51
|
Luo Y, Wang WX. Immune responses of oyster hemocyte subpopulations to in vitro and in vivo zinc exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106022. [PMID: 34798302 DOI: 10.1016/j.aquatox.2021.106022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Oysters are an excellent biomonitor of coastal pollution and the hyper-accumulator of toxic metals such as copper and zinc (Zn). One unique feature of molluscs is their hemocytes which are mainly involved in immune defenses. Different subpopulations of hemocytes have been identified, but their functions in metal transport and detoxification are not clear. In this study, we examined the immune responses of different subpopulations of oyster Crassostrea hongkongensis hemocytes under different periods of Zn exposure by using flow cytometer and confocal microscopy. In vitro exposure to Zn resulted in acute immune responses by increasing the reactive oxygen species (ROS) production and phagocytosis and decreased number of granulocytes and mitochondrial membrane potential (MMP) within 3 h. Granulocyte mortality and lysosomal pH increased whereas glutathione (GSH) decreased within 1 h of in vitro exposure, indicating the immune stimulation of granulocytes. Within the first 7 days of in vivo exposure, immunocompetence of granulocytes was inhibited with increasing granulocyte mortality but decreasing ROS production and phagocytosis. However, with a further extension of Zn exposure to 14 days, both phagocytosis and lysosomal content increased with an increasing number of granulocytes, indicating the increase of hemocyte-mediated immunity. Our study demonstrated that granulocytes played important roles in oyster immune defenses while other subpopulations may also participate in immune functions. The degranulation and granulation due to transition between semigranulocytes and granulocytes after Zn exposure were important in metal detoxification. The study contributed to our understanding of the immune phenomena and the adaptive capability of oysters in metal contaminated environments.
Collapse
Affiliation(s)
- Yali Luo
- School of Energy and Environment and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
52
|
Brender JR, Saida Y, Devasahayam N, Krishna MC, Kishimoto S. Hypoxia Imaging As a Guide for Hypoxia-Modulated and Hypoxia-Activated Therapy. Antioxid Redox Signal 2022; 36:144-159. [PMID: 34428981 PMCID: PMC8856011 DOI: 10.1089/ars.2021.0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.
Collapse
Affiliation(s)
- Jeffrey R. Brender
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National
Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
53
|
Zhu B, Bryant DT, Akbarinejad A, Travas-Sejdic J, Pilkington LI. A novel electrochemical conducting polymer sensor for the rapid, selective and sensitive detection of biothiols. Polym Chem 2022. [DOI: 10.1039/d1py01394g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A rapid, selective and sensitive, novel conducting-polymer sensing platform for the detection and analysis of biothiols.
Collapse
Affiliation(s)
- Bicheng Zhu
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Devon T. Bryant
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Alireza Akbarinejad
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Lisa I. Pilkington
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
54
|
Wang X, Wang WX. Cu-based nanoparticle toxicity to zebrafish cells regulated by cellular discharges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118296. [PMID: 34627961 DOI: 10.1016/j.envpol.2021.118296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Cellular transport of metal nanoparticles (NPs) is critical in determining their potential toxicity, but the transformation of metal ions released from the internalized NPs is largely unknown. Cu-based NPs are the only metallic-based NPs that are reported to induce higher toxicity compared with their corresponding ions, likely due to their unique cellular turnover. In the present study, we developed a novel gold core to differentiate the particulate and ionic Cu in the Cu2O microparticles (MPs), and the kinetics of bioaccumulation, exocytosis, and cytotoxicity of Au@Cu2O MPs to zebrafish embryonic cells were subsequently studied. We demonstrated that the internalized MPs were rapidly dissolved to Cu ions, which then undergo lysosome-mediated exocytosis. The uptake rate of smaller MPs (130 nm) was lower than that of larger ones (200 nm), but smaller MPs were dissolved much quickly in cells and therefore activated the exocytosis more quickly. The rapid release of Cu ions resulted in an immediate toxic action of Cu2O MPs, while the cell deaths mainly occurred by necrosis. During this process, the buffering ability of glutathione greatly alleviated the Cu toxicity. Therefore, although the turnover of intracellular Cu at a sublethal exposure level was hundred times faster than the basal values, labile Cu(I) concentration increased by only 2 times at most. Overall, this work provided new insights into the toxicity of copper NPs, suggesting that tolerance to Cu-based NPs depended on their ability to discharge the released Cu ions.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
55
|
Zhao L, Zhao C, Zhou J, Ji H, Qin Y, Li G, Wu L, Zhou X. Conjugated Polymers-based Luminescent Probes for Ratiometric Detection of Biomolecules. J Mater Chem B 2022; 10:7309-7327. [DOI: 10.1039/d2tb00937d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate monitoring of the biomolecular changes in biological and physiological environments is of great significance for pathogenesis, development, diagnosis and treatment of diseases. Compared with traditional luminescent probes on the...
