51
|
Anticancer chemotherapy and radiotherapy trigger both non-cell-autonomous and cell-autonomous death. Cell Death Dis 2018; 9:716. [PMID: 29915308 PMCID: PMC6006149 DOI: 10.1038/s41419-018-0747-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Even though cell death modalities elicited by anticancer chemotherapy and radiotherapy have been extensively studied, the ability of anticancer treatments to induce non-cell-autonomous death has never been investigated. By means of multispectral imaging flow-cytometry-based technology, we analyzed the lethal fate of cancer cells that were treated with conventional anticancer agents and co-cultured with untreated cells, observing that anticancer agents can simultaneously trigger cell-autonomous and non-cell-autonomous death in treated and untreated cells. After ionizing radiation, oxaliplatin, or cisplatin treatment, fractions of treated cancer cell populations were eliminated through cell-autonomous death mechanisms, while other fractions of the treated cancer cells engulfed and killed neighboring cells through non-cell-autonomous processes, including cellular cannibalism. Under conditions of treatment with paclitaxel, non-cell-autonomous and cell-autonomous death were both detected in the treated cell population, while untreated neighboring cells exhibited features of apoptotic demise. The transcriptional activity of p53 tumor-suppressor protein contributed to the execution of cell-autonomous death, yet failed to affect the non-cell-autonomous death by cannibalism for the majority of tested anticancer agents, indicating that the induction of non-cell-autonomous death can occur under conditions in which cell-autonomous death was impaired. Altogether, these results reveal that chemotherapy and radiotherapy can induce both non-cell-autonomous and cell-autonomous death of cancer cells, highlighting the heterogeneity of cell death responses to anticancer treatments and the unsuspected potential contribution of non-cell-autonomous death to the global effects of anticancer treatment.
Collapse
|
52
|
Kim BE, Leung DYM. Significance of Skin Barrier Dysfunction in Atopic Dermatitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:207-215. [PMID: 29676067 PMCID: PMC5911439 DOI: 10.4168/aair.2018.10.3.207] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
Abstract
The epidermis contains epithelial cells, immune cells, and microbes which provides a physical and functional barrier to the protection of human skin. It plays critical roles in preventing environmental allergen penetration into the human body and responsing to microbial pathogens. Atopic dermatitis (AD) is the most common, complex chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Multiple factors, including immune dysregulation, filaggrin mutations, deficiency of antimicrobial peptides, and skin dysbiosis contribute to skin barrier defects. In the initial phase of AD, treatment with moisturizers improves skin barrier function and prevents the development of AD. With the progression of AD, effective topical and systemic therapies are needed to reduce immune pathway activation and general inflammation. Targeted microbiome therapy is also being developed to correct skin dysbiosis associated with AD. Improved identification and characterization of AD phenotypes and endotypes are required to optimize the precision medicine approach to AD.
Collapse
Affiliation(s)
- Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
53
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Citation(s) in RCA: 3959] [Impact Index Per Article: 659.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
54
|
Songane M, Khair M, Saleh M. An updated view on the functions of caspases in inflammation and immunity. Semin Cell Dev Biol 2018; 82:137-149. [PMID: 29366812 DOI: 10.1016/j.semcdb.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
Abstract
The binary classification of mammalian caspases as either apoptotic or inflammatory is now obsolete. Emerging data indicate that all mammalian caspases are intricately involved in the regulation of inflammation and immunity. They participate in embryonic and adult tissue homeostasis, control leukocyte differentiation, activation and effector functions, and mediate innate and adaptive immunity signaling. Caspases also promote host resistance by regulating anti-oxidant defense and pathogen clearance through regulation of phagosomal maturation, actin dynamics and phagosome-lysosome fusion. Beyond apoptosis, they regulate inflammatory cell death, eliciting rapid pyroptosis of infected cells, while inhibiting necroptosis-mediated tissue destruction and chronic inflammation. In this review, we describe the cellular and molecular mechanisms underlying non-apoptotic functions of caspases in inflammation and immunity and provide an updated view of their functions as central regulators of tissue homeostasis and host defense.
Collapse
Affiliation(s)
- Mario Songane
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Mostafa Khair
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Maya Saleh
- Department of Medicine, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
55
|
Ramirez MLG, Salvesen GS. A primer on caspase mechanisms. Semin Cell Dev Biol 2018; 82:79-85. [PMID: 29329946 DOI: 10.1016/j.semcdb.2018.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Caspases belong to a diverse clan of proteolytic enzymes known as clan CD with highly disparate functions in cell signaling. The caspase members of this clan are only found in animals, and most of them orchestrate the demise of cells by the highly distinct regulated cell death phenotypes known as apoptosis and pyroptosis. This review looks at the mechanistic distinctions between the activity and activation mechanisms of mammalian caspases compared to other members of clan CD. We also compare and contrast the role of different caspase family members that program anti-inflammatory and pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Monica L Gonzalez Ramirez
- Graduate Program in Biomedical Sciences, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guy S Salvesen
- Graduate Program in Biomedical Sciences, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
56
|
Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Sci Rep 2017; 7:17446. [PMID: 29234126 PMCID: PMC5727156 DOI: 10.1038/s41598-017-17782-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
The homeostasis of the epidermis depends on keratinocyte differentiation and cornification, a mode of programmed cell death that does not elicit inflammation. Here, we report that cornification is associated with the expression of specific genes that control multiple steps of pyroptosis, another form of cell death that involves the processing and release of interleukin-1 family (IL1F) cytokines. Expression levels of pro-inflammatory IL1A and IL1B and of the pyroptotic pore-forming gasdermin (GSDM) D were downregulated during terminal differentiation of human keratinocytes in vitro. By contrast, negative regulators of IL-1 processing, including NLR family pyrin domain containing 10 (NLRP10) and pyrin domain-containing 1 (PYDC1), the anti-inflammatory IL1F members IL-37 (IL1F7) and IL-38 (IL1F10), and GSDMA, were strongly induced in differentiated keratinocytes. In human tissues, these keratinocyte differentiation-associated genes are expressed in the skin at higher levels than in any other organ, and mammalian species, that have lost the epidermal cornification program during evolution, i.e. whales and dolphins, lack homologs of these genes. Together, our results suggest that human epidermal cornification is accompanied by a tight control of pyroptosis and warrant further studies of potential defects in the balance between cornification and pyroptosis in skin pathologies.
Collapse
|
57
|
Transcription Factor CTIP1/ BCL11A Regulates Epidermal Differentiation and Lipid Metabolism During Skin Development. Sci Rep 2017; 7:13427. [PMID: 29044125 PMCID: PMC5647389 DOI: 10.1038/s41598-017-13347-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
The epidermal permeability barrier (EPB) prevents organisms from dehydration and infection. The transcriptional regulation of EPB development is poorly understood. We demonstrate here that transcription factor COUP-TF-interacting protein 1 (CTIP1/BCL11A; hereafter CTIP1) is highly expressed in the developing murine epidermis. Germline deletion of Ctip1 (Ctip1−/−) results in EPB defects accompanied by compromised epidermal differentiation, drastic reduction in profilaggrin processing, reduced lamellar bodies in granular layers and significantly altered lipid composition. Transcriptional profiling of Ctip1−/− embryonic skin identified altered expression of genes encoding lipid-metabolism enzymes, skin barrier-associated transcription factors and junctional proteins. CTIP1 was observed to interact with genomic elements within the regulatory region of the gene encoding the differentiation-associated gene, Fos-related antigen2 (Fosl2) and lipid-metabolism-related gene, Fatty acid elongase 4 (Elvol4), and the expression of both was altered in Ctip1−/− mice. CTIP1 appears to play a role in EPB establishment of via direct or indirect regulation of a subset of genes encoding proteins involved in epidermal differentiation and lipid metabolism. These results identify potential, CTIP1-regulated avenues for treatment of skin disorders involving EBP defects.
