51
|
Mittal S, Federman HG, Sievert D, Gleeson JG. The Neurobiology of Modern Viral Scourges: ZIKV and COVID-19. Neuroscientist 2021; 28:438-452. [PMID: 33874789 DOI: 10.1177/10738584211009149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interactions of viruses with the nervous system were thought to be well understood until the recent outbreaks of Zika and SARS-CoV-2. In this review, we consider these emerging pathogens, the range and mechanisms of the neurological disease in humans, and how the biomedical research enterprise has pivoted to answer questions about viral pathogenesis, immune response, and the special vulnerability of the nervous system. ZIKV stands out as the only new virus in a generation, associating with congenital brain defects, neurological manifestations of microcephaly in newborns, and radiculopathy in adults. COVID-19, the disease caused by SARS-CoV-2, has swept the planet in an unprecedented manner and is feared worldwide for its effect on the respiratory system, but recent evidence points to important neurological sequelae. These can include anosmia, vasculopathy, paresthesias, and stroke. Evidence of ZIKV and SARS-CoV-2 genetic material from neural tissue, and evidence of infection of neural cells, raises questions about how these emerging viruses produce disease, and where new therapies might emerge.
Collapse
Affiliation(s)
- Swapnil Mittal
- Department of Neurosciences and Pediatrics, University of California San Diego, La Jolla, CA, USA.,Rady Children's Institute of Genomic Medicine, San Diego, CA, USA
| | - Hannah G Federman
- Department of Neurosciences and Pediatrics, University of California San Diego, La Jolla, CA, USA.,Rady Children's Institute of Genomic Medicine, San Diego, CA, USA.,Department of Medicine, New Jersey Medical School, Center for Immunity and Inflammation, Rutgers University, Newark, NJ, USA
| | - David Sievert
- Department of Neurosciences and Pediatrics, University of California San Diego, La Jolla, CA, USA.,Rady Children's Institute of Genomic Medicine, San Diego, CA, USA
| | - Joseph G Gleeson
- Department of Neurosciences and Pediatrics, University of California San Diego, La Jolla, CA, USA.,Rady Children's Institute of Genomic Medicine, San Diego, CA, USA
| |
Collapse
|
52
|
Lu L, Su S, Yang H, Jiang S. Antivirals with common targets against highly pathogenic viruses. Cell 2021; 184:1604-1620. [PMID: 33740455 DOI: 10.1016/j.cell.2021.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Historically, emerging viruses appear constantly and have cost millions of human lives. Currently, climate change and intense globalization have created favorable conditions for viral transmission. Therefore, effective antivirals, especially those targeting the conserved protein in multiple unrelated viruses, such as the compounds targeting RNA-dependent RNA polymerase, are urgently needed to combat more emerging and re-emerging viruses in the future. Here we reviewed the development of antivirals with common targets, including those against the same protein across viruses, or the same viral function, to provide clues for development of antivirals for future epidemics.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
53
|
Mwaliko C, Nyaruaba R, Zhao L, Atoni E, Karungu S, Mwau M, Lavillette D, Xia H, Yuan Z. Zika virus pathogenesis and current therapeutic advances. Pathog Glob Health 2021; 115:21-39. [PMID: 33191867 PMCID: PMC7850325 DOI: 10.1080/20477724.2020.1845005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus that, upon infection, results in teratogenic effects and neurological disorders. ZIKV infections pose serious global public health concerns, prompting scientists to increase research on antivirals and vaccines against the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms of ZIKV have not yet been fully elaborated. Currently, no specific vaccines or drugs have been approved for ZIKV; however, some are undergoing clinical trials. Notably, several strategies have been used to develop antivirals, including drugs that target viral and host proteins. Additionally, drug repurposing is preferred since it is less costly and takes less time than other strategies because the drugs used have already been approved for human use. Likewise, different platforms have been evaluated for the design of vaccines, including DNA, mRNA, peptide, protein, viral vectors, virus-like particles (VLPSs), inactivated-virus, and live-attenuated virus vaccines. These vaccines have been shown to induce specific humoral and cellular immune responses and reduce viremia and viral RNA both in vitro and in vivo. Importantly, most of these vaccines have entered clinical trials. Understanding the viral disease mechanism will provide better strategies for developing therapeutic agents against ZIKV. This review provides a comprehensive summary of the viral pathogenesis of ZIKV and current advancements in the development of vaccines and drugs against this virus.
Collapse
Affiliation(s)
- Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Samuel Karungu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,CONTACT Han Xia ; Zhiming Yuan Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
54
|
Yoon BK, Jeon WY, Sut TN, Cho NJ, Jackman JA. Stopping Membrane-Enveloped Viruses with Nanotechnology Strategies: Toward Antiviral Drug Development and Pandemic Preparedness. ACS NANO 2021; 15:125-148. [PMID: 33306354 DOI: 10.1021/acsnano.0c07489] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membrane-enveloped viruses are a leading cause of viral epidemics, and there is an outstanding need to develop broad-spectrum antiviral strategies to treat and prevent enveloped virus infections. In this review, we critically discuss why the lipid membrane surrounding enveloped virus particles is a promising antiviral target and cover the latest progress in nanotechnology research to design and evaluate membrane-targeting virus inhibition strategies. These efforts span diverse topics such as nanomaterials, self-assembly, biosensors, nanomedicine, drug delivery, and medical devices and have excellent potential to support the development of next-generation antiviral drug candidates and technologies. Application examples in the areas of human medicine and agricultural biosecurity are also presented. Looking forward, research in this direction is poised to strengthen capabilities for virus pandemic preparedness and demonstrates how nanotechnology strategies can help to solve global health challenges related to infectious diseases.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won-Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tun Naw Sut
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
55
|
Yu J, Dai Y, Fu Y, Wang K, Yang Y, Li M, Xu W, Wei L. Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding. Antiviral Res 2021; 187:105021. [PMID: 33508330 DOI: 10.1016/j.antiviral.2021.105021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
Cathelicidin antimicrobial peptides (human LL-37 and mouse CRAMP) are mainly virucidal to enveloped virus. However, the effects and relative mechanisms of LL-37 and CRAMP on non-enveloped virus are elusive. We herein found that CRAMP expression was significantly up-regulated post non-enveloped Enterovirus 71 (EV71) infection in different tissues of newborn ICR mice, while EV71 replication gradually declined post CRAMP up-regulation, indicating the antiviral potential of cathelicidin against EV71. In vitro antiviral assay showed that LL-37 and CRAMP markedly reduced cytopathic effects (CPE), intracellular viral RNA copy numbers, viral VP1 protein levels, and extracellular virons in U251 cells post EV71 infection, indicating that LL-37 and CRAMP significantly inhibited EV71 replication. Mechanism of action assay showed that LL-37 and CRAMP were not virucidal to EV71, but markedly regulated antiviral immune response in U251 cells. Co-incubation of LL-37 or CRAMP with U251 cells markedly increased the basal interferon-β (IFN-β) expression and interferon regulatory transcription factor 3 (IRF3) phosphorylation, modestly enhanced IFN-β production and IRF3 phosphorylation upon EV71 infection, and significantly reduced interleukin-6 (IL-6) production and p38 mitogen-activated protein kinase (MAPK) activation post EV71 infection. Additionally, LL-37 and CRAMP directly inhibited viral binding to U251 cells. Collectively, LL-37 and CRAMP markedly inhibited EV71 replication via regulating antiviral response and inhibiting viral binding, providing potent candidates for peptide drug development against EV71 infection.
Collapse
Affiliation(s)
- Jie Yu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yue Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Kezhen Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
56
|
Zou X, Yuan M, Zhang T, Zheng N, Wu Z. EVs Containing Host Restriction Factor IFITM3 Inhibited ZIKV Infection of Fetuses in Pregnant Mice through Trans-placenta Delivery. Mol Ther 2021; 29:176-190. [PMID: 33002418 PMCID: PMC7791082 DOI: 10.1016/j.ymthe.2020.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/09/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) infection can lead to neurological complications and fetal defects, and it has attracted global public health concerns. Effective treatment for ZIKV infection remains elusive, and a preventative vaccine is not yet available. Therapeutics for fetuses need to overcome placenta barriers to reach the fetuses and require higher safety standards. In the present study, we engineered mammalian extracellular vesicles (EVs) to deliver a host restriction factor, interferon-induced transmembrane protein 3 (IFITM3), for the treatment of ZIKV infection. Our results demonstrated that the IFITM3-containing EVs (IFITM3-Exos) suppressed ZIKV viremia by a 2-log reduction in pregnant mice. Moreover, the engineered EVs effectively delivered IFITM3 protein across the placental barrier and suppressed ZIKV in the fetuses with significant reduction of viremia in key fetal organs as measured by quantitative real-time PCR. Mechanistic study showed that IFITM3 was delivered to late endosomes/lysosomes where it inhibited viral entry into the host cells. Our study demonstrated that EVs could act as a cross-placenta drug delivery vehicle to the fetus, and IFITM3, an endogenous restriction factor, is a potential treatment for ZIKV infection during pregnancy.
Collapse
Affiliation(s)
- Xue Zou
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Meng Yuan
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Tongyu Zhang
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
57
|
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41:1141-1149. [PMID: 32747721 PMCID: PMC7396720 DOI: 10.1038/s41401-020-0485-4] [Citation(s) in RCA: 1441] [Impact Index Per Article: 288.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 is a newly emerging infectious disease currently spreading across the world. It is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike (S) protein of SARS-CoV-2, which plays a key role in the receptor recognition and cell membrane fusion process, is composed of two subunits, S1 and S2. The S1 subunit contains a receptor-binding domain that recognizes and binds to the host receptor angiotensin-converting enzyme 2, while the S2 subunit mediates viral cell membrane fusion by forming a six-helical bundle via the two-heptad repeat domain. In this review, we highlight recent research advance in the structure, function and development of antivirus drugs targeting the S protein.
