51
|
Kesika P, Sivamaruthi BS, Thangaleela S, Bharathi M, Chaiyasut C. Role and Mechanisms of Phytochemicals in Hair Growth and Health. Pharmaceuticals (Basel) 2023; 16:206. [PMID: 37259355 PMCID: PMC9963650 DOI: 10.3390/ph16020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2024] Open
Abstract
Hair health is associated with personal distress and psychological well-being. Even though hair loss (alopecia) does not affect humans' biological health, it affects an individual's social well-being. So, treatment for hair problems and improving hair health are obligatory. Several pharmacological and cosmeceutical treatment procedures are available to manage hair loss and promote growth. Several factors associated with hair health include genetics, disease or disorder, drugs, lifestyle, chemical exposure, and unhealthy habits such as smoking, diet, and stress. Synthetic and chemical formulations have side effects, so people are moving towards natural compounds-based remedies for their hair problems. The history of using phytochemicals for hair health has been documented anciently. However, scientific studies on hair loss have accelerated in recent decades. The current review summarizes the type of alopecia, the factor affecting hair health, alopecia treatments, phytochemicals' role in managing hair loss, and the mechanisms of hair growth-stimulating properties of phytochemicals. The literature survey suggested that phytochemicals are potent candidates for developing treatment procedures for different hair problems. Further detailed studies are needed to bring the scientific evidence to market.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
52
|
Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination. Cell Oncol (Dordr) 2023; 46:465-480. [PMID: 36656507 DOI: 10.1007/s13402-023-00775-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Accepted: 11/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Lactate is an important metabolite derived from glycolysis under physiological and pathological conditions. The Warburg effect reveals the vital role of lactate in cancer progression. Numerous studies have reported crucial roles for lactate in cancer progression and cell fate determination. Lactylation, a novel posttranslational modification (PTM), has provided a new opportunity to investigate metabolic epigenetic regulation, and studies of this process have been initiated in a wide range of cancer cells, cancer-associated immune cells, and embryonic stem cells. CONCLUSION Lactylation is a novel and interesting mechanism of lactate metabolism linked to metabolic rewiring and epigenetic remodeling. It is a potential and hopeful target for cancer therapy. Here, we summarize the discovery of lactylation, the mechanisms of site modification, and progress in research on nonhistone lactylation. We focus on the potential roles of lactylation in cancer progression and cell fate determination and the possible therapeutic strategies for targeting lysine lactylation. Finally, we suggest some future research topics on lactylation to inspire some interesting ideas.
Collapse
|
53
|
Wang G, Sweren E, Andrews W, Li Y, Chen J, Xue Y, Wier E, Alphonse MP, Luo L, Miao Y, Chen R, Zeng D, Lee S, Li A, Dare E, Kim D, Archer NK, Reddy SK, Resar L, Hu Z, Grice EA, Kane MA, Garza LA. Commensal microbiome promotes hair follicle regeneration by inducing keratinocyte HIF-1α signaling and glutamine metabolism. SCIENCE ADVANCES 2023; 9:eabo7555. [PMID: 36598999 PMCID: PMC9812389 DOI: 10.1126/sciadv.abo7555] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/23/2022] [Indexed: 05/06/2023]
Abstract
Tissue injury induces metabolic changes in stem cells, which likely modulate regeneration. Using a model of organ regeneration called wound-induced hair follicle neogenesis (WIHN), we identified skin-resident bacteria as key modulators of keratinocyte metabolism, demonstrating a positive correlation between bacterial load, glutamine metabolism, and regeneration. Specifically, through comprehensive multiomic analysis and single-cell RNA sequencing in murine skin, we show that bacterially induced hypoxia drives increased glutamine metabolism in keratinocytes with attendant enhancement of skin and hair follicle regeneration. In human skin wounds, topical broad-spectrum antibiotics inhibit glutamine production and are partially responsible for reduced healing. These findings reveal a conserved and coherent physiologic context in which bacterially induced metabolic changes improve the tolerance of stem cells to damage and enhance regenerative capacity. This unexpected proregenerative modulation of metabolism by the skin microbiome in both mice and humans suggests important methods for enhancing regeneration after injury.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Evan Sweren
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - William Andrews
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, Baltimore, MD 21201, USA
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Junjun Chen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Yingchao Xue
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Eric Wier
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Li Luo
- Departments of Medicine, Oncology, Pathology and Institute for Cellular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Sam Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Ang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Erika Dare
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Dongwon Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
- Department of Bio-Chemical Engineering, Dongseo University, Busan, Republic of Korea
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Sashank K. Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Linda Resar
- Departments of Medicine, Oncology, Pathology and Institute for Cellular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Elizabeth A. Grice
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, Baltimore, MD 21201, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| |
Collapse
|
54
|
Shi X, Tuan H, Na X, Yang H, Yang Y, Zhang Y, Xi M, Tan Y, Yang C, Zhang J, Zhao A. The Association between Sugar-Sweetened Beverages and Male Pattern Hair Loss in Young Men. Nutrients 2023; 15:nu15010214. [PMID: 36615870 PMCID: PMC9824121 DOI: 10.3390/nu15010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
We performed this study to investigate the association between sugar-sweetened beverage (SSB) consumption and male pattern hair loss (MPHL) in young men. We conducted this cross-sectional study from January to April 2022 in mainland China. Young people aged 18-45 years (n = 1951) were recruited from 31 provinces in China. We used a self-reported online survey for data collection. We explored the associations between the amount/frequency of SSB consumption and MPHL by using a binary logistic regression model, with adjustments for sociodemographic, hair status, dietary intake, lifestyle, and psychological factors. Among the 1028 participants (27.8 ± 7.2 years) in the final analysis, we found that high SSB consumption is associated with a higher risk of MPHL. We recommend more support to decrease SSB consumption among young people to minimize negative health outcomes.
Collapse
Affiliation(s)
- Xiaojin Shi
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Hsiaohan Tuan
- Department of Dermatology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Xiaona Na
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Haibing Yang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yucheng Yang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yulin Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Menglu Xi
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yuefeng Tan
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Celi Yang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Junhan Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
- Correspondence: ; Tel.: +86-010-6279-6447
| |
Collapse
|
55
|
Cappello A, Mancini M, Madonna S, Rinaldo S, Paone A, Scarponi C, Belardo A, Zolla L, Zuccotti A, Panatta E, Pallotta S, Annicchiarico-Petruzzelli M, Albanesi C, Cutruzzolà F, Wang L, Jia W, Melino G, Candi E. Extracellular serine empowers epidermal proliferation and psoriasis-like symptoms. SCIENCE ADVANCES 2022; 8:eabm7902. [PMID: 36525488 DOI: 10.1126/sciadv.abm7902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The contribution of nutrient availability to control epidermal cell proliferation, inflammation, and hyperproliferative diseases remains unknown. Here, we studied extracellular serine and serine/glycine metabolism using human keratinocytes, human skin biopsies, and a mouse model of psoriasis-like disease. We focused on a metabolic enzyme, serine hydroxymethyltransferase (SHMT), that converts serine into glycine and tetrahydrofolate-bound one‑carbon units to support cell growth. We found that keratinocytes are both serine and glycine auxotrophs. Metabolomic profiling and hypoxanthine supplementation indicated that SHMT silencing/inhibition reduced cell growth through purine depletion, leading to nucleotide loss. In addition, topical application of an SHMT inhibitor suppressed both keratinocyte proliferation and inflammation in the imiquimod model and resulted in a decrease in psoriasis-associated gene expression. In conclusion, our study highlights SHMT2 activity and serine/glycine availability as an important metabolic hub controlling both keratinocyte proliferation and inflammatory cell expansion in psoriasis and holds promise for additional approaches to treat skin diseases.
Collapse
Affiliation(s)
- Angela Cappello
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Mara Mancini
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Stefania Madonna
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences A.Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences A.Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudia Scarponi
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Antonio Belardo
- Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Lello Zolla
- Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | | | - Emanuele Panatta
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | | | | | | | - Francesca Cutruzzolà
- Department of Biochemical Sciences A.Rossi Fanelli, Sapienza University of Rome, 00185 Rome, Italy
| | - Lu Wang
- Chinese Medicine and Systems Biology/School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Wei Jia
- Chinese Medicine and Systems Biology/School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167 Rome, Italy
| |
Collapse
|
56
|
Pyruvate Kinase M2 Promotes Hair Regeneration by Connecting Metabolic and Wnt/β-Catenin Signaling. Pharmaceutics 2022; 14:pharmaceutics14122774. [PMID: 36559274 PMCID: PMC9781674 DOI: 10.3390/pharmaceutics14122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Hair follicle stem cells (HFSCs) utilize glycolytic metabolism during their activation and anagen induction. However, the role of pyruvate kinase M2 (PKM2), which catalyzes the final step of glycolysis, in hair regeneration has not been elucidated. In this study, we investigated the expression pattern and activity of PKM2 during the depilation-induced anagen progression in mice. We found that TEPP-46, a selective activator of PKM2, enhanced hair re-growth and proliferation of HFSCs. PKM2 expression was increased via up-regulation of Wnt/β-catenin signaling, which is involved in hair regeneration. Moreover, a combined treatment with KY19382, a small molecule that activates Wnt/β-catenin signaling, and TEPP-46 significantly enhanced hair re-growth and wound-induced hair follicle neogenesis (WIHN). These results indicate that simultaneous activation of the PKM2 and Wnt/β-catenin signaling could be a potential strategy for treating alopecia patients.