Collapse
|
56
|
Chen XG, Mei Y, Song QH. Coumarin-based fluorescent probe with 4-phenylselenium as the active site for multi-channel discrimination of biothiols. J Mater Chem B 2022; 10:1272-1280. [DOI: 10.1039/d1tb02584h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biological mercaptans, also known as biothiols, play their own roles in a number of important physiological processes, and the abnormal levels of biothiols are closely associated with a variety of...
Collapse
|
57
|
Saha P, Moitra P, Bhattacharjee U, Bhattacharya S. Selective pathological and intracellular detection of human serum albumin by photophysical and electrochemical techniques using a FRET-based molecular probe. Biosens Bioelectron 2022; 203:114007. [DOI: 10.1016/j.bios.2022.114007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/25/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022]
|
58
|
Lucero MY, Chan J. Photoacoustic imaging of elevated glutathione in models of lung cancer for companion diagnostic applications. Nat Chem 2021; 13:1248-1256. [PMID: 34697400 PMCID: PMC8629919 DOI: 10.1038/s41557-021-00804-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
Companion diagnostics (CDx) are powerful tests that can provide physicians with crucial biomarker information that can improve treatment outcomes by matching therapies to patients. Here, we report a photoacoustic imaging-based CDx (PACDx) for the selective detection of elevated glutathione (GSH) in a lung cancer model. GSH is abundant in most cells, so we adopted a physical organic chemistry approach to precisely tune the reactivity to distinguish between normal and pathological states. To evaluate the efficacy of PACDx in vivo, we designed a blind study where photoacoustic imaging was used to identify mice bearing lung xenografts. We also employed PACDx in orthotopic lung cancer and liver metastasis models to image GSH. In addition, we designed a matching prodrug, PARx, that uses the same SNAr chemistry to release a chemotherapeutic with an integrated PA readout. Studies demonstrate that PARx can inhibit tumour growth without off-target toxicity in a lung cancer xenograft model.
Collapse
Affiliation(s)
- Melissa Y Lucero
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
59
|
Guo L, Xiao C, Li J, Lin X, Zhao N, Wang X, Dong L, Guo X. Re-exploring α-Cyano-4-Hydroxycinnamic Acid as a Reactive Matrix for Selective Detection of Glutathione via MALDI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2837-2841. [PMID: 34761928 DOI: 10.1021/jasms.1c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we re-explored α-cyano-4-hydroxycinnamic acid (CHCA) as a reactive matrix for selective and sensitive analysis of glutathione (GSH) by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). CHCA efficiently reacted with GSH, and the resulting CHCA-GSH conjugate was readily detected by MALDI-MS without interferences. The detection limit of the CHCA-GSH conjugate decreased to 200 pmol μL-1, which was 2 orders of magnitude lower than that of pure GSH.Forapplication, CHCA was successfully applied for the detection of GSH, present in HepG2 cell lysates. The results demonstrated detection advantages of simple, high-throughput, and selective and screening of GSH in biological samples by MALDI-MS.
Collapse
Affiliation(s)
- Liming Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiarui Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xi Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Nan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lejuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
60
|
Adamson C, Kajino H, Kawashima SA, Yamatsugu K, Kanai M. Live-Cell Protein Modification by Boronate-Assisted Hydroxamic Acid Catalysis. J Am Chem Soc 2021; 143:14976-14980. [PMID: 34506708 DOI: 10.1021/jacs.1c07060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Selective methods for introducing protein post-translational modifications (PTMs) within living cells have proven valuable for interrogating their biological function. In contrast to enzymatic methods, abiotic catalysis should offer access to diverse and new-to-nature PTMs. Herein, we report the boronate-assisted hydroxamic acid (BAHA) catalyst system, which comprises a protein ligand, a hydroxamic acid Lewis base, and a diol moiety. In concert with a boronic acid-bearing acyl donor, our catalyst leverages a local molarity effect to promote acyl transfer to a target lysine residue. Our catalyst system employs micromolar reagent concentrations and affords minimal off-target protein reactivity. Critically, BAHA is resistant to glutathione, a metabolite which has hampered many efforts toward abiotic chemistry within living cells. To showcase this methodology, we installed a variety of acyl groups in E. coli dihydrofolate reductase expressed within human cells. Our results further establish the well-known boronic acid-diol complexation as a bona fide bio-orthogonal reaction with applications in chemical biology and in-cell catalysis.