Collapse
Affiliation(s)
- Yuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin-Feng Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
58
|
Zhao H, To KKW, Sze KH, Yung TTM, Bian M, Lam H, Yeung ML, Li C, Chu H, Yuen KY. A broad-spectrum virus- and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nat Commun 2020; 11:4252. [PMID: 32843628 PMCID: PMC7447754 DOI: 10.1038/s41467-020-17986-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023] Open
Abstract
The 2019 novel respiratory virus (SARS-CoV-2) causes COVID-19 with rapid global socioeconomic disruptions and disease burden to healthcare. The COVID-19 and previous emerging virus outbreaks highlight the urgent need for broad-spectrum antivirals. Here, we show that a defensin-like peptide P9R exhibited potent antiviral activity against pH-dependent viruses that require endosomal acidification for virus infection, including the enveloped pandemic A(H1N1)pdm09 virus, avian influenza A(H7N9) virus, coronaviruses (SARS-CoV-2, MERS-CoV and SARS-CoV), and the non-enveloped rhinovirus. P9R can significantly protect mice from lethal challenge by A(H1N1)pdm09 virus and shows low possibility to cause drug-resistant virus. Mechanistic studies indicate that the antiviral activity of P9R depends on the direct binding to viruses and the inhibition of virus-host endosomal acidification, which provides a proof of concept that virus-binding alkaline peptides can broadly inhibit pH-dependent viruses. These results suggest that the dual-functional virus- and host-targeting P9R can be a promising candidate for combating pH-dependent respiratory viruses.
Collapse
Affiliation(s)
- Hanjun Zhao
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Kelvin K W To
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
- Li Ka Shing Faculty of Medicine, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kong-Hung Sze
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Timothy Tin-Mong Yung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Mingjie Bian
- School of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Hoiyan Lam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Man Lung Yeung
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Cun Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Hin Chu
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China.
- Li Ka Shing Faculty of Medicine, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
59
|
Zhao H, To KKW, Sze KH, Yung TTM, Bian M, Lam H, Yeung ML, Li C, Chu H, Yuen KY. A broad-spectrum virus- and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nat Commun 2020; 11:4252. [PMID: 32843628 DOI: 10.21203/rs.3.rs-18687/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 05/22/2023] Open
Abstract
The 2019 novel respiratory virus (SARS-CoV-2) causes COVID-19 with rapid global socioeconomic disruptions and disease burden to healthcare. The COVID-19 and previous emerging virus outbreaks highlight the urgent need for broad-spectrum antivirals. Here, we show that a defensin-like peptide P9R exhibited potent antiviral activity against pH-dependent viruses that require endosomal acidification for virus infection, including the enveloped pandemic A(H1N1)pdm09 virus, avian influenza A(H7N9) virus, coronaviruses (SARS-CoV-2, MERS-CoV and SARS-CoV), and the non-enveloped rhinovirus. P9R can significantly protect mice from lethal challenge by A(H1N1)pdm09 virus and shows low possibility to cause drug-resistant virus. Mechanistic studies indicate that the antiviral activity of P9R depends on the direct binding to viruses and the inhibition of virus-host endosomal acidification, which provides a proof of concept that virus-binding alkaline peptides can broadly inhibit pH-dependent viruses. These results suggest that the dual-functional virus- and host-targeting P9R can be a promising candidate for combating pH-dependent respiratory viruses.
Collapse
Affiliation(s)
- Hanjun Zhao
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Kelvin K W To
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
- Li Ka Shing Faculty of Medicine, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kong-Hung Sze
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Timothy Tin-Mong Yung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Mingjie Bian
- School of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Hoiyan Lam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Man Lung Yeung
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Cun Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Hin Chu
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China.
- Li Ka Shing Faculty of Medicine, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
60
|
Medits I, Vaney M, Rouvinski A, Rey M, Chamot‐Rooke J, Rey FA, Heinz FX, Stiasny K. Extensive flavivirus E trimer breathing accompanies stem zippering of the post-fusion hairpin. EMBO Rep 2020; 21:e50069. [PMID: 32484292 PMCID: PMC7403712 DOI: 10.15252/embr.202050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
Flaviviruses enter cells by fusion with endosomal membranes through a rearrangement of the envelope protein E, a class II membrane fusion protein, into fusogenic trimers. The rod-like E subunits bend into "hairpins" to bring the fusion loops next to the C-terminal transmembrane (TM) anchors, with the TM-proximal "stem" element zippering the E trimer to force apposition of the membranes. The structure of the complete class II trimeric hairpin is known for phleboviruses but not for flaviviruses, for which the stem is only partially resolved. Here, we performed comparative analyses of E-protein trimers from the tick-borne encephalitis flavivirus with sequential stem truncations. Our thermostability and antibody-binding data suggest that the stem "zipper" ends at a characteristic flavivirus conserved sequence (CS) that cloaks the fusion loops, with the downstream segment not contributing to trimer stability. We further identified a highly dynamic behavior of E trimers C-terminally truncated upstream the CS, which, unlike fully stem-zippered trimers, undergo rapid deuterium exchange at the trimer interface. These results thus identify important "breathing" intermediates in the E-protein-driven membrane fusion process.
Collapse
Affiliation(s)
- Iris Medits
- Center for VirologyMedical University of ViennaViennaAustria
| | | | - Alexander Rouvinski
- Unité de Virologie StructuraleInstitut PasteurCNRS UMR 3569 VirologieParisFrance
- Present address:
Department of Microbiology and Molecular GeneticsInstitute for Medical Research Israel‐CanadaThe Kuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University of JerusalemJerusalemIsrael
| | - Martial Rey
- Unité de Spectrométrie de Masse pour la BiologieInstitut PasteurCNRS USR 2000ParisFrance
| | - Julia Chamot‐Rooke
- Unité de Spectrométrie de Masse pour la BiologieInstitut PasteurCNRS USR 2000ParisFrance
| | - Felix A Rey
- Unité de Virologie StructuraleInstitut PasteurCNRS UMR 3569 VirologieParisFrance
| | - Franz X Heinz
- Center for VirologyMedical University of ViennaViennaAustria
| | - Karin Stiasny
- Center for VirologyMedical University of ViennaViennaAustria
| |
Collapse
|
61
|
Xing M, Ji M, Hu J, Zhu T, Chen Y, Bai X, Mwangi J, Mo G, Lai R, Jin L. Snake Cathelicidin Derived Peptide Inhibits Zika Virus Infection. Front Microbiol 2020; 11:1871. [PMID: 32849457 PMCID: PMC7417475 DOI: 10.3389/fmicb.2020.01871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/16/2020] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus belonging to the genus Flavivirus and has reemerged in recent years with epidemic potential. ZIKV infection may result in severe syndromes such as neurological complications and microcephaly in newborns. Therefore, ZIKV has become a global public health threat and currently there is no approved specific drug for its treatment. Animal venoms are important resources of novel drugs. Cathelicidin-BF (BF-30) is a defensive peptide identified from Bungarus fasciatus snake venom and has been shown to be an excellent template for applicable peptide design. In this study, we found that ZY13, one of the peptidic analogs of BF-30, inhibits ZIKV infection in vitro and in vivo. Mechanistic studies revealed that ZY13 can directly inactivate ZIKV and reduce the production of infectious virions. Further studies also indicated that administration of ZY13 strengthen the host antiviral immunity via AXL-SOCS (suppressor of cytokine signaling protein) pathway. Additionally, the results of mouse experiment suggest that ZY13 efficiently restrict ZIKV infection and improve the growth defects of ZIKV-infected mouse pups. Together, our findings not only demonstrate that ZY13 might be a candidate for anti-ZIKV drug, but also indicated the importance of animal venom peptides as templates for antivirals development.
Collapse
Affiliation(s)
- Meichen Xing
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengyao Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jingmei Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengyu Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaoyao Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuewei Bai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ren Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
62
|
Dash RN, Moharana AK, Subudhi BB. Sulfonamides: Antiviral Strategy for Neglected Tropical Disease Virus. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200515094100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The viral infections are a threat to the health system around the globe. Although
more than 60 antiviral drugs have been approved by the FDA, most of them are for the
management of few viruses like HIV, Hepatitis and Influenza. There is no antiviral for
many viruses including Dengue, Chikungunya and Japanese encephalitis. Many of these
neglected viruses are increasingly becoming global pathogens. Lack of broad spectrum of
action and the rapid rise of resistance and cross-resistance to existing antiviral have further
increased the challenge of antiviral development. Sulfonamide, as a privileged scaffold,
has been capitalized to develop several bioactive compounds and drugs. Accordingly, several
reviews have been published in recent times on bioactive sulfonamides. However,
there are not enough review reports of antiviral sulfonamides in the last five years. Sulfonamides
scaffolds have received sufficient attention for the development of non- nucleoside antivirals following
the emergence of cross-resistance to nucleoside inhibitors. Hybridization of bioactive pharmacophores
with sulfonamides has been used as a strategy to develop sulfonamide antivirals. This review is an effort to
analyze these attempts and evaluate their translational potential. Parameters including potency (IC50), toxicity
(CC50) and selectivity (CC50/IC50) have been used in this report to suggest the potential of sulfonamide derivatives
to progress further as antiviral. Since most of these antiviral properties are based on the in vitro results,
the drug-likeness of molecules has been predicted to propose in vivo potential. The structure-activity relationship
has been analyzed to encourage further optimization of antiviral properties.
