discovered that IRAK4 also contributes substantially to MAPK activation in KRAS-mutant PDAC. IRAK4 ablation completely blocked RAS-induced transformation of human and murine cells. Mechanistically, expression of mutant KRAS stimulated an inflammatory, autocrine IL-1β signaling loop that activated IRAK4 and the MAPK pathway. Downstream of IRAK4, we uncovered TPL2 (also known as MAP3K8 or COT) as the essential kinase that propels both MAPK and NF-κB cascades. Inhibition of TPL2 blocked both MAPK and NF-κB signaling, and suppressed KRAS-mutant cell growth. To counter chemotherapy-induced genotoxic stress, PDAC cells upregulated TLR9, which activated prosurvival IRAK4/TPL2 signaling. Accordingly, a TPL2 inhibitor synergized with chemotherapy to curb PDAC growth in vivo. Finally, from TCGA we characterized 2 MAP3K8 point mutations that hyperactivate MAPK and NF-κB cascades by impeding TPL2 protein degradation. Cancer cell lines naturally harboring these MAP3K8 mutations are strikingly sensitive to TPL2 inhibition, underscoring the need to identify these potentially targetable mutations in patients. Overall, our study establishes TPL2 as a promising therapeutic target in RAS- and MAP3K8-mutant cancers and strongly prompts development of TPL2 inhibitors for preclinical and clinical studies.
Collapse
Affiliation(s)
- Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Namrata Khurana
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daoxiang Zhang
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yi Cheng
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qing Wei
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kuljeet Seehra
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongmei Jiang
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, and.,Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
75
|
Lannoy V, Côté-Biron A, Asselin C, Rivard N. Phosphatases in toll-like receptors signaling: the unfairly-forgotten. Cell Commun Signal 2021; 19:10. [PMID: 33494775 PMCID: PMC7829650 DOI: 10.1186/s12964-020-00693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past 2 decades, pattern recognition receptors (PRRs) have been shown to be on the front line of many illnesses such as autoimmune, inflammatory, and neurodegenerative diseases as well as allergies and cancer. Among PRRs, toll-like receptors (TLRs) are the most studied family. Dissecting TLRs signaling turned out to be advantageous to elaborate efficient treatments to cure autoimmune and chronic inflammatory disorders. However, a broad understanding of TLR effectors is required to propose a better range of cures. In addition to kinases and E3 ubiquitin ligases, phosphatases emerge as important regulators of TLRs signaling mediated by NF-κB, type I interferons (IFN I) and Mitogen-Activated Protein Kinases signaling pathways. Here, we review recent knowledge on TLRs signaling modulation by different classes and subclasses of phosphatases. Thus, it becomes more and more evident that phosphatases could represent novel therapeutic targets to control pathogenic TLRs signaling. Video Abstract.
Collapse
Affiliation(s)
- Valérie Lannoy
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Anthony Côté-Biron
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada.
| |
Collapse
|
76
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
77
|
Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Opazo-Ríos L, Morgado-Pascual JL, Herencia-Bellido C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA. Toll-Like Receptors in Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms22020816. [PMID: 33467524 PMCID: PMC7830297 DOI: 10.3390/ijms22020816] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is an important health problem, affecting 13.3 million individuals/year. It is associated with increased mortality, mainly in low- and middle-income countries, where renal replacement therapy is limited. Moreover, survivors show adverse long-term outcomes, including increased risk of developing recurrent AKI bouts, cardiovascular events, and chronic kidney disease. However, there are no specific treatments to decrease the adverse consequences of AKI. Epidemiological and preclinical studies show the pathological role of inflammation in AKI, not only at the acute phase but also in the progression to chronic kidney disease. Toll-like receptors (TLRs) are key regulators of the inflammatory response and have been associated to many cellular processes activated during AKI. For that reason, a number of anti-inflammatory agents targeting TLRs have been analyzed in preclinical studies to decrease renal damage during AKI. In this review, we updated recent knowledge about the role of TLRs, mainly TLR4, in the initiation and development of AKI as well as novel compounds targeting these molecules to diminish kidney injury associated to this pathological condition.
Collapse
Affiliation(s)
- Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Sandra Rayego-Mateos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Carmen Herencia-Bellido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - María Luisa Gaspar
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Majadahonda (Madrid), Spain; (I.C.); (M.L.G.); (B.d.A.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (C.V.-C.); (S.R.-M.); (L.O.-R.); (C.H.-B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (M.G.-H.); (C.G.-C.); (J.L.M.-P.); (M.V.-M.)
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28029 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 140471 Cordoba, Spain
- Correspondence: (J.E.); (J.A.M.); Tel.: +34-915504800 (J.E.); +34-957-218039 (J.A.M.)
| |
Collapse
|
78
|
LncRNA HOTAIR regulates glucose transporter Glut1 expression and glucose uptake in macrophages during inflammation. Sci Rep 2021; 11:232. [PMID: 33420270 PMCID: PMC7794310 DOI: 10.1038/s41598-020-80291-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays central roles in the immune response. Inflammatory response normally requires higher energy and therefore is associated with glucose metabolism. Our recent study demonstrates that lncRNA HOTAIR plays key roles in NF-kB activation, cytokine expression, and inflammation. Here, we investigated if HOTAIR plays any role in the regulation of glucose metabolism in immune cells during inflammation. Our results demonstrate that LPS-induced inflammation induces the expression of glucose transporter isoform 1 (Glut1) which controls the glucose uptake in macrophages. LPS-induced Glut1 expression is regulated via NF-kB activation. Importantly, siRNA-mediated knockdown of HOTAIR suppressed the LPS-induced expression of Glut1 suggesting key roles of HOTAIR in LPS-induced Glut1 expression in macrophage. HOTAIR induces NF-kB activation, which in turn increases Glut1 expression in response to LPS. We also found that HOTAIR regulates glucose uptake in macrophages during LPS-induced inflammation and its knockdown decreases LPS-induced increased glucose uptake. HOTAIR also regulates other upstream regulators of glucose metabolism such as PTEN and HIF1α, suggesting its multimodal functions in glucose metabolism. Overall, our study demonstrated that lncRNA HOTAIR plays key roles in LPS-induced Glut1 expression and glucose uptake by activating NF-kB and hence HOTAIR regulates metabolic programming in immune cells potentially to meet the energy needs during the immune response.