Collapse
Affiliation(s)
- Christopher Adamson
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Hidetoshi Kajino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033
| |
Collapse
|
61
|
Ren H, Huo F, Shen T, Liu X, Yin C. Molecular-Dimension-Dependent ESIPT Break for Specific Reversible Response to GSH and Its Real-Time Bioimaging. Anal Chem 2021; 93:12801-12807. [PMID: 34498863 DOI: 10.1021/acs.analchem.1c03376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glutathione (GSH) plays many important roles in maintaining intracellular redox homeostasis, and determining its real-time levels in the biological system is essential for the diagnosis, treatment, and pathological research of related diseases. Fluorescence imaging has been regarded as a powerful tool for tracking biomarkers in vivo, for which specificity, reversibility, and fast response are the main issues to ensure the real-time effective detection of analytes. The determination of GSH is often interfered with by other active sulfur species. However, in addition to the common features of nucleophilic addition, GSH is unique in its large molecular scale. 2-(2-Hydroxyphenyl) benzothiazole (HBT) was often formed in the ESIPT process. In this study, HBT was installed with α,β-unsaturated ketone conjugated coumarin derivates or nitrobenzene, which were used to adjust the reactivity of α,β-unsaturated ketone. Experimental and theoretical calculations found ESIPT to be favorable in HBT-COU but not HBT-COU-NEt2 or HBT-BEN-NO2 due to the higher electronic energies in the keto form. Thus, for HBT-COU, in the presence of GSH, the hydrogen-bonding interaction between C═N of the HBT unit and carboxyl of GSH would inhibit the process, simultaneously promoting the Michel addition reaction between α,β-unsaturated ketone and GSH. As a consequence, probe HBT-COU could exhibit a rapid reversible ratiometric response to GSH. Small structures of Hcy and Cys are passivated for such reactions. Cell imaging demonstrated the specific response of the probe to GSH, and the probe was successfully used to monitor fluctuations in GSH concentration during cells apoptosis in real-time.
Collapse
Affiliation(s)
- Haixian Ren
- Xinzhou Teachers University, Xinzhou 034000, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Tianruo Shen
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Xiaogang Liu
- Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Caixia Yin
- Xinzhou Teachers University, Xinzhou 034000, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
62
|
Xu G, Lee LC, Kwok CW, Leung PK, Zhu J, Lo KK. Utilization of Rhenium(I) Polypyridine Complexes Featuring a Dinitrophenylsulfonamide Moiety as Biothiol‐Selective Phosphorogenic Bioimaging Reagents and Photocytotoxic Agents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guang‐Xi Xu
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Lawrence Cho‐Cheung Lee
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Cyrus Wing‐Ching Kwok
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Peter Kam‐Keung Leung
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Jing‐Hui Zhu
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Kenneth Kam‐Wing Lo
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
- Center of Functional Photonics City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| |
Collapse
|
63
|
Zeng W, Wu L, Sun Y, Wang Y, Wang J, Ye D. Ratiometric Imaging of MMP-2 Activity Facilitates Tumor Detection Using Activatable Near-Infrared Fluorescent Semiconducting Polymer Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101924. [PMID: 34309199 DOI: 10.1002/smll.202101924] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 06/13/2023]
Abstract
Enzyme-activatable ratiometric near-infrared (NIR) fluorescent probes enabling noninvasive imaging of enzyme activity in vivo are promising for biomedical research; however, such probes with ratiometric fluorescence emissions both in NIR window under a single NIR light excitation are largely unexplored. Here, a quenched NIR fluorophore of Cy5.5 is integrated with NIR fluorescent poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)-based semiconducting polymer nanoparticles (SPNs), and an αv β3 integrin-targeting and matrix metalloproteinase-2 (MMP-2)-activatable ratiometric fluorescent probe (SPN-MMP-RGD) is developed. Under excitation at 660 nm, SPN-MMP-RGD shows "always-on" fluorescence of PCPDTBT (830 nm) and activatable fluorescence of Cy5.5 (690 nm) toward MMP-2, affording a remarkable ≈176-fold enhancement in fluorescence intensity ratio between 690 and 830 nm (I690 /I830 ) for sensitive detection of MMP-2 activity in vitro and in tumor cells. By virtue of ratiometric fluorescence imaging independently of probe's concentration, SPN-MMP-RGD can not only accurately report on MMP-2 levels regarding different tumor sizes, but also noninvasively delineate MMP-2-positive tiny gastric tumors metastasis in vivo. The authors' study reveals the potential of SPN-MMP-RGD for ratiometric fluorescence imaging of MMP-2 activity via combining two independent NIR fluorophores, which can be amenable for the design of other enzyme-activatable ratiometric NIR fluorescent probes for reliable in vivo imaging.
