51
|
Barredo CG, Gil-Marti B, Deveci D, Romero NM, Martin FA. Timing the Juvenile-Adult Neurohormonal Transition: Functions and Evolution. Front Endocrinol (Lausanne) 2020; 11:602285. [PMID: 33643219 PMCID: PMC7909313 DOI: 10.3389/fendo.2020.602285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Puberty and metamorphosis are two major developmental transitions linked to the reproductive maturation. In mammals and vertebrates, the central brain acts as a gatekeeper, timing the developmental transition through the activation of a neuroendocrine circuitry. In addition to reproduction, these neuroendocrine axes and the sustaining genetic network play additional roles in metabolism, sleep and behavior. Although neurohormonal axes regulating juvenile-adult transition have been classically considered the result of convergent evolution (i.e., analogous) between mammals and insects, recent findings challenge this idea, suggesting that at least some neuroendocrine circuits might be present in the common bilaterian ancestor Urbilateria. The initial signaling pathways that trigger the transition in different species appear to be of a single evolutionary origin and, consequently, many of the resulting functions are conserved with a few other molecular players being co-opted during evolution.
Collapse
Affiliation(s)
- Celia G. Barredo
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Beatriz Gil-Marti
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Derya Deveci
- Sartorius Netherlands BV, Amersfoor, Netherlands
| | - Nuria M. Romero
- Developmental Timing, Environment and Behaviors Laboratory, Institut Sophia Agrobiotech, Université Côte d’Azur-INRAE-CNRS-INSERM, Sophia Antipolis, France
- *Correspondence: Nuria M. Romero, ; Francisco A. Martin,
| | - Francisco A. Martin
- Molecular Physiology of Behavior Laboratory, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- *Correspondence: Nuria M. Romero, ; Francisco A. Martin,
| |
Collapse
|
52
|
Receptor Tyrosine Kinases in Development: Insights from Drosophila. Int J Mol Sci 2019; 21:ijms21010188. [PMID: 31888080 PMCID: PMC6982143 DOI: 10.3390/ijms21010188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cell-to-cell communication mediates a plethora of cellular decisions and behaviors that are crucial for the correct and robust development of multicellular organisms. Many of these signals are encoded in secreted hormones or growth factors that bind to and activate cell surface receptors, to transmit the cue intracellularly. One of the major superfamilies of cell surface receptors are the receptor tyrosine kinases (RTKs). For nearly half a century RTKs have been the focus of intensive study due to their ability to alter fundamental aspects of cell biology, such as cell proliferation, growth, and shape, and because of their central importance in diseases such as cancer. Studies in model organisms such a Drosophila melanogaster have proved invaluable for identifying new conserved RTK pathway components, delineating their contributions, and for the discovery of conserved mechanisms that control RTK-signaling events. Here we provide a brief overview of the RTK superfamily and the general mechanisms used in their regulation. We further highlight the functions of several RTKs that govern distinct cell-fate decisions in Drosophila and explore how their activities are developmentally controlled.
Collapse
|
53
|
Beer K, Schenk M, Helfrich-Förster C, Holzschuh A. The circadian clock uses different environmental time cues to synchronize emergence and locomotion of the solitary bee Osmia bicornis. Sci Rep 2019; 9:17748. [PMID: 31780704 PMCID: PMC6883065 DOI: 10.1038/s41598-019-54111-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/29/2019] [Indexed: 11/09/2022] Open
Abstract
Life on earth adapted to the daily reoccurring changes in environment by evolving an endogenous circadian clock. Although the circadian clock has a crucial impact on survival and behavior of solitary bees, many aspects of solitary bee clock mechanisms remain unknown. Our study is the first to show that the circadian clock governs emergence in Osmia bicornis, a bee species which overwinters as adult inside its cocoon. Therefore, its eclosion from the pupal case is separated by an interjacent diapause from its emergence in spring. We show that this bee species synchronizes its emergence to the morning. The daily rhythms of emergence are triggered by temperature cycles but not by light cycles. In contrast to this, the bee's daily rhythms in locomotion are synchronized by light cycles. Thus, we show that the circadian clock of O. bicornis is set by either temperature or light, depending on what activity is timed. Light is a valuable cue for setting the circadian clock when bees have left the nest. However, for pre-emerged bees, temperature is the most important cue, which may represent an evolutionary adaptation of the circadian system to the cavity-nesting life style of O. bicornis.