Collapse
|
79
|
Gandhi S, Ravindra K. Toll-Like Receptors in Dermatology, Venereology, and Leprosy. Indian J Dermatol 2021; 66:223. [PMID: 34188292 PMCID: PMC8208254 DOI: 10.4103/ijd.ijd_486_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) represent a family of Type I transmembrane proteins characterized by an extracellular leucine-rich repeat domain and a cytoplasmic domain. TLRs represent a conserved group of receptors which help the immune system to function properly. Different TLRs are associated with an array of skin diseases. TLR agonists and antagonists have great potential for the treatment of allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Sneha Gandhi
- Department of Dermatology, Venereology and Leprosy, GIMS, Gulbarga, Karnataka, India
| | - K Ravindra
- Department of Dermatology, Venereology and Leprosy, JJMMC, Davangere, Karnataka, India
| |
Collapse
|
80
|
Trung NB, Lee PT. Functional characterization of myeloid differentiation factor 88 in Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110485. [DOI: 10.1016/j.cbpb.2020.110485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 12/23/2022]
|
81
|
Zamyatina A, Heine H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front Immunol 2020; 11:585146. [PMID: 33329561 PMCID: PMC7732686 DOI: 10.3389/fimmu.2020.585146] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The innate immune response to lipopolysaccharide is essential for host defense against Gram-negative bacteria. In response to bacterial infection, the TLR4/MD-2 complex that is expressed on the surface of macrophages, monocytes, dendritic, and epithelial cells senses picomolar concentrations of endotoxic LPS and triggers the production of various pro-inflammatory mediators. In addition, LPS from extracellular bacteria which is either endocytosed or transfected into the cytosol of host cells or cytosolic LPS produced by intracellular bacteria is recognized by cytosolic proteases caspase-4/11 and hosts guanylate binding proteins that are involved in the assembly and activation of the NLRP3 inflammasome. All these events result in the initiation of pro-inflammatory signaling cascades directed at bacterial eradication. However, TLR4-mediated signaling and caspase-4/11-induced pyroptosis are largely involved in the pathogenesis of chronic and acute inflammation. Both extra- and intracellular LPS receptors-TLR4/MD-2 complex and caspase-4/11, respectively-are able to directly bind the lipid A motif of LPS. Whereas the structural basis of lipid A recognition by the TLR4 complex is profoundly studied and well understood, the atomic mechanism of LPS/lipid A interaction with caspase-4/11 is largely unknown. Here we describe the LPS-induced TLR4 and caspase-4/11 mediated signaling pathways and their cross-talk and scrutinize specific structural features of the lipid A motif of diverse LPS variants that have been reported to activate caspase-4/11 or to induce caspase-4/11 mediated activation of NLRP3 inflammasome (either upon transfection of LPS in vitro or upon infection of cell cultures with intracellular bacteria or by LPS as a component of the outer membrane vesicles). Generally, inflammatory caspases show rather similar structural requirements as the TLR4/MD-2 complex, so that a "basic" hexaacylated bisphosphorylated lipid A architecture is sufficient for activation. However, caspase-4/11 can sense and respond to much broader variety of lipid A variants compared to the very "narrow" specificity of TLR4/MD-2 complex as far as the number and the length of lipid chains attached at the diglucosamine backbone of lipid A is concerned. Besides, modification of the lipid A phosphate groups with positively charged appendages such as phosphoethanolamine or aminoarabinose could be essential for the interaction of lipid A/LPS with inflammatory caspases and related proteins.
Collapse
Affiliation(s)
- Alla Zamyatina
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL), Borstel, Germany
| |
Collapse
|
82
|
Zhai W, Lu Y, Zhu Y, Zhou M, Ye C, Shi ZZ, Qian W, Hu T, Chen L. Discovery and optimization of a potent and selective indazolamine series of IRAK4 inhibitors. Bioorg Med Chem Lett 2020; 31:127686. [PMID: 33242574 DOI: 10.1016/j.bmcl.2020.127686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
IRAK4 is a key mediator of innate immunity. There is a high interest in identifying novel IRAK4 inhibitors for the treatment of inflammatory autoimmune diseases. We describe here a highly potent and selective IRAK4 inhibitor (HS271) that exhibited superior enzymatic and cellular activities, as well as excellent pharmacokinetic properties. HS271 displayed robust in vivo anti-inflammatory efficacy as evaluated in rat models of LPS induced TNFα production and collagen-induced arthritis.
Collapse
Affiliation(s)
- Wenqiang Zhai
- Zhejiang Hisun Pharmaceutical Co. Ltd., China, 46 Waisha Rd., Taizhou 318099, China
| | - Yongping Lu
- Zhejiang Hisun Pharmaceutical Co. Ltd., China, 46 Waisha Rd., Taizhou 318099, China
| | - Yabo Zhu
- Zhejiang Hisun Pharmaceutical Co. Ltd., China, 46 Waisha Rd., Taizhou 318099, China
| | - Mengguang Zhou
- Zhejiang Hisun Pharmaceutical Co. Ltd., China, 46 Waisha Rd., Taizhou 318099, China
| | - Cheng Ye
- Zhejiang Hisun Pharmaceutical Co. Ltd., China, 46 Waisha Rd., Taizhou 318099, China
| | - Zheng-Zheng Shi
- Zhejiang Hisun Pharmaceutical Co. Ltd., China, 46 Waisha Rd., Taizhou 318099, China
| | - Wenjian Qian
- Zhejiang Hisun Pharmaceutical Co. Ltd., China, 46 Waisha Rd., Taizhou 318099, China.