Collapse
|
57
|
Meng Q, Sun H, Wu S, Familiari G, Relucenti M, Aschner M, Li X, Chen R. Epstein-Barr Virus-Encoded MicroRNA-BART18-3p Promotes Colorectal Cancer Progression by Targeting De Novo Lipogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202116. [PMID: 36307872 PMCID: PMC9762317 DOI: 10.1002/advs.202202116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/29/2022] [Indexed: 05/14/2023]
Abstract
The Epstein-Barr virus (EBV) genome encodes a cluster of 22 viral microRNAs, called miR-BamHI-A rightward transcripts (miR-BARTs), which are shown to promote the development of cancer. Here, this study reports that EBV-miR-BART18-3p is highly expressed in colorectal cancer (CRC) and is closely associated with the pathological and advanced clinical stages of CRC. Ectopic expression of EBV-miR-BART18-3p leads to increased migration and invasion capacities of CRC cells in vitro and causes tumor metastasis in vivo. Mechanistically, EBV-miR-BART18-3p activates the hypoxia inducible factor 1 subunit alpha/lactate dehydrogenase A axis by targeting Sirtuin, which promotes lactate accumulation and acetyl-CoA production in CRC cells under hypoxic condition. Increased acetyl-CoA utilization subsequently leads to histone acetylation of fatty acid synthase and fatty acid synthase-dependent fat synthesis, which in turn drives de novo lipogenesis. The oncogenic role of EBV-miR-BART18-3p is confirmed in the patient-derived tumor xenograft mouse model. Altogether, the findings define a novel mechanism of EBV-miR-BART18-3p in CRC development through the lipogenesis pathway and provide a potential clinical intervention target for CRC.
Collapse
Affiliation(s)
- Qingtao Meng
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
| | - Hao Sun
- Department of Occupational HealthSchool of Public HealthShanxi Medical UniversityTaiyuan030001China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Shenshen Wu
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
| | - Giuseppe Familiari
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michela Relucenti
- Laboratory of Electron Microscopy “Pietro Motta”SAIMLAL DepartmentFaculty of Pharmacy and MedicineSapienza University of Romevia Alfonso Borelli 50Rome00161Italy
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineForchheimer 209, 1300 Morris Park AvenueBronxNY10461USA
| | - Xiaobo Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Key Laboratory of Environmental Medicine EngineeringMinistry of EducationSchool of Public HealthSoutheast UniversityNanjing210009P. R. China
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, School of Public HealthCapital Medical UniversityBeijing100069P. R. China
- Department of OncologyCapital Medical UniversityBeijing100069P. R. China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
- Institute for Chemical CarcinogenesisGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
58
|
Ciliary neurotrophic factor-mediated neuroprotection involves enhanced glycolysis and anabolism in degenerating mouse retinas. Nat Commun 2022; 13:7037. [PMID: 36396639 PMCID: PMC9672129 DOI: 10.1038/s41467-022-34443-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective cytokine in multiple models of retinal degeneration. To understand mechanisms underlying its broad neuroprotective effects, we have investigated the influence of CNTF on metabolism in a mouse model of photoreceptor degeneration. CNTF treatment improves the morphology of photoreceptor mitochondria, but also leads to reduced oxygen consumption and suppressed respiratory chain activities. Molecular analyses show elevated glycolytic pathway gene transcripts and active enzymes. Metabolomics analyses detect significantly higher levels of ATP and the energy currency phosphocreatine, elevated glycolytic pathway metabolites, increased TCA cycle metabolites, lipid biosynthetic pathway intermediates, nucleotides, and amino acids. Moreover, CNTF treatment restores the key antioxidant glutathione to the wild type level. Therefore, CNTF significantly impacts the metabolic status of degenerating retinas by promoting aerobic glycolysis and augmenting anabolic activities. These findings reveal cellular mechanisms underlying enhanced neuronal viability and suggest potential therapies for treating retinal degeneration.
Collapse
|
59
|
Shi Y, Zhao J, Li H, Yu M, Zhang W, Qin D, Qiu K, Chen X, Kong M. A Drug-Free, Hair Follicle Cycling Regulatable, Separable, Antibacterial Microneedle Patch for Hair Regeneration Therapy. Adv Healthc Mater 2022; 11:e2200908. [PMID: 35817085 DOI: 10.1002/adhm.202200908] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/02/2022] [Indexed: 01/27/2023]
Abstract
The development of painless hair loss therapy without side-effect is challenging. The dermal papilla is the signal center of hair follicles and plays a key role in the regulation of their cycling. Activation of dermal papilla cells (DPCs) would promote hair regeneration. In this study, a separable microneedle patch comprised of chitosan lactate (CL) and exosomes (EXO) from adipose-derived stem cells is fabricated. After insertion of the microneedle into the skin, the hyaluronic acid substrate dissolves fast and the swellable polyvinyl alcohol needles are retained. The EXO sustainedly released from needles can be endocytosed by DPCs and promote cell proliferation via the activation of the Wnt signaling pathway, while the L-lactate released by CL can promote cell growth by activating lactate dehydrogenase. CL and EXO synergetically facilitate hair regeneration through regulating hair follicle cycling. In animal tests, compared with topical administration of minoxidil, the drug-free microneedle patches can more significantly promote hair regeneration within 7 days with lower dosing frequency. Furthermore, the inherent antibacterial properties of CL make it possible to avoid potential infection. Such transdermally administrated drug-free microneedle patches provide a simple, safe, and efficient strategy for hair loss treatment and exhibit great potential in clinical application.
Collapse
Affiliation(s)
- Yan Shi
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Jiaxuan Zhao
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Hu Li
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Miao Yu
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Wenxue Zhang
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Di Qin
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Kaijin Qiu
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.,Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Middle Road, Qingdao, 266237, P. R. China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| |
Collapse
|
60
|
Xiang J, Su R, Wu S, Zhou L. Construction of a prognostic signature for serous ovarian cancer based on lactate metabolism-related genes. Front Oncol 2022; 12:967342. [PMID: 36185201 PMCID: PMC9520471 DOI: 10.3389/fonc.2022.967342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background The key biochemical feature of malignant tumor is the conversion of energy metabolism from oxidative phosphorylation to glycolysis, which provides sufficient capacity and raw materials for tumor cell rapid growth. Our study aims to construct a prognostic signature for ovarian cancer based on lactate metabolism-related genes (LMRGs). Methods Data of ovarian cancer and non-diseased ovarian data were downloaded from TCGA and the GTEx database, respectively. LMRGs were obtained from GeneCards and MSigDB databases, and the differentially expressed LMRGs were identified using limma and DESeq2 R packages. Cox regression analysis and LASSO were performed to determine the LMRGs associated with OS and develop the prognostic signature. Then, clinical significance of the prognostic signature in ovarian cancer was assessed. Results A total of 485 differentially expressed LMRGs in ovarian tissue were selected for subsequent analysis, of which 324 were up-regulated and 161 were down regulated. We found that 22 LMRGs were most significantly associated with OS by using the univariate regression analysis. The prognostic scoring model was consisted of 12 LMRGs (SLCO1B3, ERBB4, SLC28A1, PDSS1, BDH1, AIFM1, TSFM, PPARGC1A, HGF, FGFR1, ABCC8, TH). Kaplan-Meier survival analysis indicated that poorer overall survival (OS) in the high-risk group patients (P<0.0001). This prognostic signature could be an independent prognostic indicator after adjusting to other clinical factors. The calibration curves of nomogram for the signature at 1, 2, and 3 years and the ROC curve demonstrated good agreement between the predicted and observed survival rates of ovarian cancer patients. Furthermore, the high-risk group patients have much lower expression level of immune checkpoint-TDO2 compared with the low-risk group (P=0.024). Conclusions We established a prognostic signature based on LMRGs for ovarian cancer, and highlighted emerging evidence indicating that this prognostic signature is a promising approach for predicting ovarian cancer prognosis and guiding clinical therapy.
Collapse
Affiliation(s)
- Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rongjia Su
- Department of Gynecologic Oncology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Lina Zhou,
| |
Collapse
|
61
|
Fan S, Li X, Ma F, Yang M, Su J, Chen X. Sulfur quantum dot based fluorescence assay for lactate dehydrogenase activity detection. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
62
|
Chen Y, Wu G, Li M, Hesse M, Ma Y, Chen W, Huang H, Liu Y, Xu W, Tang Y, Zheng H, Li C, Lin Z, Chen G, Liao W, Liao Y, Bin J, Chen Y. LDHA-mediated metabolic reprogramming promoted cardiomyocyte proliferation by alleviating ROS and inducing M2 macrophage polarization. Redox Biol 2022; 56:102446. [PMID: 36057161 PMCID: PMC9437906 DOI: 10.1016/j.redox.2022.102446] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 12/22/2022] Open
Abstract
Aims Metabolic switching during heart development contributes to postnatal cardiomyocyte (CM) cell cycle exit and loss of regenerative capacity in the mammalian heart. Metabolic control has potential for developing effective CM proliferation strategies. We sought to determine whether lactate dehydrogenase A (LDHA) regulated CM proliferation by inducing metabolic reprogramming. Methods and results LDHA expression was high in P1 hearts and significantly decreased during postnatal heart development. CM-specific LDHA knockout mice were generated using CRISPR/Cas9 technology. CM-specific LDHA knockout inhibited CM proliferation, leading to worse cardiac function and a lower survival rate in the neonatal apical resection model. In contrast, CM-specific overexpression of LDHA promoted CM proliferation and cardiac repair post-MI. The α-MHC-H2B-mCh/CAG-eGFP-anillin system was used to confirm the proliferative effect triggered by LDHA on P7 CMs and adult hearts. Metabolomics, proteomics and Co-IP experiments indicated that LDHA-mediated succinyl coenzyme A reduction inhibited succinylation-dependent ubiquitination of thioredoxin reductase 1 (Txnrd1), which alleviated ROS and thereby promoted CM proliferation. In addition, flow cytometry and western blotting showed that LDHA-driven lactate production created a beneficial cardiac regenerative microenvironment by inducing M2 macrophage polarization. Conclusions LDHA-mediated metabolic reprogramming promoted CM proliferation by alleviating ROS and inducing M2 macrophage polarization, indicating that LDHA might be an effective target for promoting cardiac repair post-MI. Succinylation-dependent ubiquitination of Txnrd1 is a new mechanism involved in LDHA-mediated ROS alleviation during cardiomyocyte proliferation. LDHA-driven lactate production created a beneficial cardiac regenerative microenvironment by inducing M2 macrophage polarization. LDHA-mediated metabolic reprogramming promoted cardiomyocyte proliferation, indicating that LDHA might be a therapeutic target to promote cardiac repair post-MI.
