51
|
Miyata K, Takahashi A. Pericentromeric repetitive ncRNA regulates chromatin interaction and inflammatory gene expression. Nucleus 2022; 13:74-78. [PMID: 35167425 PMCID: PMC8855862 DOI: 10.1080/19491034.2022.2034269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular senescence provokes a dramatic alteration of chromatin organization and gene expression profile of proinflammatory factors, thereby contributing to various age-related pathologies via the senescence-associated secretory phenotype (SASP). Chromatin organization and global gene expression are maintained through the CCCTC-binding factor (CTCF). However, the molecular mechanism underlying CTCF regulation and its association with SASP gene expression remains to be fully elucidated. A recent study by our team showed that noncoding RNA (ncRNA) derived from normally silenced pericentromeric repetitive sequences directly impair the DNA binding of CTCF. This CTCF disturbance increases the accessibility of chromatin at the loci of SASP genes and caused the transcription of inflammatory factors. This mechanism may promote malignant transformation.
Collapse
Affiliation(s)
- Kenichi Miyata
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akiko Takahashi
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan.,Advanced Research & Development Programs for Medical Innovation (PRIME), Japan Agency for Medical Research and Development (Amed), Tokyo, Japan
| |
Collapse
|
52
|
Crouch J, Shvedova M, Thanapaul RJRS, Botchkarev V, Roh D. Epigenetic Regulation of Cellular Senescence. Cells 2022; 11:672. [PMID: 35203320 PMCID: PMC8870565 DOI: 10.3390/cells11040672] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Senescence is a complex cellular stress response that abolishes proliferative capacity and generates a unique secretory pattern that is implicated in organismal aging and age-related disease. How a cell transitions to a senescent state is multifactorial and often requires transcriptional regulation of multiple genes. Epigenetic alterations to DNA and chromatin are powerful regulators of genome architecture and gene expression, and they play a crucial role in mediating the induction and maintenance of senescence. This review will highlight the changes in chromatin, DNA methylation, and histone alterations that establish and maintain cellular senescence, alongside the specific epigenetic regulation of the senescence-associated secretory phenotype (SASP).
Collapse
Affiliation(s)
- Jack Crouch
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Maria Shvedova
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Vladimir Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Daniel Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| |
Collapse
|
53
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
54
|
Sun X, Wang D, Zhu J, Sun S. A novel nonparametric computational strategy for identifying differential methylation regions. BMC Bioinformatics 2022; 23:29. [PMID: 35012449 PMCID: PMC8750844 DOI: 10.1186/s12859-022-04563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
Background DNA methylation has long been known as an epigenetic gene silencing mechanism. For a motivating example, the methylomes of cancer and non-cancer cells show a number of methylation differences, indicating that certain features characteristics of cancer cells may be related to methylation characteristics. Robust methods for detecting differentially methylated regions (DMRs) could help scientists narrow down genome regions and even find biologically important regions. Although some statistical methods were developed for detecting DMR, there is no default or strongest method. Fisher’s exact test is direct, but not suitable for data with multiple replications, while regression-based methods usually come with a large number of assumptions. More complicated methods have been proposed, but those methods are often difficult to interpret. Results In this paper, we propose a three-step nonparametric kernel smoothing method that is both flexible and straightforward to implement and interpret. The proposed method relies on local quadratic fitting to find the set of equilibrium points (points at which the first derivative is 0) and the corresponding set of confidence windows. Potential regions are further refined using biological criteria, and finally selected based on a Bonferroni adjusted t-test cutoff. Using a comparison of three senescent and three proliferating cell lines to illustrate our method, we were able to identify a total of 1077 DMRs on chromosome 21. Conclusions We proposed a completely nonparametric, statistically straightforward, and interpretable method for detecting differentially methylated regions. Compared with existing methods, the non-reliance on model assumptions and the straightforward nature of our method makes it one competitive alternative to the existing statistical methods for defining DMRs.
Collapse
Affiliation(s)
- Xifang Sun
- Department of Mathematics, School of Science, Xi'an Shiyou University, X'an, 710065, Shaanxi, People's Republic of China
| | - Donglin Wang
- Department of Mathematics, School of Science, Xi'an Shiyou University, X'an, 710065, Shaanxi, People's Republic of China
| | - Jiaqiang Zhu
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shiquan Sun
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
55
|
Soda K. Overview of Polyamines as Nutrients for Human Healthy Long Life and Effect of Increased Polyamine Intake on DNA Methylation. Cells 2022; 11:cells11010164. [PMID: 35011727 PMCID: PMC8750749 DOI: 10.3390/cells11010164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Polyamines, spermidine and spermine, are synthesized in every living cell and are therefore contained in foods, especially in those that are thought to contribute to health and longevity. They have many physiological activities similar to those of antioxidant and anti-inflammatory substances such as polyphenols. These include antioxidant and anti-inflammatory properties, cell and gene protection, and autophagy activation. We have first reported that increased polyamine intake (spermidine much more so than spermine) over a long period increased blood spermine levels and inhibited aging-associated pathologies and pro-inflammatory status in humans and mice and extended life span of mice. However, it is unlikely that the life-extending effect of polyamines is exerted by the same bioactivity as polyphenols because most studies using polyphenols and antioxidants have failed to demonstrate their life-extending effects. Recent investigations revealed that aging-associated pathologies and lifespan are closely associated with DNA methylation, a regulatory mechanism of gene expression. There is a close relationship between polyamine metabolism and DNA methylation. We have shown that the changes in polyamine metabolism affect the concentrations of substances and enzyme activities involved in DNA methylation. I consider that the increased capability of regulation of DNA methylation by spermine is a key of healthy long life of humans.
Collapse
Affiliation(s)
- Kuniyasu Soda
- Department Cardiovascular Institute for Medical Research, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma, Saitama-City 330-0834, Saitama, Japan
| |
Collapse
|
56
|
Edgar RD, Perrone F, Foster AR, Payne F, Lewis S, Nayak KM, Kraiczy J, Cenier A, Torrente F, Salvestrini C, Heuschkel R, Hensel KO, Harris R, Jones DL, Zerbino DR, Zilbauer M. Culture-Associated DNA Methylation Changes Impact on Cellular Function of Human Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2022; 14:1295-1310. [PMID: 36038072 PMCID: PMC9703134 DOI: 10.1016/j.jcmgh.2022.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Human intestinal epithelial organoids (IEOs) are a powerful tool to model major aspects of intestinal development, health, and diseases because patient-derived cultures retain many features found in vivo. A necessary aspect of the organoid model is the requirement to expand cultures in vitro through several rounds of passaging. This is of concern because the passaging of cells has been shown to affect cell morphology, ploidy, and function. METHODS Here, we analyzed 173 human IEO lines derived from the small and large bowel and examined the effect of culture duration on DNA methylation (DNAm). Furthermore, we tested the potential impact of DNAm changes on gene expression and cellular function. RESULTS Our analyses show a reproducible effect of culture duration on DNAm in a large discovery cohort as well as 2 publicly available validation cohorts generated in different laboratories. Although methylation changes were seen in only approximately 8% of tested cytosine-phosphate-guanine dinucleotides (CpGs) and global cellular function remained stable, a subset of methylation changes correlated with altered gene expression at baseline as well as in response to inflammatory cytokine exposure and withdrawal of Wnt agonists. Importantly, epigenetic changes were found to be enriched in genomic regions associated with colonic cancer and distant to the site of replication, indicating similarities to malignant transformation. CONCLUSIONS Our study shows distinct culture-associated epigenetic changes in mucosa-derived human IEOs, some of which appear to impact gene transcriptomic and cellular function. These findings highlight the need for future studies in this area and the importance of considering passage number as a potentially confounding factor.