Collapse
Affiliation(s)
- Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinfang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Research Center of Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
64
|
Kwon N, Lim CS, Ko G, Ha J, Lee D, Yin J, Kim HM, Yoon J. Fluorescence Probe for Imaging N-Methyl-d-aspartate Receptors and Monitoring GSH Selectively Using Two-Photon Microscopy. Anal Chem 2021; 93:11612-11616. [PMID: 34382767 DOI: 10.1021/acs.analchem.1c02350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Methyl-d-aspartate (NMDA) is an excitotoxic amino acid used to identify a specific subset of glutamate receptors. The activity of NMDA receptors is closely related to the redox level of the biological system. Glutathione (GSH) as an antioxidant plays a key role with regard to modulation of the redox environment. In this work we designed and developed a GSH-specific fluorescent probe with the capability of targeting NMDA receptors, which was composed of a two-photon naphthalimide fluorophore, a GSH-reactive group sulfonamide, and an ifenprodil targeting group for the NMDA receptor. This probe exhibited high selectivity toward GSH in comparison to other similar amino acids. Two-photon fluorescence microscopy allowed this probe to successfully monitor GSH in neuronal cells and hippocampal tissues with an excitation at 750 nm. It could serve as a potential practical imaging tool to explore the function of GSH and related biological processes in the brain.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Chang Su Lim
- Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea
| | - Gyeongju Ko
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Jeongsun Ha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Dayoung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
65
|
Huang H, Guo Z, Zhang C, Cui C, Fu T, Liu Q, Tan W. Logic-Gated Cell-Derived Nanovesicles via DNA-Based Smart Recognition Module. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30397-30403. [PMID: 34161059 DOI: 10.1021/acsami.1c07632] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineering cell-derived nanovesicles with active-targeting ligands is an important strategy to enhance the targeting efficiency. However, the enhanced binding capability to targeting cells also leads to the binding with nontarget cells that share the same biomarkers. DNA-based logic gate is a kind of molecular system that responds to chemical inputs by generating output signals, and the relationship between the input and the output is based on a certain logic. Thus, the DNA-based logic gate could provide a new approach to improve the delivery efficiency of the nanovesicle. In this work, we developed a DNA logic-gated module that coupled two tumor cell-targeting factors (e.g., low pH and a tumor cell biomarker) in a Boolean manner. Immobilization of this module on the surface of the nanovesicle enables the nanovesicle to sense tumor cell-targeting factors and regard these cues as inputs AND logic gate. With the guide of DNA-based logic gate, gold carbon dots (GCDs) encapsulated within nanovesicles were delivered into target cells, and then the intracellular redox status variation was reflected by fluorescence change of GCDs. Overall, we developed DNA logic-gated nanovesicles that contract different targeting factors into a unique tag for target cells. This facile functionalization strategy can pave the way for constructing smart nanovesicles and would broaden their application in the field of precision medicine and personalized treatment.
Collapse
Affiliation(s)
- Huidong Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
66
|
Yu F, Cai M, Shao L, Zhang J. Targeting Protein Kinases Degradation by PROTACs. Front Chem 2021; 9:679120. [PMID: 34277564 PMCID: PMC8279777 DOI: 10.3389/fchem.2021.679120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Kinase dysregulation is greatly associated with cell proliferation, migration and survival, indicating the importance of kinases as therapeutic targets for anticancer drug development. However, traditional kinase inhibitors binding to catalytic or allosteric sites are associated with significant challenges. The emergence of resistance and targeting difficult-to-degrade and multi-domain proteins are significant limiting factors affecting the efficacy of targeted anticancer drugs. The next-generation treatment approaches seem to have overcome these concerns, and the use of proteolysis targeting chimera (PROTAC) technology is one such method. PROTACs bind to proteins of interest and recruit E3 ligase for degrading the whole target protein via the ubiquitin-proteasome pathway. This review provides a detailed summary of the most recent signs of progress in PROTACs targeting different kinases, primarily focusing on new chemical entities in medicinal chemistry.
Collapse
Affiliation(s)
- Fei Yu
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Ming Cai
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Liang Shao
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
67
|
Wang S, Huang Y, Guan X. Fluorescent Probes for Live Cell Thiol Detection. Molecules 2021; 26:3575. [PMID: 34208153 PMCID: PMC8230801 DOI: 10.3390/molecules26123575] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols' concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols.