Collapse
Affiliation(s)
- Rudra Narayan Dash
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| | - Alok Kumar Moharana
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| |
Collapse
|
63
|
Chu H, Yuen TTT, Chik KKH, Yuan S, Shuai H, Zou Z, Wang Y, Zhu Z, Yang D, Poon VKM, Chan CCS, Zhou J, Yin F, Kok KH, Yuen KY, Chan JFW. Targeting the Inositol-Requiring Enzyme-1 Pathway Efficiently Reverts Zika Virus-Induced Neurogenesis and Spermatogenesis Marker Perturbations. ACS Infect Dis 2020; 6:1745-1758. [PMID: 32329611 DOI: 10.1021/acsinfecdis.9b00526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) is an emerging flavivirus that may be associated with congenital anomalies in infected fetuses and severe neurological and genital tract complications in infected adults. Currently, antiviral treatments to revert these ZIKV-induced complications are lacking. ZIKV infection has recently been suggested to upregulate the host unfolded protein response, which may contribute to the congenital neurological anomalies. As an extension from these findings, we thoroughly investigated the ZIKV-induced unfolded protein response using a combination of the neuronal cell line, induced pluripotent stem cell-derived human neuronal stem and progenitor cells, and an interferon receptor-deficient A129 mouse model. Our results revealed a critical contribution of the inositol-requiring enzyme-1 (IRE1) arm of the unfolded protein response to ZIKV-induced neurological and testicular complications. Importantly, the inhibition of the IRE1 signaling pathway activation with KIRA6 (kinase-inhibiting RNAse attenuator 6), a selective small molecule IRE1 inhibitor that promotes cell survival, potently reverted the ZIKV-induced perturbations of the key gene expressions associated with neurogenesis and spermatogenesis in vitro and in vivo, highlighting the potential of IRE1 inhibition as a novel host-targeting antiviral strategy in combating against ZIKV-induced neurological and testicular pathologies.
Collapse
Affiliation(s)
- Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Terrence T. T. Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Kenn K. H. Chik
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Zijiao Zou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Zheng Zhu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Vincent K. M. Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Chris C. S. Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Kin-Hang Kok
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| | - Jasper F. W. Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China
- Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region 999077, China
| |
Collapse
|
64
|
Karwal P, Vats ID, Sinha N, Singhal A, Sehgal T, Kumari P. Therapeutic Applications of Peptides against Zika Virus: A Review. Curr Med Chem 2020; 27:3906-3923. [DOI: 10.2174/0929867326666190111115132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 01/27/2023]
Abstract
Zika Virus (ZIKV) belongs to the class of flavivirus that can be transmitted by Aedes
mosquitoes. The number of Zika virus caused cases of acute infections, neurological disorders and
congenital microcephaly are rapidly growing and therefore, in 2016, the World Health Organization
declared a global “Public Health Emergency of International Concern”. Anti-ZIKV therapeutic and
vaccine development strategies are growing worldwide in recent years, however, no specific and safe
treatment is available till date to save the human life. Currently, development of peptide therapeutics
against ZIKV has attracted rising attention on account of their high safety concern and low development
cost, in comparison to small therapeutic molecules and antibody-based anti-viral drugs. In present
review, an overview of ZIKV inhibition by peptide-based inhibitors including E-protein derived
peptides, antimicrobial peptides, frog skin peptides and probiotic peptides has been discussed. Peptides
inhibitors have also been reported to act against NS5, NS2B-NS3 protease and proteasome in
order to inhibit ZIKV infection. Recent advances in peptide-based therapeutics and vaccine have
been reviewed and their future promise against ZIKV infections has been explored.
Collapse
Affiliation(s)
- Preeti Karwal
- Department of Biochemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Ishwar Dutt Vats
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Niharika Sinha
- Drug Development Laboratory Group, Gautam Buddha University, Noida, India
| | - Anchal Singhal
- Department of Chemistry, St. Joseph's College, Bengaluru, Karnataka, India
| | - Teena Sehgal
- Department of Chemistry, HMRITM, GGSIP University, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| |
Collapse
|
65
|
Su X, Wang Q, Wen Y, Jiang S, Lu L. Protein- and Peptide-Based Virus Inactivators: Inactivating Viruses Before Their Entry Into Cells. Front Microbiol 2020; 11:1063. [PMID: 32523582 PMCID: PMC7261908 DOI: 10.3389/fmicb.2020.01063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Infectious diseases caused by human immunodeficiency virus (HIV) and other highly pathogenic enveloped viruses, have threatened the global public health. Most antiviral drugs act as passive defenders to inhibit viral replication inside the cell, while a few of them function as gate keepers to combat viruses outside the cell, including fusion inhibitors, e.g., enfuvirtide, and receptor antagonists, e.g., maraviroc, as well as virus inactivators (including attachment inhibitors). Different from fusion inhibitors and receptor antagonists that must act in the presence of target cells, virus inactivators can actively inactivate cell-free virions in the blood, through interaction with one or more sites in the envelope glycoproteins (Envs) on virions. Notably, a number of protein- and peptide-based virus inactivators (PPVIs) under development are expected to have a better utilization rate than the current antiviral drugs and be safer for in vivo human application than the chemical-based virus inactivators. Here we have highlighted recent progress in developing PPVIs against several important enveloped viruses, including HIV, influenza virus, Zika virus (ZIKV), dengue virus (DENV), and herpes simplex virus (HSV), and the potential use of PPVIs for urgent treatment of infection by newly emerging or re-emerging viruses.
Collapse
Affiliation(s)
- Xiaojie Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
66
|
Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion Venom: Detriments and Benefits. Biomedicines 2020; 8:biomedicines8050118. [PMID: 32408604 PMCID: PMC7277529 DOI: 10.3390/biomedicines8050118] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Scorpion venom may cause severe medical complications and untimely death if injected into the human body. Neurotoxins are the main components of scorpion venom that are known to be responsible for the pathological manifestations of envenoming. Besides neurotoxins, a wide range of other bioactive molecules can be found in scorpion venoms. Advances in separation, characterization, and biotechnological approaches have enabled not only the development of more effective treatments against scorpion envenomings, but have also led to the discovery of several scorpion venom peptides with interesting therapeutic properties. Thus, scorpion venom may not only be a medical threat to human health, but could prove to be a valuable source of bioactive molecules that may serve as leads for the development of new therapies against current and emerging diseases. This review presents both the detrimental and beneficial properties of scorpion venom toxins and discusses the newest advances within the development of novel therapies against scorpion envenoming and the therapeutic perspectives for scorpion toxins in drug discovery.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| | - Julius M. Knerr
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Lídia Argemi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Karla C. F. Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Manuela B. Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Medical School, Federal University of Roraima, Boa Vista, Roraima 69310-000, Brazil
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Eliane C. Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| |
Collapse
|
67
|
Liu Z, Xia S, Wang X, Lan Q, Li P, Xu W, Wang Q, Lu L, Jiang S. Sodium Copper Chlorophyllin Is Highly Effective against Enterovirus (EV) A71 Infection by Blocking Its Entry into the Host Cell. ACS Infect Dis 2020; 6:882-890. [PMID: 32233455 DOI: 10.1021/acsinfecdis.0c00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human enteroviruses (HEVs) pose an ongoing threat to global public health. Particularly, enterovirus-A71 (EV-A71), the main pathogen causing hand-foot-and-mouth disease (HFMD), has caused ongoing outbreaks globally in recent years associated with severe neurological manifestations and several deaths. Currently, no effective antivirals are available for the prevention or treatment of EV-A71 infection. In this study, we found that sodium copper chlorophyllin (CHL), a health food additive and an over-the-counter anticancer medicine or treatment to reduce the odor of urine or feces, exhibited potent inhibitory activity against infection by divergent EV-A71 and coxsackievirus-A16 (CV-A16) isolates at a low micromolar concentration with excellent safety. The antiviral activity of each was confirmed by colorimetric viral infection and qRT-PCR assays. A series of mechanistic studies showed that CHL did not target the host cell but blocked the entry of EV-A71 and CV-A16 into the host cell at the postattachment stage. In the mouse model, CHL could significantly reduce the viral titer in the lungs and muscles. Since CHL has been used in clinics for many years with excellent safety, it has the potential to be further developed into a prophylactic or therapeutic to prevent or treat HFMD caused by EV-A71 or CV-A16 infection.
Collapse
Affiliation(s)
- Zezhong Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Peiyu Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| |
Collapse
|
68
|
Zhao D, Zhang L, Han K, Liu Q, Yang J, Huang X, Liu Y, Li Y, Zhao P. Peptide inhibitors of tembusu virus infection derived from the envelope protein. Vet Microbiol 2020; 245:108708. [PMID: 32456819 PMCID: PMC7204726 DOI: 10.1016/j.vetmic.2020.108708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 01/30/2023]
Abstract
The outbreak and spread of Tembusu virus (TMUV) has caused very large losses in the waterfowl-breeding industry since 2010. The viral envelope (E) protein, the principal surface protein of viral particles, plays a vital role in viral entry and fusion. In this study, two peptides derived from domain II (DII) and the stem of the TMUV envelope protein, TP1 and TP2, respectively, were tested for their antiviral activity. TP1 and TP2 inhibited TMUV infection in BHK-21 cells, and their 50% inhibitory concentrations (IC50) were 14.19 mg/L and 7.64 mg/L, respectively. Viral inhibition assays in different cell lines of avian origin showed that the inhibitory effects of TP1 and TP2 are not cell type dependent. Moreover, TP2 also exhibited inhibitory activity against Japanese encephalitis virus (JEV) infection. The two peptides inhibited antibody-mediated TMUV infection of duck peripheral blood lymphocytes. Co-immunoprecipitation assays and indirect enzyme-linked immunosorbent assays (ELISAs) indicated that both peptides interact with the surface of the TMUV virion. RNase digestion assays confirmed the release of viral RNA following incubation with TP1, while incubation with TP1 or TP2 interfered with the binding between TMUV and cells. Taken together, these results show that TP1 and TP2 may be developed into antiviral treatments against TMUV infection.