Collapse
Affiliation(s)
- Katharina Beer
- Department of Neurobiology and Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Mariela Schenk
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Department of Neurobiology and Genetics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andrea Holzschuh
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
54
|
Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2019; 21:67-84. [PMID: 31768006 DOI: 10.1038/s41580-019-0179-2] [Citation(s) in RCA: 631] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.
Collapse
|
55
|
Abhilash L, Ghosh A, Sheeba V. Selection for Timing of Eclosion Results in Co-evolution of Temperature Responsiveness in Drosophila melanogaster. J Biol Rhythms 2019; 34:596-609. [DOI: 10.1177/0748730419877315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian rhythms in adult eclosion of Drosophila are postulated to be regulated by a pair of coupled oscillators: one is the master clock that is light sensitive and temperature compensated and the other that is a slave oscillator whose period is temperature sensitive and whose phase is reflected in the overt behavior. Within this framework, we reasoned that in populations of Drosophila melanogaster that have been artificially selected for highly divergent phases of eclosion rhythm, there may be changes in this network of the master-slave oscillator system, via changes in the temperature-sensitive oscillator and/or the coupling of the light- and temperature-sensitive oscillators. We used light/dark cycles in conjunction with different constant ambient temperatures and 2 different amplitudes of temperature cycles in an overall cool or warm temperature and analyzed phases, gate width, and normalized amplitude of the rhythms in each of these conditions. We found that the populations selected for eclosion in the morning ( early flies) do not vary their phases with change in temperature regimes, whereas the populations selected for eclosion in the evening ( late flies) show phase lability of up to ~5 h. Our results imply a genetic correlation between timing of behavior and temperature sensitivity of the circadian clock.
Collapse
Affiliation(s)
- Lakshman Abhilash
- Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka, India
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka, India (Previous Affiliation)
| | - Arijit Ghosh
- Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka, India
| | - Vasu Sheeba
- Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka, India
| |
Collapse
|
56
|
Varma V, Krishna S, Srivastava M, Sharma VK, Sheeba V. Accuracy of fruit-fly eclosion rhythms evolves by strengthening circadian gating rather than developmental fine-tuning. Biol Open 2019; 8:bio042176. [PMID: 31455663 PMCID: PMC6737981 DOI: 10.1242/bio.042176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022] Open
Abstract
Fruit flies (Drosophila melanogaster) eclose from their pupae mainly around dawn. The timing of eclosion is thought to confer adaptive benefits to the organisms and thus shows remarkable accuracy. However, it is not clear what factors are involved in the evolution of such accuracy in natural populations. In this study, we examined the relative contributions of gating of eclosion by the circadian clock versus clock-independent developmental rates and light-induced responses in the eclosion phenotype exhibited by fly populations that have evolved greater accuracy in eclosion rhythms compared to controls. We compared variation in timing of transitions between early developmental stages (pupariation and pigmentation), overall development time under constant light conditions - where circadian clocks are dysfunctional - and eclosion profiles when developmental rate was manipulated using different larval densities in selected and control stocks. Our results showed that stocks that have evolved greater accuracy of eclosion rhythms due to artificial selection do not show reduced individual variation in pupariation and pigmentation time compared to controls, though they do exhibit lower variation in eclosion time. Selected stocks also did not show lower variation in eclosion time under constant light conditions in contrast to the greater accuracy seen under light-dark cycles. Moreover, manipulations of developmental rate by varying larval density and inducing eclosion by changing onset of light phase did not alter the eclosion profile of selected stocks as much as it did controls, since selected stocks largely restricted eclosion to the daytime. These results suggest that fly populations selected for greater accuracy have evolved accurate eclosion rhythms primarily by strengthening circadian gating of eclosion rather than due to fine-tuning of clock-independent developmental processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Vishwanath Varma
- Chronobiology Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, Karnataka, India
- School of Natural Sciences and Engineering, Animal Behaviour and Cognition Programme, National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore 560012, Karnataka, India
| | - Shambhavi Krishna
- Chronobiology Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, Karnataka, India
| | - Manishi Srivastava
- Chronobiology Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, Karnataka, India
| | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, Karnataka, India
| | - Vasu Sheeba
- Chronobiology Laboratory, Evolutionary and Integrative Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, Karnataka, India
| |
Collapse
|
57
|