| | - Taishan Hu
- Zhejiang Hisun Pharmaceutical Co. Ltd., China, 46 Waisha Rd., Taizhou 318099, China
| | - Lei Chen
- Zhejiang Hisun Pharmaceutical Co. Ltd., China, 46 Waisha Rd., Taizhou 318099, China
| |
Collapse
|
83
|
Han R, Wang J, Chen H, Luo X, Li A, Dan X, Li Y. Grouper (Epinephelus coioides) IRAK-4 regulates activation of NF-κB and expression of inflammatory cytokines in grouper spleen cells. FISH & SHELLFISH IMMUNOLOGY 2020; 106:938-947. [PMID: 32919054 DOI: 10.1016/j.fsi.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
IRAK-4 is a serine/threonine kinase that can bind to interleukin-1 receptor induced by interleukin-1. It plays a key role in the Toll-like receptor signaling pathway and is involved in innate and adaptive immune responses. In this study, piscine IRAK-4 significantly activated nuclear factor (NF)-κB signaling in grouper spleen cells. Grouper (Epinephelus coioides) IRAK-4 (EcIRAK-4) co-localized with EcMyD88 and did not impair EcMyD88-dependent NF-κB activation. Different doses of EcIRAK-4 caused different degrees of nuclear translocation of the transcription factor NF-κB p65 subunit, and it induced transcription of multiple pro-inflammatory cytokines. Using expression vectors of deletion domains or mutations at important sites of EcIRAK-4, we found that the EcIRAK-4 kinase domain is necessary for its signal transduction function. The conserved amino acid sites performed functions similar to those in mammals, and grouper-specific amino acids such as E339 also played important roles. These findings provide information about the functional characteristics of IRAK-4 in lower vertebrates.
Collapse
Affiliation(s)
- Rui Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China
| | - Jiule Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China
| | - Hongping Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China
| | - Xiaochun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, PR China
| | - Xueming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
84
|
Kalchiem-Dekel O, Yao X, Barochia AV, Kaler M, Figueroa DM, Karkowsky WB, Gordon EM, Gao M, Fergusson MM, Qu X, Liu P, Li Y, Seifuddin F, Pirooznia M, Levine SJ. Apolipoprotein E Signals via TLR4 to Induce CXCL5 Secretion by Asthmatic Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 63:185-197. [PMID: 32338995 DOI: 10.1165/rcmb.2019-0209oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The primary function of APOE (apolipoprotein E) is to mediate the transport of cholesterol- and lipid-containing lipoprotein particles into cells by receptor-mediated endocytosis. APOE also has pro- and antiinflammatory effects, which are both context and concentration dependent. For example, Apoe-/- mice exhibit enhanced airway remodeling and hyperreactivity in experimental asthma, whereas increased APOE levels in lung epithelial lining fluid induce IL-1β secretion from human asthmatic alveolar macrophages. However, APOE-mediated airway epithelial cell inflammatory responses and signaling pathways have not been defined. Here, RNA sequencing of human asthmatic bronchial brushing cells stimulated with APOE identified increased expression of mRNA transcripts encoding multiple proinflammatory genes, including CXCL5 (C-X-C motif chemokine ligand 5), an epithelial-derived chemokine that promotes neutrophil activation and chemotaxis. We subsequently characterized the APOE signaling pathway that induces CXCL5 secretion by human asthmatic small airway epithelial cells (SAECs). Neutralizing antibodies directed against TLR4 (Toll-like receptor 4), but not TLR2, attenuated APOE-mediated CXCL5 secretion by human asthmatic SAECs. Inhibition of TAK1 (transforming growth factor-β-activated kinase 1), IκKβ (inhibitor of nuclear factor κ B kinase subunit β), TPL2 (tumor progression locus 2), and JNK (c-Jun N-terminal kinase), but not p38 MAPK (mitogen-activated protein kinase) or MEK1/2 (MAPK kinase 1/2), attenuated APOE-mediated CXCL5 secretion. The roles of TAK1, IκKβ, TPL2, and JNK in APOE-mediated CXCL5 secretion were verified by RNA interference. Furthermore, RNA interference showed that after APOE stimulation, both NF-κB p65 and TPL2 were downstream of TAK1 and IκKβ, whereas JNK was downstream of TPL2. In summary, elevated levels of APOE in the airway may activate a TLR4/TAK1/IκKβ/NF-κB/TPL2/JNK signaling pathway that induces CXCL5 secretion by human asthmatic SAECs. These findings identify new roles for TLR4 and TPL2 in APOE-mediated proinflammatory responses in asthma.
Collapse
Affiliation(s)
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | | | | | - Meixia Gao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | - Xuan Qu
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | - Poching Liu
- DNA Sequencing and Genomics Core Facility, and
| | - Yuesheng Li
- DNA Sequencing and Genomics Core Facility, and
| | - Fayaz Seifuddin
- Bioinformatics and Computational Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
85
|
Khurana N, Dodhiawala PB, Bulle A, Lim KH. Deciphering the Role of Innate Immune NF-ĸB Pathway in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12092675. [PMID: 32961746 PMCID: PMC7564842 DOI: 10.3390/cancers12092675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chronic inflammation is a major mechanism that underlies the aggressive nature and treatment resistance of pancreatic cancer. In many ways, the molecular mechanisms that drive chronic inflammation in pancreatic cancer are very similar to our body’s normal innate immune response to injury or invading microorganisms. Therefore, during cancer development, pancreatic cancer cells hijack the innate immune pathway to foster a chronically inflamed tumor environment that helps shield them from immune attack and therapeutics. While blocking the innate immune pathway is theoretically reasonable, untoward side effects must also be addressed. In this review, we comprehensively summarize the literature that describe the role of innate immune signaling in pancreatic cancer, emphasizing the specific role of this pathway in different cell types. We review the interaction of the innate immune pathway and cancer-driving signaling in pancreatic cancer and provide an updated overview of novel therapeutic opportunities against this mechanism. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with no effective treatment option. A predominant hallmark of PDAC is the intense fibro-inflammatory stroma which not only physically collapses vasculature but also functionally suppresses anti-tumor immunity. Constitutive and induced activation of the NF-κB transcription factors is a major mechanism that drives inflammation in PDAC. While targeting this pathway is widely supported as a promising therapeutic strategy, clinical success is elusive due to a lack of safe and effective anti-NF-κB pathway therapeutics. Furthermore, the cell type-specific contribution of this pathway, specifically in neoplastic cells, stromal fibroblasts, and immune cells, has not been critically appraised. In this article, we highlighted seminal and recent literature on molecular mechanisms that drive NF-κB activity in each of these major cell types in PDAC, focusing specifically on the innate immune Toll-like/IL-1 receptor pathway. We reviewed recent evidence on the signaling interplay between the NF-κB and oncogenic KRAS signaling pathways in PDAC cells and their collective contribution to cancer inflammation. Lastly, we reviewed clinical trials on agents that target the NF-κB pathway and novel therapeutic strategies that have been proposed in preclinical studies.