Collapse
Affiliation(s)
- Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China.
| | - Peng Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong province, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, PR China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, PR China.
| |
Collapse
|
69
|
Chen Y, Li Y, Wang X, Zou P. Montelukast, an Anti-asthmatic Drug, Inhibits Zika Virus Infection by Disrupting Viral Integrity. Front Microbiol 2020; 10:3079. [PMID: 32082265 PMCID: PMC7002393 DOI: 10.3389/fmicb.2019.03079] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
The association of Zika virus (ZIKV) infection and severe complications including neurological sequelae especially fetal microcephaly has aroused global attentions since its outbreak in 2015. Currently, there are no vaccines or therapeutic drugs clinically approved for treatments of ZIKV infection, however. And the drugs used for treating ZIKV in pregnant women require a higher safety profile. Here, we identified an anti-asthmatic drug, montelukast, which is of safety profile for pregnant women and exhibited antiviral efficacy against ZIKV infection in vitro and in vivo. And we showed that montelukast could disrupt the integrity of the virions to release the viral genomic RNA, hence irreversibly inhibiting viral infectivity. In consideration of the neuro-protective activity that montelukast possessed, which was previously reported, it is promising that montelukast could be used for patients with ZIKV infection, particularly for pregnant women.
Collapse
Affiliation(s)
| | | | | | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
70
|
Zika viral proteome analysis reveals an epitope cluster within NS3 helicase as a potential vaccine candidate: An in silico study. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
71
|
Wang L, Liang R, Gao Y, Li Y, Deng X, Xiang R, Zhang Y, Ying T, Jiang S, Yu F. Development of Small-Molecule Inhibitors Against Zika Virus Infection. Front Microbiol 2019; 10:2725. [PMID: 31866959 PMCID: PMC6909824 DOI: 10.3389/fmicb.2019.02725] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years, the outbreak of infectious disease caused by Zika virus (ZIKV) has posed a major threat to global public health, calling for the development of therapeutics to treat ZIKV disease. Here, we have described the different stages of the ZIKV life cycle and summarized the latest progress in the development of small-molecule inhibitors against ZIKV infection. We have also discussed some general strategies for the discovery of small-molecule ZIKV inhibitors.
Collapse
Affiliation(s)
- Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Ruiying Liang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yanbai Li
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Rong Xiang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yina Zhang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibo Jiang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
72
|
Bi W, Xu W, Cheng L, Xue J, Wang Q, Yu F, Xia S, Wang Q, Li G, Qin C, Lu L, Su L, Jiang S. IgG Fc-binding motif-conjugated HIV-1 fusion inhibitor exhibits improved potency and in vivo half-life: Potential application in combination with broad neutralizing antibodies. PLoS Pathog 2019; 15:e1008082. [PMID: 31805154 PMCID: PMC6894747 DOI: 10.1371/journal.ppat.1008082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022] Open
Abstract
The clinical application of conventional peptide drugs, such as the HIV-1 fusion inhibitor enfuvirtide, is limited by their short half-life in vivo. To overcome this limitation, we developed a new strategy to extend the in vivo half-life of a short HIV-1 fusion inhibitory peptide, CP24, by fusing it with the human IgG Fc-binding peptide (IBP). The newly engineered peptide IBP-CP24 exhibited potent and broad anti-HIV-1 activity with IC50 values ranging from 0.2 to 173.7 nM for inhibiting a broad spectrum of HIV-1 strains with different subtypes and tropisms, including those resistant to enfuvirtide. Most importantly, its half-life in the plasma of rhesus monkeys was 46.1 h, about 26- and 14-fold longer than that of CP24 (t1/2 = 1.7 h) and enfuvirtide (t1/2 = 3 h), respectively. IBP-CP24 intravenously administered in rhesus monkeys could not induce significant IBP-CP24-specific antibody response and it showed no obvious in vitro or in vivo toxicity. In the prophylactic study, humanized mice pretreated with IBP-CP24 were protected from HIV-1 infection. As a therapeutic treatment, coadministration of IBP-CP24 and normal human IgG to humanized mice with chronic HIV-1 infection resulted in a significant decrease of plasma viremia. Combining IBP-CP24 with a broad neutralizing antibody (bNAb) targeting CD4-binding site (CD4bs) in gp120 or a membrane proximal external region (MPER) in gp41 exhibited synergistic effect, resulting in significant dose-reduction of the bNAb and IBP-CP24. These results suggest that IBP-CP24 has the potential to be further developed as a new HIV-1 fusion inhibitor-based, long-acting anti-HIV drug that can be used alone or in combination with a bNAb for treatment and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Wenwen Bi
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Yu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qi Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail: (LL); (LS); (SJ)
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (LL); (LS); (SJ)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- * E-mail: (LL); (LS); (SJ)
| |
Collapse
|
73
|
Wei J, Hameed M, Wang X, Zhang J, Guo S, Anwar MN, Pang L, Liu K, Li B, Shao D, Qiu Y, Zhong D, Zhou B, Ma Z. Antiviral activity of phage display-selected peptides against Japanese encephalitis virus infection in vitro and in vivo. Antiviral Res 2019; 174:104673. [PMID: 31812636 DOI: 10.1016/j.antiviral.2019.104673] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Japanese Encephalitis virus (JEV) is a zoonotic flavivirus that is the most significant etiological agent of childhood viral neurological infections. However, no specific antiviral drug is currently available to treat JEV infections. The JEV envelope (E) protein is a class II viral fusion protein that mediates host cell entry, making interference with the interaction between the E protein of JEV and its cognate receptors an attractive strategy for anti-JEV drug development. In this study, we identified a peptide derived from a phage display peptide library against the E protein of JEV, designated P1, that potentially inhibits in vitro and in vivo JEV infections. P1 inhibits JEV infection in BHK-21 cells with 50% inhibitory capacity at a concentration of 35.9 μM. The time-of-addition assay indicates that JEV replication is significantly inhibited during pre-infection and co-infection of P1 with JEV while post-infection treatments with P1 have very little impact on JEV proliferation, showing that P1 inhibits JEV infection at early stages and indicating the potential prophylactic effect of P1. We adapted an in vitro BiFC assay system and demonstrated that P1 interacts with JEV E proteins and blocks their entry into cells. We also evaluated the therapeutic efficacy of P1 in a lethal JEV mouse model exhibiting systemic and brain infections. Interestingly, P1 treatment protected C57BL/6 mice against mortality, markedly reduced the viral loads in blood and brain, and diminished the histopathological lesions in the brain cells. In addition to controlling systemic infection, P1 has a very low level of cytotoxicity and acts in a sequence-specific manner, as scrambled peptide sP1 does not show any antiviral activity. In conclusion, our in vitro and in vivo experimental findings show that P1 possesses antiviral activity against JEV infections, is safe to use, and has potential for further development as an antiviral treatment against JEV infections.
Collapse
Affiliation(s)
- Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China; Shanghai Vocational and Technical College of Agriculture and Forestry, Shanghai, 201600, People's Republic of China
| | - Shuang Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Linlin Pang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Dengke Zhong
- Shanghai Vocational and Technical College of Agriculture and Forestry, Shanghai, 201600, People's Republic of China.
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China.
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
74
|
Wang X, Xia S, Zou P, Lu L. Erythromycin Estolate Inhibits Zika Virus Infection by Blocking Viral Entry as a Viral Inactivator. Viruses 2019; 11:v11111064. [PMID: 31731598 PMCID: PMC6893414 DOI: 10.3390/v11111064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022] Open
Abstract
Recently, Zika virus (ZIKV) has attracted much attention in consideration of its association with severe neurological complications including fetal microcephaly. However, there are currently no prophylactic vaccines or therapeutic drugs approved for clinical treatments of ZIKV infection. To determine the potential anti-ZIKV inhibitors, we screened a library of clinical drugs with good safety profiles. Erythromycin estolate (Ery-Est), one of the macrolide antibiotics, was found to effectively inhibit ZIKV infection in different cell types and significantly protect A129 mice from ZIKV-associated neurological signs and mortality. Through further investigation, Ery-Est was verified to inhibit ZIKV entry by disrupting the integrity of the viral membrane which resulted in the loss of ZIKV infectivity. Furthermore, Ery-Est also showed inhibitory activity against dengue virus (DENV) and yellow fever virus (YFV). Thus, Ery-Est may be a promising drug for patients with ZIKV infection, particularly pregnant women.