Collapse
|
58
|
Crawford M, Dagnino L. Scaffolding proteins in the development and maintenance of the epidermal permeability barrier. Tissue Barriers 2017; 5:e1341969. [PMID: 28665776 DOI: 10.1080/21688370.2017.1341969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The skin of mammals and other terrestrial vertebrates protects the organism against the external environment, preventing heat, water and electrolyte loss, as well as entry of chemicals and pathogens. Impairments in the epidermal permeability barrier function are associated with the genesis and/or progression of a variety of pathological conditions, including genetic inflammatory diseases, microbial and viral infections, and photodamage induced by UV radiation. In mammals, the outside-in epidermal permeability barrier is provided by the joint action of the outermost cornified layer, together with assembled tight junctions in granular keratinocytes found in the layers underneath. Tight junctions serve as both outside-in and inside-out barriers, and impede paracellular movements of ions, water, macromolecules and microorganisms. At the molecular level, tight junctions consist of integral membrane proteins that form an extracellular seal between adjacent cells, and associate with cytoplasmic scaffold proteins that serve as links with the actin cytoskeleton. In this review, we address the roles that scaffold proteins play specifically in the establishment and maintenance of the epidermal permeability barrier, and how various pathologies alter or impair their functions.
Collapse
Affiliation(s)
- Melissa Crawford
- a Department of Physiology and Pharmacology , Children's Health Research Institute and Lawson Health Research Institute, The University of Western Ontario , London , Ontario , Canada
| | - Lina Dagnino
- a Department of Physiology and Pharmacology , Children's Health Research Institute and Lawson Health Research Institute, The University of Western Ontario , London , Ontario , Canada
| |
Collapse
|
59
|
Handa T, Katayama A, Yokobori T, Yamane A, Horiguchi J, Kawabata-Iwakawa R, Rokudai S, Bao P, Gombodorj N, Altan B, Kaira K, Asao T, Kuwano H, Nishiyama M, Oyama T. Caspase14 expression is associated with triple negative phenotypes and cancer stem cell marker expression in breast cancer patients. J Surg Oncol 2017; 116:706-715. [PMID: 28570747 DOI: 10.1002/jso.24705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/06/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND OBJECTIVES The Caspase14 (CASP14) was reported that the low expression of CASP14 in ovarian cancer and colon cancer was associated with cancer progression, on the other hand, that the CASP14 expression in breast cancer was higher than that of non-cancerous tissues. The purpose of this study is to determine the clinical significance of CASP14 in breast cancer. METHODS We performed immunohistochemistry for CASP14, ER, PgR, HER2, Ki67, EGFR, CK5/6, CD44, CD24, ALDH1, claudins, and androgen receptor in 222 breast cancer patients including 55 TNBC cases, and evaluated the relationship of CASP14, above-mentioned markers, and prognosis. Using public microarray database of breast cancer, the prognostic value of CASP14 was calculated. RESULTS High CASP14 expression was significantly associated with TNBC subtype (P = 0.015), nuclear grade (P = 0.006), Ki67, EGFR (P < 0.001, P = 0.016), ALDH1, CD44 and CD24 (P < 0.001, P < 0.001, P = 0.001) in 222 breast cancer cases, and the high expression of claudin1 (P = 0.017), and androgen receptor (P = 0.002) in TNBC cases was related to the high CASP14. According to the public database, survival in the high CASP14 breast cancer patients was shorter than low CASP14 patients. CONCLUSIONS High CASP14 expression is a marker of breast cancer aggressiveness in association with proliferation, TNBC phenotype, and cancer stemness.
Collapse
Affiliation(s)
- Tadashi Handa
- Department of Diagnostic Pathology, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Takehiko Yokobori
- Research Program for Omics-Based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Arito Yamane
- Department of Molecular Pharmacology and Oncology, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Jun Horiguchi
- Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Department of Molecular Pharmacology and Oncology, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Pinjie Bao
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Navchaa Gombodorj
- Department of Molecular Pharmacology and Oncology, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Bolag Altan
- Department of Oncology Clinical Development, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Takayuki Asao
- Big Data Center for Integrative Analysis, Gunma University Initiative for Advance Research (GIAR), Maebashi, Japan
| | - Hiroyuki Kuwano
- Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Japan
| | - Masahiko Nishiyama
- Research Program for Omics-Based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University, Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
60
|
Caspases and their substrates. Cell Death Differ 2017; 24:1380-1389. [PMID: 28498362 DOI: 10.1038/cdd.2017.44] [Citation(s) in RCA: 512] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
, or for pyroptosis, gasdermin D. For the most part, it appears that cleavage events function cooperatively in the cell death process to generate a proteolytic synthetic lethal outcome. In contrast to apoptosis, far less is known about caspase biology in non-apoptotic cellular processes, such as cellular remodeling, including which caspases are activated, the mechanisms of their activation and deactivation, and the key substrate targets. Here we survey the progress made in global identification of caspase substrates using proteomics and the exciting new avenues these studies have opened for understanding the molecular logic of substrate cleavage in apoptotic and non-apoptotic processes.
Collapse
|
61
|
Phospholipase Cδ1 regulates p38 MAPK activity and skin barrier integrity. Cell Death Differ 2017; 24:1079-1090. [PMID: 28430185 DOI: 10.1038/cdd.2017.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 03/09/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Keratinocytes undergo a unique type of programmed cell death known as cornification, which leads to the formation of the stratum corneum (SC), the main physical barrier of the epidermis. A defective epidermal barrier is a hallmark of the two most common inflammatory skin disorders, psoriasis, and atopic dermatitis. However, the detailed molecular mechanisms of skin barrier formation are not yet fully understood. Here, we showed that downregulation of phospholipase C (PLC) δ1, a Ca2+-mobilizing and phosphoinositide-metabolizing enzyme abundantly expressed in the epidermis, impairs the barrier functions of the SC. PLCδ1 downregulation also impairs localization of tight junction proteins. Loss of PLCδ1 leads to a decrease in intracellular Ca2+ concentrations and nuclear factor of activated T cells activity, along with hyperactivation of p38 mitogen-activated protein kinase (MAPK) and inactivation of RhoA. Treatment with a p38 MAPK inhibitor reverses the barrier defects caused by PLCδ1 downregulation. Interestingly, this treatment also attenuates psoriasis-like skin inflammation in imiquimod-treated mice. These findings demonstrate that PLCδ1 is essential for epidermal barrier integrity. This study also suggests a possible link between PLCδ1 downregulation, p38 MAPK hyperactivation, and barrier defects in psoriasis-like skin inflammation.
Collapse
|
62
|
Naeem AS, Tommasi C, Cole C, Brown SJ, Zhu Y, Way B, Willis Owen SAG, Moffatt M, Cookson WO, Harper JI, Di WL, Brown SJ, Reinheckel T, O'Shaughnessy RFL. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis. J Allergy Clin Immunol 2017; 139:1228-1241. [PMID: 27913303 PMCID: PMC5380661 DOI: 10.1016/j.jaci.2016.09.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/05/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. OBJECTIVE We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. RESULTS We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. CONCLUSION Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD.