Collapse
Affiliation(s)
- Rachel D Edgar
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Francesca Perrone
- Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - April R Foster
- Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Centre for Pathway Analysis, Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom
| | - Felicity Payne
- Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sophia Lewis
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California; Eli and Edythe Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California
| | - Komal M Nayak
- Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Judith Kraiczy
- Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Aurélie Cenier
- Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Franco Torrente
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Camilla Salvestrini
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Robert Heuschkel
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Kai O Hensel
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom; Witten/Herdecke University, Department of Paediatrics, Helios Medical Centre Wuppertal, Children's Hospital, Wuppertal, Germany
| | - Rebecca Harris
- Centre for Pathway Analysis, Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California; Eli and Edythe Broad Stem Cell Research Center, University of California Los Angeles, Los Angeles, California; Department of Anatomy and Medicine, Division of Geriatrics, University of California, San Francisco, San Francisco, California; Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, California
| | - Daniel R Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Addenbrooke's Hospital, Cambridge, United Kingdom; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
57
|
Abstract
Motivation Intermediately methylated regions occupy a significant fraction of the human genome and are closely associated with epigenetic regulations or cell-type deconvolution of bulk data. However, these regions show distinct methylation patterns, corresponding to different biological mechanisms. Although there have been some metrics developed for investigating these regions, the high noise sensitivity limits the utility for distinguishing distinct methylation patterns. Results We proposed a method named MeConcord to measure local methylation concordance across reads and CpG sites, respectively. MeConcord showed the most stable performance in distinguishing distinct methylation patterns (‘identical’, ‘uniform’ and ‘disordered’) compared with other metrics. Applying MeConcord to the whole genome data across 25 cell lines or primary cells or tissues, we found that distinct methylation patterns were associated with different genomic characteristics, such as CTCF binding or imprinted genes. Further, we showed the differences of CpG island hypermethylation patterns between senescence and tumorigenesis by using MeConcord. MeConcord is a powerful method to study local read-level methylation patterns for both the whole genome and specific regions of interest. Availability and implementation MeConcord is available at https://github.com/WangLabTHU/MeConcord. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xianglin Zhang
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
58
|
Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci 2021; 22:ijms222313173. [PMID: 34884978 PMCID: PMC8658264 DOI: 10.3390/ijms222313173] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence entails a state of an essentially irreversible proliferative arrest in which cells remain metabolically active and secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype. There are different types of senescent cells, and senescence can be induced in response to many DNA damage signals. Senescent cells accumulate in different tissues and organs where they have distinct physiological and pathological functions. Despite this diversity, all senescent cells must be able to survive in a nondividing state while protecting themselves from positive feedback loops linked to the constant activation of the DNA damage response. This capacity requires changes in core cellular programs. Understanding how different cell types can undergo extensive changes in their transcriptional programs, metabolism, heterochromatin patterns, and cellular structures to induce a common cellular state is crucial to preventing cancer development/progression and to improving health during aging. In this review, we discuss how senescent cells continuously evolve after their initial proliferative arrest and highlight the unifying features that define the senescent state.
Collapse
Affiliation(s)
- Lauréline Roger
- Structure and Instability of Genomes Laboratory, Muséum National d’Histoire Naturelle (MNHN), CNRS-UMR 7196/INSERM U1154, 43 Rue Cuvier, 75005 Paris, France;
| | - Fanny Tomas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
| | - Véronique Gire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
- Correspondence: ; Tel.: +33-(0)-434359513; Fax: +33-(0)-434359410
| |
Collapse
|
59
|
Zhou M, Hong S, Li B, Liu C, Hu M, Min J, Tang J, Hong L. Development and Validation of a Prognostic Nomogram Based on DNA Methylation-Driven Genes for Patients With Ovarian Cancer. Front Genet 2021; 12:675197. [PMID: 34567062 PMCID: PMC8458765 DOI: 10.3389/fgene.2021.675197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Background: DNA methylation affects the development, progression, and prognosis of various cancers. This study aimed to identify DNA methylated-differentially expressed genes (DEGs) and develop a methylation-driven gene model to evaluate the prognosis of ovarian cancer (OC). Methods: DNA methylation and mRNA expression profiles of OC patients were downloaded from The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases. We used the R package MethylMix to identify DNA methylation-regulated DEGs and built a prognostic signature using LASSO Cox regression. A quantitative nomogram was then drawn based on the risk score and clinicopathological features. Results: We identified 56 methylation-related DEGs and constructed a prognostic risk signature with four genes according to the LASSO Cox regression algorithm. A higher risk score not only predicted poor prognosis, but also was an independent poor prognostic indicator, which was validated by receiver operating characteristic (ROC) curves and the validation cohort. A nomogram consisting of the risk score, age, FIGO stage, and tumor status was generated to predict 3- and 5-year overall survival (OS) in the training cohort. The joint survival analysis of DNA methylation and mRNA expression demonstrated that the two genes may serve as independent prognostic biomarkers for OS in OC. Conclusion: The established qualitative risk score model was found to be robust for evaluating individualized prognosis of OC and in guiding therapy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianming Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
60
|
De Blander H, Morel AP, Senaratne AP, Ouzounova M, Puisieux A. Cellular Plasticity: A Route to Senescence Exit and Tumorigenesis. Cancers (Basel) 2021; 13:4561. [PMID: 34572787 PMCID: PMC8468602 DOI: 10.3390/cancers13184561] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence is a dynamic, multistep program that results in permanent cell cycle arrest and is triggered by developmental or environmental, oncogenic or therapy-induced stress signals. Senescence is considered as a tumor suppressor mechanism that prevents the risk of neoplastic transformation by restricting the proliferation of damaged cells. Cells undergoing senescence sustain important morphological changes, chromatin remodeling and metabolic reprogramming, and secrete pro-inflammatory factors termed senescence-associated secretory phenotype (SASP). SASP activation is required for the clearance of senescent cells by innate immunity. Therefore, escape from senescence and the associated immune editing would be a prerequisite for tumor initiation and progression as well as therapeutic resistance. One of the possible mechanisms for overcoming senescence could be the acquisition of cellular plasticity resulting from the accumulation of genomic alterations and genetic and epigenetic reprogramming. The modified composition of the SASP produced by these reprogrammed cancer cells would create a permissive environment, allowing their immune evasion. Additionally, the SASP produced by cancer cells could enhance the cellular plasticity of neighboring cells, thus hindering their recognition by the immune system. Here, we propose a comprehensive review of the literature, highlighting the role of cellular plasticity in the pro-tumoral activity of senescence in normal cells and in the cancer context.
Collapse
Affiliation(s)
- Hadrien De Blander
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
| | - Anne-Pierre Morel
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
| | - Aruni P. Senaratne
- UMR3664—Nuclear Dynamics, Development, Biology, Cancer, Genetics and Epigenetics, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Maria Ouzounova
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
- CNRS UMR3666, Inserm U1143, Cellular and Chemical Biology, Institut Curie, PSL Research University, 75005 Paris, France
| | - Alain Puisieux
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
- CNRS UMR3666, Inserm U1143, Cellular and Chemical Biology, Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
61
|
Pericentromeric noncoding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer. Proc Natl Acad Sci U S A 2021; 118:2025647118. [PMID: 34426493 PMCID: PMC8536346 DOI: 10.1073/pnas.2025647118] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cellular senescence causes a dramatic alteration of chromatin organization and changes the gene expression profile of proinflammatory factors, thereby contributing to various age-related pathologies through the senescence-associated secretory phenotype (SASP). Chromatin organization and global gene expression are maintained by the CCCTC-binding factor (CTCF); however, the molecular mechanism underlying CTCF regulation and its association with SASP gene expression remains unclear. We discovered that noncoding RNA (ncRNA) derived from normally silenced pericentromeric repetitive sequences directly impairs the DNA binding of CTCF. This CTCF disturbance increases the accessibility of chromatin and activates the transcription of SASP-like inflammatory genes, promoting malignant transformation. Notably, pericentromeric ncRNA was transferred into surrounding cells via small extracellular vesicles acting as a tumorigenic SASP factor. Because CTCF blocks the expression of pericentromeric ncRNA in young cells, the down-regulation of CTCF during cellular senescence triggers the up-regulation of this ncRNA and SASP-related inflammatory gene expression. In this study, we show that pericentromeric ncRNA provokes chromosomal alteration by inhibiting CTCF, leading to a SASP-like inflammatory response in a cell-autonomous and non-cell-autonomous manner and thus may contribute to the risk of tumorigenesis during aging.
Collapse
|
62
|
Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 2021; 28:58. [PMID: 34364371 PMCID: PMC8349491 DOI: 10.1186/s12929-021-00754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.
Collapse
Affiliation(s)
- Pu-Sheng Hsu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ning-Yu Song
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiao Yau
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. .,Center of Systems Biology, National Taiwan University, Taipei, Taiwan. .,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
63
|
Khadirnaikar S, Chatterjee A, Shukla S. Identification and Characterization of Senescence Phenotype in Lung Adenocarcinoma with High Drug Sensitivity. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1966-1973. [PMID: 34358516 DOI: 10.1016/j.ajpath.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/12/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Lung adenocarcinoma (LUAD) is a major health problem with minimal prognosis. Heterogeneity is a central determinant of the treatment outcome, requiring the identification of new subclasses of LUAD. Senescence has emerged as a crucial regulator of metastasis and drug response. Ionizing radiation- and doxorubicin-induced senescence associated genes in lung fibroblasts and K-means clustering were used to identify high- and low-senescence (HS and LS) classes among LUAD patients identified in The Cancer Genome Atlas (TCGA-LUAD). The LS group showed significantly poorer survival (P = 0.01) and greater activation of proliferative signaling pathways, proliferation, wound healing, and genetic aberrations. The TP53 mutation rate was significantly greater in the HS group (P < 0.0001), explaining the phenotype. Also, genome-wide hypomethylation was significantly greater in the LS group than in the HS group. Interestingly, pathway analysis identified silencing of Wnt signaling in the HS group. The machine learning-based recursive feature elimination technique was used to identify a 20-gene senescence signature in TCGA-LUAD samples. The presence of a senescence phenotype with poor survival was validated in an independent patient cohort and a cell-line cohort using unsupervised clustering of samples based on a 20-gene signature. On further analysis, HS cells were more resistant to drugs, particularly histone deacetylase inhibitors. Taken together, a novel subtype of LUAD with reduced Wnt signaling and high drug resistance was identified.