Collapse
Affiliation(s)
| | | | - Peng Zou
- Correspondence: (P.Z.); (L.L.); Tel.: +86-21-37990333-5273 (P.Z.); +86-21-5423-7673 (L.L.)
| | - Lu Lu
- Correspondence: (P.Z.); (L.L.); Tel.: +86-21-37990333-5273 (P.Z.); +86-21-5423-7673 (L.L.)
| |
Collapse
|
75
|
Gao Y, Tai W, Wang N, Li X, Jiang S, Debnath AK, Du L, Chen S. Identification of Novel Natural Products as Effective and Broad-Spectrum Anti-Zika Virus Inhibitors. Viruses 2019; 11:E1019. [PMID: 31684080 PMCID: PMC6893700 DOI: 10.3390/v11111019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy leads to severe congenital Zika syndrome, which includes microcephaly and other neurological malformations. No therapeutic agents have, so far, been approved for the treatment of ZIKV infection in humans; as such, there is a need for a continuous effort to develop effective and safe antiviral drugs to treat ZIKV-caused diseases. After screening a natural product library, we have herein identified four natural products with anti-ZIKV activity in Vero E6 cells, including gossypol, curcumin, digitonin, and conessine. Except for curcumin, the other three natural products have not been reported before to have anti-ZIKV activity. Among them, gossypol exhibited the strongest inhibitory activity against almost all 10 ZIKV strains tested, including six recent epidemic human strains. The mechanistic study indicated that gossypol could neutralize ZIKV infection by targeting the envelope protein domain III (EDIII) of ZIKV. In contrast, the other natural products inhibited ZIKV infection by targeting the host cell or cell-associated entry and replication stages of ZIKV. A combination of gossypol with any of the three natural products identified in this study, as well as with bortezomib, a previously reported anti-ZIKV compound, exhibited significant combinatorial inhibitory effects against three ZIKV human strains tested. Importantly, gossypol also demonstrated marked potency against all four serotypes of dengue virus (DENV) human strains in vitro. Taken together, this study indicates the potential for further development of these natural products, particularly gossypol, as the lead compound or broad-spectrum inhibitors against ZIKV and other flaviviruses, such as DENV.
Collapse
Affiliation(s)
- Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Ning Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Xiang Li
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Asim K Debnath
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Shizhong Chen
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
76
|
Bernatchez JA, Tran LT, Li J, Luan Y, Siqueira-Neto JL, Li R. Drugs for the Treatment of Zika Virus Infection. J Med Chem 2019; 63:470-489. [PMID: 31549836 DOI: 10.1021/acs.jmedchem.9b00775] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zika virus is an emerging flavivirus that causes the neurodevelopmental congenital Zika syndrome and that has been linked to the neuroinflammatory Guillain-Barré syndrome. The absence of a vaccine or a clinically approved drug to treat the disease combined with the likelihood that another outbreak will occur in the future defines an unmet medical need. Several promising drug candidate molecules have been reported via repurposing studies, high-throughput compound library screening, and de novo design in the short span of a few years. Intense research activity in this area has occurred in response to the World Health Organization declaration of a Public Health Emergency of International Concern on February 1, 2016. In this Perspective, the authors review the emergence of Zika virus, the biology of its replication, targets for therapeutic intervention, target product profile, and current drug development initiatives.
Collapse
Affiliation(s)
| | - Lana T Tran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China
| | | | - Rongshi Li
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China.,UNMC Center for Drug Discovery, Department of Pharmaceutical Sciences, College of Pharmacy, Fred and Pamela Buffett Cancer Center, and Center for Staphylococcal Research , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
77
|
Ferraris P, Yssel H, Missé D. Zika virus infection: an update. Microbes Infect 2019; 21:353-360. [DOI: 10.1016/j.micinf.2019.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
|
78
|
Si L, Meng Y, Tian F, Li W, Zou P, Wang Q, Xu W, Wang Y, Xia M, Hu J, Jiang S, Lu L. A Peptide-Based Virus Inactivator Protects Male Mice Against Zika Virus-Induced Damage of Testicular Tissue. Front Microbiol 2019; 10:2250. [PMID: 31611865 PMCID: PMC6777420 DOI: 10.3389/fmicb.2019.02250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) was a re-emerging arbovirus associated with Guillain–Barré Syndrome in adult and congenital Zika syndrome in fetus and infant. Although ZIKV was mainly transmitted by mosquito bites, many sexual transmission cases have been reported since the outbreak in 2015. ZIKV can persist in testis and semen for a long time, causing testicular tissue damage and reducing sperm quality. However, no drug has been approved for prevention or treatment of ZIKV infection, especially infection in male testicular tissue. Previously reported peptide Z2 could inactivate ZIKV, inhibiting ZIKV infection in vitro and in vivo. Importantly, Z2 could inhibit vertical transmission of ZIKV in pregnant mice, reducing ZIKV infection in fetus. Here we showed that intraperitoneally administered Z2 could also be distributed to testis and epididymis, resulting in the reduction of ZIKV RNA copies in testicular tissue and protection of testis and epididymis against ZIKV-induced pathological damage and poor sperm quality in type I interferon receptor-deficient A129 mice. Thus, Z2, a ZIKV inactivator, could serve as an antiviral agent for treatment of ZIKV infection and attenuation of ZIKV-induced testicular tissue damage.
Collapse
Affiliation(s)
- Lulu Si
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yu Meng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Peng Zou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Jingying Hu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
79
|
Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019; 12:ph12030127. [PMID: 31480297 PMCID: PMC6789873 DOI: 10.3390/ph12030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that spread throughout the American continent in 2015 causing considerable worldwide social and health alarm due to its association with ocular lesions and microcephaly in newborns, and Guillain-Barré syndrome (GBS) cases in adults. Nowadays, no licensed vaccines or antivirals are available against ZIKV, and thus, in this very short time, the scientific community has conducted enormous efforts to develop vaccines and antivirals. So that, different platforms (purified inactivated and live attenuated viruses, DNA and RNA nucleic acid based candidates, virus-like particles, subunit elements, and recombinant viruses) have been evaluated as vaccine candidates. Overall, these vaccines have shown the induction of vigorous humoral and cellular responses, the decrease of viremia and viral RNA levels in natural target organs, the prevention of vertical and sexual transmission, as well as that of ZIKV-associated malformations, and the protection of experimental animal models. Some of these vaccine candidates have already been assayed in clinical trials. Likewise, the search for antivirals have also been the focus of recent investigations, with dozens of compounds tested in cell culture and a few in animal models. Both direct acting antivirals (DAAs), directed to viral structural proteins and enzymes, and host acting antivirals (HAAs), directed to cellular factors affecting all steps of the viral life cycle (binding, entry, fusion, transcription, translation, replication, maturation, and egress), have been evaluated. It is expected that this huge collaborative effort will produce affordable and effective therapeutic and prophylactic tools to combat ZIKV and other related still unknown or nowadays neglected flaviviruses. Here, a comprehensive overview of the advances made in the development of therapeutic measures against ZIKV and the questions that still have to be faced are summarized.
Collapse
|
80
|
Khachatoorian R, Micewicz ED, Micewicz A, French SW, Ruchala P. Optimization of 1,3-disubstituted urea-based inhibitors of Zika virus infection. Bioorg Med Chem Lett 2019; 29:126626. [PMID: 31477351 DOI: 10.1016/j.bmcl.2019.126626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022]
Abstract
Zika virus (ZIKV) has become a public health concern worldwide due to its association with congenital abnormalities and neurological diseases. To date, no effective vaccines or antiviral drugs have been approved for the treatment of ZIKV infection, and new inexpensive therapeutic options are urgently needed. In this study, we have used an in vitro plaque assay to assess an antiviral activity of the second generation of anti-ZIKV compounds, based on 1,3-disubstituted (thio)urea scaffold. Several compounds in the library were found to possess excellent activity against Zika virus with IC50 values <200 pM. The most active analog, A5 exhibited an exceptional IC50 = 85.1 ± 1.7 pM. Further analysis delineated structural requirements necessary for potent antiviral effects of this class of compounds. Collectively, our findings suggest that 1,3-disubstituted (thio)urea derivatives are excellent preclinical candidates for the development of anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Ronik Khachatoorian
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alina Micewicz
- David Geffen School of Medicine at UCLA, Volunteering Program, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA; UCLA AIDS Institute, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
81
|
Rational Design of Zika Virus Subunit Vaccine with Enhanced Efficacy. J Virol 2019; 93:JVI.02187-18. [PMID: 31189716 PMCID: PMC6694833 DOI: 10.1128/jvi.02187-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnant women can lead to fetal deaths and malformations. We have previously reported that ZIKV envelope protein domain III (EDIII) is a subunit vaccine candidate with cross-neutralization activity; however, like many other subunit vaccines, its efficacy is limited. To improve the efficacy of this subunit vaccine, we identified a nonneutralizing epitope on ZIKV EDIII surrounding residue 375, which is buried in the full-length envelope protein but becomes exposed in recombinant EDIII. We then shielded this epitope with an engineered glycan probe. Compared to the wild-type EDIII, the mutant EDIII induced significantly stronger neutralizing antibodies in three mouse strains and also demonstrated significantly improved efficacy by fully protecting mice, particularly pregnant mice and their fetuses, against high-dose lethal ZIKV challenge. Moreover, the mutant EDIII immune sera significantly enhanced the passive protective efficacy by fully protecting mice against lethal ZIKV challenge; this passive protection was positively associated with neutralizing antibody titers. We further showed that the enhanced efficacy of the mutant EDIII was due to the shielding of the immunodominant nonneutralizing epitope surrounding residue 375, which led to immune refocusing on the neutralizing epitopes. Taken together, the results of this study reveal that an intrinsic limitation of subunit vaccines is their artificially exposed immunodominant nonneutralizing epitopes, which can be overcome through glycan shielding. Additionally, the mutant ZIKV protein generated in this study is a promising subunit vaccine candidate with high efficacy in preventing ZIKV infections in mice.IMPORTANCE Viral subunit vaccines generally show low efficacy. In this study, we revealed an intrinsic limitation of subunit vaccine designs: artificially exposed surfaces of subunit vaccines contain epitopes unfavorable for vaccine efficacy. More specifically, we identified an epitope on Zika virus (ZIKV) envelope protein domain III (EDIII) that is buried in the full-length envelope protein but becomes exposed in recombinant EDIII. We further shielded this epitope with a glycan, and the resulting mutant EDIII vaccine demonstrated significantly enhanced efficacy over the wild-type EDIII vaccine in protecting animal models from ZIKV infections. Therefore, the intrinsic limitation of subunit vaccines can be overcome through shielding these artificially exposed unfavorable epitopes. The engineered EDIII vaccine generated in this study is a promising vaccine candidate that can be further developed to battle ZIKV infections.