Collapse
Affiliation(s)
- Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Guangkai Wu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China; Guizhou University Hospital, Guiyang Guizhou, 550025, China
| | - Michael Hesse
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yusheng Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Wei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Haoxiang Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Yu Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Wenlong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Yating Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Zhongqiu Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China.
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China.
| |
Collapse
|
63
|
Yuan A, Gu Y, Bian Q, Wang R, Xu Y, Ma X, Zhou Y, Gao J. Conditioned media-integrated microneedles for hair regeneration through perifollicular angiogenesis. J Control Release 2022; 350:204-214. [PMID: 35961471 DOI: 10.1016/j.jconrel.2022.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Androgenetic alopecia (AGA), the most prevalent type of hair loss in clinic, is induced partly by insufficient perifollicular vascularization. Here we designed a dissolvable microneedles (MNs) patch that was loaded with conditioned media (CM) derived from hypoxia-pretreated mesenchymal stem cells, which contained elevated HIF-1α. The CM-integrated MNs patch (designated as CM-MNs) can puncture the stratum corneum and deliver the pro-angiogenic factors directly into skin in a one-step and minimally invasive manner. Meanwhile, the administration of CM-MNs induced a certain mechanical stimulation on the skin, which can also promote neovascularization. With the combined effects of the pro-angiogenic factors in CM and the mechanical stimulation induced by MNs, CM-MNs successfully boosted perifollicular vascularization, and activated hair follicle stem cells, thereby inducing notably faster hair regeneration at a lower administration frequency on AGA mouse model compared with minoxidil. Furthermore, we proved that the inhibition of perifollicular angiogenesis restrained the awakening of hair follicle stem cells, elucidating the tight correlation between perifollicular angiogenesis and the activation of hair follicle stem cells. The innovative integration of CM and MNs holds great promise for clinical AGA treatment and indicates that boosting angiogenesis around hair follicles is an effective strategy against AGA.
Collapse
Affiliation(s)
- Anran Yuan
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; College of Pharmacy, Inner Mongolia Medical University, Hohhot 010000, PR China
| | - Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, PR China
| | - Jianqing Gao
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, PR China.
| |
Collapse
|
64
|
Wong W, Crane ED, Zhang H, Li J, Day TA, Green AE, Menzies KJ, Crane JD. Pgc-1α controls epidermal stem cell fate and skin repair by sustaining NAD + homeostasis during aging. Mol Metab 2022; 65:101575. [PMID: 35987498 PMCID: PMC9463389 DOI: 10.1016/j.molmet.2022.101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE The epidermal barrier is renewed by the activation, proliferation, and differentiation of keratinocyte stem cells after injury and aging impedes this repair process through undefined mechanisms. We previously identified a gene signature of metabolic dysfunction in aged murine epidermis, but the precise regulators of epidermal repair and age-related growth defects are not well established. Aged mouse models as well as mice with conditional epidermal loss of the metabolic regulator, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc-1α) were used to explore the cellular pathways which control skin repair after injury and stress. METHODS Aged mice or those with epidermal Pgc-1α deletion (epiPgc-1α KO) and young or Pgc1afl/fl controls were subjected to wound injury, UVB exposure or the inflammatory agent TPA. In vivo and ex vivo analyses of wound closure, skin structure, cell growth and stem cell differentiation were used to understand changes in epidermal re-growth and repair resulting from aging or Pgc-1α loss. RESULTS Aging impairs epidermal re-growth during wound healing and results in lower expression of Pgc-1α. Mice with conditional deletion of epidermal Pgc-1α exhibit greater inflammation- and UVB-induced cell differentiation, reduced proliferation, and slower wound healing. epiPgc-1α KO mice also displayed reduced keratinocyte NAD+ levels, shorter telomeres, and greater poly ADP-ribosylation, resulting in enhanced stress-stimulated p53 and p21 signaling. When NAD+ was reduced by Pgc-1α loss or pharmacologic inhibition of NAD+ synthesis, there was reduced stress-induced proliferation, increased differentiation, and protection against DNA damage via enhanced epidermal shedding. Similarly, aged mice exhibit disrupted epidermal NAD+ homeostasis and enhanced p53 activation, resulting in p21 growth arrest after wounding. NAD+ precursor treatment restores epidermal growth from old skin to that of young. CONCLUSIONS Our studies identify a novel role for epidermal Pgc-1α in controlling epidermal repair via its regulation of cellular NAD+ and downstream effects on p53-driven growth arrest. We also establish that parallel mechanisms are evident in aged epidermis, showing that NAD+ signaling is an important controller of physiologic skin repair and that dysfunction of this pathway contributes to age-related wound repair defects.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Elizabeth D Crane
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Hui Zhang
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Jiahe Li
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Tovah A Day
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Alex E Green
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Justin D Crane
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
65
|
Liu Y, Guerrero-Juarez CF, Xiao F, Shettigar NU, Ramos R, Kuan CH, Lin YC, de Jesus Martinez Lomeli L, Park JM, Oh JW, Liu R, Lin SJ, Tartaglia M, Yang RB, Yu Z, Nie Q, Li J, Plikus MV. Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Dev Cell 2022; 57:1758-1775.e7. [PMID: 35777353 PMCID: PMC9344965 DOI: 10.1016/j.devcel.2022.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Hair follicle stem cells are regulated by dermal papilla fibroblasts, their principal signaling niche. Overactivation of Hedgehog signaling in the niche dramatically accelerates hair growth and induces follicle multiplication in mice. On single-cell RNA sequencing, dermal papilla fibroblasts increase heterogeneity to include new Wnt5ahigh states. Transcriptionally, mutant fibroblasts activate regulatory networks for Gli1, Alx3, Ebf1, Hoxc8, Sox18, and Zfp239. These networks jointly upregulate secreted factors for multiple hair morphogenesis and hair-growth-related pathways. Among these is non-conventional TGF-β ligand Scube3. We show that in normal mouse skin, Scube3 is expressed only in dermal papillae of growing, but not in resting follicles. SCUBE3 protein microinjection is sufficient to induce new hair growth, and pharmacological TGF-β inhibition rescues mutant hair hyper-activation phenotype. Moreover, dermal-papilla-enriched expression of SCUBE3 and its growth-activating effect are partially conserved in human scalp hair follicles. Thus, Hedgehog regulates mesenchymal niche function in the hair follicle via SCUBE3/TGF-β mechanism.
Collapse
Affiliation(s)
- Yingzi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Fei Xiao
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Nitish Udupi Shettigar
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Amplifica Holdings Group, Inc., San Diego, CA 92128, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Chen-Hsiang Kuan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Jung Min Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sung-Jan Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Department of Dermatology, National Taiwan University, Taipei, Taiwan
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
66
|
Shi X, Chen Y, Yang K, Zhu Y, Ma Y, Liu Q, Wang J, Ni C, Zhang Y, Li H, Lin J, Wang J, Wu W. Disrupted citric acid metabolism inhibits hair growth. J Dermatol 2022; 49:1037-1048. [PMID: 35841232 DOI: 10.1111/1346-8138.16509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/12/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
Hair follicles (HFs) play an essential role in sustaining a persistent hair growth cycle. The activities of dermal papilla cells (DPCs) and other cells inside the HFs dominate the process of hair growth. However, the detailed molecular mechanisms remain largely unknown. To investigate the role of citric acid (CA) metabolism in hair growth, we evaluated the effect of citrate synthase (CS)-CA axis on hair growth in vivo and in vitro. Mice hair growth was evaluated by morphology and histopathology analysis. The inflammation and apoptosis levels in mice, HFs, and DPCs were detected by immunohistofluorescence, qPCR, ELISA, western blot, and TUNEL assay. Cell proliferation, cell cycle, and cell apoptosis in DPCs were analyzed by real-time cell analysis and flow cytometer. We found that subcutaneous injection of CA in mice caused significant hair growth suppression, skin lesion, inflammatory response, cell apoptosis, and promotion of catagen entry, compared with the saline control, by activating p-p65 and apoptosis signaling in an NLRP3-dependent manner. In cultured human HFs, CA attenuated the hair shaft production and accelerated HF catagen entry by regulating the above-mentioned pathways. Additionally, CA hampered the proliferation rate of DPCs via inducing cell apoptosis and cell cycle arrest. Considering that citrate synthase (CS) is responsible for CA production and is a rate-limiting enzyme of the tricarboxylic acid cycle, we also investigated the role of CS in CA metabolism and hair growth. As expected, knockdown of CS reduced CA production and reversed CA-induced hair growth inhibition, anagen shrink, inflammation, and apoptosis both in HFs and DPCs. Our experiments demonstrated that CS-CA axis serves as an important mediator and might be a potential therapeutic target in hair growth.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yahui Chen
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Kai Yang
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Yifei Zhu
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Ji'an Wang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Chunya Ni
- Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| | - Yue Zhang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Haiyang Li
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China.,Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China.,Department of Dermatology, Jing'an District Central Hospital, Shanghai, China
| |
Collapse
|
67
|
Liu Z, Hu X, Liang Y, Yu J, Li H, Shokhirev MN, Zheng Y. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche. Nat Immunol 2022; 23:1086-1097. [PMID: 35739197 PMCID: PMC9283297 DOI: 10.1038/s41590-022-01244-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/17/2022] [Indexed: 01/03/2023]
Abstract
Maintenance of tissue homeostasis is dependent on the communication between stem cells and supporting cells in the same niche. Regulatory T cells (Treg cells) are emerging as a critical component of the stem-cell niche for supporting their differentiation. How Treg cells sense dynamic signals in this microenvironment and communicate with stem cells is mostly unknown. In the present study, by using hair follicles (HFs) to study Treg cell-stem cell crosstalk, we show an unrecognized function of the steroid hormone glucocorticoid in instructing skin-resident Treg cells to facilitate HF stem-cell (HFSC) activation and HF regeneration. Ablation of the glucocorticoid receptor (GR) in Treg cells blocks hair regeneration without affecting immune homeostasis. Mechanistically, GR and Foxp3 cooperate in Treg cells to induce transforming growth factor β3 (TGF-β3), which activates Smad2/3 in HFSCs and facilitates HFSC proliferation. The present study identifies crosstalk between Treg cells and HFSCs mediated by the GR-TGF-β3 axis, highlighting a possible means of manipulating Treg cells to support tissue regeneration.