Collapse
Affiliation(s)
- Aishath S Naeem
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Cristina Tommasi
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Christian Cole
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Stuart J Brown
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Yanan Zhu
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Benjamin Way
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | | | - Miriam Moffatt
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - William O Cookson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - John I Harper
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Wei-Li Di
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Sara J Brown
- Centre for Dermatology and Genetic Medicine, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Ryan F L O'Shaughnessy
- Immunobiology and Dermatology, UCL Institute of Child Health, London, United Kingdom; Livingstone Skin Research Centre, UCL Institute of Child Health, London, United Kingdom.
| |
Collapse
|
63
|
Xue M, Lin H, Zhao R, Liang HPH, Jackson C. The differential expression of protease activated receptors contributes to functional differences between dark and fair keratinocytes. J Dermatol Sci 2017; 85:178-185. [DOI: 10.1016/j.jdermsci.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/11/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023]
|
64
|
Di ZH, Ma L, Qi RQ, Sun XD, Huo W, Zhang L, Lyu YN, Hong YX, Chen HD, Gao XH. T Helper 1 and T Helper 2 Cytokines Differentially Modulate Expression of Filaggrin and its Processing Proteases in Human Keratinocytes. Chin Med J (Engl) 2017; 129:295-303. [PMID: 26831231 PMCID: PMC4799573 DOI: 10.4103/0366-6999.174489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Atopic dermatitis (AD) is characterized by defective skin barrier and imbalance in T helper 1/T helper 2 (Th1/Th2) cytokine expression. Filaggrin (FLG) is the key protein to maintaining skin barrier function. Recent studies indicated that Th1/Th2 cytokines influence FLG expression in keratinocytes. However, the role of Th1/Th2 cytokines on FLG processing is not substantially documented. Our aim was to investigate the impact of Th1/Th2 cytokines on FLG processing. Methods: HaCaT cells and normal human keratinocytes were cultured in low and high calcium media and stimulated by either interleukin (IL)-4, 13 or interferon-γ (IFN-γ). FLG, its major processing proteases and key protease inhibitor lymphoepithelial Kazal-type-related inhibitor (LEKTI) were measured by both real-time quantitative polymerase chain reaction and Western blotting. Their expression was also evaluated in acute and chronic AD lesions by immunohistochemistry. Results: IL-4/13 significantly reduced, while IFN-γ significantly up-regulated FLG expression. IL-4/13 significantly increased, whereas IFN-γ significantly decreased the expression of kallikreins 5 and 7, matriptase and channel-activating serine protease 1. On the contrary, IL-4/13 significantly decreased, while IFN-γ increased the expression of LEKTI and caspase-14. Similar trends were observed in AD lesions. Conclusions: Our results suggested that Th1/Th2 cytokines differentially regulated the expression of major FLG processing enzymes. The imbalance between Th1 and Th2 polarized immune response seems to extend to FLG homeostasis, through the network of FLG processing enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
65
|
Rajagopalan P, Nanjappa V, Raja R, Jain AP, Mangalaparthi KK, Sathe GJ, Babu N, Patel K, Cavusoglu N, Soeur J, Pandey A, Roy N, Breton L, Chatterjee A, Misra N, Gowda H. How Does Chronic Cigarette Smoke Exposure Affect Human Skin? A Global Proteomics Study in Primary Human Keratinocytes. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:615-626. [PMID: 27828771 DOI: 10.1089/omi.2016.0123] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cigarette smoking has been associated with multiple negative effects on human skin. Long-term physiological effects of cigarette smoke are through chronic and not acute exposure. Molecular alterations due to chronic exposure to cigarette smoke remain unclear. Primary human skin keratinocytes chronically exposed to cigarette smoke condensate (CSC) showed a decreased wound-healing capacity with an increased expression of NRF2 and MMP9. Using quantitative proteomics, we identified 4728 proteins, of which 105 proteins were overexpressed (≥2-fold) and 41 proteins were downregulated (≤2-fold) in primary skin keratinocytes chronically exposed to CSC. We observed an alteration in the expression of several proteins involved in maintenance of epithelial barrier integrity, including keratin 80 (5.3 fold, p value 2.5 × 10-7), cystatin A (3.6-fold, p value 3.2 × 10-3), and periplakin (2.4-fold, p value 1.2 × 10-8). Increased expression of proteins associated with skin hydration, including caspase 14 (2.2-fold, p value 4.7 × 10-2) and filaggrin (3.6-fold, p value 5.4 × 10-7), was also observed. In addition, we report differential expression of several proteins, including adipogenesis regulatory factor (2.5-fold, p value 1.3 × 10-3) and histone H1.0 (2.5-fold, p value 6.3 × 10-3) that have not been reported earlier. Bioinformatics analyses demonstrated that proteins differentially expressed in response to CSC are largely related to oxidative stress, maintenance of skin integrity, and anti-inflammatory responses. Importantly, treatment with vitamin E, a widely used antioxidant, could partially rescue adverse effects of CSC exposure in primary skin keratinocytes. The utility of antioxidant-based new dermatological formulations in delaying or preventing skin aging and oxidative damages caused by chronic cigarette smoke exposure warrants further clinical investigations and multi-omics research.
Collapse
Affiliation(s)
- Pavithra Rajagopalan
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 2 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Vishalakshi Nanjappa
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Remya Raja
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| | - Ankit P Jain
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 2 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Kiran K Mangalaparthi
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Gajanan J Sathe
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 4 Manipal University , Manipal, India
| | - Niraj Babu
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| | - Krishna Patel
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Jeremie Soeur
- 5 L'Oréal Research and Innovation , Aulnay Sous Bois, France
| | - Akhilesh Pandey
- 6 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
- 7 Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland
- 8 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
- 9 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Nita Roy
- 10 L'Oréal India, Bangalore, India
| | - Lionel Breton
- 5 L'Oréal Research and Innovation , Aulnay Sous Bois, France
| | - Aditi Chatterjee
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| | | | - Harsha Gowda
- 1 Institute of Bioinformatics , International Tech Park, Bangalore, India
| |
Collapse
|
66
|
Fang JY, Wang PW, Huang CH, Chen MH, Wu YR, Pan TL. Skin aging caused by intrinsic or extrinsic processes characterized with functional proteomics. Proteomics 2016; 16:2718-2731. [PMID: 27459910 DOI: 10.1002/pmic.201600141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022]
Abstract
The skin provides protection against environmental stress. However, intrinsic and extrinsic aging causes significant alteration to skin structure and components, which subsequently impairs molecular characteristics and biochemical processes. Here, we have conducted an immunohistological investigation and established the proteome profiles on nude mice skin to verify the specific responses during aging caused by different factors. Our results showed that UVB-elicited aging results in upregulation of proliferating cell nuclear antigen and strong oxidative damage in DNA, whereas chronological aging abolished epidermal cell growth and increased the expression of caspase-14, as well as protein carbonylation. Network analysis indicated that the programmed skin aging activated the ubiquitin system and triggered obvious downregulation of 14-3-3 sigma, which might accelerate the loss of cell growth capacity. On the other hand, UVB stimulation enhanced inflammation and the risk of skin carcinogenesis. Collectively, functional proteomics could provide large-scale investigation of the potent proteins and molecules that play important roles in skin subjected to both intrinsic and extrinsic aging.
Collapse
Affiliation(s)
- Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Wen Wang
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hsun Huang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Ru Wu
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
67
|
Le Lamer M, Pellerin L, Reynier M, Cau L, Pendaries V, Leprince C, Méchin MC, Serre G, Paul C, Simon M. Defects of corneocyte structural proteins and epidermal barrier in atopic dermatitis. Biol Chem 2016; 396:1163-79. [PMID: 26020560 DOI: 10.1515/hsz-2015-0141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/26/2015] [Indexed: 11/15/2022]
Abstract
The main function of the epidermis is to establish a vital multifunctional barrier between the body and its external environment. A defective epidermal barrier is one of the key features of atopic dermatitis (AD), a chronic and relapsing inflammatory skin disorder that affects up to 20% of children and 2-3% of adults and often precedes the development of allergic rhinitis and asthma. This review summarizes recent discoveries on the origin of the skin barrier alterations in AD at the structural protein level, including hereditary and acquired components. The consequences of the epidermal barrier alteration on our current understanding of the pathogenesis of AD, and its possible implications on the treatment of patients, are discussed here.