Wegener C, Hasan G. ER-Ca2+ sensor STIM regulates neuropeptides required for development under nutrient restriction in Drosophila. PLoS One 2019; 14:e0219719. [PMID: 31295329 PMCID: PMC6622525 DOI: 10.1371/journal.pone.0219719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022] Open
Abstract
Neuroendocrine cells communicate via neuropeptides to regulate behaviour and physiology. This study examines how STIM (Stromal Interacting Molecule), an ER-Ca2+ sensor required for Store-operated Ca2+ entry, regulates neuropeptides required for Drosophila development under nutrient restriction (NR). We find two STIM-regulated peptides, Corazonin and short Neuropeptide F, to be required for NR larvae to complete development. Further, a set of secretory DLP (Dorso lateral peptidergic) neurons which co-express both peptides was identified. Partial loss of dSTIM caused peptide accumulation in the DLPs, and reduced systemic Corazonin signalling. Upon NR, larval development correlated with increased peptide levels in the DLPs, which failed to occur when dSTIM was reduced. Comparison of systemic and cellular phenotypes associated with reduced dSTIM, with other cellular perturbations, along with genetic rescue experiments, suggested that dSTIM primarily compromises neuroendocrine function by interfering with neuropeptide release. Under chronic stimulation, dSTIM also appears to regulate neuropeptide synthesis.
Collapse
Affiliation(s)
- Christian Wegener
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Am Hubland, Würzburg, Germany
| | - Gaiti Hasan
- National Centre For Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| |
Collapse
|
58
|
Vafopoulou X, Hindley-Smith M, Steel CGH. Neuropeptide- and serotonin- cells in the brain of Rhodnius prolixus (Hemiptera) associated with the circadian clock. Gen Comp Endocrinol 2019; 278:25-41. [PMID: 30048647 DOI: 10.1016/j.ygcen.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
The neuronal pathways of the circadian clock in the brain of R. prolixus have been described in detail previously, but there is no information concerning the cells or their pathways which relay either inputs to the clock (e.g. for light entrainment), or outputs from it to driven rhythms. Here, we employ antisera to three neuropeptides (type A allatostatin-7, crustacean cardioactive peptide and FMRFamide), and serotonin in confocal laser scanning immunohistochemistry to analyze the distribution of cell bodies and their projections in relation to the principle circadian clock cells (lateral cells, LNs) for all four neuron types. LNs are revealed following labelling with anti- pigment dispersing factor in double labelled preparations. Regions of potential communication between ramifications of the LNs and each of the four other neuron types is described (identified by close superposition of their neurites in various brain regions), as is their detailed projections within the brain. Neuromodulation is sometimes suggested by close, but not intimate, proximity of varicosities of neurites. We infer that some neuron types comprise input pathways to the LNs, some are outputs to neuroendocrine or behavioral rhythms, and others participate in both input and output pathways, sometimes by the same neuron type but in different locations. For example, one retinula cell in each ommatidium is immunoreactive for allatostatin A; its axon projects to the medulla making superpositions with LNs, as do serotonin cells in the optic lobe, indicating roles of both neuron types in light input (entrainment) to the clock. But in other brain areas, these same types appear to mediate outputs from the clock. The accessory medulla has been widely reported as the principle center of integration in other insects; but we found sparse evidence of this in R. prolixus as it contains few neurites other than those from the clock cells. Rather, the importance of neural pathways involving the medulla and the superior protocerebrum is emphasized. We conclude that there is a vast and complex web of interactions in the brain with the LNs, which potentially receive multiple pathways of inputs and outputs that could drive rhythmicity in a multitude of downstream cells, rendering a host of output pathways rhythmic, notably hormone release from neurosecretory cells and behaviors.
Collapse
|
59
|
Zhao J, Warman GR, Cheeseman JF. The functional changes of the circadian system organization in aging. Ageing Res Rev 2019; 52:64-71. [PMID: 31048031 DOI: 10.1016/j.arr.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 01/12/2023]
Abstract
The circadian clock drives periodic oscillations at different levels of an organism from genes to behavior. This timing system is highly conserved across species from insects to mammals and human beings. The question of how the circadian clock is involved in the aging process continues to attract more attention. We aim to characterize the detrimental impact of aging on the circadian clock organization. We review studies on different components of the circadian clock at the central and periperal levels, and their changes in aged rodents and humans, and the fruit fly Drosophila. Intracellular signaling, cellular activity and intercellular coupling in the central pacemaker have been found to decline with advancing age. Evidence of degradation of the molecular clockwork reflected by clock gene expression in both central and peripheral oscillators due to aging is inadequate. The findings on age-associated molecular and functional changes of peripheral clocks are mixed. We conclude that aging can affect the circadian clock organization at various levels, and the impairment of the central network may be a fundamental mechanism of circadian disruption seen in aged species.