Collapse
Affiliation(s)
- Zhi Liu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xianting Hu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Otolaryngology Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yuqiong Liang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huabin Li
- Department of Otolaryngology Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
68
|
LGR5 is a conserved marker of hair follicle stem cells in multiple species and is present early and throughout follicle morphogenesis. Sci Rep 2022; 12:9104. [PMID: 35650234 PMCID: PMC9160037 DOI: 10.1038/s41598-022-13056-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Hair follicle stem cells are key for driving growth and homeostasis of the hair follicle niche, have remarkable regenerative capacity throughout hair cycling, and display fate plasticity during cutaneous wound healing. Due to the need for a transgenic reporter, essentially all observations related to LGR5-expressing hair follicle stem cells have been generated using transgenic mice, which have significant differences in anatomy and physiology from the human. Using a transgenic pig model, a widely accepted model for human skin and human skin repair, we demonstrate that LGR5 is a marker of hair follicle stem cells across species in homeostasis and development. We also report the strong similarities and important differences in expression patterns, gene expression profiles, and developmental processes between species. This information is important for understanding the fundamental differences and similarities across species, and ultimately improving human hair follicle regeneration, cutaneous wound healing, and skin cancer treatment.
Collapse
|
69
|
Feng Z, Gong H, Fu J, Xu X, Song Y, Yan X, Mabrouk I, Zhou Y, Wang Y, Fu X, Sui Y, Liu T, Li C, Liu Z, Tian X, Sun L, Guo K, Sun Y, Hu J. In Ovo Injection of CHIR-99021 Promotes Feather Follicle Development via Modulating the Wnt Signaling Pathway and Transcriptome in Goose Embryos ( Anser cygnoides). Front Physiol 2022; 13:858274. [PMID: 35669574 PMCID: PMC9164139 DOI: 10.3389/fphys.2022.858274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Feather performs important physiological functions in birds, and it is also one of the economic productions in goose farming. Understanding and modulating feather follicle development during embryogenesis are essential for bird biology and the poultry industry. CHIR-99021 is a potent Wnt/β-catenin signaling pathway activator associated with feather follicle development. In this study, goose embryos (Anser cygnoides) received an in ovo injection of CHIR-9902, which was conducted at the beginning of feather follicle development (E9). The results showed that feather growth and feather follicle development were promoted. The Wnt signaling pathway was activated by the inhibition of GSK-3β. Transcriptomic analyses showed that the transcription changes were related to translation, metabolism, energy transport, and stress in dorsal tissue of embryos that received CHIR-99021, which might be to adapt and coordinate the promoting effects of CHIR-99021 on feather follicle development. This study suggests that in ovo injection of CHIR-99021 is a potential strategy to improve feather follicle development and feather-related traits for goose farming and provides profiling of the Wnt signaling pathway and transcriptome in dorsal tissue of goose embryos for further understanding of feather follicle development.
Collapse
Affiliation(s)
- Ziqiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinhong Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaohui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaomin Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xianou Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujian Sui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tuoya Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chuanghang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zebei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xu Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Le Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keying Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China,Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| |
Collapse
|
70
|
Lyu Y, Ge Y. Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. Front Cell Dev Biol 2022; 10:903904. [PMID: 35663405 PMCID: PMC9160930 DOI: 10.3389/fcell.2022.903904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is the largest organ in human body, harboring a plethora of cell types and serving as the organismal barrier. Skin aging such as wrinkling and hair graying is graphically pronounced, and the molecular mechanisms behind these phenotypic manifestations are beginning to unfold. As in many other organs and tissues, epigenetic and metabolic deregulations have emerged as key aging drivers. Particularly in the context of the skin epithelium, the epigenome and metabolome coordinately shape lineage plasticity and orchestrate stem cell function during aging. Our review discusses recent studies that proposed molecular mechanisms that drive the degeneration of hair follicles, a major appendage of the skin. By focusing on skin while comparing it to model organisms and adult stem cells of other tissues, we summarize literature on genotoxic stress, nutritional sensing, metabolic rewiring, mitochondrial activity, and epigenetic regulations of stem cell plasticity. Finally, we speculate about the rejuvenation potential of rate-limiting upstream signals during aging and the dominant role of the tissue microenvironment in dictating aged epithelial stem cell function.
Collapse
Affiliation(s)
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
71
|
Liu Y, Yang S, Zeng Y, Tang Z, Zong X, Li X, Yang C, Liu L, Tong X, Zhou L, Wang D. Dysregulated behaviour of hair follicle stem cells triggers alopecia and provides potential therapeutic targets. Exp Dermatol 2022; 31:986-992. [PMID: 35524394 DOI: 10.1111/exd.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Due to a steady increase in the number of individuals suffering from alopecia, this condition has recently received increasing attention. Alopecia can be caused by various pathological, environmental or psychological factors, eventually resulting in abnormalities in hair follicle (HF) structures or HF regeneration disorders, especially dysregulated hair follicle stem cell (HFSC) behaviour. HFSC behaviour includes activation, proliferation and differentiation. Appropriate HFSC behaviour sustains a persistent hair cycle (HC). HFSC behaviour is mainly influenced by HFSC metabolism, ageing, and the microenvironment. In this review, we summarize recent findings on how HFSC metabolism, ageing and the microenvironment give rise to hair growth disorders, as well as related genes and signalling pathways. Recent research on the application of stem cell-based hair tissue engineering and regenerative medicine to treat alopecia is also summarized. Determining how dysregulated HFSC behaviour underlies alopecia would be helpful in identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Yuanhong Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shengbo Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yilan Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziting Tang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiule Zong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuemei Li
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Caifeng Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lulu Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliang Tong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
72
|
Gu Y, Bian Q, Zhou Y, Huang Q, Gao J. Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian J Pharm Sci 2022; 17:333-352. [PMID: 35782323 PMCID: PMC9237597 DOI: 10.1016/j.ajps.2022.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
The hair follicle is not only a critical penetration route in percutaneous absorption but also has been recognized to be a target for hair follicle-associated disorders, such as androgenetic alopecia (AGA) and acne vulgaris. Hair follicle-targeting drug delivery systems allow for controlled drug release and enhance therapeutic efficacy with minimal side effects, exerting a promising method for the management of hair follicle-associated dysfunctions. Therefore, they have obtained much attention in several fields of research in recent years. This review gives an overview of potential follicle-targeting drug delivery formulations currently applied based on the particularities of the hair follicles, including a comprehensive assessment of their preclinical and clinical performance.
Collapse
Affiliation(s)
- Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, China
| | - Qiaoling Huang
- The Third People's Hospital of Hangzhou, Hangzhou 310009, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China
| |
Collapse
|
73
|
Zeng Q, Si H, Lv K, Mo J, Wang X, Yan B, Zhang J. Determination and pharmacokinetics study of UK-5099 in mouse plasma by LC-MS/MS. BMC Vet Res 2022; 18:145. [PMID: 35443692 PMCID: PMC9020015 DOI: 10.1186/s12917-022-03245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UK-5099 is a potent mitochondrial acetone carrier inhibitor, that exhibits anticancer activity. Recently, the anti-Toxoplasma gondii activity of UK-5099 was proposed, and in vivo studies of its pharmacokinetics in BALB/c mice are necessary to further evaluate the clinical effect of UK-5099. METHODS AND RESULTS A simple and fast high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis method was established and verified in terms of its linearity, matrix effect, accuracy, precision, recovery and stability. The analytes were separated by an Agilent ZORBAX XDB-C18 column (2.1 × 50 mm, 3.5 μm) at 30 °C. A gradient mobile phase consisting of water with 0.1% formic acid (FA) (phase A) and acetonitrile (ACN) (phase B) was delivered at a flow rate of 0.40 mL·min-1 with an injection volume of 5 μL. A good linear response was obtained in a concentration range of 5-5000 ng·mL-1 (r2 = 0.9947). The lower limit of quantification (LLOQ) was 5 ng·mL-1. The extraction recovery of UK-5099 was greater than 95%. The inter- and intra-day accuracy and precision of the method showed relative standard deviations (RSDs) of less than 15%. This method has been successfully applied to the pharmacokinetic evaluation of UK-5099 in mouse plasma. In health mice, the main pharmacokinetic parameters of UK-5099 after intraperitoneal administration were measured using a noncompartmental model, in which the AUC0-t was 42,103 ± 12,072 ng·h·mL-1 and the MRT0-t was 0.857 ± 0.143 h. The peak concentration (Cmax) was 82,500 ± 20,745 ng·h·mL-1, which occurred at a peak time (Tmax) = 0.250 ± 0.000 h. CONCLUSIONS A fast and sensitive HPLC-MS/MS method was developed, validated and successfully used for the determination of UK-5099 levels in mice after intraperitoneal administration. This study was the first report of the pharmacokinetic parameters of UK-5099 in mice, which will help to further study the administration of UK-5099 in animals and humans.