Collapse
|
68
|
Seidelin JB. Regulation of antiapoptotic and cytoprotective pathways in colonic epithelial cells in ulcerative colitis. Scand J Gastroenterol 2016; 50 Suppl 1:1-29. [PMID: 26513451 DOI: 10.3109/00365521.2016.1101245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease involving the colon resulting in bloody diarrhea and increased risk of colorectal cancer in certain patient subgroups. Increased apoptosis in the epithelial cell layer causes increased permeability, especially during flares; this leads to translocation of luminal pathogens resulting in a continued inflammatory drive. The present work investigates how epithelial apoptosis is regulated in ulcerative colitis. The main results are that Fas mediated apoptosis is inhibited during flares of ulcerative colitis, probably by an upregulation of cellular inhibitor of apoptosis protein 2 (cIAP2) and cellular FLICE-like inhibitory protein. cIAP2 is upregulated in regenerative epithelial cells both in ulcerative colitis and in experimental intestinal wounds. Inhibition of cIAP2 decreases wound healing in vitro possibly through inhibition of migration. Altogether, it is shown that epithelial cells in ulcerative colitis responds to the hostile microenvironment by activation of cytoprotective pathways that tend to counteract the cytotoxic effects of inflammation. However, the present studies also show that epithelial cells produce increased amounts of reactive oxygen species during stimulation with tumor necrosis factor-α and interferon-γ resulting in DNA instability. The combined effect of increased DNA-instability and decreased apoptosis responses could lead to neoplasia.
Collapse
Affiliation(s)
- Jakob B Seidelin
- a Department of Gastroenterology, Medical Section , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| |
Collapse
|
69
|
Salvesen GS, Hempel A, Coll NS. Protease signaling in animal and plant-regulated cell death. FEBS J 2016; 283:2577-98. [PMID: 26648190 PMCID: PMC5606204 DOI: 10.1111/febs.13616] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022]
Abstract
This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom-specific with very little overlap.
Collapse
Affiliation(s)
- Guy S. Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anne Hempel
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nuria Sanchez Coll
- Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
70
|
Chen CY, Chen CJ, Lai CH, Wu BY, Lee SP, Johnson MD, Lin CY, Wang JK. Increased matriptase zymogen activation by UV irradiation protects keratinocyte from cell death. J Dermatol Sci 2016; 83:34-44. [DOI: 10.1016/j.jdermsci.2016.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 02/03/2016] [Accepted: 03/07/2016] [Indexed: 01/20/2023]
|
71
|
Jang Y, Lee AY, Chang SH, Jeong SH, Park KH, Paik MK, Cho NJ, Kim JE, Cho MH. Trifloxystrobin induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in HaCaT, human keratinocyte cells. Drug Chem Toxicol 2016; 40:67-73. [DOI: 10.1080/01480545.2016.1174871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
72
|
Strasser B, Mlitz V, Fischer H, Tschachler E, Eckhart L. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins. Exp Dermatol 2016; 24:365-9. [PMID: 25739514 PMCID: PMC4437054 DOI: 10.1111/exd.12681] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent.
Collapse
Affiliation(s)
- Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
73
|
Hajdarbegovic E, Blom H, Verkouteren J, Hofman A, Hollestein L, Nijsten T. Atopic dermatitis is not associated with actinic keratosis: cross‐sectional results from the Rotterdam study. Br J Dermatol 2016; 175:89-94. [DOI: 10.1111/bjd.14423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 11/30/2022]
Affiliation(s)
- E. Hajdarbegovic
- Department of Dermatology and Venerology Erasmus Medical Centre Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| | - H. Blom
- Department of Dermatology and Venerology Erasmus Medical Centre Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| | - J.A.C. Verkouteren
- Department of Dermatology and Venerology Erasmus Medical Centre Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| | - A. Hofman
- Department of Epidemiology Erasmus Medical Centre Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| | - L.M. Hollestein
- Department of Dermatology and Venerology Erasmus Medical Centre Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| | - T. Nijsten
- Department of Dermatology and Venerology Erasmus Medical Centre Burgemeester s'Jacobplein 51 3015 CA Rotterdam the Netherlands
| |
Collapse
|
74
|
Galluzzi L, López-Soto A, Kumar S, Kroemer G. Caspases Connect Cell-Death Signaling to Organismal Homeostasis. Immunity 2016; 44:221-31. [DOI: 10.1016/j.immuni.2016.01.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 01/01/2023]
|
75
|
Forbes D, Johnston L, Gardner J, MacCallum SF, Campbell LE, Dinkova-Kostova AT, McLean WHI, Ibbotson SH, Dawe RS, Brown SJ. Filaggrin genotype does not determine the skin's threshold to UV-induced erythema. J Allergy Clin Immunol 2016; 137:1280-1282.e3. [PMID: 26830116 PMCID: PMC4819769 DOI: 10.1016/j.jaci.2015.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/28/2015] [Accepted: 11/14/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Deborah Forbes
- Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Leona Johnston
- Photobiology Unit, Dermatology Department, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - June Gardner
- Photobiology Unit, Dermatology Department, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Stephanie F MacCallum
- Dermatology and Genetic Medicine, Division of Molecular Medicine, College of Life Sciences and College of Medicine, Dentistry and Nursing, University of Dundee, Dundee, United Kingdom
| | - Linda E Campbell
- Dermatology and Genetic Medicine, Division of Molecular Medicine, College of Life Sciences and College of Medicine, Dentistry and Nursing, University of Dundee, Dundee, United Kingdom
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - W H Irwin McLean
- Dermatology and Genetic Medicine, Division of Molecular Medicine, College of Life Sciences and College of Medicine, Dentistry and Nursing, University of Dundee, Dundee, United Kingdom
| | - Sally H Ibbotson
- Photobiology Unit, Dermatology Department, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Robert S Dawe
- Photobiology Unit, Dermatology Department, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Sara J Brown
- Dermatology and Genetic Medicine, Medical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, Dundee, United Kingdom.
| |
Collapse
|
76
|
George VC, Kumar DRN, Suresh PK, Kumar RA. Luteolin induces caspase-14-mediated terminal differentiation in human epidermal keratinocytes. In Vitro Cell Dev Biol Anim 2015; 51:1072-6. [DOI: 10.1007/s11626-015-9936-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/20/2015] [Indexed: 02/06/2023]
|
77
|
Kumar R, Kumar Pate S, Rami Reddy B, Bhatt M, Karthik K, Gandham RK, Singh Mali Y, Dhama K. Apoptosis and Other Alternate Mechanisms of Cell Death. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.646.668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
78
|
Furio L, Hovnanian A. Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy. Biol Chem 2015; 395:945-58. [PMID: 25153381 DOI: 10.1515/hsz-2014-0137] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
Netherton syndrome (NS) is an orphan genetic skin disease with a profound skin barrier defect and severe allergic manifestations. NS is caused by loss of function mutations in SPINK5 encoding lympho-epithelial Kazal-type inhibitor (LEKTI), a secreted multi-domain serine protease inhibitor expressed in stratified epithelia. Studies in mouse models and in NS patients have established that unopposed kallikrein 5 activity triggers stratum corneum detachment and activates PAR-2 signaling, leading to the autonomous production of pro-allergic and pro-inflammatory mediators. This emerging knowledge on NS pathogenesis has highlighted a central role for protease regulation in skin homeostasis but also in the complexity of the disease, and holds the promise of new specific treatments.