Collapse
|
82
|
Abstract
In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Developmental and Cell Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
83
|
Camargos VN, Foureaux G, Medeiros DC, da Silveira VT, Queiroz-Junior CM, Matosinhos ALB, Figueiredo AFA, Sousa CDF, Moreira TP, Queiroz VF, Dias ACF, Santana KTO, Passos I, Real ALCV, Silva LC, Mourão FAG, Wnuk NT, Oliveira MAP, Macari S, Silva T, Garlet GP, Jackman JA, Soriani FM, Moraes MFD, Mendes EMAM, Ribeiro FM, Costa GMJ, Teixeira AL, Cho NJ, Oliveira ACP, Teixeira MM, Costa VV, Souza DG. In-depth characterization of congenital Zika syndrome in immunocompetent mice: Antibody-dependent enhancement and an antiviral peptide therapy. EBioMedicine 2019; 44:516-529. [PMID: 31130472 PMCID: PMC6604363 DOI: 10.1016/j.ebiom.2019.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) infection during pregnancy may cause major congenital defects, including microcephaly, ocular, articular and muscle abnormalities, which are collectively defined as Congenital Zika Syndrome. Here, we performed an in-depth characterization of the effects of congenital ZIKV infection (CZI) in immunocompetent mice. METHODS Pregnant dams were inoculated with ZIKV on embryonic day 5.5 in the presence or absence of a sub-neutralizing dose of a pan-flavivirus monoclonal antibody (4G2) to evaluate the potential role of antibody-dependent enhancement phenomenon (ADE) during short and long outcomes of CZI. FINDINGS ZIKV infection induced maternal immune activation (MIA), which was associated with occurrence of foetal abnormalities and death. Therapeutic administration of AH-D antiviral peptide during the early stages of pregnancy prevented ZIKV replication and death of offspring. In the post-natal period, CZI was associated with a decrease in whole brain volume, ophthalmologic abnormalities, changes in testicular morphology, and disruption in bone microarchitecture. Some alterations were enhanced in the presence of 4G2 antibody. INTERPRETATION Our results reveal that early maternal ZIKV infection causes several birth defects in immunocompetent mice, which can be potentiated by ADE phenomenon and are associated with MIA. Additionally, antiviral treatment with AH-D peptide may be beneficial during early maternal ZIKV infection. FUND: This work was supported by the Brazilian National Science Council (CNPq, Brazil), Minas Gerais Foundation for Science (FAPEMIG), Funding Authority for Studies and Projects (FINEP), Coordination of Superior Level Staff Improvement (CAPES), National Research Foundation of Singapore and Centre for Precision Biology at Nanyang Technological University.
Collapse
Affiliation(s)
- Vidyleison N Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giselle Foureaux
- Transversal Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel C Medeiros
- Centre for Technology and Research in Magnetic-Resonance, Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian T da Silveira
- Neuropharmacology Lab, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso M Queiroz-Junior
- Transversal Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Luisa B Matosinhos
- Neuropharmacology Lab, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - André F A Figueiredo
- Cellular Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carla D F Sousa
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaiane P Moreira
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victória F Queiroz
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Carolina F Dias
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karina T O Santana
- Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Ingredy Passos
- Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil; Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Ana Luíza C V Real
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila C Silva
- Transversal Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio A G Mourão
- Centre for Technology and Research in Magnetic-Resonance, Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália T Wnuk
- Cellular Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milton A P Oliveira
- Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Pathology and Public Health Institute, Federal University of Goiás, Goiania, GO, Brazil
| | - Soraia Macari
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcília Silva
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, SP, Brazil
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Frederico M Soriani
- Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Márcio F D Moraes
- Centre for Technology and Research in Magnetic-Resonance, Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo M A M Mendes
- Centre for Technology and Research in Magnetic-Resonance, Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabíola M Ribeiro
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Cellular Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioural Sciences, McGovern Medical Houston, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Antônio C P Oliveira
- Neuropharmacology Lab, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Immunopharmacology Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil; Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Vivian V Costa
- Centre for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil; Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil.
| | - Danielle G Souza
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
84
|
Souza INO, Barros-Aragão FGQ, Frost PS, Figueiredo CP, Clarke JR. Late Neurological Consequences of Zika Virus Infection: Risk Factors and Pharmaceutical Approaches. Pharmaceuticals (Basel) 2019; 12:E60. [PMID: 30999590 PMCID: PMC6631207 DOI: 10.3390/ph12020060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection was historically considered a disease with mild symptoms and no major consequences to human health. However, several long-term, late onset, and chronic neurological complications, both in congenitally-exposed babies and in adult patients, have been reported after ZIKV infection, especially after the 2015 epidemics in the American continent. The development or severity of these conditions cannot be fully predicted, but it is possible that genetic, epigenetic, and environmental factors may contribute to determine ZIKV infection outcomes. This reinforces the importance that individuals exposed to ZIKV are submitted to long-term clinical surveillance and highlights the urgent need for the development of therapeutic approaches to reduce or eliminate the neurological burden of infection. Here, we review the epidemiology of ZIKV-associated neurological complications and the role of factors that may influence disease outcome. Moreover, we discuss experimental and clinical evidence of drugs that have shown promising results in vitro or in vitro against viral replication and and/or ZIKV-induced neurotoxicity.
Collapse
Affiliation(s)
- Isis N O Souza
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Fernanda G Q Barros-Aragão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Paula S Frost
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| |
Collapse
|
85
|
Xia S, Yan L, Xu W, Agrawal AS, Algaissi A, Tseng CTK, Wang Q, Du L, Tan W, Wilson IA, Jiang S, Yang B, Lu L. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. SCIENCE ADVANCES 2019; 5:eaav4580. [PMID: 30989115 PMCID: PMC6457931 DOI: 10.1126/sciadv.aav4580] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/14/2019] [Indexed: 05/07/2023]
Abstract
Continuously emerging highly pathogenic human coronaviruses (HCoVs) remain a major threat to human health, as illustrated in past SARS-CoV and MERS-CoV outbreaks. The development of a drug with broad-spectrum HCoV inhibitory activity would address this urgent unmet medical need. Although previous studies have suggested that the HR1 of HCoV spike (S) protein is an important target site for inhibition against specific HCoVs, whether this conserved region could serve as a target for the development of broad-spectrum pan-CoV inhibitor remains controversial. Here, we found that peptide OC43-HR2P, derived from the HR2 domain of HCoV-OC43, exhibited broad fusion inhibitory activity against multiple HCoVs. EK1, the optimized form of OC43-HR2P, showed substantially improved pan-CoV fusion inhibitory activity and pharmaceutical properties. Crystal structures indicated that EK1 can form a stable six-helix bundle structure with both short α-HCoV and long β-HCoV HR1s, further supporting the role of HR1 region as a viable pan-CoV target site.
Collapse
Affiliation(s)
- Shuai Xia
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Lei Yan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Anurodh Shankar Agrawal
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Wenjie Tan
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ian A. Wilson
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC206, La Jolla, CA 92037, USA
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, and Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 200032, China
- Corresponding author. (I.A.W.); (S.J.); (B.Y.); (L.L.)
| |
Collapse
|
86
|
Zou J, Shi PY. Strategies for Zika drug discovery. Curr Opin Virol 2019; 35:19-26. [PMID: 30852345 DOI: 10.1016/j.coviro.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) can cause devastating congenital syndrome in fetuses from pregnant women and autoimmune disorder Guillain-Barré syndrome in adults. No clinically approved vaccine or drug is currently available for ZIKV. This unmet medical need has motivated a global effort to develop countermeasures. Several promising ZIKV vaccine candidates have already entered clinical trials. In contrast, antiviral development of ZIKV is lagging behind. Here, we review the overall strategies for ZIKV drug discovery, including (i) repurposing of clinically approved drugs, (ii) viral replication-based phenotypic screening for inhibitors, and (iii) targeted drug discovery of viral proteins. Along with vaccines, the development of antiviral treatment will provide a complementary means to control ZIKV infections.
Collapse
Affiliation(s)
- Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Phamarcology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
87
|
Abdulrahman AY, Khazali AS, Teoh TC, Rothan HA, Yusof R. Novel Peptides Inhibit Zika NS2B-NS3 Serine Protease and Virus Replication in Human Hepatic Cell Line. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09808-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
88
|
Tai W, Voronin D, Chen J, Bao W, Kessler DA, Shaz B, Jiang S, Yazdanbakhsh K, Du L. Transfusion-Transmitted Zika Virus Infection in Pregnant Mice Leads to Broad Tissue Tropism With Severe Placental Damage and Fetal Demise. Front Microbiol 2019; 10:29. [PMID: 30728813 PMCID: PMC6351479 DOI: 10.3389/fmicb.2019.00029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/09/2019] [Indexed: 01/10/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can cause significant problems, particularly congenital Zika syndrome. Nevertheless, the potential deleterious consequences and associated mechanisms of transfusion-transmitted ZIKV infection on pregnant individuals and their fetuses and babies have not been investigated. Here we examined transmissibility of ZIKV through blood transfusion in ZIKV-susceptible pregnant A129 mice. Our data showed that transfused-transmitted ZIKV at the early infection stage led to significant viremia and broad tissue tropism in the pregnant recipient mice, which were not seen in those transfused with ZIKV-positive (ZIKV+) plasma at later infection stages. Importantly, pregnant mice transfused with early-stage, but not later stages, ZIKV+ plasma also exhibited severe placental infection with vascular damage and apoptosis, fetal infection and fetal damage, accompanied by fetal and pup death. Overall, this study suggests that transfusion-related transmission of ZIKV during initial stage of infection, which harbors high plasma viral titers, can cause serious adverse complications in the pregnant recipients and their fetuses and babies.