Collapse
Affiliation(s)
- Qingyuan Zeng
- Intensive Care Unit, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China.,Ningbo University School of Medicine, Ningbo University, Ningbo, China
| | - Hongfei Si
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kun Lv
- Ningbo University School of Business, Ningbo University, Ningbo, China
| | - Jiao Mo
- Ningbo University School of Medicine, Ningbo University, Ningbo, China
| | - Xinnian Wang
- Intensive Care Unit, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Biqing Yan
- Intensive Care Unit, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Jili Zhang
- Intensive Care Unit, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China. .,Ningbo University School of Medicine, Ningbo University, Ningbo, China. .,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 315211, China.
| |
Collapse
|
74
|
Solmonson A, Faubert B, Gu W, Rao A, Cowdin MA, Menendez-Montes I, Kelekar S, Rogers TJ, Pan C, Guevara G, Tarangelo A, Zacharias LG, Martin-Sandoval MS, Do D, Pachnis P, Dumesnil D, Mathews TP, Tasdogan A, Pham A, Cai L, Zhao Z, Ni M, Cleaver O, Sadek HA, Morrison SJ, DeBerardinis RJ. Compartmentalized metabolism supports midgestation mammalian development. Nature 2022; 604:349-353. [PMID: 35388219 PMCID: PMC9007737 DOI: 10.1038/s41586-022-04557-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
Mammalian embryogenesis requires rapid growth and proper metabolic regulation1. Midgestation features increasing oxygen and nutrient availability concomitant with fetal organ development2,3. Understanding how metabolism supports development requires approaches to observe metabolism directly in model organisms in utero. Here we used isotope tracing and metabolomics to identify evolving metabolic programmes in the placenta and embryo during midgestation in mice. These tissues differ metabolically throughout midgestation, but we pinpointed gestational days (GD) 10.5-11.5 as a transition period for both placenta and embryo. Isotope tracing revealed differences in carbohydrate metabolism between the tissues and rapid glucose-dependent purine synthesis, especially in the embryo. Glucose's contribution to the tricarboxylic acid (TCA) cycle rises throughout midgestation in the embryo but not in the placenta. By GD12.5, compartmentalized metabolic programmes are apparent within the embryo, including different nutrient contributions to the TCA cycle in different organs. To contextualize developmental anomalies associated with Mendelian metabolic defects, we analysed mice deficient in LIPT1, the enzyme that activates 2-ketoacid dehydrogenases related to the TCA cycle4,5. LIPT1 deficiency suppresses TCA cycle metabolism during the GD10.5-GD11.5 transition, perturbs brain, heart and erythrocyte development and leads to embryonic demise by GD11.5. These data document individualized metabolic programmes in developing organs in utero.
Collapse
Affiliation(s)
- Ashley Solmonson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aparna Rao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mitzy A Cowdin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Menendez-Montes
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas J Rogers
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gerardo Guevara
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amy Tarangelo
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Panayotis Pachnis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dennis Dumesnil
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alpaslan Tasdogan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Dermatology, University Hospital Essen and German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - An Pham
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hesham A Sadek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean J Morrison
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
75
|
Pereira-Silva M, Martins AM, Sousa-Oliveira I, Ribeiro HM, Veiga F, Marto J, Paiva-Santos AC. Nanomaterials in hair care and treatment. Acta Biomater 2022; 142:14-35. [PMID: 35202853 DOI: 10.1016/j.actbio.2022.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Hair care and treatment has evolved significantly through the years as new formulations are continuously being explored in an attempt to meet the demand in cosmetic and medicinal fields. While standard hair care procedures include hair washing, aimed at hair cleansing and maintenance, as well as hair dyeing and bleaching formulations for hair embellishment, modern hair treatments are mainly focused on circumventing hair loss conditions, strengthening hair follicle properties and treat hair infestations. In this regard, active compounds (ACs) included in hair cosmetic formulations include a vast array of hair cleansing and hair dye molecules, and typical hair treatments include anti-hair loss ACs (e.g. minoxidil and finasteride) and anti-lice ACs (e.g. permethrin). However, several challenges still persist, as conventional AC formulations exhibit sub-optimal performance and some may present toxicity issues, calling for an improved design of formulations regarding both efficacy and safety. More recently, nano-based strategies encompassing nanomaterials have emerged as promising tailored approaches to improve the performance of ACs incorporated into hair cosmetics and treatment formulations. The interest in using these nanomaterials is based on account of their ability to: (1) increase stability, safety and biocompatibility of ACs; (2) maximize hair affinity, contact and retention, acting as versatile biointerfaces; (3) enable the controlled release of ACs in both hair and scalp, serving as prolonged AC reservoirs; besides offering (4) hair follicle targeting features attending to the possibility of surface tunability. This review covers the breakthrough of nanomaterials for hair cosmetics and hair treatment, focusing on organic nanomaterials (polymer-based and lipid-based nanoparticles) and inorganic nanomaterials (nanosheets, nanotubes and inorganic nanoparticles), as well as their applications, highlighting their potential as innovative multifunctional nanomaterials towards maximized hair care and treatment. STATEMENT OF SIGNIFICANCE: This manuscript is focused on reviewing the nanotechnological strategies investigated for hair care and treatment so far. While conventional formulations exhibit sub-optimal performance and some may present toxicity issues, the selection of improved and suitable nanodelivery systems is of utmost relevance to ensure a proper active ingredient release in both hair and scalp, maximize hair affinity, contact and retention, and provide hair follicle targeting features, warranting stability, efficacy and safety. This innovative manuscript highlights the advantages of nanotechnology-based approaches, particularly as tunable and versatile biointerfaces, and their applications as innovative multifunctional nanomaterials towards maximized hair care and treatment.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Margarida Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Inês Sousa-Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Helena Margarida Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
76
|
Zhang W, Li J, Duan Y, Li Y, Sun Y, Sun H, Yu X, Gao X, Zhang C, Zhang H, Shi Y, He X. Metabolic Regulation: A Potential Strategy for Rescuing Stem Cell Senescence. Stem Cell Rev Rep 2022; 18:1728-1742. [PMID: 35258787 DOI: 10.1007/s12015-022-10348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
Stem cell senescence and exhaustion are closely related to organ failure and individual aging, which not only induces age-related diseases, but also hinders stem cell applications in regenerative medicine. Thus, it's imminent to find effective ways to delay and retrieve stem cell senescence. Metabolic abnormalities are one of the main characteristics of age-associated declines in stem cell function. Understanding the underlying mechanisms may reveal potential strategies for ameliorating age-associated phenotypes and treating age-related diseases. This review focuses on recent advances in the association between metabolism including glucose, lipid, glutamine and NAD+ metabolism and stem cell senescence, as well as the other properties like proliferation and differentiation. Layers of studies are summarized to demonstrate how metabolism varies in senescent stem cells and how metabolic reprogramming regulates stem cell senescence. Additionally, we mentioned some recent progress in therapeutic strategies to rejuvenate dysfunctional aged stem cells. Finally, a brief conclusion about the prospect of metabolic regulation as a potential strategy for rescuing stem cell senescence is displayed. Stem cell senescence is induced by the metabolic reprogramming. The metabolic alterations of glucose, lipid, glutamine and NAD+ can conversely facilitate or inhibit stem cell senescence. Glycolysis, OXPHOS and PPP are all attenuated. But gluconeogenesis alterations still remain unclear. In lipid metabolisms, both FAO and DNL are suppressed. As for the glutamine metabolism, stem cells' dependence on glutamine is enhanced. Last, NAD+ metabolism undergoes a down-regulated synthesis and up-regulated consumption. All these alterations can be potential targets for reversing stem cell senescence.
Collapse
Affiliation(s)
- Wenxin Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiayu Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yuchi Duan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yanlin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
77
|
Abstract
Metabolism has been studied mainly in cultured cells or at the level of whole tissues or whole organisms in vivo. Consequently, our understanding of metabolic heterogeneity among cells within tissues is limited, particularly when it comes to rare cells with biologically distinct properties, such as stem cells. Stem cell function, tissue regeneration and cancer suppression are all metabolically regulated, although it is not yet clear whether there are metabolic mechanisms unique to stem cells that regulate their activity and function. Recent work has, however, provided evidence that stem cells do have a metabolic signature that is distinct from that of restricted progenitors and that metabolic changes influence tissue homeostasis and regeneration. Stem cell maintenance throughout life in many tissues depends upon minimizing anabolic pathway activation and cell division. Consequently, stem cell activation by tissue injury is associated with changes in mitochondrial function, lysosome activity and lipid metabolism, potentially at the cost of eroding self-renewal potential. Stem cell metabolism is also regulated by the environment: stem cells metabolically interact with other cells in their niches and are able to sense and adapt to dietary changes. The accelerating understanding of stem cell metabolism is revealing new aspects of tissue homeostasis with the potential to promote tissue regeneration and cancer suppression.
Collapse
|
78
|
Wang X, Cai C, Liang Q, Xia M, Lai L, Wu X, Jiang X, Cheng H, Song Y, Zhou Q. Integrated Transcriptomics and Metabolomics Analyses of Stress-Induced Murine Hair Follicle Growth Inhibition. Front Mol Biosci 2022; 9:781619. [PMID: 35198601 PMCID: PMC8859263 DOI: 10.3389/fmolb.2022.781619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Qichang Liang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Jiang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| |
Collapse
|
79
|
A Long Journey before Cycling: Regulation of Quiescence Exit in Adult Muscle Satellite Cells. Int J Mol Sci 2022; 23:ijms23031748. [PMID: 35163665 PMCID: PMC8836154 DOI: 10.3390/ijms23031748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle harbors a pool of stem cells called muscle satellite cells (MuSCs) that are mainly responsible for its robust regenerative capacities. Adult satellite cells are mitotically quiescent in uninjured muscles under homeostasis, but they exit quiescence upon injury to re-enter the cell cycle to proliferate. While most of the expanded satellites cells differentiate and fuse to form new myofibers, some undergo self-renewal to replenish the stem cell pool. Specifically, quiescence exit describes the initial transition of MuSCs from quiescence to the first cell cycle, which takes much longer than the time required for subsequent cell cycles and involves drastic changes in cell size, epigenetic and transcriptomic profiles, and metabolic status. It is, therefore, an essential period indispensable for the success of muscle regeneration. Diverse mechanisms exist in MuSCs to regulate quiescence exit. In this review, we summarize key events that occur during quiescence exit in MuSCs and discuss the molecular regulation of this process with an emphasis on multiple levels of intrinsic regulatory mechanisms. A comprehensive understanding of how quiescence exit is regulated will facilitate satellite cell-based muscle regenerative therapies and advance their applications in various disease and aging conditions.