Collapse
Affiliation(s)
- Namrata Khurana
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
86
|
Zhang J, Fu L, Shen B, Liu Y, Wang W, Cai X, Kong L, Yan Y, Meng R, Zhang Z, Chen YNP, Liu Q, Wan ZK, Zhou T, Wang X, Gavine P, Del Rosario A, Ahn K, Philippar U, Attar R, Yang J, Xu Y, Edwards JP, Dai X. Assessing IRAK4 Functions in ABC DLBCL by IRAK4 Kinase Inhibition and Protein Degradation. Cell Chem Biol 2020; 27:1500-1509.e13. [PMID: 32888499 DOI: 10.1016/j.chembiol.2020.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The interleukin-1 receptor-activated kinase 4 (IRAK4) belongs to the IRAK family of serine/threonine kinases and plays a central role in the innate immune response. However, the function of IRAK4 in tumor growth and progression remains elusive. Here we sought to determine the enzymatic and scaffolding functions of IRAK4 in activated B-cell-like diffuse large B cell lymphoma (ABC DLBCL). We chose a highly selective IRAK4 kinase inhibitor to probe the biological effects of kinase inhibition and developed a series of IRAK4 degraders to evaluate the effects of protein degradation in ABC DLBCL cells. Interestingly, the results demonstrated that neither IRAK4 kinase inhibition nor protein degradation led to cell death or growth inhibition, suggesting a redundant role for IRAK4 in ABC DLBCL cell survival. IRAK4 degraders characterized in this study provide useful tools for understanding IRAK4 protein scaffolding function, which was previously unachievable using pharmacological perturbation.
Collapse
Affiliation(s)
- Jing Zhang
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Liqiang Fu
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Bin Shen
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Yingtao Liu
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Wenqian Wang
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Xin Cai
- Biomarker, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Linglong Kong
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Yilin Yan
- Biomarker, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Ryan Meng
- Nonclinical Safety, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Zhuming Zhang
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Ying-Nan P Chen
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Qian Liu
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Zhao-Kui Wan
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Tianyuan Zhou
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Xiaotao Wang
- Biomarker, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Paul Gavine
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Amanda Del Rosario
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Kay Ahn
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Ulrike Philippar
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ricardo Attar
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Jennifer Yang
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Yanping Xu
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - James P Edwards
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Xuedong Dai
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China.
| |
Collapse
|
87
|
Nair S, Kumar SR, Paidi VR, Sistla R, Kantheti D, Polimera SR, Thangavel S, Mukherjee AJ, Das M, Bhide RS, Pitts WJ, Murugesan N, Dudhgoankar S, Nagar J, Subramani S, Mazumder D, Carman JA, Holloway DA, Li X, Fereshteh MP, Ruepp S, Palanisamy K, Mariappan TT, Maddi S, Saxena A, Elzinga P, Chimalakonda A, Ruan Q, Ghosh K, Bose S, Sack J, Yan C, Kiefer SE, Xie D, Newitt JA, Saravanakumar SP, Rampulla RA, Barrish JC, Carter PH, Hynes J. Optimization of Nicotinamides as Potent and Selective IRAK4 Inhibitors with Efficacy in a Murine Model of Psoriasis. ACS Med Chem Lett 2020; 11:1402-1409. [PMID: 32676146 DOI: 10.1021/acsmedchemlett.0c00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 11/28/2022] Open
Abstract
IRAK4 is an attractive therapeutic target for the treatment of inflammatory conditions. Structure guided optimization of a nicotinamide series of inhibitors has been expanded to explore the IRAK4 front pocket. This has resulted in the identification of compounds such as 12 with improved potency and selectivity. Additionally 12 demonstrated activity in a pharmacokinetics/pharmacodynamics (PK/PD) model. Further optimization efforts led to the identification of the highly kinome selective 21, which demonstrated a robust PD effect and efficacy in a TLR7 driven model of murine psoriasis.