Collapse
Affiliation(s)
- Seema Khadirnaikar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Dharwad, Dharwad, India; Department of Electrical Engineering, Indian Institute of Technology-Dharwad, Dharwad, India
| | - Annesha Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Dharwad, Dharwad, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Dharwad, Dharwad, India.
| |
Collapse
|
64
|
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021; 596:43-53. [PMID: 34349292 PMCID: PMC8600649 DOI: 10.1038/s41586-021-03542-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as 'junk DNA' and 'molecular parasites'. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Paolo Mita
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - David Fenyö
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY, USA
| | - Sara B. Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jill A. Kreiling
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Anna P. Petrashen
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Trenton A. Woodham
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jackson R. Taylor
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Stephen L. Helfand
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - John M. Sedivy
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.,Corresponding author
| |
Collapse
|
65
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
66
|
Zhang X, Liu X, Du Z, Wei L, Fang H, Dong Q, Niu J, Li Y, Gao J, Zhang MQ, Xie W, Wang X. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res 2021; 31:1121-1135. [PMID: 34140314 PMCID: PMC8256869 DOI: 10.1101/gr.275235.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
Heterochromatin remodeling is critical for various cell processes. In particular, the "loss of heterochromatin" phenotype in cellular senescence is associated with the process of aging and age-related disorders. Although biological processes of senescent cells, including senescence-associated heterochromatin foci (SAHF) formation, chromosome compaction, and redistribution of key proteins, have been closely associated with high-order chromatin structure, the relationship between the high-order chromatin reorganization and the loss of heterochromatin phenotype during senescence has not been fully understood. By using senescent and deep senescent fibroblasts induced by DNA damage harboring the "loss of heterochromatin" phenotype, we observed progressive 3D reorganization of heterochromatin during senescence. Facultative and constitutive heterochromatin marked by H3K27me3 and H3K9me3, respectively, show different alterations. Facultative heterochromatin tends to switch from the repressive B-compartment to the active A-compartment, whereas constitutive heterochromatin shows no significant changes at the compartment level but enhanced interactions between themselves. Both types of heterochromatin show increased chromatin accessibility and gene expression leakage during senescence. Furthermore, increased chromatin accessibility in potential CTCF binding sites accompanies the establishment of novel loops in constitutive heterochromatin. Finally, we also observed aberrant expression of repetitive elements, including LTR (long terminal repeat) and satellite classes. Overall, facultative and constitutive heterochromatin show both similar and distinct multiscale alterations in the 3D map, chromatin accessibility, and gene expression leakage. This study provides an epigenomic map of heterochromatin reorganization during senescence.
Collapse
Affiliation(s)
- Xianglin Zhang
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Xuehui Liu
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- THU-PKU Center for Life Sciences, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Huan Fang
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Qiongye Dong
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Jing Niu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanda Li
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Michael Q Zhang
- Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Richardson, Texas 75080-3021, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- THU-PKU Center for Life Sciences, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| |
Collapse
|
67
|
Sharma VK, Mehta V, Singh TG. Alzheimer's Disorder: Epigenetic Connection and Associated Risk Factors. Curr Neuropharmacol 2021; 18:740-753. [PMID: 31989902 PMCID: PMC7536832 DOI: 10.2174/1570159x18666200128125641] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The gene based therapeutics and drug targets have shown incredible and appreciable advances in alleviating human sufferings and complexities. Epigenetics simply means above genetics or which controls the organism beyond genetics. At present it is very clear that all characteristics of an individual are not determined by DNA alone, rather the environment, stress, life style and nutrition play a vital part in determining the response of an organism. Thus, nature (genetic makeup) and nurture (exposure) play equally important roles in the responses observed, both at the cellular and organism levels. Epigenetics influence plethora of complications at cellular and molecular levels that includes cancer, metabolic and cardiovascular complications including neurological (psychosis) and neurodegenerative disorders (Alzheimer’s disease, Parkinson disease etc.). The epigenetic mechanisms include DNA methylation, histone modification and non coding RNA which have substantial impact on progression and pathways linked to Alzheimer’s disease. The epigenetic mechanism gets deregulated in Alzheimer’s disease and is characterized by DNA hyper methylation, deacetylation of histones and general repressed chromatin state which alter gene expression at the transcription level by upregulation, downregulation or silencing of genes. Thus, the processes or modulators of these epigenetic processes have shown vast potential as a therapeutic target in Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Vineet Mehta
- Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India
| | | |
Collapse
|
68
|
Beck J, Turnquist C, Horikawa I, Harris C. Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Carcinogenesis 2021; 41:1017-1029. [PMID: 32619002 DOI: 10.1093/carcin/bgaa071] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence and the associated secretory phenotype (SASP) promote disease in the aged population. Targeting senescent cells by means of removal, modulation of SASP or through cellular reprogramming represents a novel therapeutic avenue for treating cancer- and age-related diseases such as neurodegeneration, pulmonary fibrosis and renal disease. Cellular senescence is partly regulated by the TP53 gene, a critical tumor suppressor gene which encodes 12 or more p53 protein isoforms. This review marks a significant milestone of 40 years of Carcinogenesis publication history and p53 research and 15 years of p53 isoform research. The p53 isoforms are produced through initiation at alternative transcriptional and translational start sites and alternative mRNA splicing. These truncated p53 isoform proteins are endogenously expressed in normal human cells and maintain important functional roles, including modulation of full-length p53-mediated cellular senescence, apoptosis and DNA repair. In this review, we discuss the mechanisms and functions of cellular senescence and SASP in health and disease, the regulation of cellular senescence by p53 isoforms, and the therapeutic potential of targeting cellular senescence to treat cancer- and age-associated diseases.
Collapse
Affiliation(s)
- Jessica Beck
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Casmir Turnquist
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Curtis Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
69
|
Ngoi NY, Liew AQ, Chong SJF, Davids MS, Clement MV, Pervaiz S. The redox-senescence axis and its therapeutic targeting. Redox Biol 2021; 45:102032. [PMID: 34147844 PMCID: PMC8220395 DOI: 10.1016/j.redox.2021.102032] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Significance Cellular growth arrest, associated with ‘senescence’, helps to safeguard against the accumulation of DNA damage which is often recognized as the underlying mechanism of a wide variety of age-related pathologies including cancer. Cellular senescence has also been described as a ‘double-edged sword’. In cancer, for example, the creation of an immune-suppressive milieu by senescent tumor cells through the senescence-associated secretory phenotype contributes toward carcinogenesis and cancer progression. Recent advances The potential for cellular senescence to confer multi-faceted effects on tissue fate has led to a rejuvenated interest in its landscape and targeting. Interestingly, redox pathways have been described as both triggers and propagators of cellular senescence, leading to intricate cross-links between both pathways. Critical issues In this review, we describe the mechanisms driving cellular senescence, the interface with cellular redox metabolism as well as the role that chemotherapy-induced senescence plays in secondary carcinogenesis. Notably, the role that anti-apoptotic proteins of the Bcl-2 family play in inducing drug resistance via mechanisms that involve senescence induction. Future directions Though the therapeutic targeting of senescent cells as cancer therapy remains in its infancy, we summarize the current development of senotherapeutics, including recognized senotherapies, as well as the repurposing of drugs as senomorphic/senolytic candidates.
Collapse
Affiliation(s)
- Natalie Yl Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Angeline Qx Liew
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stephen J F Chong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marie-Veronique Clement
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; Faculté de Medicine, University of Paris, Paris, France.
| |
Collapse
|
70
|
Eigenfeld M, Kerpes R, Becker T. Understanding the Impact of Industrial Stress Conditions on Replicative Aging in Saccharomyces cerevisiae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:665490. [PMID: 37744109 PMCID: PMC10512339 DOI: 10.3389/ffunb.2021.665490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 09/26/2023]
Abstract
In yeast, aging is widely understood as the decline of physiological function and the decreasing ability to adapt to environmental changes. Saccharomyces cerevisiae has become an important model organism for the investigation of these processes. Yeast is used in industrial processes (beer and wine production), and several stress conditions can influence its intracellular aging processes. The aim of this review is to summarize the current knowledge on applied stress conditions, such as osmotic pressure, primary metabolites (e.g., ethanol), low pH, oxidative stress, heat on aging indicators, age-related physiological changes, and yeast longevity. There is clear evidence that yeast cells are exposed to many stressors influencing viability and vitality, leading to an age-related shift in age distribution. Currently, there is a lack of rapid, non-invasive methods allowing the investigation of aspects of yeast aging in real time on a single-cell basis using the high-throughput approach. Methods such as micromanipulation, centrifugal elutriator, or biotinylation do not provide real-time information on age distributions in industrial processes. In contrast, innovative approaches, such as non-invasive fluorescence coupled flow cytometry intended for high-throughput measurements, could be promising for determining the replicative age of yeast cells in fermentation and its impact on industrial stress conditions.