Collapse
|
80
|
Liu NQ, Lin Y, Li L, Lu J, Geng D, Zhang J, Jashashvili T, Buser Z, Magallanes J, Tassey J, Shkhyan R, Sarkar A, Lopez N, Lee S, Lee Y, Wang L, Petrigliano FA, Van Handel B, Lyons K, Evseenko D. gp130/STAT3 signaling is required for homeostatic proliferation and anabolism in postnatal growth plate and articular chondrocytes. Commun Biol 2022; 5:64. [PMID: 35039652 PMCID: PMC8763901 DOI: 10.1038/s42003-021-02944-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023] Open
Abstract
Growth of long bones and vertebrae is maintained postnatally by a long-lasting pool of progenitor cells. Little is known about the molecular mechanisms that regulate the output and maintenance of the cells that give rise to mature cartilage. Here we demonstrate that postnatal chondrocyte-specific deletion of a transcription factor Stat3 results in severely reduced proliferation coupled with increased hypertrophy, growth plate fusion, stunting and signs of progressive dysfunction of the articular cartilage. This effect is dimorphic, with females more strongly affected than males. Chondrocyte-specific deletion of the IL-6 family cytokine receptor gp130, which activates Stat3, phenocopied Stat3-deletion; deletion of Lifr, one of many co-receptors that signals through gp130, resulted in a milder phenotype. These data define a molecular circuit that regulates chondrogenic cell maintenance and output and reveals a pivotal positive function of IL-6 family cytokines in the skeletal system with direct implications for skeletal development and regeneration.
Collapse
Affiliation(s)
- Nancy Q. Liu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Yucheng Lin
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.263826.b0000 0004 1761 0489Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 China
| | - Liangliang Li
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100 China
| | - Jinxiu Lu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Dawei Geng
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Jiankang Zhang
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Tea Jashashvili
- grid.42505.360000 0001 2156 6853Department of Radiology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Zorica Buser
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jenny Magallanes
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jade Tassey
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Ruzanna Shkhyan
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Arijita Sarkar
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Noah Lopez
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Siyoung Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Youngjoo Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Liming Wang
- grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu 210006 China
| | - Frank A. Petrigliano
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| | - Ben Van Handel
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Karen Lyons
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Denis Evseenko
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| |
Collapse
|
81
|
Miranda M, Avila I, Esparza J, Shwartz Y, Hsu YC, Berdeaux R, Lowry WE. Defining a Role for G-Protein Coupled Receptor/cAMP/CRE-Binding Protein Signaling in Hair Follicle Stem Cell Activation. J Invest Dermatol 2022; 142:53-64.e3. [PMID: 34280464 PMCID: PMC8989631 DOI: 10.1016/j.jid.2021.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Manipulation of adrenergic signaling has been shown experimentally and clinically to affect hair follicle growth. In this study, we provide direct evidence that canonical cAMP/CRE-binding protein signaling through adrenergic receptors can regulate hair follicle stem cell (HFSC) activation and hair cycle. We found that CRE-binding protein activation is regulated through the hair cycle and coincides with HFSC activation. Both isoproterenol and procaterol, agonists of adrenergic receptors, show the capacity to activate the hair cycle in mice. Furthermore, deletion of ADRB2 receptor, which is thought to mediate sympathetic nervous system regulation of HFSCs, was sufficient to block HFSC activation. Downstream, stimulation of adenylyl cyclase with forskolin or inhibition of phosphodiesterase to increase cAMP accumulation or direct application of cAMP was each sufficient to promote HFSC activation and accelerate initiation of hair cycle. Genetic induction of a Designer Receptors Exclusively Activated by Designer Drug allele showed that G-protein coupled receptor/GαS stimulation, specifically in HFSCs, promoted the activation of the hair cycle. Finally, we provide evidence that G-protein coupled receptor/CRE-binding protein signaling can potentially act on HFSCs by promoting glycolytic metabolism, which was previously shown to stimulate HFSC activation. Together, these data provide mechanistic insights into the role of sympathetic innervation on HFSC function.
Collapse
Affiliation(s)
- M Miranda
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095
| | - I Avila
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095
| | - J Esparza
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095
| | - Y Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138
| | - YC Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138
| | - R Berdeaux
- Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston
| | - WE Lowry
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, Division of Dermatology, DGSOM, UCLA, Los Angeles, CA 90095, Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA 90095, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095
| |
Collapse
|
82
|
Huang Y, Yu H, Wang L, Shen D, Ni Z, Ren S, Lu Y, Chen X, Yang J, Hong Y. Research progress on cosmetic microneedle systems: Preparation, property and application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
83
|
Wang M, Yao S, He D, Qahar M, He J, Yin M, Wu J, Yang G. Type 2 Diabetic Mellitus Inhibits Skin Renewal through Inhibiting WNT-Dependent Lgr5+ Hair Follicle Stem Cell Activation in C57BL/6 Mice. J Diabetes Res 2022; 2022:8938276. [PMID: 35469170 PMCID: PMC9034921 DOI: 10.1155/2022/8938276] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Hair follicles are important accessory organs of the skin, and it is important for skin renewal and performs variety of important functions. Diabetes can cause several dermatoses; however, its effect on hair follicles is unclear. The purpose of this study was to investigate the effect of type II diabetes (T2DM) on the hair follicles of mice. METHODS Seven-week-old male C57BL/6 littermate mice were divided into two groups. The treatment group was injected with streptozotocin (STZ) to induce T2DM, and the control group was parallelly injected with the same dose of buffer. Seven days after injection, the back is depilated to observe the hair follicle regeneration. Hair follicle regeneration was observed by naked eyes and HE staining. The proliferation of the skin cells was observed by PCNA and K14 staining. The altered genes were screened by RNA sequencing and verified by qRT-PCR. In addition, Lgr5 + GFP/mTmG transgenic mice were used to observe the effect of T2DM on Lgr5 hair follicle stem cells (HFSC). And the expression of WNT4 and WNT8A were measured by Western Blot. RESULTS T2DM inhibited hair follicle regeneration. Compared to control mice, T2DM mice had smaller hair follicles, reduced skin thickness, and less expression of PCNA and K14. RNA sequencing showed that the two groups had significant differences in cell cycle and proliferation-related pathways. Compared with the control mice, the mRNA expression of Lgr4, Lgr5, Wnt4, and Wnt8a was decreased in the T2DM group. Moreover, T2DM inhibited the activation of Lgr5 HFSC and the expression of WNT4 and WNT8A. CONCLUSIONS T2DM inhibited hair follicle regeneration and skin cells proliferation by inhibiting WNT-dependent Lgr5 HFSC activation. This may be an important reason for the reduction of skin renewal ability and the formation of chronic wounds caused by diabetes. It is important for the treatment of chronic diabetic wounds and the development of tissue engineering.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Shangsheng Yao
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Dehua He
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Mulan Qahar
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jinqing He
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Meifang Yin
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, Verona 37134, Italy
| | - Guang Yang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| |
Collapse
|
84
|
Qi L, Martin-Sandoval MS, Merchant S, Gu W, Eckhardt M, Mathews TP, Zhao Z, Agathocleous M, Morrison SJ. Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. Cell Stem Cell 2021; 28:1982-1999.e8. [PMID: 34450065 PMCID: PMC8571029 DOI: 10.1016/j.stem.2021.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
The electron transport chain promotes aspartate synthesis, which is required for cancer cell proliferation. However, it is unclear whether aspartate is limiting in normal stem cells. We found that mouse hematopoietic stem cells (HSCs) depend entirely on cell-autonomous aspartate synthesis, which increases upon HSC activation. Overexpression of the glutamate/aspartate transporter, Glast, or deletion of glutamic-oxaloacetic transaminase 1 (Got1) each increased aspartate levels in HSCs/progenitor cells and increased the function of HSCs but not colony-forming progenitors. Conversely, deletion of Got2 reduced aspartate levels and the function of HSCs but not colony-forming progenitors. Deletion of Got1 and Got2 eliminated HSCs. Isotope tracing showed aspartate was used to synthesize asparagine and purines. Both contributed to increased HSC function as deletion of asparagine synthetase or treatment with 6-mercaptopurine attenuated the increased function of GLAST-overexpressing HSCs. HSC function is thus limited by aspartate, purine, and asparagine availability during hematopoietic regeneration.
Collapse
Affiliation(s)
- Le Qi
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty S Martin-Sandoval
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Salma Merchant
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, North Rhine-Westphalia 53115, Germany
| | - Thomas P Mathews
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michalis Agathocleous
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
85
|
Figlak K, Williams G, Bertolini M, Paus R, Philpott MP. Human hair follicles operate an internal Cori cycle and modulate their growth via glycogen phosphorylase. Sci Rep 2021; 11:20761. [PMID: 34675331 PMCID: PMC8531296 DOI: 10.1038/s41598-021-99652-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
Hair follicles (HFs) are unique, multi-compartment, mini-organs that cycle through phases of active hair growth and pigmentation (anagen), apoptosis-driven regression (catagen) and relative quiescence (telogen). Anagen HFs have high demands for energy and biosynthesis precursors mainly fulfilled by aerobic glycolysis. Histochemistry reports the outer root sheath (ORS) contains high levels of glycogen. To investigate a functional role for glycogen in the HF we quantified glycogen by Periodic-Acid Schiff (PAS) histomorphometry and colorimetric quantitative assay showing ORS of anagen VI HFs contained high levels of glycogen that decreased in catagen. qPCR and immunofluorescence microscopy showed the ORS expressed all enzymes for glycogen synthesis and metabolism. Using human ORS keratinocytes (ORS-KC) and ex vivo human HF organ culture we showed active glycogen metabolism by nutrient starvation and use of a specific glycogen phosphorylase (PYGL) inhibitor. Glycogen in ORS-KC was significantly increased by incubation with lactate demonstrating a functional Cori cycle. Inhibition of PYGL significantly stimulated the ex vivo growth of HFs and delayed onset of catagen. This study defines translationally relevant and therapeutically targetable new features of HF metabolism showing that human scalp HFs operate an internal Cori cycle, synthesize glycogen in the presence of lactate and modulate their growth via PYGL activity.