Collapse
Affiliation(s)
- Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Denis Voronin
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Jiawei Chen
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Weili Bao
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Debra A Kessler
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Beth Shaz
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States.,Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Karina Yazdanbakhsh
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
89
|
In silico structure-based design of enhanced peptide inhibitors targeting RNA polymerase PA N-PB1 C interaction. Comput Biol Chem 2019; 78:273-281. [PMID: 30597438 DOI: 10.1016/j.compbiolchem.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022]
Abstract
Developing antivirals for influenza A virus (FluA) has become more challenging due to high range of antigenic mutation and increasing numbers of drug-resistant viruses. Finding a selective inhibitor to target highly conserved region of protein-protein interactions interface, thereby increasing its efficiency against drug resistant virus could be highly beneficial. In this study, we used in silico approach to derive FluAPep1 from highly conserved region, PAN-PB1C interface and generated 121 FluAPep1 analogues. Interestingly, we found that the FluAPep1 interaction region in the PAN domain are highly conserved in many FluA subtypes. Especially, FluAPep1 targets two pandemic FluA strains, H1N1/avian/2009 and H3N2/Victoria/1975. All of these FluA subtypes PAN domain (H1N1/H3N2CAN/H3N2VIC/H7N1/H7N2) were superimposed with PAN domain from H17N10 and the calculated root mean standards deviations were less than 3 Å. FlexPepDock analysis revealed that FluAPep1 exhibited higher binding affinity (score -246.155) with the PAN domain. In addition, around 86% of non-hot spot mutated peptides (FluAPep28-122) showed enhanced binding affinity with PAN domain. ToxinPred analysis confirmed that designed peptides were non-toxic. Thus, FluAPep1 and its analogues has potential to be further developed into an antiviral treatment against FluA infection.
Collapse
|
90
|
The Scorpion Venom Peptide Smp76 Inhibits Viral Infection by Regulating Type-I Interferon Response. Virol Sin 2018; 33:545-556. [PMID: 30569290 DOI: 10.1007/s12250-018-0068-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) have spread throughout many countries in the developing world and infect millions of people every year, causing severe harm to human health and the economy. Unfortunately, there are few effective vaccines and therapies available against these viruses. Therefore, the discovery of new antiviral agents is critical. Herein, a scorpion venom peptide (Smp76) characterized from Scorpio maurus palmatus was successfully expressed and purified in Escherichia coli BL21(DE3). The recombinant Smp76 (rSmp76) was found to effectively inhibit DENV and ZIKV infections in a dose-dependent manner in both cultured cell lines and primary mouse macrophages. Interestingly, rSmp76 did not inactivate the viral particles directly but suppressed the established viral infection, similar to the effect of interferon (IFN)-β. Mechanistically, rSmp76 was revealed to upregulate the expression of IFN-β by activating interferon regulatory transcription factor 3 (IRF3) phosphorylation, enhancing the type-I IFN response and inhibiting viral infection. This mechanism is significantly different from traditional virucidal antimicrobial peptides (AMPs). Overall, the scorpion venom peptide Smp76 is a potential new antiviral agent with a unique mechanism involving type-I IFN responses, demonstrating that natural AMPs can enhance immunity by functioning as immunomodulators.
Collapse
|
91
|
Han Y, Mesplède T. Investigational drugs for the treatment of Zika virus infection: a preclinical and clinical update. Expert Opin Investig Drugs 2018; 27:951-962. [PMID: 30430882 DOI: 10.1080/13543784.2018.1548609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The Zika virus (ZIKV) infection results in severe neurological complications and has emerged as a threat to public health worldwide. No drugs or vaccines are available for use in the clinic and the need for novel and effective therapeutic agents is urgent. AREAS COVERED This review describes the latest progress of antiviral development for the treatment of ZIKV infection; it primarily focuses on the literature describing 20 potential anti-ZIKV drugs/agents currently being tested in vivo or in clinical trials. The paper also discusses the need for novel ZIKV inhibitors and the critical issues for successful antiviral drug development. EXPERT OPINION So far, 20 compounds have been tested in vivo and three in the clinical trials; progressing these compounds to the clinic is a challenge. Novel ZIKV inhibitors that target virus or host factors are urgently needed. Knowledge-driven drug repurposing, structure-based discovery, RNA interference, long noncoding RNAs, miRNAs, and peptide inhibitors may pave the way for the discovery of such novel agents.
Collapse
Affiliation(s)
- Yingshan Han
- a McGill University AIDS Centre , Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal , Canada
| | - Thibault Mesplède
- a McGill University AIDS Centre , Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
92
|
Pena LJ, Miranda Guarines K, Duarte Silva AJ, Sales Leal LR, Mendes Félix D, Silva A, de Oliveira SA, Junqueira Ayres CF, Júnior AS, de Freitas AC. In vitro and in vivo models for studying Zika virus biology. J Gen Virol 2018; 99:1529-1550. [DOI: 10.1099/jgv.0.001153] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lindomar José Pena
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Anna Jéssica Duarte Silva
- 2Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Lígia Rosa Sales Leal
- 2Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Daniele Mendes Félix
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Adalúcia Silva
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Sheilla Andrade de Oliveira
- 3Department of Immunology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | | | - Abelardo Silva Júnior
- 5Department of Veterinary Medicine, Federal University of Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Antonio Carlos de Freitas
- 2Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
93
|
Jackman JA, Costa VV, Park S, Real ALCV, Park JH, Cardozo PL, Ferhan AR, Olmo IG, Moreira TP, Bambirra JL, Queiroz VF, Queiroz-Junior CM, Foureaux G, Souza DG, Ribeiro FM, Yoon BK, Wynendaele E, De Spiegeleer B, Teixeira MM, Cho NJ. Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. NATURE MATERIALS 2018; 17:971-977. [PMID: 30349030 DOI: 10.1038/s41563-018-0194-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/11/2018] [Indexed: 05/22/2023]
Abstract
Zika virus is a mosquito-borne virus that is associated with neurodegenerative diseases, including Guillain-Barré syndrome1 and congenital Zika syndrome2. As Zika virus targets the nervous system, there is an urgent need to develop therapeutic strategies that inhibit Zika virus infection in the brain. Here, we have engineered a brain-penetrating peptide that works against Zika virus and other mosquito-borne viruses. We evaluated the therapeutic efficacy of the peptide in a lethal Zika virus mouse model exhibiting systemic and brain infection. Therapeutic treatment protected against mortality and markedly reduced clinical symptoms, viral loads and neuroinflammation, as well as mitigated microgliosis, neurodegeneration and brain damage. In addition to controlling systemic infection, the peptide crossed the blood-brain barrier to reduce viral loads in the brain and protected against Zika-virus-induced blood-brain barrier injury. Our findings demonstrate how engineering strategies can be applied to develop peptide therapeutics and support the potential of a brain-penetrating peptide to treat neurotropic viral infections.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Vivian V Costa
- Immunopharmacology Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ana Luiza C V Real
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jae Hyeon Park
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pablo L Cardozo
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Isabella G Olmo
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Thaiane P Moreira
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Host-Interaction Microorganism Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jordana L Bambirra
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Host-Interaction Microorganism Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Victoria F Queiroz
- Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Host-Interaction Microorganism Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Cardiac Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giselle Foureaux
- Cardiac Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle G Souza
- Host-Interaction Microorganism Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiola M Ribeiro
- Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Evelien Wynendaele
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Mauro M Teixeira
- Immunopharmacology Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
- Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
94
|
The celecoxib derivative kinase inhibitor AR-12 (OSU-03012) inhibits Zika virus via down-regulation of the PI3K/Akt pathway and protects Zika virus-infected A129 mice: A host-targeting treatment strategy. Antiviral Res 2018; 160:38-47. [PMID: 30326204 PMCID: PMC7113887 DOI: 10.1016/j.antiviral.2018.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/22/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
Abstract
Zika virus (ZIKV) is a human-pathogenic flavivirus that has recently emerged as a global public health threat. ZIKV infection may be associated with congenital malformations in infected fetuses and severe neurological and systemic complications in infected adults. There are currently limited treatment options for ZIKV infection. AR-12 (OSU-03012) is a celecoxib derivative cellular kinase inhibitor that has broad-spectrum antiviral activities. In this study, we investigated the antiviral activity and mechanism of AR-12 against ZIKV. We evaluated the in vitro anti-ZIKV activity of AR-12, using cell protection and virus yield reduction assays, in multiple clinically relevant cell lines, and the in vivo treatment effects of AR-12 in a lethal mouse model using type I interferon receptor-deficient A129 mice. AR-12 inhibited ZIKV strains belonging to both the African and Asian/American lineages in Huh-7 and/or neuronal cells. AR12's IC50 against ZIKV was consistently <2 μM in these cells. ZIKV-infected A129 mice treated with intraperitoneally or orally administered AR-12 had significantly higher survival rate (50.0%–83.3% vs 0%, P < 0.05), less body weight loss, and lower blood and tissue ZIKV RNA loads than untreated control A129 mice. These anti-ZIKV effects were likely the results of down-regulation of the PI3K/Akt pathway by AR-12. Clinical trials using the clinically available and broad-spectrum AR-12 as an empirical treatment should be considered especially for patients residing in or returning from areas endemic of ZIKV and other arboviral infections who present with an acute undifferentiated febrile illness. AR-12 (OSU-03012) inhibited the replication of Zika virus strains belonging to both the Asian/American and African lineages. AR-12 inhibited Zika virus replication in multiple cell types in vitro. AR-12 treatment improved clinical and virological outcome of Zika virus-infected type I interferon receptor-deficient mice. AR-12 inhibited Zika virus replication via down-regulation of protein kinase B (Akt).