Collapse
|
60
|
Nagy D, Cusumano P, Andreatta G, Anduaga AM, Hermann-Luibl C, Reinhard N, Gesto J, Wegener C, Mazzotta G, Rosato E, Kyriacou CP, Helfrich-Förster C, Costa R. Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLoS Genet 2019; 15:e1008158. [PMID: 31194738 PMCID: PMC6592559 DOI: 10.1371/journal.pgen.1008158] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/25/2019] [Accepted: 04/25/2019] [Indexed: 11/18/2022] Open
Abstract
With the approach of winter, many insects switch to an alternative protective developmental program called diapause. Drosophila melanogaster females overwinter as adults by inducing a reproductive arrest that is characterized by inhibition of ovarian development at previtellogenic stages. The insulin producing cells (IPCs) are key regulators of this process, since they produce and release insulin-like peptides that act as diapause-antagonizing hormones. Here we show that in D. melanogaster two neuropeptides, Pigment Dispersing Factor (PDF) and short Neuropeptide F (sNPF) inhibit reproductive arrest, likely through modulation of the IPCs. In particular, genetic manipulations of the PDF-expressing neurons, which include the sNPF-producing small ventral Lateral Neurons (s-LNvs), modulated the levels of reproductive dormancy, suggesting the involvement of both neuropeptides. We expressed a genetically encoded cAMP sensor in the IPCs and challenged brain explants with synthetic PDF and sNPF. Bath applications of both neuropeptides increased cAMP levels in the IPCs, even more so when they were applied together, suggesting a synergistic effect. Bath application of sNPF additionally increased Ca2+ levels in the IPCs. Our results indicate that PDF and sNPF inhibit reproductive dormancy by maintaining the IPCs in an active state.
Collapse
Affiliation(s)
- Dóra Nagy
- Department of Biology, University of Padova, Padova, Italy
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ane Martin Anduaga
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christiane Hermann-Luibl
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - João Gesto
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charalambos P. Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
61
|
Liang X, Ho MCW, Zhang Y, Li Y, Wu MN, Holy TE, Taghert PH. Morning and Evening Circadian Pacemakers Independently Drive Premotor Centers via a Specific Dopamine Relay. Neuron 2019; 102:843-857.e4. [PMID: 30981533 PMCID: PMC6533154 DOI: 10.1016/j.neuron.2019.03.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/06/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Abstract
Many animals exhibit morning and evening peaks of locomotor behavior. In Drosophila, two corresponding circadian neural oscillators-M (morning) cells and E (evening) cells-exhibit a corresponding morning or evening neural activity peak. Yet we know little of the neural circuitry by which distinct circadian oscillators produce specific outputs to precisely control behavioral episodes. Here, we show that ring neurons of the ellipsoid body (EB-RNs) display spontaneous morning and evening neural activity peaks in vivo: these peaks coincide with the bouts of locomotor activity and result from independent activation by M and E pacemakers. Further, M and E cells regulate EB-RNs via identified PPM3 dopaminergic neurons, which project to the EB and are normally co-active with EB-RNs. These in vivo findings establish the fundamental elements of a circadian neuronal output pathway: distinct circadian oscillators independently drive a common pre-motor center through the agency of specific dopaminergic interneurons.