Collapse
Affiliation(s)
- Katarzyna Figlak
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | | | | | - Ralf Paus
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Dermatology Research Centre, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| | - Michael P Philpott
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
86
|
Tang Y, Jia C, Wang Y, Wan W, Li H, Huang G, Zhang X. Lactate Consumption via Cascaded Enzymes Combined VEGF siRNA for Synergistic Anti-Proliferation and Anti-Angiogenesis Therapy of Tumors. Adv Healthc Mater 2021; 10:e2100799. [PMID: 34310079 DOI: 10.1002/adhm.202100799] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Lactate, as the most abundant component with concentrations of 4-40 mm in tumors, contributes to the regulation of metabolic pathways, angiogenesis, and immunosuppression, exhibiting remarkable potential in cancer treatment. Therefore, a codelivery strategy that combined the cascaded enzymes Lactate oxidase/Catalase (LOx/CAT) and vascular endothelial growth factor (VEGF) siRNA (siVEGF) to suppress tumor proliferation and angiogenesis synergistically is creatively proposed. In brief, the cationic liposomes (LIP) encapsulated with LOx/CAT and siVEGF via hydrophilic interaction and electrostatic adsorption followed by coating with PEGylated phenylboronic acid (PP) is established (PPL@[LOX+CAT]). Moreover, a simple 3-aminophenylboronic acid (PBA)-shielded strategy via fructose (Fru) is applied to further enhance the targeting efficiency in the tumor site. The obtained co-encapsulated nanoparticles (NPs) can simultaneous intracellular release of LOx/CAT and siVEGF, and the collaborative use of LOx and CAT can promote lactate consumption even under a hypoxic tumor microenvironment (TME) without producing systemic toxicity. The combined application of lactate depletion and VEGF silencing demonstrated the efficient migration suppression of 4T1 cells in vitro and superior antitumor and antimetastatic properties in vivo. This work offers a promising tumor treatment strategy via integrating cascaded enzymes and gene therapy, and explores a promising therapy regimen for 4T1 triple-negative breast cancer.
Collapse
Affiliation(s)
- Yan Tang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Changhao Jia
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yu Wang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Wenjun Wan
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Hui Li
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Gui Huang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Xuenong Zhang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| |
Collapse
|
87
|
Sadgrove NJ. The ‘bald’ phenotype (androgenetic alopecia) is caused by the high glycaemic, high cholesterol and low mineral ‘western diet’. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
88
|
Jun S, Mahesula S, Mathews TP, Martin-Sandoval MS, Zhao Z, Piskounova E, Agathocleous M. The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metab 2021; 33:1777-1792.e8. [PMID: 34375613 DOI: 10.1016/j.cmet.2021.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
Cancer cells are metabolically similar to their corresponding normal tissues. Differences between cancers and normal tissues may reflect reprogramming during transformation or maintenance of the metabolism of the specific normal cell type that originated the cancer. Here, we compare glucose metabolism in hematopoiesis and leukemia. Thymus T cell progenitors were glucose avid and oxidized more glucose in the tricarboxylic acid cycle through pyruvate dehydrogenase (PDH) as compared with other hematopoietic cells. PDH deletion decreased double-positive T cell progenitor cells but had no effect on hematopoietic stem cells, myeloid progenitors, or other hematopoietic cells. PDH deletion blocked the development of Pten-deficient T cell leukemia, but not the development of a Pten-deficient myeloid neoplasm. Therefore, the requirement for PDH in leukemia reflected the metabolism of the normal cell of origin independently of the driver genetic lesion. PDH was required to prevent pyruvate accumulation and maintain glutathione levels and redox homeostasis.
Collapse
Affiliation(s)
- Sojeong Jun
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Swetha Mahesula
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena Piskounova
- Sandra and Edward Meyer Cancer Center and Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Michalis Agathocleous
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
89
|
Novak JSS, Baksh SC, Fuchs E. Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes Dev 2021; 35:199-211. [PMID: 33526586 PMCID: PMC7849367 DOI: 10.1101/gad.346973.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cells maintain tissues by balancing self-renewal with differentiation. A stem cell's local microenvironment, or niche, informs stem cell behavior and receives inputs at multiple levels. Increasingly, it is becoming clear that the overall metabolic status of an organism or metabolites themselves can function as integral members of the niche to alter stem cell fate. Macroscopic dietary interventions such as caloric restriction, the ketogenic diet, and a high-fat diet systemically alter an organism's metabolic state in different ways. Intriguingly, however, they all converge on a propensity to enhance self-renewal. Here, we highlight our current knowledge on how dietary changes feed into stem cell behavior across a wide variety of tissues and illuminate possible explanations for why diverse interventions can result in similar stem cell phenotypes. In so doing, we hope to inspire new avenues of inquiry into the importance of metabolism in stem cell homeostasis and disease.
Collapse
Affiliation(s)
- Jesse S S Novak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Sanjeethan C Baksh
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
90
|
Vishnyakova KS, Popov KV, Pan X, Jasko MV, Yegorov YE. Long-Chain Free Fatty Acids Influence Lipid Accumulation, Lysosome Activation and Glycolytic Shift in Various Cells In Vitro. Mol Biol 2021. [DOI: 10.1134/s0026893321030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
91
|
Yuan A, Xia F, Bian Q, Wu H, Gu Y, Wang T, Wang R, Huang L, Huang Q, Rao Y, Ling D, Li F, Gao J. Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment. ACS NANO 2021; 15:13759-13769. [PMID: 34279913 DOI: 10.1021/acsnano.1c05272] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Androgenetic alopecia (AGA) is highly prevalent in current society but lacks effective treatments. The dysregulation of the hair follicle niche induced by excessive reactive oxygen species (ROS) and insufficient vascularization in the perifollicular microenvironment is the leading cause of AGA. Herein, we designed a ceria nanozyme (CeNZ)-integrated microneedles patch (Ce-MNs) that can alleviate oxidative stress and promote angiogenesis simultaneously to reshape the perifollicular microenvironment for AGA treatment. On the basis of the excellent mechanical strength of Ce-MNs, the encapsulated CeNZs with catalase- and superoxide-mimic activities can be efficiently delivered into skin to scavenge excessive ROS. Moreover, the mechanical stimulation induced by the administration of MNs can remodel the microvasculature in the balding region. Compared with minoxidil, a widely used clinical drug for AGA treatment, Ce-MNs exhibited accelerated hair regeneration in the AGA mouse model at a lower administration frequency without inducing significant skin damage. Consequently, such a safe and perifollicular microenvironment-shaping MNs patch shows great potential for clinical AGA treatment.
Collapse
Affiliation(s)
- Anran Yuan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haibin Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingling Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaoling Huang
- Hangzhou Third People's Hospital, Hangzhou 310009, China
| | - Yuefeng Rao
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China
| |
Collapse
|
92
|
Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 2021; 12:453. [PMID: 34380571 PMCID: PMC8359037 DOI: 10.1186/s13287-021-02527-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Shen-Ao Fu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Zai-Qiu Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, #81, Lingnan North Road, Foshan, 528000, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China.
| |
Collapse
|
93
|
Voigt AL, Kondro DA, Powell D, Valli-Pulaski H, Ungrin M, Stukenborg JB, Klein C, Lewis IA, Orwig KE, Dobrinski I. Unique metabolic phenotype and its transition during maturation of juvenile male germ cells. FASEB J 2021; 35:e21513. [PMID: 33811704 DOI: 10.1096/fj.202002799r] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
Human male reproductive development has a prolonged prepubertal period characterized by juvenile quiescence of germ cells with immature spermatogonial stem cell (SSC) precursors (gonocytes) present in the testis for an extended period of time. The metabolism of gonocytes is not defined. We demonstrate with mitochondrial ultrastructure studies via TEM and IHC and metabolic flux studies with UHPLC-MS that a distinct metabolic transition occurs during the maturation to SSCs. The mitochondrial ultrastructure of prepubertal human spermatogonia is shared with prepubertal pig spermatogonia. The metabolism of early prepubertal porcine spermatogonia (gonocytes) is characterized by the reliance on OXPHOS fuelled by oxidative decarboxylation of pyruvate. Interestingly, at the same time, a high amount of the consumed pyruvate is also reduced and excreted as lactate. With maturation, prepubertal spermatogonia show a metabolic shift with decreased OXHPOS and upregulation of the anaerobic metabolism-associated uncoupling protein 2 (UCP2). This shift is accompanied with stem cell specific promyelocytic leukemia zinc finger protein (PLZF) protein expression and glial cell-derived neurotropic factor (GDNF) pathway activation. Our results demonstrate that gonocytes differently from mature spermatogonia exhibit unique metabolic demands that must be attained to enable their maintenance and growth in vitro.
Collapse
Affiliation(s)
- Anna Laura Voigt
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas Andrew Kondro
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Diana Powell
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - Claudia Klein
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ian A Lewis
- Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, AB, Canada
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
94
|
Zhou HC, Xin-Yan Yan, Yu WW, Liang XQ, Du XY, Liu ZC, Long JP, Zhao GH, Liu HB. Lactic acid in macrophage polarization: The significant role in inflammation and cancer. Int Rev Immunol 2021; 41:4-18. [PMID: 34304685 DOI: 10.1080/08830185.2021.1955876] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolite lactic acid has always been regarded as a metabolic by-product rather than a bioactive molecule. Recently, this view has changed since it was discovered that lactic acid can be used as a signal molecule and has novel signal transduction functions both intracellular and extracellular, which can regulate key functions in the immune system. In recent years, more and more evidence has shown that lactic acid is closely related to the metabolism and polarization of macrophages. During inflammation, lactic acid is a regulator of macrophage metabolism, and it can prevent excessive inflammatory responses; In malignant tumors, lactic acid produced by tumor tissues promotes the polarization of tumor-associated macrophages, which in turn promotes tumor progression. In this review, we examined the relationship between lactic acid and macrophage metabolism. We further discussed how lactic acid plays a role in maintaining the homeostasis of macrophages, as well as the biology of macrophage polarization and the M1/M2 imbalance in human diseases. Potential methods to target lactic acid in the treatment of inflammation and cancer will also be discussed so as to provide new strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Hai-Cun Zhou
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Xin-Yan Yan
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China
| | - Wen-Wen Yu
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Xiao-Qin Liang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Xiao-Yan Du
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China
| | - Zhi-Chang Liu
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Jian-Ping Long
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China
| | - Guang-Hui Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Hong-Bin Liu
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| |
Collapse
|
95
|
Guo W, Wang S, Zhang X, Shi M, Duan F, Hao J, Gu K, Quan L, Wu Y, Liang Z, Wang Y. Acidic pH transiently prevents the silencing of self-renewal and dampens microRNA function in embryonic stem cells. Sci Bull (Beijing) 2021; 66:1319-1329. [PMID: 36654154 DOI: 10.1016/j.scib.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/18/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Enhanced glycolysis is a distinct feature associated with numerous stem cells and cancer cells. However, little is known about its regulatory roles in gene expression and cell fate determination. Here, we confirm that glycolytic metabolism and lactate production decrease during the differentiation of mouse embryonic stem cells (mESCs). Importantly, acidic pH due to lactate accumulation can transiently prevent the silencing of mESC self-renewal in differentiation conditions. Furthermore, acidic pH partially blocks the differentiation of human ESCs (hESCs). Mechanistically, acidic pH downregulates AGO1 protein and de-represses a subset of mRNA targets of miR-290/302 family of microRNAs which facilitate the exit of naive pluripotency state in mESCs. Interestingly, AGO1 protein is also downregulated by acidic pH in cancer cells. Altogether, this study provides insights into the potential function and underlying mechanism of acidic pH in pluripotent stem cells (PSCs).