Collapse
|
79
|
Matsui T, Amagai M. Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol 2015; 27:269-80. [PMID: 25813515 DOI: 10.1093/intimm/dxv013] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023] Open
Abstract
The skin is the largest organ of the mammalian body. The outermost layer of mammalian skin, the stratum corneum (SC) of the epidermis, consists of piles of dead corneocytes that are the end-products of terminal differentiation of epidermal keratinocytes. The SC performs a crucial barrier function of epidermis. Langerhans cells, when activated, extend their dendrites through tight junctions just beneath the SC to capture external antigens. Recently, knowledge of the biology of corneocytes ('corneobiology') has progressed rapidly and many key factors that modulate its barrier function have been identified and characterized. In this review article on the SC, we summarize its evolution, formation, structure and function. Cornification is an important step of SC formation at the conversion of living epithelial cells to dead corneocytes, and consists of three major steps: formation of the intracellular keratin network, cornified envelopes and intercellular lipids. After cornification, the SC undergoes chemical reactions to form the mature SC with different functional layers. Finally, the SC is shed off at the surface ('desquamation'), mediated by a cascade of several proteases. This review will be helpful to understand our expanding knowledge of the biology of the SC, where immunity meets external antigens.
Collapse
Affiliation(s)
- Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
80
|
Teng X, Hardwick JM. Cell death in genome evolution. Semin Cell Dev Biol 2015; 39:3-11. [PMID: 25725369 PMCID: PMC4410082 DOI: 10.1016/j.semcdb.2015.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
Abstract
Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that any early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis.
Collapse
Affiliation(s)
- Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, PR China; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
81
|
Inflammatory caspases: key regulators of inflammation and cell death. Biol Chem 2015; 396:193-203. [DOI: 10.1515/hsz-2014-0253] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/05/2014] [Indexed: 01/10/2023]
Abstract
Abstract
The innate immune system represents the first line of defence against infectious agents, and co-ordinates cellular and molecular mechanisms that result in effective inflammatory and anti-microbial responses against pathogens. Infection and cellular stress trigger assembly of canonical and noncanonical inflammasome complexes that activate the inflammatory caspases-1 and -11, respectively. These inflammatory caspases play key roles in innate immune responses by inducing pyroptosis to halt intracellular replication of pathogens, and by engaging the extracellular release of pro-inflammatory cytokines and danger signals. In addition, the inflammatory caspases-4, -5 and -11 were recently shown to directly bind microbial components. Although the immune roles of caspase-12 are debated, it was proposed to dampen inflammatory responses by interfering with caspase-1 activation and other innate immune pathways. Here, we recapitulate the reported roles of inflammatory caspases with an emphasis on recent insights into their biological functions.
Collapse
|
82
|
Chamcheu JC, Pal HC, Siddiqui IA, Adhami VM, Ayehunie S, Boylan BT, Noubissi FK, Khan N, Syed DN, Elmets CA, Wood GS, Afaq F, Mukhtar H. Prodifferentiation, anti-inflammatory and antiproliferative effects of delphinidin, a dietary anthocyanidin, in a full-thickness three-dimensional reconstituted human skin model of psoriasis. Skin Pharmacol Physiol 2015; 28:177-88. [PMID: 25620035 DOI: 10.1159/000368445] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disorder of skin and joints for which conventional treatments that are effective in clearing the moderate-to-severe disease are limited due to long-term safety issues. This necessitates exploring the usefulness of botanical agents for treating psoriasis. We previously showed that delphinidin, a diet-derived anthocyanidin endowed with antioxidant and anti-inflammatory properties, induces normal epidermal keratinocyte differentiation and suggested its possible usefulness for the treatment of psoriasis [1]. OBJECTIVES To investigate the effect of delphinidin (0-20 μM; 2-5 days) on psoriatic epidermal keratinocyte differentiation, proliferation and inflammation using a three-dimensional reconstructed human psoriatic skin equivalent (PSE) model. METHODS PSEs and normal skin equivalents (NSEs) established on fibroblast-contracted collagen gels with respective psoriatic and normal keratinocytes and treated with/without delphinidin were analyzed for histology, expression of markers of differentiation, proliferation and inflammation using histomorphometry, immunoblotting, immunochemistry, qPCR and cultured supernatants for cytokine with a Multi-Analyte ELISArray Kit. RESULTS Our data show that treatment of PSE with delphinidin induced (1) cornification without affecting apoptosis and (2) the mRNA and protein expression of markers of differentiation (caspase-14, filaggrin, loricrin, involucrin). It also decreased the expression of markers of proliferation (Ki67 and proliferating cell nuclear antigen) and inflammation (inducible nitric oxide synthase and antimicrobial peptides S100A7-psoriasin and S100A15-koebnerisin, which are often induced in psoriatic skin). ELISArray showed increased release of psoriasis-associated keratinocyte-derived proinflammatory cytokines in supernatants of the PSE cultures, and this increase was significantly suppressed by delphinidin. CONCLUSIONS These observations provide a rationale for developing delphinidin for the management of psoriasis.
Collapse
|
83
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 889] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
84
|
Thyssen JP, Laursen ASD, Husemoen LLN, Stender S, Szecsi PB, Menné T, Johansen JD, Linneberg A. Variants in caspase-14 gene as risk factors for xerosis and atopic dermatitis. J Eur Acad Dermatol Venereol 2014; 30:446-8. [PMID: 25443669 DOI: 10.1111/jdv.12821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- J P Thyssen
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital, Gentofte, Denmark
| | - A S D Laursen
- Research Centre for Prevention and Health, Copenhagen, Denmark
| | - L L N Husemoen
- Research Centre for Prevention and Health, Copenhagen, Denmark
| | - S Stender
- Department of Clinical Biochemistry, Copenhagen University Hospital, Gentofte, Denmark
| | - P B Szecsi
- Department of Clinical Biochemistry, Copenhagen University Hospital, Gentofte, Denmark
| | - T Menné
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital, Gentofte, Denmark
| | - J D Johansen
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital, Gentofte, Denmark
| | - A Linneberg
- Research Centre for Prevention and Health, Copenhagen, Denmark.,Department of Clinical Experimental Research, Glostrup University Hospital, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
85
|
Pérez P. Glucocorticoid receptors, epidermal homeostasis and hair follicle differentiation. DERMATO-ENDOCRINOLOGY 2014. [DOI: 10.4161/derm.15332] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
86
|
Jung M, Choi J, Lee SA, Kim H, Hwang J, Choi EH. Pyrrolidone carboxylic acid levels or caspase-14 expression in the corneocytes of lesional skin correlates with clinical severity, skin barrier function and lesional inflammation in atopic dermatitis. J Dermatol Sci 2014; 76:231-9. [PMID: 25315296 DOI: 10.1016/j.jdermsci.2014.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Dry skin in atopic dermatitis (AD) mainly results from barrier impairment due to deficiency of ceramide and natural moisturizing factors including pyrrolidone carboxylic acid (PCA) in stratum corneum (SC). Caspase-14 cleaves filaggrin monomers to free amino acids and their derivatives such as PCA, contributing natural moisturizing factors. Cytokines in the corneocytes represent cutaneous inflammation severity of AD patients. OBJECT To analyze the correlations of PCA, caspase-14 and cytokines in corneocytes with clinical severity, barrier function and skin inflammation, those were quantitated. METHODS A total of 73 persons were enrolled: 21 patients with mild AD, 21 with moderate-to-severe AD, 13 with X-linked ichthyosis (XLI) as a negative control for filaggrin gene (FLG) mutation, and 18 healthy controls. Skin barrier functions such as basal transepidermal water loss (TEWL), stratum corneum (SC) hydration and skin surface pH were measured. To collect corneocytes, stripping with D-squame discs was done on lesional and non-lesional skin. And then PCA was isolated from D-squame discs and quantitated by LC-MS/MS. Cytokine assays were performed. RESULTS The quantity of PCA and caspase-14 was decreased in inflammatory lesions compared to non-lesion in AD patients. And the amounts of PCA and caspase-14 in the lesion of AD patients correlated with clinical severity as determined by eczema area and severity index score and the skin barrier functions. Also, the expressions of TNF-α and IL-13 inversely correlated with PCA quantity. CONCLUSION The quantity of PCA or caspase-14 in the corneocytes of the lesional skin of AD patients reflects the clinical severity, skin barrier function and the degree of lesional inflammation.