Collapse
Affiliation(s)
| | - Roland Kerpes
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | | |
Collapse
|
71
|
Mehta IS, Riyahi K, Pereira RT, Meaburn KJ, Figgitt M, Kill IR, Eskiw CH, Bridger JM. Interphase Chromosomes in Replicative Senescence: Chromosome Positioning as a Senescence Biomarker and the Lack of Nuclear Motor-Driven Chromosome Repositioning in Senescent Cells. Front Cell Dev Biol 2021; 9:640200. [PMID: 34113611 PMCID: PMC8185894 DOI: 10.3389/fcell.2021.640200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
This study demonstrates, and confirms, that chromosome territory positioning is altered in primary senescent human dermal fibroblasts (HDFs). The chromosome territory positioning pattern is very similar to that found in HDFs made quiescent either by serum starvation or confluence; but not completely. A few chromosomes are found in different locations. One chromosome in particular stands out, chromosome 10, which is located in an intermediate location in young proliferating HDFs, but is found at the nuclear periphery in quiescent cells and in an opposing location of the nuclear interior in senescent HDFs. We have previously demonstrated that individual chromosome territories can be actively and rapidly relocated, with 15 min, after removal of serum from the culture media. These chromosome relocations require nuclear motor activity through the presence of nuclear myosin 1β (NM1β). We now also demonstrate rapid chromosome movement in HDFs after heat-shock at 42°C. Others have shown that heat shock genes are actively relocated using nuclear motor protein activity via actin or NM1β (Khanna et al., 2014; Pradhan et al., 2020). However, this current study reveals, that in senescent HDFs, chromosomes can no longer be relocated to expected nuclear locations upon these two types of stimuli. This coincides with a entirely different organisation and distribution of NM1β within senescent HDFs.
Collapse
Affiliation(s)
- Ishita S Mehta
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Tata Institute of Fundamental Research, Mumbai, India
| | - Kumars Riyahi
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Rita Torres Pereira
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Karen J Meaburn
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Martin Figgitt
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom.,Department of Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Ian R Kill
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| | - Christopher H Eskiw
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joanna M Bridger
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Kingston Lane, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
72
|
DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift. Commun Biol 2021; 4:598. [PMID: 34011964 PMCID: PMC8134454 DOI: 10.1038/s42003-021-02116-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/14/2021] [Indexed: 12/27/2022] Open
Abstract
Culture expansion of primary cells evokes highly reproducible DNA methylation (DNAm) changes. We have identified CG dinucleotides (CpGs) that become continuously hyper- or hypomethylated during long-term culture of mesenchymal stem cells (MSCs) and other cell types. Bisulfite barcoded amplicon sequencing (BBA-seq) demonstrated that DNAm patterns of neighboring CpGs become more complex without evidence of continuous pattern development and without association to oligoclonal subpopulations. Circularized chromatin conformation capture (4C) revealed reproducible changes in nuclear organization between early and late passages, while there was no enriched interaction with other genomic regions that also harbor culture-associated DNAm changes. Chromatin immunoprecipitation of CTCF did not show significant differences during long-term culture of MSCs, however culture-associated hypermethylation was enriched at CTCF binding sites and hypomethylated CpGs were devoid of CTCF. Taken together, our results support the notion that DNAm changes during culture-expansion are not directly regulated by a targeted mechanism but rather resemble epigenetic drift. Julia Franzen et al. investigate if changes in DNA methylation at specific genetic loci during cell culture expansion are due to a specific mechanism or gradual deregulation of an epigenetic state. Their results suggest that changes in CpG methylation are due to indirect epigenetic drift, rather than a consequence of targeting by DNA methyltransferases.
Collapse
|
73
|
Acton RJ, Yuan W, Gao F, Xia Y, Bourne E, Wozniak E, Bell J, Lillycrop K, Wang J, Dennison E, Harvey NC, Mein CA, Spector TD, Hysi PG, Cooper C, Bell CG. The genomic loci of specific human tRNA genes exhibit ageing-related DNA hypermethylation. Nat Commun 2021; 12:2655. [PMID: 33976121 PMCID: PMC8113476 DOI: 10.1038/s41467-021-22639-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/05/2021] [Indexed: 02/03/2023] Open
Abstract
The epigenome has been shown to deteriorate with age, potentially impacting on ageing-related disease. tRNA, while arising from only ˜46 kb (<0.002% genome), is the second most abundant cellular transcript. tRNAs also control metabolic processes known to affect ageing, through core translational and additional regulatory roles. Here, we interrogate the DNA methylation state of the genomic loci of human tRNA. We identify a genomic enrichment for age-related DNA hypermethylation at tRNA loci. Analysis in 4,350 MeDIP-seq peripheral-blood DNA methylomes (16-82 years), identifies 44 and 21 hypermethylating specific tRNAs at study-and genome-wide significance, respectively, contrasting with none hypomethylating. Validation and replication (450k array and independent targeted Bisuphite-sequencing) supported the hypermethylation of this functional unit. Tissue-specificity is a significant driver, although the strongest consistent signals, also independent of major cell-type change, occur in tRNA-iMet-CAT-1-4 and tRNA-Ser-AGA-2-6. This study presents a comprehensive evaluation of the genomic DNA methylation state of human tRNA genes and reveals a discreet hypermethylation with advancing age.
Collapse
Affiliation(s)
- Richard J Acton
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Charterhouse Square, Queen Mary University of London, London, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Wei Yuan
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital, King's College London, London, UK
- Institute of Cancer Research, Sutton, UK
| | - Fei Gao
- BGI-Shenzhen, Shenzhen, China
| | | | - Emma Bourne
- Barts & The London Genome Centre, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eva Wozniak
- Barts & The London Genome Centre, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jordana Bell
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital, King's College London, London, UK
| | - Karen Lillycrop
- Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Jun Wang
- Shenzhen Digital Life Institute, Shenzhen, Guangdong, China
- iCarbonX, Zhuhai, Guangdong, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Charles A Mein
- Barts & The London Genome Centre, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital, King's College London, London, UK
| | - Pirro G Hysi
- Department of Twin Research & Genetic Epidemiology, St Thomas Hospital, King's College London, London, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Christopher G Bell
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Charterhouse Square, Queen Mary University of London, London, UK.
| |
Collapse
|
74
|
Chen MS, Lee RT, Garbern JC. Senescence mechanisms and targets in the heart. Cardiovasc Res 2021; 118:1173-1187. [PMID: 33963378 DOI: 10.1093/cvr/cvab161] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/27/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest associated with ageing. Senescence of different cardiac cell types can direct the pathophysiology of cardiovascular diseases such as atherosclerosis, myocardial infarction, and cardiac fibrosis. While age-related telomere shortening represents a major cause of replicative senescence, the senescent state can also be induced by oxidative stress, metabolic dysfunction, and epigenetic regulation, among other stressors. It is critical that we understand the molecular pathways that lead to cellular senescence and the consequences of cellular senescence in order to develop new therapeutic approaches to treat cardiovascular disease. In this review, we discuss molecular mechanisms of cellular senescence, explore how cellular senescence of different cardiac cell types (including cardiomyocytes, cardiac endothelial cells, cardiac fibroblasts, vascular smooth muscle cells, valve interstitial cells) can lead to cardiovascular disease, and highlight potential therapeutic approaches that target molecular mechanisms of cellular senescence to prevent or treat cardiovascular disease.