Collapse
Affiliation(s)
- Xitong Liang
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Margaret C W Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yajun Zhang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 100871, China
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Paul H Taghert
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
62
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
63
|
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pankaj Yadav
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
64
|
Gong C, Ouyang Z, Zhao W, Wang J, Li K, Zhou P, Zhao T, Zheng N, Gong Z. A Neuronal Pathway that Commands Deceleration in Drosophila Larval Light-Avoidance. Neurosci Bull 2019; 35:959-968. [PMID: 30810958 DOI: 10.1007/s12264-019-00349-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023] Open
Abstract
When facing a sudden danger or aversive condition while engaged in on-going forward motion, animals transiently slow down and make a turn to escape. The neural mechanisms underlying stimulation-induced deceleration in avoidance behavior are largely unknown. Here, we report that in Drosophila larvae, light-induced deceleration was commanded by a continuous neural pathway that included prothoracicotropic hormone neurons, eclosion hormone neurons, and tyrosine decarboxylase 2 motor neurons (the PET pathway). Inhibiting neurons in the PET pathway led to defects in light-avoidance due to insufficient deceleration and head casting. On the other hand, activation of PET pathway neurons specifically caused immediate deceleration in larval locomotion. Our findings reveal a neural substrate for the emergent deceleration response and provide a new understanding of the relationship between behavioral modules in animal avoidance responses.
Collapse
Affiliation(s)
- Caixia Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenhuan Ouyang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310007, China
| | - Weiqiao Zhao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kun Li
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Peipei Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 22011, USA
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310007, China.
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
65
|
Deng B, Li Q, Liu X, Cao Y, Li B, Qian Y, Xu R, Mao R, Zhou E, Zhang W, Huang J, Rao Y. Chemoconnectomics: Mapping Chemical Transmission in Drosophila. Neuron 2019; 101:876-893.e4. [PMID: 30799021 DOI: 10.1016/j.neuron.2019.01.045] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/02/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
We define the chemoconnectome (CCT) as the entire set of neurotransmitters, neuromodulators, neuropeptides, and their receptors underlying chemotransmission in an animal. We have generated knockout lines of Drosophila CCT genes for functional investigations and knockin lines containing Gal4 and other tools for examining gene expression and manipulating neuronal activities, with a versatile platform allowing genetic intersections and logic gates. CCT reveals the coexistence of specific transmitters but mutual exclusion of the major inhibitory and excitatory transmitters in the same neurons. One neuropeptide and five receptors were detected in glia, with octopamine β2 receptor functioning in glia. A pilot screen implicated 41 genes in sleep regulation, with the dopamine receptor Dop2R functioning in neurons expressing the peptides Dilp2 and SIFa. Thus, CCT is a novel concept, chemoconnectomics a new approach, and CCT tool lines a powerful resource for systematic investigations of chemical-transmission-mediated neural signaling circuits underlying behavior and cognition.
Collapse
Affiliation(s)
- Bowen Deng
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Qi Li
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Xinxing Liu
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Yue Cao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Bingfeng Li
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Yongjun Qian
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Renbo Mao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Enxing Zhou
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Wenxia Zhang
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China
| | - Juan Huang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Rao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Chinese Institute for Brain Research, Beijing, Zhongguangchun Life Sciences Park, Beijing, China.
| |
Collapse
|
66
|
Kumar V, Sharma A. Common features of circadian timekeeping in diverse organisms. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
67
|
Fujiwara Y, Hermann-Luibl C, Katsura M, Sekiguchi M, Ida T, Helfrich-Förster C, Yoshii T. The CCHamide1 Neuropeptide Expressed in the Anterior Dorsal Neuron 1 Conveys a Circadian Signal to the Ventral Lateral Neurons in Drosophila melanogaster. Front Physiol 2018; 9:1276. [PMID: 30246807 PMCID: PMC6139358 DOI: 10.3389/fphys.2018.01276] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/22/2018] [Indexed: 12/01/2022] Open
Abstract
The fruit fly Drosophila melanogaster possesses approximately 150 brain clock neurons that control circadian behavioral rhythms. Even though individual clock neurons have self-sustaining oscillators, they interact and synchronize with each other through a network. However, little is known regarding the factors responsible for these network interactions. In this study, we investigated the role of CCHamide1 (CCHa1), a neuropeptide expressed in the anterior dorsal neuron 1 (DN1a), in intercellular communication of the clock neurons. We observed that CCHa1 connects the DN1a clock neurons to the ventral lateral clock neurons (LNv) via the CCHa1 receptor, which is a homolog of the gastrin-releasing peptide receptor playing a role in circadian intercellular communications in mammals. CCHa1 knockout or knockdown flies have a generally low activity level with a special reduction of morning activity. In addition, they exhibit advanced morning activity under light-dark cycles and delayed activity under constant dark conditions, which correlates with an advance/delay of PAR domain Protein 1 (PDP1) oscillations in the small-LNv (s-LNv) neurons that control morning activity. The terminals of the s-LNv neurons show rather high levels of Pigment-dispersing factor (PDF) in the evening, when PDF is low in control flies, suggesting that the knockdown of CCHa1 leads to increased PDF release; PDF signals the other clock neurons and evidently increases the amplitude of their PDP1 cycling. A previous study showed that high-amplitude PDP1 cycling increases the siesta of the flies, and indeed, CCHa1 knockout or knockdown flies exhibit a longer siesta than control flies. The DN1a neurons are known to be receptive to PDF signaling from the s-LNv neurons; thus, our results suggest that the DN1a and s-LNv clock neurons are reciprocally coupled via the neuropeptides CCHa1 and PDF, and this interaction fine-tunes the timing of activity and sleep.