Collapse
Affiliation(s)
| | | | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Box 2202C, Brookings, SD 57007, USA; (S.W.); (Y.H.)
| |
Collapse
|
68
|
Real-Time insight into in vivo redox status utilizing hyperpolarized [1- 13C] N-acetyl cysteine. Sci Rep 2021; 11:12155. [PMID: 34108512 PMCID: PMC8190077 DOI: 10.1038/s41598-021-90921-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023] Open
Abstract
Drastic sensitivity enhancement of dynamic nuclear polarization is becoming an increasingly critical methodology to monitor real-time metabolic and physiological information in chemistry, biochemistry, and biomedicine. However, the limited number of available hyperpolarized 13C probes, which can effectively interrogate crucial metabolic activities, remains one of the major bottlenecks in this growing field. Here, we demonstrate [1-13C] N-acetyl cysteine (NAC) as a novel probe for hyperpolarized 13C MRI to monitor glutathione redox chemistry, which plays a central part of metabolic chemistry and strongly influences various therapies. NAC forms a disulfide bond in the presence of reduced glutathione, which generates a spectroscopically detectable product that is separated from the main peak by a 1.5 ppm shift. In vivo hyperpolarized MRI in mice revealed that NAC was broadly distributed throughout the body including the brain. Its biochemical transformation in two human pancreatic tumor cells in vitro and as xenografts differed depending on the individual cellular biochemical profile and microenvironment in vivo. Hyperpolarized NAC can be a promising non-invasive biomarker to monitor in vivo redox status and can be potentially translatable to clinical diagnosis.
Collapse
|
69
|
Li Y, Chen L, Zhu Y, Chen L, Yu X, Li J, Chen D. Structure modulation on fluorescent probes for biothiols and the reversible imaging of glutathione in living cells. RSC Adv 2021; 11:21116-21126. [PMID: 35479348 PMCID: PMC9034037 DOI: 10.1039/d1ra03221f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/06/2021] [Indexed: 11/21/2022] Open
Abstract
The detection of small molecular biothiols (cysteine, homocysteine and glutathione) is of great importance, as they involve in a series of physiological and pathological processes and are associated with many diseases. To realize the real-time monitoring of a specific biothiol, a rapid and reversible probe is required. Therefore, three probes, namely, o-MNPy, m-MNPy and p-MNPy, with pyridine substituted α, β-unsaturated ketone as the recognition site, were reported here, and the reactivity of the recognition site was finely tuned by the connection mode of the pyridine unit. To single out the optimal one, the response performances of three probes toward each biothiol were systemically studied, taking the differences of the intracellular contents of three biothiols into account during the evaluation. Biothiols reacted with the probes through Michael addition, and results showed that the slight structural variations could affect the performances of the probes obviously. p-MNPy with the pyridine unit connected to the recognition site through the para-position of the nitrogen atom, revealed the best sensing ability among the three probes. It demonstrated rapid response, good selectivity and sensitivity, excellent pH adaptability to Cys and GSH, and displayed reversible detection toward GSH. Finally, p-MNPy was successfully applied to track the GSH fluctuations under the oxidative stress stimulated by H2O2 in living cells. A reversible fluorescent probe for GSH was obtained through structure modulation, by which the intracellular GSH fluctuation was imaged.![]()
Collapse
Affiliation(s)
- Yu Li
- Hubei Provincial Academy of Eco-Environmental Sciences Wuhan 430072 China
| | - Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Yan Zhu
- Hubei Provincial Academy of Eco-Environmental Sciences Wuhan 430072 China
| | - Liming Chen
- Hubei Provincial Academy of Eco-Environmental Sciences Wuhan 430072 China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology Wuhan 430205 China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| |
Collapse
|
70
|
Yoo D, Jung W, Son Y, Jon S. Glutathione-Responsive Gold Nanoparticles as Computed Tomography Contrast Agents for Hepatic Diseases. ACS APPLIED BIO MATERIALS 2021; 4:4486-4494. [DOI: 10.1021/acsabm.1c00224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dohyun Yoo
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Wonsik Jung
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Youngju Son
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
71
|
He H, Yang Q, Li H, Meng S, Xu Z, Chen X, Sun Z, Jiang B, Li C. Hollow mesoporous MnO 2-carbon nanodot-based nanoplatform for GSH depletion enhanced chemodynamic therapy, chemotherapy, and normal/cancer cell differentiation. Mikrochim Acta 2021; 188:141. [PMID: 33774694 DOI: 10.1007/s00604-021-04801-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
A redox-responsive chemodynamic therapy (CDT)-based theranostic system composed of hollow mesoporous MnO2 (H-MnO2), doxorubicin (DOX), and fluorescent (FL) carbon nanodots (CDs) is reported for the diagnosis and therapy of cancer. In general, since H-MnO2 can be degraded by intracellular glutathione (GSH) to form Mn2+ with excellent Fenton-like activity to generate highly reactive ·OH, the normal antioxidant defense system can be injured via consumption of GSH. This in turn can potentiate the cytotoxicity of CDT and release DOX. The cancer cells can be eliminated effectively by the nanoplatform via the synergistic effect of chemotherapy and CDT. The FL of CDs can be restored after H-MnO2 is degraded which blocked the fluorescence resonance energy transfer process between CDs as an energy donor and H-MnO2 as an FL acceptor. The GSH can be determined by recovery of the FL and limit of detection is 1.30 μM with a linear range of 0.075-0.825 mM. This feature can be utilized to efficiently distinguish cancerous cells from normal ones based on different GSH concentrations in the two types of cells. As a kind of CDT-based theranostic system responsive to GSH, simultaneously diagnostic (normal/cancer cell differentiation) and therapeutic function (chemotherapy and CDT) in a single nanoplatform can be achieved. The redox-responsive chemodynamic therapy (CDT)-based theranostic system is fabricated by H-MnO2, DOX, and fluorescent CDs. The nanoplatform can realize simultaneously diagnostic (normal/cancer cell differentiation) and therapeutic function (chemotherapy and CDT) to improve the therapeutic efficiency and security.