Collapse
Affiliation(s)
- Satheesh Nair
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | | | | | - Ramesh Sistla
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | - Durgarao Kantheti
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | | | | | | | - Mitalee Das
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | - Rajeev S. Bhide
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - William J. Pitts
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Natesan Murugesan
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | | | - Jignesh Nagar
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | - Siva Subramani
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | - Debarati Mazumder
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | - Julie A. Carman
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Deborah A. Holloway
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Xin Li
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Mark P. Fereshteh
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Stefan Ruepp
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | | | | | - Srinivas Maddi
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | - Ajay Saxena
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Paul Elzinga
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Anjaneya Chimalakonda
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Qian Ruan
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Kaushik Ghosh
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | - Sucharita Bose
- Biocon Bristol Myers Squibb Research Center, Bangalore 560099, India
| | - John Sack
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Chunhong Yan
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Susan E. Kiefer
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Dianlin Xie
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - John A. Newitt
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | | | - Richard A. Rampulla
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Joel C. Barrish
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - John Hynes
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
88
|
Kondo M, Tahara A, Hayashi K, Inami H, Ishikawa T, Tomura Y. Therapeutic effects of interleukin-1 receptor-associated kinase 4 inhibitor AS2444697 on diabetic nephropathy in type 2 diabetic mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1197-1209. [PMID: 31974740 DOI: 10.1007/s00210-020-01816-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Renal inflammation is a final common pathway of chronic kidney disease including diabetic nephropathy, which is the leading cause of end-stage renal disease and is associated with high cardiovascular risk and significant morbidity and mortality. Interleukin-1 (IL-1) receptor-associated kinase 4 (IRAK-4) is a pivotal molecule for IL-1 receptor- and Toll-like receptor-induced activation of proinflammatory mediators. In this study, we investigated the renoprotective properties of IRAK-4 inhibitor AS2444697 in KK/Ay type 2 diabetic mice. Four-week repeated administration of AS2444697 dose-dependently and significantly improved albuminuria; hyperfiltration, as measured by creatinine clearance; renal injury, including glomerulosclerosis; tubular injury markers, including urinary N-acetyl-β-D-glucosaminidase activity; and glomerular podocyte injury markers, including urinary nephrin excretion. In addition, AS2444697 attenuated plasma levels of proinflammatory cytokines, including IL-6; plasma levels of endothelial dysfunction markers, including intercellular adhesion molecule-1; and plasma levels and renal contents of oxidative stress markers. In contrast, AS2444697 did not significantly affect food intake or blood glucose levels. These results suggest that AS2444697 attenuates the progression of diabetic nephropathy mainly via anti-inflammatory mechanisms through inhibition of IRAK-4 activity under diabetic conditions and may represent a promising therapeutic option for the treatment of type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Mitsuhiro Kondo
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Atsuo Tahara
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Kazumi Hayashi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Hiroshi Inami
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Takeshi Ishikawa
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Yuichi Tomura
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| |
Collapse
|
89
|
Xie X, Xu K, Mao H, Lv Y, Weng P, Chang K, Lin G, Hu C. Grass carp (Ctenopharyngodon idella) IRAK1 and STAT3 up-regulate synergistically the transcription of IL-10. FISH & SHELLFISH IMMUNOLOGY 2020; 102:28-35. [PMID: 32278837 DOI: 10.1016/j.fsi.2020.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
In vertebrates, IL-10 is an anti-inflammatory factor that serves as a key inhibitory role in a wide range of immune responses. IRAK1 (IL-1 receptor-associated kinase 1), a key molecule in the inflammatory signal of IL-1R/TLR, plays an important pivotal role in regulating the autoimmunity of body. STAT3 (Signal transducer and activator of transcription 3) activated by IRAK1 participates in inflammation, tumorigenesis, metabolic disorders and immune response. Under the stimulation of LPS, IRAK1 enters the nucleus to form a dimer with STAT3 and regulates the expression of IL-10. However, the relationship between fish IRAK1 and STAT3 has not been reported. To explain the anti-inflammation in fish, we amplified and identified the complete open reading frame of grass carp IRAK1 (CiIRAK1) and STAT3 (CiSTAT3) based on the existing sequences. The expression of CiIRAK1 and CiSTAT3 were up-regulated significantly under the stimulation of LPS. This result suggests that both CiIRAK1 and CiSTAT3 may be involved in LPS-induced TLR4 pathway. The subcellular localization experiment revealed that CiIRAK1 is distributed in cytoplasm and enters nucleus after LPS stimulation. CiSTAT3 is distributed in both cytoplasm and nucleus with or without LPS stimulation. Immunoprecipitation assay revealed that CiIRAK1 interacted with CiSTAT3 under LPS stimulation. However in absence of LPS stimulation, CiIRAK1 and CiSTAT3 cannot interact with each other. Subsequently, immunofluorescence colocalization experiment further proved the interaction of CiIRAK1 and CiSTAT3 in nucleus under LPS stimulation. The dual luciferase reporter assays indicated that the binding of CiIRAK1 and CiSTAT3 synergistically enhanced the activity of CiIL-10 promoter.
Collapse
Affiliation(s)
- Xiaofen Xie
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kang Xu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Yangfeng Lv
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Panwei Weng
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Gang Lin
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
90
|
Liu S, Ge D, Long Z, Chi C, Lv Z, Liu H. Molecular features of interleukin-1 receptor-associated kinase-b and a in Mytilus coruscus, regulating their function by infection of aquatic pathogens and the expression of their serine/threonine protein kinase functional domains. FISH & SHELLFISH IMMUNOLOGY 2020; 102:469-479. [PMID: 32389741 DOI: 10.1016/j.fsi.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Interleukin-1 receptor-associated kinases (IRAKs) play important roles in the innate immune system of TLR (Toll-like receptor) signaling pathway. In this paper, interleukin-1 receptor-associated kinase-b (designated as McIRAK-b) and interleukin-1 receptor-associated kinase-a (named as McIRAK-a) were obtained based on the transcriptome data, the full length of McIRAK-b was 1815 bp and McIRAK-a was 3168bp, encoding 532 and 978 amino acids, respectively. BLASTp analysis and phylogenetic relationship strongly suggested that the deduced amino acid sequence of McIRAK-b had high homology with IRAK-4 and McIRAK-a was similar to IRAK-1 of other mollusks, especially at their function domains. The expressions of McIRAK-b and McIRAK-a were detected in six tissues including adductor muscle, hemocyte, gills, gonad and hepatopancreas, and the highest expressions appeared both in gills. The expressions of McIRAK-b and McIRAK-a in gills were observed with time-dependent manners after bacterial infections. After being challenged with Vibrio alginolyticus, McIRAK-b expressed significantly and got the peak at 8 h (9.47 times compared with the control group), but the peak appeared at 4 h by being infected with Vibrio parahaemolyticus (12.02 times compared with the control group). The highest point of McIRAK-a mRNA appeared at 12 h (5.16 times) after being challenged with V.alginolyticus and 8 h (4.21 times) for V.parahaemolyticus challenge. The results suggested that IRAK-b and IRAK-a might be important in immune signaling pathway of mussels. The kinase functional domain sequences (S_TKc) of McIRAK-b and McIRAK-a expressed in BL21(DE3) and purified by Ni-NAT Superflow resin conforming to the expected molecular weight with many active sites for their conferring protein-protein interaction functions. This study may provide some further understandings of the regulatory mechanisms in the bivalve innate immune system for IRAKs family.