Collapse
Affiliation(s)
- Maggie S Chen
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138.,Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
75
|
Meijnikman AS, Herrema H, Scheithauer TPM, Kroon J, Nieuwdorp M, Groen AK. Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Rep 2021; 3:100301. [PMID: 34113839 PMCID: PMC8170167 DOI: 10.1016/j.jhepr.2021.100301] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that has important physiological functions. However, cellular senescence is also a hallmark of ageing and has been associated with several pathological conditions. A wide range of factors including genotoxic stress, mitogens and inflammatory cytokines can induce senescence. Phenotypically, senescent cells are characterised by short telomeres, an enlarged nuclear area and damaged genomic and mitochondrial DNA. Secretion of proinflammatory proteins, also known as the senescence-associated secretory phenotype, is a characteristic of senescent cells that is thought to be the main contributor to their disease-inducing properties. In the past decade, the role of cellular senescence in the development of non-alcoholic fatty liver disease (NAFLD) and its progression towards non-alcoholic steatohepatitis (NASH) has garnered significant interest. Until recently, it was suggested that hepatocyte cellular senescence is a mere consequence of the metabolic dysregulation and inflammatory phenomena in fatty liver disease. However, recent work in rodents has suggested that senescence may be a causal factor in NAFLD development. Although causality is yet to be established in humans, current evidence suggests that targeting senescent cells has therapeutic potential for NAFLD. We aim to provide insights into the quality of the evidence supporting a causal role of cellular senescence in the development of NAFLD in rodents and humans. We will elaborate on key cellular and molecular features of senescence and discuss the efficacy and safety of novel senolytic drugs for the treatment or prevention of NAFLD.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- C/EBPα, CCAAT- enhancer-binding protein
- CDK, cyclin dependent kinase
- DDR, DNA damage response
- FFAs, free fatty acids
- HCC, hepatocellular carcinoma
- IL-, interleukin
- KC, Kupffer cell
- LSEC, liver sinusoidal endothelial cell
- MCP1/CCL2, monocyte chemoattractant protein-1
- MiDAS, mitochondrial dysfunction-associated senescence
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- ROS, reactive oxygen species
- Rb, retinoblastoma factor
- SA-β gal, senescence-associated beta-galactosidase
- SASP, senescence-associated secretory phenotype
- SCAP, senescence-associated antiapoptotic pathways
- TGFβ, transforming growth factor-β
- TNFα, tumour necrosis factor-α
- cellular senescence
- non-alcoholic fatty liver disease
- non-alcoholic steatohepatitis
- obesity
- qPCR, quantitative PCR
- senolytics
Collapse
Affiliation(s)
- Abraham Stijn Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | | | - Jeffrey Kroon
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Albert Kornelis Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
- Corresponding author. Address: Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Meibergdreef 9 room G-146, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
76
|
Leon KE, Tangudu NK, Aird KM, Buj R. Loss of p16: A Bouncer of the Immunological Surveillance? Life (Basel) 2021; 11:309. [PMID: 33918220 PMCID: PMC8065641 DOI: 10.3390/life11040309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
p16INK4A (hereafter called p16) is an important tumor suppressor protein frequently suppressed in human cancer and highly upregulated in many types of senescence. Although its role as a cell cycle regulator is very well delineated, little is known about its other non-cell cycle-related roles. Importantly, recent correlative studies suggest that p16 may be a regulator of tissue immunological surveillance through the transcriptional regulation of different chemokines, interleukins and other factors secreted as part of the senescence-associated secretory phenotype (SASP). Here, we summarize the current evidence supporting the hypothesis that p16 is a regulator of tumor immunity.
Collapse
Affiliation(s)
- Kelly E. Leon
- UPMC Hillman Cancer Center, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (K.E.L.); (N.K.T.); (K.M.A.)
- Biomedical Sciences Graduate Program, Penn State College of Medicine, Hershey, PA 15213, USA
| | - Naveen Kumar Tangudu
- UPMC Hillman Cancer Center, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (K.E.L.); (N.K.T.); (K.M.A.)
| | - Katherine M. Aird
- UPMC Hillman Cancer Center, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (K.E.L.); (N.K.T.); (K.M.A.)
| | - Raquel Buj
- UPMC Hillman Cancer Center, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (K.E.L.); (N.K.T.); (K.M.A.)
| |
Collapse
|
77
|
Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ 2021; 28:1159-1173. [PMID: 33723374 PMCID: PMC8026967 DOI: 10.1038/s41418-021-00764-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a "senescence syndrome".
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Cécile Garcin
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Filippo Rosselli
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| |
Collapse
|
78
|
Magnani E, Macchi F, Madakashira BP, Zhang C, Alaydaroos F, Sadler KC. uhrf1 and dnmt1 Loss Induces an Immune Response in Zebrafish Livers Due to Viral Mimicry by Transposable Elements. Front Immunol 2021; 12:627926. [PMID: 33854502 PMCID: PMC8039153 DOI: 10.3389/fimmu.2021.627926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Activation of transposable elements (TEs) can cause cellular damage. Cytoplasmic nucleic acid sensing pathways evolved to detect pathogens, but can also serve to cull cells with inappropriate TE activation as TEs can be viral mimetics. Epigenetic silencing of TEs is mediated in part by DNA methylation, but it is not clear if TE activation or the immune system contribute to the cellular damage caused by loss of DNA methylation. Here, we provide mechanistic insight into the observation of an activated interferon response in the liver of zebrafish larvae with deletion in critical components of the DNA methylation machinery, uhrf1 and dnmt1. We focus on dissecting the relationship between DNA methylation, TE activation and induction of an immune response through cytoplasmic DNA and double stranded RNA sensing pathways and identify tnfa as a mediator of cell death in the liver of these mutants. Integrated RNAseq and methylome analysis identified LTR transposons as the most upregulated in these mutants and also the most methylated in control larvae, indicating a direct role of DNA methylation in suppressing this TE subclass. RNAseq analysis from these same samples revealed expression signatures of a type-I interferon response and of tnfa activation, mimicking the pattern of gene expression in virally infected cells. CRISPR/Cas9 mediated depletion of the cellular antiviral sensors sting and mavs reduced expression of interferon response genes and tnfa depletion dramatically reduced cell death in uhrf1 mutant livers. This suggests that the antiviral response induced by DNA hypomethylation and TE activation in the liver is mediated by the signaling pathways activated by both cytoplasmic double stranded RNA and DNA and that tnfa mediates cell death as a potential mechanism to eliminate these damaged cells.
Collapse
Affiliation(s)
- Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Fatima Alaydaroos
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
79
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 682] [Impact Index Per Article: 227.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
80
|
Rocha A, Dalgarno A, Neretti N. The functional impact of nuclear reorganization in cellular senescence. Brief Funct Genomics 2021; 21:24-34. [PMID: 33755107 PMCID: PMC8789270 DOI: 10.1093/bfgp/elab012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is the irreversible cell cycle arrest in response to DNA damage. Because senescent cells accumulate with age and contribute to chronic inflammation, they are promising therapeutic targets for healthspan extension. The senescent phenotype can vary depending on cell type and on the specific insults that induce senescence. This variability is also reflected in the extensive remodeling of the genome organization within the nucleus of senescent cells. Here, we give an overview of the nuclear changes that occur in different forms of senescence, including changes to chromatin state and composition and to the three-dimensional organization of the genome, as well as alterations to the nuclear envelope and to the accessibility of repetitive genomic regions. Many of these changes are shared across all forms of senescence, implicating nuclear organization as a fundamental driver of the senescent state and of how senescent cells interact with the surrounding tissue.
Collapse
Affiliation(s)
- Azucena Rocha
- Molecular Biology, Cell Biology and Biochemistry program at Brown University
| | - Audrey Dalgarno
- Molecular Biology, Cell Biology and Biochemistry program at Brown University
| | - Nicola Neretti
- Associate Professor in the Department of Molecular Biology, Cell Biology and Biochemistry at Brown University
| |
Collapse
|
81
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
82
|
Estevez H, Garcia-Calvo E, Rivera-Torres J, Vallet-Regí M, González B, Luque-Garcia JL. Transcriptome Analysis Identifies Novel Mechanisms Associated with the Antitumor Effect of Chitosan-Stabilized Selenium Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13030356. [PMID: 33800318 PMCID: PMC8000472 DOI: 10.3390/pharmaceutics13030356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have been receiving special attention in recent years due to their antioxidant capacity and antitumor properties. However, the mechanisms associated with these properties remain to be elucidated. For this reason, a global transcriptome analysis has been designed in this work and it was carried out using human hepatocarcinoma cells and chitosan-stabilized SeNPs (Ch-SeNPs) to identify new targets and pathways related to the antitumor mechanisms associated with Ch-SeNPs. The results obtained confirm the alteration of the cell cycle and the effect of Ch-SeNPs on different tumor suppressors and other molecules involved in key mechanisms related to cancer progression. Furthermore, we demonstrated the antioxidant properties of these nanoparticles and their capacity to induce senescence, which was further confirmed through the measurement of β-galactosidase activity.
Collapse
Affiliation(s)
- Hector Estevez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.)
| | - Estefania Garcia-Calvo
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.)
| | - Jose Rivera-Torres
- Department of Pharmacy and Biotechnology, School of Biomedical and Health Sciences, European University of Madrid, 28670 Madrid, Spain;
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Complutense University of Madrid, 28040 Madrid, Spain; (M.V.-R.); (B.G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Complutense University of Madrid, 28040 Madrid, Spain; (M.V.-R.); (B.G.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jose L. Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (H.E.); (E.G.-C.)