Collapse
Affiliation(s)
- Hang He
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Qingyuan Yang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Haimin Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Song Meng
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Ziqiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| | - Xueqin Chen
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Zhengguang Sun
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Bingbing Jiang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
72
|
mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun 2021; 12:1589. [PMID: 33707434 PMCID: PMC7952727 DOI: 10.1038/s41467-021-21841-w] [Citation(s) in RCA: 363] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Glutathione peroxidase 4 (GPX4) utilizes glutathione (GSH) to detoxify lipid peroxidation and plays an essential role in inhibiting ferroptosis. As a selenoprotein, GPX4 protein synthesis is highly inefficient and energetically costly. How cells coordinate GPX4 synthesis with nutrient availability remains unclear. In this study, we perform integrated proteomic and functional analyses to reveal that SLC7A11-mediated cystine uptake promotes not only GSH synthesis, but also GPX4 protein synthesis. Mechanistically, we find that cyst(e)ine activates mechanistic/mammalian target of rapamycin complex 1 (mTORC1) and promotes GPX4 protein synthesis at least partly through the Rag-mTORC1-4EBP signaling axis. We show that pharmacologic inhibition of mTORC1 decreases GPX4 protein levels, sensitizes cancer cells to ferroptosis, and synergizes with ferroptosis inducers to suppress patient-derived xenograft tumor growth in vivo. Together, our results reveal a regulatory mechanism to coordinate GPX4 protein synthesis with cyst(e)ine availability and suggest using combinatorial therapy of mTORC1 inhibitors and ferroptosis inducers in cancer treatment.
Collapse
|
73
|
Preparation and application of peptide molecularly imprinted material based on mesoporous metal-organic framework. Talanta 2021; 224:121765. [PMID: 33379007 DOI: 10.1016/j.talanta.2020.121765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
In this study, a new molecularly imprinted material, MIP@UiO-66-NH2, was synthesized with glutathione (GSH) as template and mesoporous metal organic framework (UiO-66-NH2) as matrix. The molecularly imprinted polymer was modified on the surface and into the pores of the UiO-66-NH2 by surface molecular imprinting method with thin polymer layer. Based on high specific surface area (1091.93 m2 g-1) and appropriate pore size (35 nm) of the ordered mesoporous UiO-66-NH2, the adsorption capacity for GSH reached 94.43 mg g-1, and the adsorption equilibrium could be achieved within 30 min. The adsorption isotherm data of MIP@UiO-66-NH2 could be described well by Freundlich model and the kinetic data complied well with pseudo-second-order model. In addition, the MIP@UiO-66-NH2 showed low adsorption capacity to GSH structural analogs (QL-cys = 6.51 mg g-1), suggesting great selectivity for GSH recognition. Finally, the MIP@UiO-66-NH2 was successfully applied for selective separation of GSH from BSA, skim milk and egg white tryptic digest.