Collapse
Affiliation(s)
- Sijia Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Delong Ge
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zaihao Long
- Ningbo International Travel Health Care Center, Ningbo, 315012, PR China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenming Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
91
|
Pan B, Gao J, Chen W, Liu C, Shang L, Xu M, Fu C, Zhu S, Niu M, Xu K. Selective inhibition of interleukin-1 receptor-associated kinase 1 ameliorates lipopolysaccharide-induced sepsis in mice. Int Immunopharmacol 2020; 85:106597. [PMID: 32422509 DOI: 10.1016/j.intimp.2020.106597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 12/26/2022]
Abstract
Interleukin-1 receptor-associated kinases (IRAKs), particularly IRAK1 and IRAK4, are important in transducing signal from Toll-like receptor 4. We interrogated if a selective inhibition of IRAK1 could alleviate lipopolysaccharide (LPS)-induced sepsis. In this study, we tested the impact of a novel selective IRAK1 inhibitor Jh-X-119-01 on LPS-induced sepsis in mice. Survival at day 5 was 13.3% in control group where septic mice were treated by vehicle, while the values were 37.5% (p = 0.046, vs. control) and 56.3% (p = 0.003, vs. control) for 5 mg/kg and 10 mg/kg Jh-X-119-01-treated mice. Jh-X-119-01 alleviated lung injury and reduced production of TNFα and IFNγ in peritoneal macrophages. Jh-X-119-01 decreased phosphorylation of NF-κB and mRNA levels of IL-6 and TNFα in LPS-treated macrophages in vitro. Jh-X-119-01 selectively inhibited IRAK1 phosphorylation comparing with a non-selective IRAK1/4 inhibitor which simultaneously inhibited phosphorylation of IRAK1 and IRAK4. Both Jh-X-119-01 and IRAK1/4 inhibitor increased survival of septic mice, but Jh-X-119-01-treated mice had higher blood CD11b+ cell counts than IRAK1/4 inhibitor-treated ones [24 h: (1.18 ± 0.26) × 106/ml vs. (0.79 ± 0.20) × 106/ml, p = 0.001; 48 h: (1.00 ± 0.30) × 106/ml vs. (0.67 ± 0.23) × 106/ml, p = 0.042]. IRAK1/4 inhibitor induced more apoptosis of macrophages than Jh-X-119-01 did in vitro. IRAK1/4 inhibitor decreased protein levels of anti-apoptotic BCL-2 and MCL-1 in RAW 264.7 and THP-1 cells, an effect not seen in Jh-X-119-01-treated cells. In conclusion, Jh-X-119-01 selectively inhibited activation of IRAK1 and protected mice from LPS-induced sepsis. Jh-X-119-01 showed less toxicity on macrophages comparing with a non-selective IRAK1/4 inhibitor.
Collapse
Affiliation(s)
- Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Jun Gao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Wei Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Cong Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Longmei Shang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Shengyun Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
92
|
Erlich JR, To EE, Liong S, Brooks R, Vlahos R, O'Leary JJ, Brooks DA, Selemidis S. Targeting Evolutionary Conserved Oxidative Stress and Immunometabolic Pathways for the Treatment of Respiratory Infectious Diseases. Antioxid Redox Signal 2020; 32:993-1013. [PMID: 32008371 PMCID: PMC7426980 DOI: 10.1089/ars.2020.8028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Up until recently, metabolism has scarcely been referenced in terms of immunology. However, emerging evidence has shown that immune cells undergo an adaptation of metabolic processes, known as the metabolic switch. This switch is key to the activation, and sustained inflammatory phenotype in immune cells, which includes the production of cytokines and reactive oxygen species (ROS) that underpin infectious diseases, respiratory and cardiovascular disease, neurodegenerative disease, as well as cancer. Recent Advances: There is a burgeoning body of evidence that immunometabolism and redox biology drive infectious diseases. For example, influenza A virus (IAV) utilizes endogenous ROS production via NADPH oxidase (NOX)2-containing NOXs and mitochondria to circumvent antiviral responses. These evolutionary conserved processes are promoted by glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle that drive inflammation. Such metabolic products involve succinate, which stimulates inflammation through ROS-dependent stabilization of hypoxia-inducible factor-1α, promoting interleukin-1β production by the inflammasome. In addition, itaconate has recently gained significant attention for its role as an anti-inflammatory and antioxidant metabolite of the TCA cycle. Critical Issues: The molecular mechanisms by which immunometabolism and ROS promote viral and bacterial pathology are largely unknown. This review will provide an overview of the current paradigms with an emphasis on the roles of immunometabolism and ROS in the context of IAV infection and secondary complications due to bacterial infection such as Streptococcus pneumoniae. Future Directions: Molecular targets based on metabolic cell processes and ROS generation may provide novel and effective therapeutic strategies for IAV and associated bacterial superinfections.
Collapse
Affiliation(s)
- Jonathan R. Erlich
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Eunice E. To
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Stella Liong
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - Robert Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Ross Vlahos
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
| | - John J. O'Leary
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin, Ireland
| | - Doug A. Brooks
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, Australia
- Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, Australia
- Address correspondence to: Prof. Stavros Selemidis, Program in Chronic Infectious and Inflammatory Diseases, Oxidant and Inflammation Biology Group, School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
93
|
Wiese MD, Manning-Bennett AT, Abuhelwa AY. Investigational IRAK-4 inhibitors for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 2020; 29:475-482. [PMID: 32255710 DOI: 10.1080/13543784.2020.1752660] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that can lead to permanent disability and deformity. Despite current treatment modalities, many patients are still unable to reach remission. Interleukin-1 receptor-associated kinase 4 (IRAK-4) inhibitors are novel agents designed to suppress immune signaling pathways involved in inflammation and joint destruction in RA. Four IRAK-4 inhibitors have entered clinical trials. AREAS COVERED This review summarizes the current stage of development of IRAK-4 inhibitors in clinical trials, detailing their chemistry, pharmacokinetics, and therapeutic potential in the treatment of RA. PubMed, Embase and restricted Google searches were conducted using the term 'IRAK-4', and publicly accessible clinical trial databases were reviewed. EXPERT OPINION IRAK-4 inhibitors are an exciting therapeutic option in RA management because unlike other targeted disease-modifying agents, they target the innate immune system. The role of IRAK-4 as a key component of Toll/Interleukin-1 receptor signaling and its potential for a low rate of infectious complications is particularly exciting and this may facilitate their use in combination treatment. A key aspect of upcoming clinical trials will be the identification of biomarkers predictive of treatment efficacy, which will help to define if and how they will be used in the clinic.