Collapse
Affiliation(s)
- Wenting Guo
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Shaohua Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaoshan Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ming Shi
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Feifei Duan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Jing Hao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Kaili Gu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Li Quan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yixia Wu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yangming Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| |
Collapse
|
96
|
Lin B, Zhu J, Yin G, Liao M, Lin G, Yan Y, Huang D, Lu S. Transcription Factor DLX5 Promotes Hair Follicle Stem Cell Differentiation by Regulating the c-MYC/microRNA-29c-3p/NSD1 Axis. Front Cell Dev Biol 2021; 9:554831. [PMID: 34336814 PMCID: PMC8319474 DOI: 10.3389/fcell.2021.554831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Adult stem cell function has been one of the most intensively explored areas of biological and biomedical research, with hair follicle stem cells serving as one of the best model systems. This study explored the role of the transcription factor DLX5 in regulating hair follicle stem cell (HFSC) differentiation. Methods HFSCs were isolated, characterized, and assessed for their expression of DLX5, c-MYC, NSD1, and miR-29c-3p using RT-qPCR, Western blot analysis, or immunofluorescence. Next, the ability of HFSCs to proliferate as well as differentiate into either sebaceous gland cells or epidermal cells was determined. The binding of DLX5 to the c-MYC promoter region, the binding of c-MYC to the miR-29c-3p promoter region, and the binding of miR-29c-3p to the 3′-UTR of NSD1 mRNA were verified by luciferase activity assay and ChIP experiments. Results DLX5 was highly expressed in differentiated HFSCs. DLX5 transcriptionally activated c-MYC expression to induce HFSC differentiation. c-MYC was able to bind the miR-29c-3p promoter and thus suppressed its expression. Without miR-29c-3p mediated suppression, NSD1 was then able to promote HFSC differentiation. These in vitro experiments suggested that DLX5 could promote HFSC differentiation via the regulation of the c-MYC/miR-29c-3p/NSD1 axis. Discussion This study demonstrates that DLX5 promotes HFSC differentiation by modulating the c-MYC/miR-29c-3p/NSD1 axis and identifies a new mechanism regulating HFSC differentiation.
Collapse
Affiliation(s)
- Bojie Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangying Zhu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Academy of Humanities and Social Sciences, Guangxi Medical University, Nanning, China
| | - Guoqian Yin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingde Liao
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guanyu Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuyong Yan
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Huang
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siding Lu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
97
|
Abstract
Altered metabolic activity contributes to the pathogenesis of a number of diseases, including diabetes, heart failure, cancer, fibrosis and neurodegeneration. These diseases, and organismal metabolism more generally, are only partially recapitulated by cell culture models. Accordingly, it is important to measure metabolism in vivo. Over the past century, researchers studying glucose homeostasis have developed strategies for the measurement of tissue-specific and whole-body metabolic activity (pathway fluxes). The power of these strategies has been augmented by recent advances in metabolomics technologies. Here, we review techniques for measuring metabolic fluxes in intact mammals and discuss how to analyse and interpret the results. In tandem, we describe important findings from these techniques, and suggest promising avenues for their future application. Given the broad importance of metabolism to health and disease, more widespread application of these methods holds the potential to accelerate biomedical progress.
Collapse
Affiliation(s)
- Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tara TeSlaa
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
98
|
Rosenberg AM, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, Patel P, Kumar Soni R, Lacefield C, Tobin DJ, Paus R, Picard M. Quantitative mapping of human hair greying and reversal in relation to life stress. eLife 2021; 10:67437. [PMID: 34155974 PMCID: PMC8219384 DOI: 10.7554/elife.67437] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hair greying is a hallmark of aging generally believed to be irreversible and linked to psychological stress. Methods: Here, we develop an approach to profile hair pigmentation patterns (HPPs) along individual human hair shafts, producing quantifiable physical timescales of rapid greying transitions. Results: Using this method, we show white/grey hairs that naturally regain pigmentation across sex, ethnicities, ages, and body regions, thereby quantitatively defining the reversibility of greying in humans. Molecularly, grey hairs upregulate proteins related to energy metabolism, mitochondria, and antioxidant defenses. Combining HPP profiling and proteomics on single hairs, we also report hair greying and reversal that can occur in parallel with psychological stressors. To generalize these observations, we develop a computational simulation, which suggests a threshold-based mechanism for the temporary reversibility of greying. Conclusions: Overall, this new method to quantitatively map recent life history in HPPs provides an opportunity to longitudinally examine the influence of recent life exposures on human biology. Funding: This work was supported by the Wharton Fund and NIH grants GM119793, MH119336, and AG066828 (MP). Hair greying is a visible sign of aging that affects everyone. The loss of hair color is due to the loss of melanin, a pigment found in the skin, eyes and hair. Research in mice suggests stress may accelerate hair greying, but there is no definitive research on this in humans. This is because there are no research tools to precisely map stress and hair color over time. But, just like tree rings hold information about past decades, and rocks hold information about past centuries, hairs hold information about past months and years. Hair growth is an active process that happens under the skin inside hair follicles. It demands lots of energy, supplied by structures inside cells called mitochondria. While hairs are growing, cells receive chemical and electrical signals from inside the body, including stress hormones. It is possible that these exposures change proteins and other molecules laid down in the growing hair shaft. As the hair grows out of the scalp, it hardens, preserving these molecules into a stable form. This preservation is visible as patterns of pigmentation. Examining single-hairs and matching the patterns to life events could allow researchers to look back in time through a person’s biological history. Rosenberg et al. report a new way to digitize and measure small changes in color along single human hairs. This method revealed that some white hairs naturally regain their color, something that had not been reported in a cohort of healthy individuals before. Aligning the hair pigmentation patterns with recent reports of stress in the hair donors’ lives showed striking associations. When one donor reported an increase in stress, a hair lost its pigment. When the donor reported a reduction in stress, the same hair regained its pigment. Rosenberg et al. mapped hundreds of proteins inside the hairs to show that white hairs contained more proteins linked to mitochondria and energy use. This suggests that metabolism and mitochondria may play a role in hair greying. To explore these observations in more detail Rosenberg et al. developed a mathematical model that simulates the greying of a whole head of hair over a lifetime, an experiment impossible to do with living people. The model suggested that there might be a threshold for temporary greying; if hairs are about to go grey anyway, a stressful event might trigger that change earlier. And when the stressful event ends, if a hair is just above the threshold, then it could revert back to dark. The new method for measuring small changes in hair coloring opens up the possibility of using hair pigmentation patterns like tree rings. This could track the influence of past life events on human biology. In the future, monitoring hair pigmentation patterns could provide a way to trace the effectiveness of treatments aimed at reducing stress or slowing the aging process. Understanding how ‘old’ white hairs regain their ‘young’ pigmented state could also reveal new information about the malleability of human aging more generally.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Junting Ren
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, United States
| | - Desmond J Tobin
- UCD Charles Institute of Dermatology & UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom.,Monasterium Laboratory, Münster, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States.,Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
99
|
Mana MD, Hussey AM, Tzouanas CN, Imada S, Barrera Millan Y, Bahceci D, Saiz DR, Webb AT, Lewis CA, Carmeliet P, Mihaylova MM, Shalek AK, Yilmaz ÖH. High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep 2021; 35:109212. [PMID: 34107251 PMCID: PMC8258630 DOI: 10.1016/j.celrep.2021.109212] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is an established risk factor for cancer in many tissues. In the mammalian intestine, a pro-obesity high-fat diet (HFD) promotes regeneration and tumorigenesis by enhancing intestinal stem cell (ISC) numbers, proliferation, and function. Although PPAR (peroxisome proliferator-activated receptor) nuclear receptor activity has been proposed to facilitate these effects, their exact role is unclear. Here we find that, in loss-of-function in vivo models, PPARα and PPARδ contribute to the HFD response in ISCs. Mechanistically, both PPARs do so by robustly inducing a downstream fatty acid oxidation (FAO) metabolic program. Pharmacologic and genetic disruption of CPT1A (the rate-controlling enzyme of mitochondrial FAO) blunts the HFD phenotype in ISCs. Furthermore, inhibition of CPT1A dampens the pro-tumorigenic consequences of a HFD on early tumor incidence and progression. These findings demonstrate that inhibition of a HFD-activated FAO program creates a therapeutic opportunity to counter the effects of a HFD on ISCs and intestinal tumorigenesis.
Collapse
Affiliation(s)
- Miyeko D Mana
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Amanda M Hussey
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Constantine N Tzouanas
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA; Program in Health Sciences & Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Dorukhan Bahceci
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dominic R Saiz
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Anna T Webb
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, and Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA; Program in Health Sciences & Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
100
|
Keller A, Temple T, Sayanjali B, Mihaylova MM. Metabolic Regulation of Stem Cells in Aging. CURRENT STEM CELL REPORTS 2021; 7:72-84. [PMID: 35251892 PMCID: PMC8893351 DOI: 10.1007/s40778-021-00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Tyus Temple
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Behnam Sayanjali
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|