Collapse
Affiliation(s)
- Minyoung Jung
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 220-701 Korea
| | - Jaewoong Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 220-701 Korea
| | - Seon-Ah Lee
- Seoul Medical Center Research Institute, Seoul, Korea
| | - Hyunjung Kim
- Seoul Medical Center Research Institute, Seoul, Korea; Atopy Asthma Center/Department of Dermatology, Seoul Medical Center, Seoul, Korea
| | - Joonsung Hwang
- WCI Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 220-701 Korea.
| |
Collapse
|
87
|
Kubo A. Nagashima-type palmoplantar keratosis: a common Asian type caused by SERPINB7 protease inhibitor deficiency. J Invest Dermatol 2014; 134:2076-2079. [PMID: 25029323 DOI: 10.1038/jid.2014.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nagashima-type palmoplantar keratosis (NPPK) is an autosomal recessive diffuse non-epidermolytic palmoplantar keratosis caused by mutations in SERPINB7, a member of the serine protease inhibitor superfamily. Genetic studies suggest that NPPK is the most common palmoplantar keratosis in Japan, and probably Asia, but one that is extremely rare in Western countries. In this issue, Yin et al. report a founder effect of a SERPINB7 mutation in Chinese populations.
Collapse
Affiliation(s)
- Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
88
|
Lemound J, Stucki-Koch A, Stoetzer M, Kokemüller H, Gellrich NC, Kreipe H, Hussein K. Aberrant expression of caspase 14 in salivary gland carcinomas. J Oral Pathol Med 2014; 44:444-8. [PMID: 25257949 DOI: 10.1111/jop.12253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Caspase 14 is reduced in adenocarcinomas of the stomach and colon. In contrast, breast and lung adenocarcinomas frequently show an overexpression of caspase 14. Salivary gland adenocarcinomas have not been evaluated for potential aberrant caspase 14 expression. MATERIALS AND METHODS Samples from salivary gland carcinomas (n = 43) were analysed by immunohistochemistry (caspase 14, filaggrin, GATA3 and Ki67) and fluorescence in situ hybridization. RESULTS Caspase 14 is not expressed in normal salivary glands, while in a subfraction of carcinomas (32%) an aberrant expression was found. Filaggrin could not be detected. Caspase 14 staining was not associated with tumour dedifferentiation, GATA3 expression or amplification of gene locus 19p13. CONCLUSION In summary, aberrant expression of caspase 14 can be found in a subfraction of salivary gland carcinomas but could not be used as a biomarker for a specific carcinoma subtype of the salivary gland.
Collapse
Affiliation(s)
- Juliana Lemound
- Department of Craniomaxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | | | - Marcus Stoetzer
- Department of Craniomaxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | - Horst Kokemüller
- Department of Craniomaxillofacial Surgery, Hannover Medical School, Hannover, Germany
| | | | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Kais Hussein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
89
|
Joehlin-Price AS, Elkins CT, Stephens JA, Cohn DE, Knobloch TJ, Weghorst CM, Suarez AA. Comprehensive evaluation of caspase-14 in vulvar neoplasia: an opportunity for treatment with black raspberry extract. Gynecol Oncol 2014; 135:503-9. [PMID: 25256208 DOI: 10.1016/j.ygyno.2014.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The aim of this study is to determine the expression of caspase-14, a key protein in maturation of squamous epithelia, in archival malignant and premalignant vulvar squamous lesions and examine in-vitro effects of a black raspberry extract (BRB-E) on a vulvar squamous cell carcinoma (VSCC) cell line. METHODS VSCC cell cultures were exposed to different BRB-E concentrations and used to create cell blocks. Immunohistochemistry for caspase-14 was performed on cell block sections, whole tissue sections, and a tissue microarray consisting of normal vulvar skin, lichen sclerosus (LS), classic and differentiated vulvar intraepithelial neoplasia (cVIN and dVIN respectively), and VSCC. RESULTS LS demonstrated abnormal full thickness (5/11) or absent (1/11) caspase-14 staining. dVIN often showed markedly reduced expression (4/7), and cVIN occasionally demonstrated either absent or reduced caspase-14 (6/22). VSCC predominantly had absent or markedly reduced caspase-14 (26/28). VSCC cell cultures demonstrated a significant increase in caspase-14 (p=0.013) after BRB-E treatment: 7.3% (±2.0%) of untreated cells showed caspase-14 positivity, while 21.3% (±8.9%), 21.7% (±4.8%), and 22.6% (±5.3%) of cells were positive for caspase-14 after treatment with 200, 400, and 800 μg/mL BRB-E, respectively. Pair-wise comparisons between the treatment groups and the control demonstrated significant differences between no treatment with BRB-E and each of these treatment concentrations (Dunnett's adjusted p-values: 0.024, 0.021, and 0.014, respectively). CONCLUSIONS Caspase-14 is frequently decreased in premalignant and malignant vulvar squamous lesions, and is upregulated in VSCC cell culture by BRB-E. BRB-E should be further explored and may ultimately be incorporated in topical preparations.
Collapse
Affiliation(s)
- Amy S Joehlin-Price
- Department of Pathology, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210, USA
| | - Camille T Elkins
- Department of Pathology, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210, USA
| | - Julie A Stephens
- Center for Biostatistics, The Ohio State University, 2012 Kenny Rd, Columbus, OH 43221, USA
| | - David E Cohn
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Thomas J Knobloch
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Ave, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, 300 W 10th Ave, Columbus, OH 43210, USA
| | - Christopher M Weghorst
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Ave, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, 300 W 10th Ave, Columbus, OH 43210, USA
| | - Adrian A Suarez
- Department of Pathology, The Ohio State University Wexner Medical Center, 410 W 10th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
90
|
Kubica M, Hildebrand F, Brinkman BM, Goossens D, Del Favero J, Vercammen K, Cornelis P, Schröder JM, Vandenabeele P, Raes J, Declercq W. The skin microbiome of caspase-14-deficient mice shows mild dysbiosis. Exp Dermatol 2014; 23:561-7. [DOI: 10.1111/exd.12458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Malgorzata Kubica
- Inflammation Research Center; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Falk Hildebrand
- Department of Structural Biology; VIB; Brussels Belgium
- Laboratory for Molecular Bacteriology (Rega Institute); VIB-KULeuven; Leuven Belgium
| | - Brigitta M. Brinkman
- Inflammation Research Center; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Dirk Goossens
- Applied Molecular Genomics; VIB Department of Molecular Genetics; Antwerp Belgium
- Department Biomedical Sciences; University of Antwerp; Antwerp Belgium
| | - Jurgen Del Favero
- Applied Molecular Genomics; VIB Department of Molecular Genetics; Antwerp Belgium
- Department Biomedical Sciences; University of Antwerp; Antwerp Belgium
| | - Ken Vercammen
- Department of Structural Biology; VIB; Brussels Belgium
- Laboratory for Molecular Bacteriology (Rega Institute); VIB-KULeuven; Leuven Belgium
| | - Pierre Cornelis
- Department of Structural Biology; VIB; Brussels Belgium
- Laboratory for Molecular Bacteriology (Rega Institute); VIB-KULeuven; Leuven Belgium
| | | | - Peter Vandenabeele
- Inflammation Research Center; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Jeroen Raes
- Department of Structural Biology; VIB; Brussels Belgium
- Laboratory for Molecular Bacteriology (Rega Institute); VIB-KULeuven; Leuven Belgium
| | - Wim Declercq
- Inflammation Research Center; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| |
Collapse
|
91
|
Wong WJ, Richardson T, Seykora JT, Cotsarelis G, Simon MC. Hypoxia-inducible factors regulate filaggrin expression and epidermal barrier function. J Invest Dermatol 2014; 135:454-461. [PMID: 24999590 PMCID: PMC4286527 DOI: 10.1038/jid.2014.283] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/15/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022]
Abstract
A functional epidermal skin barrier requires the formation of a cornified envelope from terminally differentiating keratinocytes. During this process, multiple genetic and environmental signals coordinately regulate protein expression and tissue differentiation. Here we describe a critical role for hypoxia-inducible factors (HIFs) in the regulation of filaggrin expression and skin barrier formation. Similar to other mammalian tissues, fetal epidermis in mice is normally O2-deprived. Simultaneous deletion of Hif1a and Hif2a in murine epidermis revealed defects in keratinocyte terminal differentiation and epidermal barrier formation. Mice lacking Hif1a and Hif2a in the epidermis exhibited dry flaky skin, impaired permeability barrier, and enhanced sensitivity to cutaneous allergens. These defects were correlated with stratum granulosum attenuation and reduced filaggrin expression. Hypoxic treatment of primary keratinocytes induced filaggrin (Flg) gene expression in a HIF1α- and HIF2α-dependent manner, suggesting that one mechanism by which Hif1a and Hif2a loss causes epidermal barrier defects in mice lies in Flg dysregulation. Therefore, low O2 tension is an essential component of the epidermal environment that contributes to skin development and function.