Collapse
Affiliation(s)
- Michael D Wiese
- Clinical and Health Sciences, University of South Australia , Adelaide, Australia
- Health and Biomedical Innovation Group, University of South Australia , Adelaide, Australia
| | - Arkady T Manning-Bennett
- Clinical and Health Sciences, University of South Australia , Adelaide, Australia
- Health and Biomedical Innovation Group, University of South Australia , Adelaide, Australia
| | - Ahmad Y Abuhelwa
- Clinical and Health Sciences, University of South Australia , Adelaide, Australia
- Australian Centre for Precision Medicine, Cancer Research Institute, University of South Australia , Adelaide, Australia
| |
Collapse
|
94
|
Moncrieffe MC, Bollschweiler D, Li B, Penczek PA, Hopkins L, Bryant CE, Klenerman D, Gay NJ. MyD88 Death-Domain Oligomerization Determines Myddosome Architecture: Implications for Toll-like Receptor Signaling. Structure 2020; 28:281-289.e3. [PMID: 31995744 PMCID: PMC7054835 DOI: 10.1016/j.str.2020.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/26/2019] [Accepted: 01/07/2020] [Indexed: 01/12/2023]
Abstract
Toll-like receptors (TLRs) are pivotal in triggering the innate immune response to pathogen infection. Ligand binding induces receptor dimerization which facilitates the recruitment of other post-receptor signal transducers into a complex signalosome, the Myddosome. Central to this process is Myeloid differentiation primary response 88 (MyD88), which is required by almost all TLRs, and signaling is thought to proceed via the stepwise, sequential assembly of individual components. Here, we show that the death domains of human MyD88 spontaneously and reversibly associate to form helical filaments in vitro. A 3.1-Å cryoelectron microscopy structure reveals that the architecture of the filament is identical to that of the 6:4 MyD88-IRAK4-IRAK2 hetero-oligomeric Myddosome. Additionally, the death domain of IRAK4 interacts with the filaments to reconstitute the non-stoichiometric 6:4 MyD88-IRAK4 complex. Together, these data suggest that intracellularly, the MyD88 scaffold may be pre-formed and poised for recruitment of IRAKs on receptor activation and TIR engagement.
Collapse
Affiliation(s)
| | | | - Bing Li
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pawel A Penczek
- Department of Biochemistry & Molecular Biology, The University of Texas, McGovern Medical School, Houston, TX 77030, USA
| | - Lee Hopkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
95
|
Delvecchio VS, Sana I, Mantione ME, Vilia MG, Ranghetti P, Rovida A, Angelillo P, Scarfò L, Ghia P, Muzio M. Interleukin‐1 receptor‐associated kinase 4 inhibitor interrupts toll‐like receptor signalling and sensitizes chronic lymphocytic leukaemia cells to apoptosis. Br J Haematol 2020; 189:475-488. [DOI: 10.1111/bjh.16386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Affiliation(s)
| | - Ilenia Sana
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
- Università Vita‐Salute San Raffaele Milano Italy
| | - Maria Elena Mantione
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Maria Giovanna Vilia
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Pamela Ranghetti
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Alessandra Rovida
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Piera Angelillo
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Lydia Scarfò
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Paolo Ghia
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Marta Muzio
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| |
Collapse
|
96
|
Han X, Gao F, Lu M, Liu Z, Wang M, Ke X, Yi M, Cao J. Molecular characterization, expression and functional analysis of IRAK1 and IRAK4 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 97:135-145. [PMID: 31846774 DOI: 10.1016/j.fsi.2019.12.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 are critical signalling mediators and play pivotal roles in the innate immune and inflammatory responses mediated by TLR/IL-1R. In the present study, two IRAK family members, OnIRAK1 and OnIRAK4, were identified in the Nile tilapia Oreochromis niloticus with a conserved N-terminal death domain and a protein kinase domain, similar to those of other fishes and mammals. The gene structures of OnIRAK1 and OnIRAK4 are organized into fifteen exons split by fourteen introns and ten exons split by nine introns. OnIRAK1 and OnIRAK4 were broadly expressed in all of the tissues tested, with the highest expression levels being observed in the blood and the lowest expression levels being observed in the liver. Both genes could be detected from 2 d post-fertilization (dpf) to 8 dpf during embryonic development. Moreover, the expression levels of OnIRAK1 and OnIRAK4 were clearly altered in all five tissues after Streptococcus agalactiae infection in vivo and could be induced by LPS, Poly I: C, S. agalactiae WC1535 and △CPS in Nile tilapia macrophages. The overexpression of OnIRAK1 and OnIRAK4 in 293T cells showed that they were both distributed in the cytoplasm and could significantly increase NF-κB activation. Interestingly, after transfection, OnIRAK1 significantly upregulated OnMyd88-induced NF-κB activation, while OnIRAK4 had no effect on OnMyd88-induced NF-κB activation. Co-immunoprecipitation (Co-IP) assays showed that OnMyd88 did not interact with either OnIRAK1 or OnIRAK4 and that OnIRAK1 did not interact with OnIRAK4. Taken together, these findings suggest that OnIRAK1 and OnIRAK4 could play important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.