- Correspondence: ; Tel.: +34-913-944-212
| |
Collapse
|
83
|
Ramu D, Shan TW, Hirpara JL, Pervaiz S. Cellular senescence: Silent operator and therapeutic target in cancer. IUBMB Life 2021; 73:530-542. [PMID: 33675120 DOI: 10.1002/iub.2460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
The process of carcinogenesis and its progression involves an intricate interplay between a number of signaling networks, metabolic pathways and the microenvironment. These include an alteration in the cellular redox metabolism and deregulation of cell cycle checkpoints. Similar to the dichotomy of redox signaling in cancer cell fate and state determination, a diverging effect of an irreversible cell cycle arrest or senescence on carcinogenesis has been demonstrated. In this regard, while overwhelming oxidative stress has a damaging effect on tissue architecture and organ function and promotes death execution, a mild "pro-oxidant" environment is conducive for cell proliferation, growth and survival. Similarly, cellular senescence has been shown to elicit both a tumor suppressor and an oncogenic effect in a context-dependent manner. Notably, there appears to be a crosstalk between these two critical regulators of cell fate and state, particularly from the standpoint of the divergent effects on processes that promote or abate carcinogenesis. This review aims to provide an overview of these overarching themes and attempts to highlight critical intersection nodes, which are emerging as potential diagnostic and/or therapeutic targets for novel anticancer strategies.
Collapse
Affiliation(s)
- Deepika Ramu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teoh Wei Shan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jayshree L Hirpara
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore, Singapore.,Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore, Singapore.,Faculté de Medicine, University of Paris, Paris, France
| |
Collapse
|
84
|
Zhang C, Zhang X, Huang L, Guan Y, Huang X, Tian X, Zhang L, Tao W. ATF3 drives senescence by reconstructing accessible chromatin profiles. Aging Cell 2021; 20:e13315. [PMID: 33539668 PMCID: PMC7963335 DOI: 10.1111/acel.13315] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Chromatin organization and transcriptional profiles undergo tremendous reordering during senescence. However, uncovering the regulatory mechanisms between chromatin reconstruction and gene expression in senescence has been elusive. Here, we depicted the landscapes of both chromatin accessibility and gene expression to reveal gene regulatory networks in human umbilical vein endothelial cell (HUVEC) senescence and found that chromatin accessibilities are redistributed during senescence. Particularly, the intergenic chromatin was massively shifted with the increased accessibility regions (IARs) or decreased accessibility regions (DARs), which were mainly enhancer elements. We defined AP‐1 transcription factor family as being responsible for driving chromatin accessibility reconstruction in IARs, where low DNA methylation improved binding affinity of AP‐1 and further increased the chromatin accessibility. Among AP‐1 transcription factors, we confirmed ATF3 was critical to reconstruct chromatin accessibility to promote cellular senescence. Our results described a dynamic landscape of chromatin accessibility whose remodeling contributes to the senescence program, we identified that AP‐1 was capable of reorganizing the chromatin accessibility profile to regulate senescence.
Collapse
Affiliation(s)
- Chao Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
- PKU‐Tsinghua‐NIBS Graduate Program School of Life Sciences Peking University Beijing China
| | - Xuebin Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Li Huang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Yiting Guan
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Xiaoke Huang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Xiao‐Li Tian
- Department of Human Population Genetics Human Aging Research Institute (HARI) and School of Life Sciences Nanchang University Nanchang China
| | - Lijun Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| | - Wei Tao
- The MOE Key Laboratory of Cell Proliferation and Differentiation School of Life Sciences Peking University Beijing China
| |
Collapse
|
85
|
García-Giménez JL, Mena-Molla S, Tarazona-Santabalbina FJ, Viña J, Gomez-Cabrera MC, Pallardó FV. Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1883. [PMID: 33672064 PMCID: PMC7919465 DOI: 10.3390/ijerph18041883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
The main epigenetic features in aging are: reduced bulk levels of core histones, altered pattern of histone post-translational modifications, changes in the pattern of DNA methylation, replacement of canonical histones with histone variants, and altered expression of non-coding RNA. The identification of epigenetic mechanisms may contribute to the early detection of age-associated subclinical changes or deficits at the molecular and/or cellular level, to predict the development of frailty, or even more interestingly, to improve health trajectories in older adults. Frailty reflects a state of increased vulnerability to stressors as a result of decreased physiologic reserves, and even dysregulation of multiple physiologic systems leading to adverse health outcomes for individuals of the same chronological age. A key approach to overcome the challenges of frailty is the development of biomarkers to improve early diagnostic accuracy and to predict trajectories in older individuals. The identification of epigenetic biomarkers of frailty could provide important support for the clinical diagnosis of frailty, or more specifically, to the evaluation of its associated risks. Interventional studies aimed at delaying the onset of frailty and the functional alterations associated with it, would also undoubtedly benefit from the identification of frailty biomarkers. Specific to the article yet reasonably common within the subject discipline.
Collapse
Affiliation(s)
- José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | - Salvador Mena-Molla
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | | | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
86
|
Feiner LK, Tierling S, Holländer S, Glanemann M, Rubie C. An aging and p53 related marker: HOXA5 promoter methylation negatively correlates with mRNA and protein expression in old age. Aging (Albany NY) 2021; 13:4831-4849. [PMID: 33547267 PMCID: PMC7950283 DOI: 10.18632/aging.202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/04/2021] [Indexed: 12/02/2022]
Abstract
The process of aging has been associated with differential patterns of DNA methylation which relate to changes in gene expression. Hence, we aimed to identify genes with significant age-related methylation differences and to study their mRNA and protein expression profile. Genome-wide DNA methylation analysis was performed with the Illumina Infinium Methylation EPIC BeadChip Microarray on bisulfite-converted DNA prepared from monocytes derived from young (average age: 23.8 yrs) and old (average age: 81.5 yrs) volunteers that are separated by at least 50 years of age difference, n=4, respectively. Differentially methylated CpG sites were assigned to the associated genes and validated by deep sequencing analysis (n=20). Demonstrating an age-associated significant increase of methylation in the promoter region (p=1x10-8), Homeobox A5 (HOXA5), also known to activate p53, emerged as an interesting candidate for further expression analyses by Realtime PCR, ELISA and Western Blot Analysis (n=30, respectively). Consistent with its hypermethylation we observed significant HOXA5 mRNA downregulation (p=0.0053) correlating with significant p53 downregulation (p=0.0431) in the old cohort. Moreover, we observed a significant change in HOXA5 protein expression (p=3x10-5) negatively correlating with age and promoter methylation thus qualifying HOXA5 for an eligible p53-related aging marker.
Collapse
Affiliation(s)
- Laura-Kim Feiner
- Department of General-, Visceral-, Vascular- and Pediatric Surgery, University of Saarland Medical Center, Homburg 66421, Saar, Germany
| | - Sascha Tierling
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken 66123, Germany
| | - Sebastian Holländer
- Department of General-, Visceral-, Vascular- and Pediatric Surgery, University of Saarland Medical Center, Homburg 66421, Saar, Germany
| | - Matthias Glanemann
- Department of General-, Visceral-, Vascular- and Pediatric Surgery, University of Saarland Medical Center, Homburg 66421, Saar, Germany
| | - Claudia Rubie
- Department of General-, Visceral-, Vascular- and Pediatric Surgery, University of Saarland Medical Center, Homburg 66421, Saar, Germany
| |
Collapse
|
87
|
Si Z, Sun L, Wang X. Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed Pharmacother 2021; 137:111327. [PMID: 33545662 DOI: 10.1016/j.biopha.2021.111327] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancies have significantly increased the number of individuals suffering from geriatric neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The financial cost for current and future patients with these diseases is overwhelming, resulting in substantial economic and societal costs. Unfortunately, most recent high-profile clinical trials for neurodegenerative diseases have failed to obtain efficacious results, indicating that novel approaches are desperately needed to treat these pathologies. Cell senescence, characterized by permanent cell cycle arrest, resistance to apoptosis, mitochondrial alterations, and secretion of senescence-associated secretory phenotype (SASP) components, has been extensively studied in mitotic cells such as fibroblasts, which is considered a hallmark of aging. Furthermore, multiple cell types in the senescent state in the brain, including neurons, microglia, astrocytes, and neural stem cells, have recently been observed in the context of neurodegenerative diseases, suggesting that these senescent cells may play an essential role in the pathological processes of neurodegenerative diseases. Therefore, this review begins by outlining key aspects of cell senescence constitution followed by examining the evidence implicating senescent cells in neurodegenerative diseases. In the final section, we review how cell senescence may be targeted as novel therapeutics to treat pathologies associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, PR China
| | - Linlin Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
88
|
Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 2021; 22:75-95. [PMID: 33328614 PMCID: PMC8344376 DOI: 10.1038/s41580-020-00314-w] [Citation(s) in RCA: 936] [Impact Index Per Article: 312.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Cellular senescence, first described in vitro in 1961, has become a focus for biotech companies that target it to ameliorate a variety of human conditions. Eminently characterized by a permanent proliferation arrest, cellular senescence occurs in response to endogenous and exogenous stresses, including telomere dysfunction, oncogene activation and persistent DNA damage. Cellular senescence can also be a controlled programme occurring in diverse biological processes, including embryonic development. Senescent cell extrinsic activities, broadly related to the activation of a senescence-associated secretory phenotype, amplify the impact of cell-intrinsic proliferative arrest and contribute to impaired tissue regeneration, chronic age-associated diseases and organismal ageing. This Review discusses the mechanisms and modulators of cellular senescence establishment and induction of a senescence-associated secretory phenotype, and provides an overview of cellular senescence as an emerging opportunity to intervene through senolytic and senomorphic therapies in ageing and ageing-associated diseases.