Collapse
Affiliation(s)
- Waihay J Wong
- Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theresa Richardson
- Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania, USA; Howard Hughes Medical Institute, Philadelphia, Pennsylvania, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Howard Hughes Medical Institute, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
92
|
Yamamoto-Tanaka M, Motoyama A, Miyai M, Matsunaga Y, Matsuda J, Tsuboi R, Hibino T. Mesotrypsin and caspase-14 participate in prosaposin processing: potential relevance to epidermal permeability barrier formation. J Biol Chem 2014; 289:20026-38. [PMID: 24872419 DOI: 10.1074/jbc.m113.543421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A proteomics-based search for molecules interacting with caspase-14 identified prosaposin and epidermal mesotrypsin as candidates. Prosaposin is a precursor of four sphingolipid activator proteins (saposins A-D) that are essential for lysosomal hydrolysis of sphingolipids. Thus, we hypothesized that caspase-14 and mesotrypsin participate in processing of prosaposin. Because we identified a saposin A sequence as an interactor with these proteases, we prepared a specific antibody to saposin A and focused on saposin A-related physiological reactions. We found that mesotrypsin generated saposins A-D from prosaposin, and mature caspase-14 contributed to this process by activating mesotrypsinogen to mesotrypsin. Knockdown of these proteases markedly down-regulated saposin A synthesis in skin equivalent models. Saposin A was localized in granular cells, whereas prosaposin was present in the upper layer of human epidermis. The proximity ligation assay confirmed interaction between prosaposin, caspase-14, and mesotrypsin in the granular layer. Oil Red staining showed that the lipid envelope was significantly reduced in the cornified layer of skin from saposin A-deficient mice. Ultrastructural studies revealed severely disorganized cornified layer structure in both prosaposin- and saposin A-deficient mice. Overall, our results indicate that epidermal mesotrypsin and caspase-14 work cooperatively in prosaposin processing. We propose that they thereby contribute to permeability barrier formation in vivo.
Collapse
Affiliation(s)
- Mami Yamamoto-Tanaka
- From the Shiseido Innovative Science Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558, the Department of Dermatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, and
| | - Akira Motoyama
- From the Shiseido Innovative Science Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558
| | - Masashi Miyai
- From the Shiseido Innovative Science Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558
| | - Yukiko Matsunaga
- From the Shiseido Innovative Science Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558
| | - Junko Matsuda
- the Institute of Glycoscience, Tokai University, Kitakinnmoku 4-1-1, Hiratsuka, Kanagawa 259-1292, Japan
| | - Ryoji Tsuboi
- the Department of Dermatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, and
| | - Toshihiko Hibino
- From the Shiseido Innovative Science Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558,
| |
Collapse
|
93
|
Leclerc EA, Huchenq A, Kezic S, Serre G, Jonca N. Mice deficient for the epidermal dermokine β and γ isoforms display transient cornification defects. J Cell Sci 2014; 127:2862-72. [PMID: 24794495 DOI: 10.1242/jcs.144808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression of the human dermokine gene (DMKN) leads to the production of four dermokine isoform families. The secreted α, β and γ isoforms have an epidermis-restricted expression pattern, with Dmkn β and γ being specifically expressed by the granular keratinocytes. The δ isoforms are intracellular and ubiquitous. Here, we performed an in-depth characterization of Dmkn expression in mouse skin and found an expression pattern that was less complex than in humans. In particular, mRNA coding for the δ family were absent. Homozygous mice null for the Dmkn β and γ isoforms had no obvious phenotype but only a temporary scaly skin during the first week of life. The pups null for the Dmkn β and γ isoforms had smaller keratohyalin granules and their cornified envelopes were more sensitive to mechanical stress. At the molecular level, amounts of profilaggrin and filaggrin monomers were reduced whereas amino acid components of the natural moisturizing factor were increased. In addition, the electrophoretic mobility of involucrin was modified, suggesting post-translational modifications. Finally, the mice null for the Dmkn β and γ isoforms strongly overexpressed Dmkn α. These data are evocative of compensatory mechanisms relevant to the temporary phenotype. Overall, we improved the knowledge of Dmkn expression in mouse and highlighted a role for Dmkn β and γ in cornification.
Collapse
Affiliation(s)
- Emilie A Leclerc
- UMR 5165 / U1056 'Différenciation Epidermique et Autoimmunité Rhumatoïde' (CNRS - INSERM - Université Toulouse III - CHU de Toulouse), Hôpital Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France
| | - Anne Huchenq
- UMR 5165 / U1056 'Différenciation Epidermique et Autoimmunité Rhumatoïde' (CNRS - INSERM - Université Toulouse III - CHU de Toulouse), Hôpital Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Academic Medical Center, 1105 Amsterdam, The Netherlands
| | - Guy Serre
- UMR 5165 / U1056 'Différenciation Epidermique et Autoimmunité Rhumatoïde' (CNRS - INSERM - Université Toulouse III - CHU de Toulouse), Hôpital Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France
| | - Nathalie Jonca
- UMR 5165 / U1056 'Différenciation Epidermique et Autoimmunité Rhumatoïde' (CNRS - INSERM - Université Toulouse III - CHU de Toulouse), Hôpital Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France
| |
Collapse
|
94
|
Denecker G, Vandamme N, Akay O, Koludrovic D, Taminau J, Lemeire K, Gheldof A, De Craene B, Van Gele M, Brochez L, Udupi GM, Rafferty M, Balint B, Gallagher WM, Ghanem G, Huylebroeck D, Haigh J, van den Oord J, Larue L, Davidson I, Marine JC, Berx G. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ 2014; 21:1250-61. [PMID: 24769727 DOI: 10.1038/cdd.2014.44] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022] Open
Abstract
Deregulation of signaling pathways that control differentiation, expansion and migration of neural crest-derived melanoblasts during normal development contributes also to melanoma progression and metastasis. Although several epithelial-to-mesenchymal (EMT) transcription factors, such as zinc finger E-box binding protein 1 (ZEB1) and ZEB2, have been implicated in neural crest cell biology, little is known about their role in melanocyte homeostasis and melanoma. Here we show that mice lacking Zeb2 in the melanocyte lineage exhibit a melanoblast migration defect and, unexpectedly, a severe melanocyte differentiation defect. Loss of Zeb2 in the melanocyte lineage results in a downregulation of the Microphthalmia-associated transcription factor (Mitf) and melanocyte differentiation markers concomitant with an upregulation of Zeb1. We identify a transcriptional signaling network in which the EMT transcription factor ZEB2 regulates MITF levels to control melanocyte differentiation. Moreover, our data are also relevant for human melanomagenesis as loss of ZEB2 expression is associated with reduced patient survival.