Collapse
Affiliation(s)
- Xueqing Han
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Fengying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China.
| | - Maixin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China.
| | - Zhigang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Xiaoli Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Mengmeng Yi
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| | - Jianmeng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, PR China
| |
Collapse
|
97
|
Li Z, Yu X, Werner J, Bazhin AV, D'Haese JG. The role of interleukin-18 in pancreatitis and pancreatic cancer. Cytokine Growth Factor Rev 2019; 50:1-12. [PMID: 31753718 DOI: 10.1016/j.cytogfr.2019.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Originally described as an interferon (IFN)-γ-inducing factor, interleukin (IL)-18 has been reported to be involved in Th1 and Th2 immune responses, as well as in activation of NK cells and macrophages. There is convincing evidence that IL-18 plays an important role in various pathologies (i.e. inflammatory diseases, cancer, chronic obstructive pulmonary disease, Crohn's disease and others). Recently, IL-18 has also been shown to execute specific effects in pancreatic diseases, including acute and chronic pancreatitis, as well as pancreatic cancer. The aim of this study was to give a profound review of recent data on the role of IL-18 and its potential as a therapeutic target in pancreatic diseases. The existing data on this topic are in part controversial and will be discussed in detail. Future studies should aim to confirm and clarify the role of IL-18 in pancreatic diseases and unravel their molecular mechanisms.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; Department of Hepatopancreatobiliary Surgery, The third Xiangya hospital, Central south university, Changsha 410013, Hunan, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The third Xiangya hospital, Central south university, Changsha 410013, Hunan, China
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, 81377 Munich, Germany.
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
98
|
Zhang X, Xu X, Shen Y, Fang Y, Zhang J, Bai Y, Gu S, Wang R, Chen T, Li J. Myeloid differentiation factor 88 (Myd88) is involved in the innate immunity of black carp (Mylopharyngodon piceus) defense against pathogen infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:220-229. [PMID: 31494279 DOI: 10.1016/j.fsi.2019.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is an important transduction protein in the Toll-like receptor signaling pathway. In this study, we identified the cDNA of the MpMyD88 gene in black carp. We found that MpMyD88 was widely distributed in the tissues tested and showed significant immune responses both in vitro and in vivo after stimulation with bacterial and pathogen-associated molecular patterns. After MpMyD88 overexpression/silencing, proinflame-matory cytokines (TNF-α, IFN-α, IL-6, and IL-8) also showed significant up-regulation/down-regulation. Moreover, we found that the antibacterial ability of cells over-expressing MpMyD88 was significantly stronger than that of control cells, while that of silenced MpMyD88 was significantly lower than that in control cells. Besides, we found that the overexpression of MpMyD88 significantly increased the activity of NF-κB. These results indicate that MpMyD88 plays an important role in the innate immune response.
Collapse
Affiliation(s)
- Xueshu Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuan Fang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jiahua Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yulin Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Shuting Gu
- Key Laboratory of Conventional Freshwater Fish Breeding and Health Culture Technology Germplasm Resources, Suzhou Shenhang Eco-technology Development Limited Company, Suzhou, PR China
| | - Rongquan Wang
- Key Laboratory of Conventional Freshwater Fish Breeding and Health Culture Technology Germplasm Resources, Suzhou Shenhang Eco-technology Development Limited Company, Suzhou, PR China
| | - Tiansheng Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
99
|
Zhou Z, Ding S, He Y, Ren J, Li W, Zhang Q. Northeast Chinese lamprey (Lethenteron morii) MyD88: Identification, expression, and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2019; 94:539-547. [PMID: 31533084 DOI: 10.1016/j.fsi.2019.09.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a key adaptor of Toll-like receptors (TLR), an important pattern recognition receptor of the innate immune system. To study the origin and evolution of the vertebrate TLR signaling pathway in innate immune systems, we analyzed the biological characteristics and functions of the MyD88 gene in Northeast Chinese lamprey (Lethenteron morii) using PCR amplification, real-time PCR analysis, dual luciferase reporter gene assay, immunofluorescence assay, and other methods. Bioinformatics analysis showed that LmMyD88 has a modular structure consisting of Toll/IL-1R domain (TIR) and death domain (DD), which is typical of the MyD88 family. A phylogenetic tree showed that the homology of LmMyD88 was consistent with the phylogenetic status of lampreys. Tissue expression analysis indicated that the mRNA expression was expressed in some normal tissues of larval and adult L. morii. Real-time PCR analysis showed that the expression of LmMyD88 in tissues, such as gill and kidney, of the adult increased significantly after infection by Pseudomonas aeruginosa. Subcellular localization results showed that LmMyD88 was expressed in the nucleus, cytoplasm, and other parts. A dual luciferase reporter assay indicated that LmMyD88 activated nuclear factor kappa B downstream of the TLR signaling pathway. This study suggested that LmMyD88 might play an important role in the innate immune signal transduction process of L. morii.
Collapse
Affiliation(s)
- Zebin Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Shaoqing Ding
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuanyuan He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
100
|
Degorce SL, Anjum R, Bloecher A, Carbajo RJ, Dillman KS, Drew L, Halsall CT, Lenz EM, Lindsay NA, Mayo MF, Pink JH, Robb GR, Rosen A, Scott JS, Xue Y. Discovery of a Series of 5-Azaquinazolines as Orally Efficacious IRAK4 Inhibitors Targeting MyD88L265P Mutant Diffuse Large B Cell Lymphoma. J Med Chem 2019; 62:9918-9930. [DOI: 10.1021/acs.jmedchem.9b01346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sébastien L. Degorce
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, U.K
| | - Rana Anjum
- Bioscience, Oncology R&D, AstraZeneca, Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Andrew Bloecher
- Bioscience, Oncology R&D, AstraZeneca, Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Rodrigo J. Carbajo
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, U.K
| | - Keith S. Dillman
- Bioscience, Oncology R&D, AstraZeneca, Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Lisa Drew
- Bioscience, Oncology R&D, AstraZeneca, Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Christopher T. Halsall
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, U.K
| | - Eva M. Lenz
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, U.K
| | - Nicola A. Lindsay
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, U.K
| | - Michele F. Mayo
- Bioscience, Oncology R&D, AstraZeneca, Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jennifer H. Pink
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, U.K
| | - Graeme R. Robb
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, U.K
| | - Alan Rosen
- Bioscience, Oncology R&D, AstraZeneca, Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - James S. Scott
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge Science Park, Unit 310 Darwin Building, Cambridge CB4 0WG, U.K
| | - Yafeng Xue
- Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Mölndal, Sweden
| |
Collapse
|