Collapse
|
95
|
Sinigaglia A, Riccetti S, Trevisan M, Barzon L. In silico approaches to Zika virus drug discovery. Expert Opin Drug Discov 2018; 13:825-835. [PMID: 30160181 DOI: 10.1080/17460441.2018.1515909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION After the WHO declared Zika virus (ZIKV) as a public health emergency of international concern, intense research for the development of vaccines and drugs has been undertaken, leading to the development of several candidates. Areas covered: This review discusses the developments achieved so far by computational methods in the discovery of candidate compounds targeting ZIKV proteins, i.e. the envelope and capsid structural proteins, the NS3 helicase/protease, and the NS5 methyltransferase/RNA-dependent RNA polymerase. Expert opinion: Research for effective drugs against ZIKV is still in a very early discovery phase. Notwithstanding the intense efforts for the development of new drugs and the identification of several promising candidates by using different approaches, including computational methods, so far only a few candidates have been experimentally tested. An important caveat of anti-flavivirus drug development is represented by the difficult of reproducing the in vivo microenvironment of the replication complex, which may lead to discrepancies between in vitro results and experimental evaluation in vivo. Moreover, anti-ZIKV drugs have the additional requirement of an excellent safety profile in pregnancy and ability to diffuse to different tissues, including the central nervous system, the testis, and the placenta.
Collapse
Affiliation(s)
| | - Silvia Riccetti
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Marta Trevisan
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Luisa Barzon
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
96
|
Development of Vaccine Prototype Against Zika Virus Disease of Peptide-Loaded PLGA Nanoparticles and Evaluation of Cytotoxicity. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9753-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Krueger E, Hayes S, Chang EH, Yutuc S, Brown AC. Receptor-Based Peptides for Inhibition of Leukotoxin Activity. ACS Infect Dis 2018; 4:1073-1081. [PMID: 29742342 DOI: 10.1021/acsinfecdis.7b00230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans, commonly associated with localized aggressive periodontitis (LAP), secretes an RTX (repeats-in-toxin) protein leukotoxin (LtxA) that targets human white blood cells, an interaction that is driven by its recognition of the lymphocyte function-associated antigen-1 (LFA-1) integrin. In this study, we report on the inhibition of LtxA-LFA-1 binding as an antivirulence strategy to inhibit LtxA-mediated cytotoxicity. Specifically, we designed and synthesized peptides corresponding to the reported LtxA binding domain on LFA-1 and characterized their capability to inhibit LtxA binding to LFA-1 and subsequent cytotoxic activity in human immune cells. We found that several of these peptides, corresponding to sequential β-strands in the LtxA-binding domain of LFA-1, inhibit LtxA activity, demonstrating the effectiveness of this approach. Further investigations into the mechanism by which these peptides inhibit LtxA binding to LFA-1 reveal a correlation between toxin-peptide affinity and LtxA-mediated cytotoxicity, leading to a diminished association between LtxA and LFA-1 on the cell membrane. Our results demonstrate the possibility of using target-based peptides to inhibit LtxA activity, and we expect that a similar approach could be used to hinder the activity of other RTX toxins.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Shannon Hayes
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Shailagne Yutuc
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
98
|
Establishment of Baculovirus-Expressed VLPs Induced Syncytial Formation Assay for Flavivirus Antiviral Screening. Viruses 2018; 10:v10070365. [PMID: 29997331 PMCID: PMC6071280 DOI: 10.3390/v10070365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022] Open
Abstract
The baculovirus-insect cell expression system has been widely used for heterologous protein expression and virus-like particles (VLPs) expression. In this study, we established a new method for antiviral screening targeting to glycoprotein E of flaviviruses based on the baculovirus expression system. ZIKV is a mosquito-borne flavivirus and has posed great threat to the public health. It has been reported that ZIKV infection was associated with microcephaly and serious neurological complications. Our study showed that either ZIKV E or prME protein expressed in insect cells can form VLPs and induce membrane fusion between insect cells. Therefore, the E protein, which is responsible for receptor binding, attachment, and virus fusion during viral entry, achieved proper folding and retained its fusogenic ability in VLPs when expressed in this system. The syncytia in insect cells were significantly reduced by the anti-ZIKV-E specific polyclonal antibody in a dose-dependent manner. AMS, a thiol-conjugating reagent, was also shown to have an inhibitory effect on the E protein induced syncytia and inhibited ZIKV infection by blocking viral entry. Indeed the phenomenon of syncytial formation induced by E protein expressed VLPs in insect cells is common among flaviviruses, including Japanese encephalitis virus (JEV), Dengue virus type 2 (DENV-2), and tick-borne encephalitis virus (TBEV). This inhibition effect on syncytial formation can be developed as a novel, safe, and simple antiviral screening approach for inhibitory antibodies, peptides, or small molecules targeting to E protein of ZIKV and other flaviviruses.
Collapse
|
99
|
Masmejan S, Baud D, Musso D, Panchaud A. Zika virus, vaccines, and antiviral strategies. Expert Rev Anti Infect Ther 2018; 16:471-483. [PMID: 29897831 DOI: 10.1080/14787210.2018.1483239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Zika virus (ZIKV) recently emerged as a global public health emergency of international concern. ZIKV is responsible for severe neurological complications in adults and infection during pregnancy and can lead to congenital Zika syndrome. There is no licensed vaccine or drug to prevent or treat ZIKV infection. Areas covered: The aim of this article is to provide an overview and update of the progress of research on anti-ZIKV vaccine and medications until the end of 2017, with a special emphasis on drugs that can be used during pregnancy. Expert commentary: Development of new vaccines and drugs is challenging and several points particular to ZIKV infections augment this difficulty: (1) Cross-reactions between ZIKV and other flaviviruses, the impact of ZIKV vaccination on subsequent flavivirus infections, and vice-versa, is unknown, (2) Drugs against ZIKV should be safe in pregnant women, and (3) Evaluation of the efficacy of vaccine and drugs against ZIKV in clinical trials phase II-IV will be complicated due to the decline of ZIKV circulation.
Collapse
Affiliation(s)
- Sophie Masmejan
- a Obstetrics unit, mother-child department , Lausanne University Hospital , Lausanne , Switzerland
| | - David Baud
- a Obstetrics unit, mother-child department , Lausanne University Hospital , Lausanne , Switzerland
| | - Didier Musso
- b Director of the Unit of Emerging Infectious Diseases , Institut Louis Malardé , Tahiti , French Polynesia.,c Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection , Marseille , France
| | - Alice Panchaud
- d School of Pharmaceutical Sciences , University of Geneva and Lausanne , Geneva , Switzerland.,e Swiss Teratogen Information Service (STIS) and Division of Clinical Pharmacology, Laboratory Department , University Hospital , Lausanne , Switzerland.,f Pharmacy Service, Laboratory Department , University Hospital Lausanne , Lausanne , Switzerland
| |
Collapse
|
100
|
Wilder-Smith A, Vannice K, Durbin A, Hombach J, Thomas SJ, Thevarjan I, Simmons CP. Zika vaccines and therapeutics: landscape analysis and challenges ahead. BMC Med 2018; 16:84. [PMID: 29871628 PMCID: PMC5989336 DOI: 10.1186/s12916-018-1067-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Various Zika virus (ZIKV) vaccine candidates are currently in development. Nevertheless, unique challenges in clinical development and regulatory pathways may hinder the licensure of high-quality, safe, and effective ZIKV vaccines. DISCUSSION Implementing phase 3 efficacy trials will be difficult given the challenges of the spatio-temporal heterogeneity of ZIKV transmission, the unpredictability of ZIKV epidemics, the broad spectrum of clinical manifestations making a single definite endpoint difficult, a lack of sensitive and specific diagnostic assays, and the need for inclusion of vulnerable target populations. In addition to a vaccine, drugs for primary prophylaxis, post-exposure prophylaxis, or treatment should also be developed to prevent or mitigate the severity of congenital Zika syndrome. CONCLUSION Establishing the feasibility of immune correlates and/or surrogates are a priority. Given the challenges in conducting phase 3 trials at a time of waning incidence, human challenge trials should be considered to evaluate efficacy. Continued financial support and engagement of industry partners will be essential to the successful development, licensure, and accessibility of Zika vaccines or therapeutics.
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Department of Epidemiology and Global Health, Umea University, Umea, Sweden.
| | - Kirsten Vannice
- Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Anna Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joachim Hombach
- Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Stephen J Thomas
- State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Irani Thevarjan
- Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia.,The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
| | - Cameron P Simmons
- Oxford University Clinical Research Unit, 764 Vo Van Kiet street, District 5, Ho Chi Minh City, Vietnam.,Institute of Vector-borne Disease, Monash University, Melbourne, VIC, Australia
| |
Collapse
|