Collapse
Affiliation(s)
- Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Darren Baker
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
89
|
Abstract
Significance: Cell senescence was originally defined by an acute loss of replicative capacity and thus believed to be restricted to proliferation-competent cells. More recently, senescence has been recognized as a cellular stress and damage response encompassing multiple pathways or senescence domains, namely DNA damage response, cell cycle arrest, senescence-associated secretory phenotype, senescence-associated mitochondrial dysfunction, autophagy/mitophagy dysfunction, nutrient and stress signaling, and epigenetic reprogramming. Each of these domains is activated during senescence, and all appear to interact with each other. Cell senescence has been identified as an important driver of mammalian aging. Recent Advances: Activation of all these senescence domains has now also been observed in a wide range of post-mitotic cells, suggesting that senescence as a stress response can occur in nondividing cells temporally uncoupled from cell cycle arrest. Here, we review recent evidence for post-mitotic cell senescence and speculate about its possible relevance for mammalian aging. Critical Issues: Although a majority of senescence domains has been found to be activated in a range of post-mitotic cells during aging, independent confirmation of these results is still lacking for most of them. Future Directions: To define whether post-mitotic senescence plays a significant role as a driver of aging phenotypes in tissues such as brain, muscle, heart, and others. Antioxid. Redox Signal. 34, 308-323.
Collapse
Affiliation(s)
- Thomas von Zglinicki
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Molecular Biology and Genetics, Arts and Sciences Faculty, Near East University, Nicosia, Turkey
| | - Tengfei Wan
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
90
|
Garnett S, de Bruyns A, Provencher-Tom V, Dutchak K, Shu R, Dankort D. Metabolic Regulator IAPP (Amylin) Is Required for BRAF and RAS Oncogene-Induced Senescence. Mol Cancer Res 2021; 19:874-885. [PMID: 33500359 DOI: 10.1158/1541-7786.mcr-20-0879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Cellular senescence is characterized by a prolonged and predominantly irreversible cell-cycle arrest state, which is linked to loss of tissue function and aging in mammals. Moreover, in response to aberrant oncogenic signals such as those from oncogenic RAS or BRAF, senescence functions as an intrinsic tumor suppressor mechanism restraining tumor progression. In addition to this durable proliferative block, senescent cells adopt altered morphologies, transcriptional profiles, and metabolism, while often possessing unusual heterochromatin formation termed senescence-associated heterochromatic foci. To uncover genes that are required to permit proliferation in the face of sustained oncogene signaling, we conducted an shRNA-based genetic screen in primary cells expressing inducible BRAF. Here we show that depletion of a known glycolysis regulator, islet amylin polypeptide (IAPP also known as amylin), prevents RAS and BRAF oncogene-induced senescence (OIS) in human cells. Importantly, depletion of IAPP resulted in changes of the cells' metabolome and this metabolic reprogramming was associated with widespread alterations in chromatin modifications compared with senescent cells. Conversely, exogenous treatment of IAPP-depleted cells with amylin restored OIS. Together, our results demonstrate that the metabolic regulator IAPP is important regulator of OIS. Moreover, they suggest that IAPP analog treatment or activation of IAPP signaling in RAS/BRAF mutant tumors may have therapeutic potential through senescence induction. IMPLICATIONS: These findings demonstrate that IAPP is a novel metabolic regulator of oncogene-induced senescence and use of IAPP analogs may be therapeutically effective to restore growth arrest to BRAF and/or RAS mutant cancers.
Collapse
Affiliation(s)
- Sam Garnett
- Department of Biology, McGill University, Montréal QC, Canada
| | | | | | - Kendall Dutchak
- Department of Biology, McGill University, Montréal QC, Canada
| | - Ran Shu
- Department of Biology, McGill University, Montréal QC, Canada
| | - David Dankort
- Department of Biology, McGill University, Montréal QC, Canada. .,Goodman Cancer Research Centre, Montréal QC, Canada
| |
Collapse
|
91
|
Qian L, TCW J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021; 22:1203. [PMID: 33530458 PMCID: PMC7865494 DOI: 10.3390/ijms22031203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.
Collapse
Affiliation(s)
- Lu Qian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia TCW
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Ronald Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
92
|
Ming X, Zhu B, Li Y. Mitotic inheritance of DNA methylation: more than just copy and paste. J Genet Genomics 2021; 48:1-13. [PMID: 33771455 DOI: 10.1016/j.jgg.2021.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Decades of investigation on DNA methylation have led to deeper insights into its metabolic mechanisms and biological functions. This understanding was fueled by the recent development of genome editing tools and our improved capacity for analyzing the global DNA methylome in mammalian cells. This review focuses on the maintenance of DNA methylation patterns during mitotic cell division. We discuss the latest discoveries of the mechanisms for the inheritance of DNA methylation as a stable epigenetic memory. We also highlight recent evidence showing the rapid turnover of DNA methylation as a dynamic gene regulatory mechanism. A body of work has shown that altered DNA methylomes are common features in aging and disease. We discuss the potential links between methylation maintenance mechanisms and disease-associated methylation changes.
Collapse
Affiliation(s)
- Xuan Ming
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
93
|
Moiseeva O, Guillon J, Ferbeyre G. Senescence: A program in the road to cell elimination and cancer. Semin Cancer Biol 2020; 81:48-53. [DOI: 10.1016/j.semcancer.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023]
|
94
|
Guan R, Hong W, Huang J, Peng T, Zhao Z, Lin Y, Yu M, Jian Z. The expression and prognostic value of GLYATL1 and its potential role in hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:1305-1321. [PMID: 33457003 PMCID: PMC7807277 DOI: 10.21037/jgo-20-186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/20/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Glycine-N-acyltransferase-like 1 (GLYATL1), which is involved in the detoxification of endogenous and exogenous acyl-CoA, promotes glutamine metabolism in xenobiotic metabolism. Recent evidence suggests an association between GLYATL1 and tumors. However, there are few comprehensive analyses of GLYATL1 in cancers. We evaluated the expression and prognostic value of GLYATL1 and explored the mechanism underlying the association between GLYATL1 and cancers. METHODS GLYATL1 mRNA expression across cancers was investigated in the Oncomine database and confirmed in the UALCAN and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Next, its prognostic value in different cancers was revealed by PrognoScan and Kaplan-Meier plotter. According to clinicopathologic features, we conducted a subgroup analysis of the prognosis of GLYATL1 in a cohort of hepatocellular carcinoma (HCC) patients from The Cancer Genome Atlas (TCGA) and the GSE116174 dataset. We further investigated the GLYATL1 promoter methylation profile in HCC. Next, a protein-protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. Finally, we utilized gene set enrichment analysis (GSEA) to identify significantly enriched pathways and confirmed their associations using the Tumor Immune Estimation Resource (TIMER) and GEPIA databases. RESULTS GLYATL1 is downregulated in many cancers and indicates a poor prognosis. Specifically, low GLYATL1 expression was associated with short overall survival (OS) in HCC patients. Interestingly, GLYATL1 expression was associated with poor OS in stage I-II HCC patients and was revealed as an independent prognostic factor. The promoter methylation level of GLYATL1 in HCC tissue was significantly higher than that in normal liver tissue. The PPI network suggested that GLYATL1 is co-expressed with ten genes, including CNGA3 and GNB5. GSEA revealed that GLYATL1 is predominantly negatively enriched in xenobiotic metabolism, and the gene association analysis in TIMER and GEPIA showed a significantly negative association between the expression of GLYATL1 and the expression of most genes involved in mitochondrial glutamine metabolism, including SLC1A5 and SLC1A11. CONCLUSIONS Our study is the first to shed light on the expression and prognostic value of GLYATL1 in cancers and provide a potential regulatory mechanism underlying HCC development.