Collapse
Affiliation(s)
- Yuri Fujiwara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Christiane Hermann-Luibl
- Department of Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maki Katsura
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Takanori Ida
- Division of Searching and Identification of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Charlotte Helfrich-Förster
- Department of Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
68
|
Franco DL, Frenkel L, Ceriani MF. The Underlying Genetics of Drosophila Circadian Behaviors. Physiology (Bethesda) 2018; 33:50-62. [PMID: 29212892 DOI: 10.1152/physiol.00020.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
Life is shaped by circadian clocks. This review focuses on how behavioral genetics in the fruit fly unveiled what is known today about circadian physiology. We will briefly summarize basic properties of the clock and focus on some clock-controlled behaviors to highlight how communication between central and peripheral oscillators defines their properties.
Collapse
Affiliation(s)
- D Lorena Franco
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, CONICET, San Carlos de Bariloche, Río Negro, Argentina; and
| | - Lia Frenkel
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir (FIL)-Instituto de Investigaciones Bioquímicas-IIBBA-CONICET, Buenos Aires, Argentina
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir (FIL)-Instituto de Investigaciones Bioquímicas-IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
69
|
Tomasiunaite U, Widmann A, Thum AS. Maggot Instructor: Semi-Automated Analysis of Learning and Memory in Drosophila Larvae. Front Psychol 2018; 9:1010. [PMID: 29973900 PMCID: PMC6019503 DOI: 10.3389/fpsyg.2018.01010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
For several decades, Drosophila has been widely used as a suitable model organism to study the fundamental processes of associative olfactory learning and memory. More recently, this condition also became true for the Drosophila larva, which has become a focus for learning and memory studies based on a number of technical advances in the field of anatomical, molecular, and neuronal analyses. The ongoing efforts should be mentioned to reconstruct the complete connectome of the larval brain featuring a total of about 10,000 neurons and the development of neurogenic tools that allow individual manipulation of each neuron. By contrast, standardized behavioral assays that are commonly used to analyze learning and memory in Drosophila larvae exhibit no such technical development. Most commonly, a simple assay with Petri dishes and odor containers is used; in this method, the animals must be manually transferred in several steps. The behavioral approach is therefore labor-intensive and limits the capacity to conduct large-scale genetic screenings in small laboratories. To circumvent these limitations, we introduce a training device called the Maggot Instructor. This device allows automatic training up to 10 groups of larvae in parallel. To achieve such goal, we used fully automated, computer-controlled optogenetic activation of single olfactory neurons in combination with the application of electric shocks. We showed that Drosophila larvae trained with the Maggot Instructor establish an odor-specific memory, which is independent of handling and non-associative effects. The Maggot Instructor will allow to investigate the large collections of genetically modified larvae in a short period and with minimal human resources. Therefore, the Maggot Instructor should be able to help extensive behavioral experiments in Drosophila larvae to keep up with the current technical advancements. In the longer term, this condition will lead to a better understanding of how learning and memory are organized at the cellular, synaptic, and molecular levels in Drosophila larvae.