Collapse
Affiliation(s)
- G Denecker
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - N Vandamme
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - O Akay
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - D Koludrovic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - J Taminau
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - K Lemeire
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - A Gheldof
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - B De Craene
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - M Van Gele
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - L Brochez
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - G M Udupi
- 1] UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland [2] OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - M Rafferty
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Balint
- OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - W M Gallagher
- 1] UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland [2] OncoMark Limited, Nova UCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - G Ghanem
- Institute Jules Bordet, Brussels, Belgium
| | - D Huylebroeck
- 1] Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium [2] Department of Cell Biology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - J Haigh
- 1] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium [2] Vascular Cell Biology Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - J van den Oord
- Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - L Larue
- Curie Institute, Developmental Genetics of Melanocytes, Centre National de la Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de la Recherche Médicale (INSERM) U1021, Orsay, France
| | - I Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | - J-C Marine
- 1] Center for the Biology of Disease, Laboratory for Molecular Cancer Biology, VIB, Leuven, Belgium [2] Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - G Berx
- 1] Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
95
|
Multiple pathways are involved in DNA degradation during keratinocyte terminal differentiation. Cell Death Dis 2014; 5:e1181. [PMID: 24743736 PMCID: PMC4001300 DOI: 10.1038/cddis.2014.145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 01/25/2023]
Abstract
Loss of the nucleus is a critical step in keratinocyte terminal differentiation. To elucidate the mechanisms involved, we focused on two characteristic events: nuclear translocation of N-terminal fragment of profilaggrin and caspase-14-dependent degradation of the inhibitor of caspase-activated DNase (ICAD). First, we demonstrated that epidermal mesotrypsin liberated a 55-kDa N-terminal fragment of profilaggrin (FLG-N) and FLG-N was translocated into the nucleus. Interestingly, these cells became TUNEL positive. Mutation in the mesotrypsin-susceptible Arg-rich region between FLG-N and the first filaggrin domain abolished these changes. Furthermore, caspase-14 caused limited proteolysis of ICAD, followed by accumulation of caspase-activated DNase (CAD) in TUNEL-positive nuclei. Knockdown of both proteases resulted in a significant increase of remnant nuclei in a skin equivalent model. Immunohistochemical study revealed that both caspase-14 and mesotrypsin were markedly downregulated in parakeratotic areas of lesional skin from patients with atopic dermatitis and psoriasis. Collectively, our results indicate that at least two pathways are involved in the DNA degradation process during keratinocyte terminal differentiation.
Collapse
|
96
|
Abstract
The epidermis functions as a physical barrier to the external environment and works to prevent loss of water from the skin. Numerous factors have been implicated in the formation of epidermal barriers, such as cornified envelopes, corneocytes, lipids, junctional proteins, proteases, protease inhibitors, antimicrobial peptides, and transcription factors. This review illustrates human diseases (ichthyoses) and animal models in which the epidermal barrier is disrupted or dysfunctional at steady state owing to ablation of one or more of the above factors. These diseases and animal models help us to understand the complicated mechanisms of epidermal barrier formation and give further insights on epidermal development.
Collapse
|
97
|
Han J, Hou W, Goldstein LA, Stolz DB, Watkins SC, Rabinowich H. A Complex between Atg7 and Caspase-9: A NOVEL MECHANISM OF CROSS-REGULATION BETWEEN AUTOPHAGY AND APOPTOSIS. J Biol Chem 2014; 289:6485-6497. [PMID: 24362031 PMCID: PMC3945314 DOI: 10.1074/jbc.m113.536854] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/18/2013] [Indexed: 12/19/2022] Open
Abstract
Several cross-talk mechanisms between autophagy and apoptosis have been identified, in which certain co-regulators are shared, allowing the same protein to participate in these opposing processes. Our studies suggest that caspase-9 is a novel co-regulator of apoptosis and autophagy and that its caspase catalytic activity is dispensable for its autophagic role. We provide evidence that caspase-9 facilitates the early events leading to autophagosome formation; that it forms a complex with Atg7; that Atg7 is not a direct substrate for caspase-9 proteolytic activity; and that, depending on the cellular context, Atg7 represses the apoptotic capability of caspase-9, whereas the latter enhances the Atg7-mediated formation of light chain 3-II. The repression of caspase-9 apoptotic activity is mediated by its direct interaction with Atg7, and it is not related to the autophagic function of Atg7. We propose that the Atg7·caspase-9 complex performs a dual function of linking caspase-9 to the autophagic process while keeping in check its apoptotic activity.
Collapse
Affiliation(s)
- Jie Han
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Wen Hou
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Leslie A Goldstein
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Donna B Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Hannah Rabinowich
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
98
|
Furio L, de Veer S, Jaillet M, Briot A, Robin A, Deraison C, Hovnanian A. Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. ACTA ACUST UNITED AC 2014; 211:499-513. [PMID: 24534191 PMCID: PMC3949577 DOI: 10.1084/jem.20131797] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Netherton syndrome (NS) is a severe genetic skin disease in which absence of a key protease inhibitor causes congenital exfoliative erythroderma, eczematous-like lesions, and atopic manifestations. Several proteases are overactive in NS, including kallikrein-related peptidase (KLK) 5, KLK7, and elastase-2 (ELA2), which are suggested to be part of a proteolytic cascade initiated by KLK5. To address the role of KLK5 in NS, we have generated a new transgenic murine model expressing human KLK5 in the granular layer of the epidermis (Tg-KLK5). Transgene expression resulted in increased proteolytic activity attributable to KLK5 and its downstream targets KLK7, KLK14, and ELA2. Tg-KLK5 mice developed an exfoliative erythroderma with scaling, growth delay, and hair abnormalities. The skin barrier was defective and the stratum corneum was detached through desmosomal cleavage. Importantly, Tg-KLK5 mice displayed cutaneous and systemic hallmarks of severe inflammation and allergy with pruritus. The skin showed enhanced expression of inflammatory cytokines and chemokines, infiltration of immune cells, and markers of Th2/Th17/Th22 T cell responses. Moreover, serum IgE and Tslp levels were elevated. Our study identifies KLK5 as an important contributor to the NS proteolytic cascade and provides a new and viable model for the evaluation of future targeted therapies for NS or related diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Laetitia Furio
- Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
99
|
In Vivo Cosmetic Product Efficacy Testing by Analyzing Epidermal Proteins Extracted from Tape Strips. COSMETICS 2014. [DOI: 10.3390/cosmetics1010029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
100
|
Liu L, Kim H, Casta A, Kobayashi Y, Shapiro LS, Christiano AM. Hairless is a histone H3K9 demethylase. FASEB J 2013; 28:1534-42. [PMID: 24334705 DOI: 10.1096/fj.13-237677] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hairless (HR) protein contains a Jumonji C (JmjC) domain that is conserved among a family of proteins with histone demethylase (HDM) activity. To test whether HR possesses HDM activity, we performed a series of in vitro demethylation assays, which demonstrated that HR can demethylate monomethylated or dimethylated histone H3 lysine 9 (H3K9me1 or me2). Moreover, ectopic expression of wild-type HR, but not JmjC-mutant HR, led to pronounced demethylation of H3K9 in cultured human HeLa cells. We also show that two missense mutations in HR, which we and others described in patients with atrichia with papular lesions, abolished the demethylase activity of HR, demonstrating the role of HR demethylase activity in human disease. By ChIP-Seq analysis, we identified multiple new HR target genes, many of which play important roles in epidermal development, neural function, and transcriptional regulation, consistent with the predicted biological functions of HR. Our findings demonstrate for the first time that HR is a H3K9 demethylase that regulates epidermal homeostasis via direct control of its target genes.
Collapse
Affiliation(s)
- Liang Liu
- 2Department of Dermatology, Columbia University, College of Physicians and Surgeons, Russ Berrie Medical Science Pavilion, 1150 St. Nicholas Ave., Rm. 307, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|