Collapse
|
74
|
|
75
|
Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res 2021; 31:107-125. [PMID: 33268902 PMCID: PMC8026611 DOI: 10.1038/s41422-020-00441-1] [Citation(s) in RCA: 1773] [Impact Index Per Article: 591.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Cell death can be executed through different subroutines. Since the description of ferroptosis as an iron-dependent form of non-apoptotic cell death in 2012, there has been mounting interest in the process and function of ferroptosis. Ferroptosis can occur through two major pathways, the extrinsic or transporter-dependent pathway and the intrinsic or enzyme-regulated pathway. Ferroptosis is caused by a redox imbalance between the production of oxidants and antioxidants, which is driven by the abnormal expression and activity of multiple redox-active enzymes that produce or detoxify free radicals and lipid oxidation products. Accordingly, ferroptosis is precisely regulated at multiple levels, including epigenetic, transcriptional, posttranscriptional and posttranslational layers. The transcription factor NFE2L2 plays a central role in upregulating anti-ferroptotic defense, whereas selective autophagy may promote ferroptotic death. Here, we review current knowledge on the integrated molecular machinery of ferroptosis and describe how dysregulated ferroptosis is involved in cancer, neurodegeneration, tissue injury, inflammation, and infection.
Collapse
Affiliation(s)
- Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94800, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France.
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 17176, Sweden.
| |
Collapse
|
76
|
Sun J, Cai X, Wang C, Du K, Chen W, Feng F, Wang S. Cascade Reactions by Nitric Oxide and Hydrogen Radical for Anti-Hypoxia Photodynamic Therapy Using an Activatable Photosensitizer. J Am Chem Soc 2021; 143:868-878. [PMID: 33417765 DOI: 10.1021/jacs.0c10517] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organelle-targeted activatable photosensitizers are attractive to improve the specificity and controllability of photodynamic therapy (PDT), however, they suffer from a big problem in the photoactivity under both normoxia and hypoxia due to the limited diversity of phototoxic species (mainly reactive oxygen species). Herein, by effectively photocaging a π-conjugated donor-acceptor (D-A) structure with an N-nitrosamine substituent, we established a unimolecular glutathione and light coactivatable photosensitizer, which achieved its high performance PDT effect by targeting mitochondria through both type I and type II (dual type) reactions as well as secondary radicals-participating reactions. Of peculiar interest, hydrogen radical (H•) was detected by electron spin resonance technique. The generation pathway of H• via reduction of proton and its role in type I reaction were discussed. We demonstrated that the synergistic effect of multiple reactive species originated from tandem cascade reactions comprising reduction of O2 by H• to form O2•-/HO2• and downstream reaction of O2•- with •NO to yield ONOO-. With a relatively large two-photon absorption cross section for photoexcitation in the near-infrared region (166 ± 22 GM at 800 nm) and fluorogenic property, the new photosensitizing system is very promising for broad biomedical applications, particularly low-light dose PDT, in both normoxic and hypoxic environments.
Collapse
Affiliation(s)
- Jian Sun
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xuetong Cai
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chengjun Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Weijian Chen
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
77
|
Ren H, Huo F, Yin C. Dual modulation sites for a reversible fluorescent probe for GSH over Cys/Hcy. NEW J CHEM 2021. [DOI: 10.1039/d1nj01490k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An abnormal concentration of glutathione (GSH) is a health-associated risk factor, and it is an important signal for diseases such as Parkinson's disease, liver injury and cancer.
Collapse
Affiliation(s)
- Haixian Ren
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou 034000
- China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
| |
Collapse
|
78
|
Wen Y, Long Z, Huo F, Yin C. Photoexcited molecular probes for selective and revertible imaging of cellular reactive oxygen species. Org Chem Front 2021. [DOI: 10.1039/d0qo01260b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Redox homeostasis is key to maintaining the normal physiological status of living cells.
Collapse
Affiliation(s)
- Ying Wen
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Zhiqing Long
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan
- P. R. China
| | - Caixia Yin
- Institute of Molecular Science
- Shanxi University
- Taiyuan
- P. R. China
| |
Collapse
|
79
|
Qaitoon A, Yong J, Zhang Z, Liu J, Xu ZP, Zhang R. Development of manganese dioxide-based nanoprobes for fluorescence detection and imaging of glutathione. NEW J CHEM 2021. [DOI: 10.1039/d1nj01843d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A manganese dioxide-based nanoprobe is developed for fluorescence detection and imaging of glutathione (GSH) in yeast cells and onion tissues.