Collapse
Affiliation(s)
| | - Annekathrin Widmann
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Molecular Neurobiology of Behavior, Georg-August-University Göttingen, Göttingen, Germany
| | - Andreas S Thum
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Genetics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
70
|
Calcium and cAMP directly modulate the speed of the Drosophila circadian clock. PLoS Genet 2018; 14:e1007433. [PMID: 29879123 PMCID: PMC6007936 DOI: 10.1371/journal.pgen.1007433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/19/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In mammals these messengers act directly on TTFLs via the calcium/cAMP-dependent transcription factor, CREB. In the fruit fly, Drosophila melanogaster, calcium and cAMP also regulate the periodicity of circadian locomotor activity rhythmicity, but whether this is due to direct actions on the TTFLs themselves or are a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we investigated this question focusing on the peripheral clock housed in the non-neuronal prothoracic gland (PG), which, together with the central pacemaker in the brain, controls the timing of adult emergence. We show that genetic manipulations that increased and decreased the levels of calcium and cAMP in the PG caused, respectively, a shortening and a lengthening of the periodicity of emergence. Importantly, knockdown of CREB in the PG caused an arrhythmic pattern of eclosion. Interestingly, the same manipulations directed at central pacemaker neurons caused arrhythmicity of eclosion and of adult locomotor activity, suggesting a common mechanism. Our results reveal that the calcium and cAMP pathways can alter the functioning of the clock itself. In the PG, these messengers, acting as outputs of the clock or as second messengers for stimuli external to the PG, could also contribute to the circadian gating of adult emergence. Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In Drosophila, calcium and cAMP levels affect the periodicity of Drosophila circadian rhythms, but whether this is due to direct actions on the TTFLs themselves or is a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we used the non-neuronal circadian clock located in the prothoracic gland (PG) to show that these messengers affect the speed of the circadian clock that controls the timing of adult emergence and suggest that these actions are mediated by CREB. Importantly, since calcium and cAMP are also output signals of the clock, they may contribute to the mechanism that imposes a circadian gating to the timing of adult emergence.
Collapse
|
71
|
Nässel DR. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila. Front Cell Neurosci 2018; 12:83. [PMID: 29651236 PMCID: PMC5885757 DOI: 10.3389/fncel.2018.00083] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 01/11/2023] Open
Abstract
It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for colocalized neuroactive compounds in further neurons in anatomically defined circuits is of interest for the near future.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
72
|
Shimell M, Pan X, Martin FA, Ghosh AC, Leopold P, O'Connor MB, Romero NM. Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development 2018; 145:dev.159699. [PMID: 29467242 DOI: 10.1242/dev.159699] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Adult size and fitness are controlled by a combination of genetics and environmental cues. In Drosophila, growth is confined to the larval phase and final body size is impacted by the duration of this phase, which is under neuroendocrine control. The neuropeptide prothoracicotropic hormone (PTTH) has been proposed to play a central role in controlling the length of the larval phase through regulation of ecdysone production, a steroid hormone that initiates larval molting and metamorphosis. Here, we test this by examining the consequences of null mutations in the Ptth gene for Drosophila development. Loss of Ptth causes several developmental defects, including a delay in developmental timing, increase in critical weight, loss of coordination between body and imaginal disc growth, and reduced adult survival in suboptimal environmental conditions such as nutritional deprivation or high population density. These defects are caused by a decrease in ecdysone production associated with altered transcription of ecdysone biosynthetic genes. Therefore, the PTTH signal contributes to coordination between environmental cues and the developmental program to ensure individual fitness and survival.
Collapse
Affiliation(s)
- MaryJane Shimell
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xueyang Pan
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Francisco A Martin
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France.,Cajal Institute, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Arpan C Ghosh
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pierre Leopold
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Michael B O'Connor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nuria M Romero
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| |
Collapse
|
73
|
Schubert FK, Hagedorn N, Yoshii T, Helfrich-Förster C, Rieger D. Neuroanatomical details of the lateral neurons of Drosophila melanogaster support their functional role in the circadian system. J Comp Neurol 2018; 526:1209-1231. [PMID: 29424420 PMCID: PMC5873451 DOI: 10.1002/cne.24406] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/29/2022]
Abstract
Drosophila melanogaster is a long‐standing model organism in the circadian clock research. A major advantage is the relative small number of about 150 neurons, which built the circadian clock in Drosophila. In our recent work, we focused on the neuroanatomical properties of the lateral neurons of the clock network. By applying the multicolor‐labeling technique Flybow we were able to identify the anatomical similarity of the previously described E2 subunit of the evening oscillator of the clock, which is built by the 5th small ventrolateral neuron (5th s‐LNv) and one ITP positive dorsolateral neuron (LNd). These two clock neurons share the same spatial and functional properties. We found both neurons innervating the same brain areas with similar pre‐ and postsynaptic sites in the brain. Here the anatomical findings support their shared function as a main evening oscillator in the clock network like also found in previous studies. A second quite surprising finding addresses the large lateral ventral PDF‐neurons (l‐LNvs). We could show that the four hardly distinguishable l‐LNvs consist of two subgroups with different innervation patterns. While three of the neurons reflect the well‐known branching pattern reproduced by PDF immunohistochemistry, one neuron per brain hemisphere has a distinguished innervation profile and is restricted only to the proximal part of the medulla‐surface. We named this neuron “extra” l‐LNv (l‐LNvx). We suggest the anatomical findings reflect different functional properties of the two l‐LNv subgroups.