Collapse
Affiliation(s)
- Renguo Guan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianfeng Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianyi Peng
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhen Zhao
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ye Lin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhixiang Jian
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
95
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
96
|
Gassenmaier M, Rentschler M, Fehrenbacher B, Eigentler TK, Ikenberg K, Kosnopfel C, Sinnberg T, Niessner H, Bösmüller H, Wagner NB, Schaller M, Garbe C, Röcken M. Expression of DNA Methyltransferase 1 Is a Hallmark of Melanoma, Correlating with Proliferation and Response to B-Raf and Mitogen-Activated Protein Kinase Inhibition in Melanocytic Tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2155-2164. [PMID: 32679231 DOI: 10.1016/j.ajpath.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Aberrant DNA methylation is an epigenetic hallmark of melanoma, but the expression of DNA methyltransferase (Dnmt)-1 in melanocytic tumors is unknown. Dnmt1 expression was analyzed in primary melanocytes, melanoma cell lines, and 83 melanocytic tumors, and its associations with proliferation, mutational status, and response to B-Raf and mitogen-activated protein kinase kinase (MEK) inhibition were explored. Dnmt1 expression was increased incrementally from nevi [mean fluorescence intensity (MFI), 48.1; interquartile range, 41.7 to 59.6] to primary melanomas (MFI, 68.8; interquartile range, 58.4 to 77.0) and metastatic melanomas (MFI, 87.5; interquartile range, 77.1 to 114.5) (P < 0.001). Dnmt1 expression was correlated with Ki-67 expression (Spearman correlation, 0.483; P < 0.001) and was independent of BRAF mutation status (P = 0.55). In BRAF-mutant melanoma, Dnmt1 was down-regulated during response to B-Raf and MEK inhibition and was again up-regulated on drug resistance in vitro and in vivo. Degradation of Dnmt1 by the histone deacetylase inhibitor suberoylanilide hydroxamic acid was associated with decreased cell viability in B-Raf inhibitor-sensitive and -resistant cell lines. This study demonstrates that Dnmt1 expression is correlated with proliferation in melanocytic tumors, is increased with melanoma progression, and is associated with response to B-Raf and MEK inhibition. Given its strong expression in metastatic melanoma, Dnmt1 may be a promising target for combined epigenetic and immunotherapy.
Collapse
Affiliation(s)
| | | | - Birgit Fehrenbacher
- Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Thomas K Eigentler
- Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Kristian Ikenberg
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Corinna Kosnopfel
- Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Heike Niessner
- Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Hans Bösmüller
- Institute of Pathology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nikolaus B Wagner
- Department of Dermatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
97
|
Johnstone SE, Reyes A, Qi Y, Adriaens C, Hegazi E, Pelka K, Chen JH, Zou LS, Drier Y, Hecht V, Shoresh N, Selig MK, Lareau CA, Iyer S, Nguyen SC, Joyce EF, Hacohen N, Irizarry RA, Zhang B, Aryee MJ, Bernstein BE. Large-Scale Topological Changes Restrain Malignant Progression in Colorectal Cancer. Cell 2020; 182:1474-1489.e23. [PMID: 32841603 PMCID: PMC7575124 DOI: 10.1016/j.cell.2020.07.030] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 05/04/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.
Collapse
Affiliation(s)
- Sarah E Johnstone
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alejandro Reyes
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Yifeng Qi
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carmen Adriaens
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Esmat Hegazi
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Karin Pelka
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jonathan H Chen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Luli S Zou
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Vivian Hecht
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Martin K Selig
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Caleb A Lareau
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02215, USA
| | - Sowmya Iyer
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Rafael A Irizarry
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Bin Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin J Aryee
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA.
| | - Bradley E Bernstein
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02129, USA.
| |
Collapse
|
98
|
Sen D, Keung AJ. Capturing complex epigenetic phenomena through human multicellular systems. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 16:34-41. [PMID: 32905378 DOI: 10.1016/j.cobme.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic states inherently define a wide range of complex biological phenotypes and processes in development and disease. Accurate cellular modeling would ideally capture the epigenetic complexity of these processes as well as the accompanying molecular changes in chromatin biochemistry including in DNA and histone modifications. Here we highlight recent work that demonstrate how multicellular systems provide a natural approach to capture complex epigenetic phenomena. They accomplish this through more closely matching the in vivo environment and through the intrinsic nature of multicellular systems being able to generate and model multiple distinct cellular states, all within one system. We also discuss challenges and limitations of such systems, efforts to tune and modulate epigenetics directly in multicellular systems, and how molecular interventional approaches could advance and improve the utility of these models.
Collapse
Affiliation(s)
- Dilara Sen
- North Carolina State University, Raleigh, NC 27606
| | | |
Collapse
|
99
|
Jung YD, Park SK, Kang D, Hwang S, Kang MH, Hong SW, Moon JH, Shin JS, Jin DH, You D, Lee JY, Park YY, Hwang JJ, Kim CS, Suh N. Epigenetic regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells. Redox Biol 2020; 37:101716. [PMID: 32961441 PMCID: PMC7509080 DOI: 10.1016/j.redox.2020.101716] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
The use of human mesenchymal stem cells (hMSCs) in clinical applications requires large-scale cell expansion prior to administration. However, the prolonged culture of hMSCs results in cellular senescence, impairing their proliferation and therapeutic potentials. To understand the role of microRNAs (miRNAs) in regulating cellular senescence in hMSCs, we globally depleted miRNAs by silencing the DiGeorge syndrome critical region 8 (DGCR8) gene, an essential component of miRNA biogenesis. DGCR8 knockdown hMSCs exhibited severe proliferation defects and senescence-associated alterations, including increased levels of reactive oxygen species (ROS). Transcriptomic analysis revealed that the antioxidant gene superoxide dismutase 2 (SOD2) was significantly downregulated in DGCR8 knockdown hMSCs. Moreover, we found that DGCR8 silencing in hMSCs resulted in hypermethylation in CpG islands upstream of SOD2. 5-aza-2'-deoxycytidine treatment restored SOD2 expression and ROS levels. We also found that these effects were dependent on the epigenetic regulator DNA methyltransferase 3 alpha (DNMT3A). Using computational and experimental approaches, we demonstrated that DNMT3A expression was regulated by miR-29a-3p and miR-30c-5p. Overexpression of miR-29a-3p and/or miR-30c-5p reduced ROS levels in DGCR8 knockdown hMSCs and rescued proliferation defects, mitochondrial dysfunction, and premature senescence. Our findings provide novel insights into hMSCs senescence regulation by the miR-29a-3p/miR-30c-5p/DNMT3A/SOD2 axis.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea; Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seul-Ki Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea; Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dayeon Kang
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea
| | - Supyong Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Seung-Woo Hong
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jai-Hee Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jae-Sik Shin
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Dalsan You
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Yun-Yong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jung Jin Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Choung Soo Kim
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
100
|
Zhang D, Wang Y, Hu X. Identification and Comprehensive Validation of a DNA Methylation-Driven Gene-Based Prognostic Model for Clear Cell Renal Cell Carcinoma. DNA Cell Biol 2020; 39:1799-1812. [PMID: 32716214 DOI: 10.1089/dna.2020.5601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent renal malignancy in adults with generally poor prognosis. This study aimed to establish a DNA methylation-driven gene-based prognostic model for ccRCC. We collected DNA methylation and gene expression profiles of over 1500 ccRCC samples from The Cancer Genome Atlas (TCGA) dataset, four Gene Expression Omnibus (GEO) datasets, the Genotype-Tissue Expression (GTEx) dataset, and cancer cell lines from Cancer Cell Line Encyclopedia database and performed comprehensive bioinformatics analysis. As a result, a total of 31 differentially expressed methylation-driven genes (DEMDGs) were identified. After univariate Cox regression, least absolute shrinkage and selection operator, and multivariate Cox regression analyses, four (NFE2L3, HHLA2, IFI16, and ZNF582) were finally selected to construct a risk score prognostic model. The high-risk group demonstrated significantly poor prognosis than the low-risk group did in TCGA training (hazard ratio [HR] = 3.533, p < 0.001), TCGA internal, and GEO external validation datasets. Furthermore, the nomogram, including the prognostic model and clinical factors, showed promising prognostic value (HR = 5.756, p < 0.001, and area under the curve at 1 year = 0.856). In addition, the model was found to be significantly associated with drug sensitivity of eight targeted agents. These findings provided a novel and reliable four DEMDG-based prognostic model for ccRCC.
Collapse
Affiliation(s)
- Di Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Yicun Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|