Collapse
Affiliation(s)
- Frank K Schubert
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, 97074, Germany
| | - Nicolas Hagedorn
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, 97074, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, 97074, Germany
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, 97074, Germany
| |
Collapse
|
74
|
Blum ID, Bell B, Wu MN. Time for Bed: Genetic Mechanisms Mediating the Circadian Regulation of Sleep. Trends Genet 2018; 34:379-388. [PMID: 29395381 DOI: 10.1016/j.tig.2018.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
Sleep is an evolutionarily conserved behavior that is increasingly recognized as important for human health. While its precise function remains controversial, sleep has been suggested to play a key role in a variety of biological phenomena ranging from synaptic plasticity to metabolic clearance. Although it is clear that sleep is regulated by the circadian clock, how this occurs remains enigmatic. Here we examine the genetic mechanisms by which the circadian clock regulates sleep, drawing on recent work in fruit flies, zebrafish, mice, and humans. These studies reveal that central and local clocks utilize diverse mechanisms to regulate different aspects of sleep, and a better understanding of this multilayered regulation may lead to a better understanding of the functions of sleep.
Collapse
Affiliation(s)
- Ian D Blum
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Benjamin Bell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
75
|
The role of the circadian clock system in physiology. Pflugers Arch 2018; 470:227-239. [PMID: 29302752 DOI: 10.1007/s00424-017-2103-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/28/2022]
Abstract
Life on earth is shaped by the 24-h rotation of our planet around its axes. To adapt behavior and physiology to the concurring profound but highly predictable changes, endogenous circadian clocks have evolved that drive 24-h rhythms in invertebrate and vertebrate species. At the molecular level, circadian clocks comprised a set of clock genes organized in a system of interlocked transcriptional-translational feedback loops. A ubiquitous network of cellular central and peripheral tissue clocks coordinates physiological functions along the day through activation of tissue-specific transcriptional programs. Circadian rhythms impact on diverse physiological processes including the cardiovascular system, energy metabolism, immunity, hormone secretion, and reproduction. This review summarizes our current understanding of the mechanisms of circadian timekeeping in different species, its adaptation by external timing signals and the pathophysiological consequences of circadian disruption.
Collapse
|
76
|
Jarabo P, Martin FA. Neurogenetics of Drosophila circadian clock: expect the unexpected. J Neurogenet 2017; 31:250-265. [DOI: 10.1080/01677063.2017.1370466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
77
|
WEclMon - A simple and robust camera-based system to monitor Drosophila eclosion under optogenetic manipulation and natural conditions. PLoS One 2017; 12:e0180238. [PMID: 28658318 PMCID: PMC5489222 DOI: 10.1371/journal.pone.0180238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/12/2017] [Indexed: 11/19/2022] Open
Abstract
Eclosion in flies and other insects is a circadian-gated behaviour under control of a central and a peripheral clock. It is not influenced by the motivational state of an animal, and thus presents an ideal paradigm to study the relation and signalling pathways between central and peripheral clocks, and downstream peptidergic regulatory systems. Little is known, however, about eclosion rhythmicity under natural conditions, and research into this direction is hampered by the physically closed design of current eclosion monitoring systems. We describe a novel open eclosion monitoring system (WEclMon) that allows the puparia to come into direct contact with light, temperature and humidity. We demonstrate that the system can be used both in the laboratory and outdoors, and shows a performance similar to commercial closed funnel-type monitors. Data analysis is semi-automated based on a macro toolset for the open imaging software Fiji. Due to its open design, the WEclMon is also well suited for optogenetic experiments. A small screen to identify putative neuroendocrine signals mediating time from the central clock to initiate eclosion showed that optogenetic activation of ETH-, EH and myosuppressin neurons can induce precocious eclosion. Genetic ablation of myosuppressin-expressing neurons did, however, not affect eclosion rhythmicity.
Collapse
|