Collapse
Affiliation(s)
- Ali Qaitoon
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Jie Liu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|
80
|
Yue Y, Huo F, Yin C. The chronological evolution of small organic molecular fluorescent probes for thiols. Chem Sci 2020; 12:1220-1226. [PMID: 34163883 PMCID: PMC8179126 DOI: 10.1039/d0sc04960c] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abnormal concentrations of biothiols such as cysteine, homocysteine and glutathione are associated with various major diseases. In biological systems, the structural similarity and functional distinction of these three small molecular thiols has not only required rigorous molecular design of the fluorescent probes used to detect each thiol specifically, but it has also inspired scientists to uncover the ambiguous biological relationships between these bio-thiols. In this minireview, we will discuss the evolution of small organic molecular fluorescent probes for the detection of thiols over the past 60 years, highlighting the potent methodologies used in the design of thiol probes and their particular applications in the semi-quantification of cellular thiols and real-time labelling. At the same time, the present challenges that limit their further application will be discussed. We hope that this minireview will promote future research to enable deeper insight into the crucial role of thiols in biological systems. The chronological evolution of small organic molecular fluorescent probes for thiols: from separation dependency analysis to cellular specific analysis, what's next?![]()
Collapse
Affiliation(s)
- Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University Taiyuan 030006 China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 China
| |
Collapse
|
81
|
Zhang Y, Zhang J, Su M, Li C. Rational molecular design of a reversible BODIPY-Based fluorescent probe for real-time imaging of GSH dynamics in living cells. Biosens Bioelectron 2020; 175:112866. [PMID: 33272867 DOI: 10.1016/j.bios.2020.112866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Marring the reversible covalent chemistry with BODIPY dye, which is a superfamily of fluorophores with striking photophysical performances, would enable a panel of diverse dynamic fluorescent probes for biomedical applications. Herein we show that structural manipulation of BODIPY allows rational tuning of α-site or meso-site activation as well as the spectral response toward nucleophiles. By rational molecular design, we have obtained a highly specific and reversible GSH probe, αBD-GSH, which exhibits a tremendously fast and dynamic fluorescence response within the wide physiological GSH concentration range of 0-8 mM. We successfully applied αBD-GSH to real-time imaging of intracellular GSH dynamics in different cell lines. In light of the remarkable photophysical properties and synthesis flexibility of BODIPY dyes, the current findings will help to design more reversible BODIPY-based fluorescent probes targeting various bio-species.
Collapse
Affiliation(s)
- Yushi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Junqing Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Meihui Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
82
|
Chai Z, Wu Q, Cheng K, Liu X, Jiang L, Liu M, Li C. Simultaneous detection of small molecule thiols with a simple 19F NMR platform. Chem Sci 2020; 12:1095-1100. [PMID: 34163876 PMCID: PMC8179020 DOI: 10.1039/d0sc04664g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thiols play critical roles in regulating biological functions and have wide applications in pharmaceutical and biomedical industries. However, we still lack a general approach for the simultaneous detection of various thiols, especially in complex systems. Herein, we establish a 19F NMR platform where thiols are selectively fused into a novelly designed fluorinated receptor that has two sets of environmentally different 19F atoms with fast kinetics (k 2 = 0.73 mM-1 min-1), allowing us to generate unique two-dimensional codes for about 20 thiols. We demonstrate the feasibility of the approach by reliably quantifying thiol drug content in tablets, discriminating thiols in living cells, and for the first time monitoring the thiol related metabolism pathway at the atomic level. Moreover, the method can be easily extended to detect the activity of thiol related enzymes such as γ-glutamyl transpeptidase. We envision that the versatile platform will be a useful tool for detecting thiols and elucidating thiol-related processes in complex systems.
Collapse
Affiliation(s)
- Zhaofei Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
83
|
Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118893. [PMID: 33091507 DOI: 10.1016/j.bbamcr.2020.118893] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
The last 25 years have witnessed tremendous progress in identifying and characterizing proteins that regulate the uptake, intracellular trafficking and export of copper. Although dietary copper is required in trace amounts, sufficient quantities of this metal are needed to sustain growth and development in humans and other mammals. However, copper is also a rate-limiting nutrient for the growth and proliferation of cancer cells. Oral copper chelators taken with food have been shown to confer anti-neoplastic and anti-metastatic benefits in animals and humans. Recent studies have begun to identify specific roles for copper in pathways of oncogenic signaling and resistance to anti-neoplastic drugs. Here, we review the general mechanisms of cellular copper homeostasis and discuss roles of copper in cancer progression, highlighting metabolic vulnerabilities that may be targetable in the development of anticancer therapies.
Collapse
Affiliation(s)
- Vinit C Shanbhag
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Nikita Gudekar
- Genetics Area Program, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Kimberly Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Christos Papageorgiou
- Department of Medicine, University of Missouri, Columbia, MO 65211, United States of America
| | - Kamal Singh
- The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States of America
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States of America; Department of Ophthalmology, University of Missouri, Columbia, MO 65211, United States of America; Genetics Area Program, University of Missouri, Columbia, MO 65211, United States of America; The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
84
|
Tian M, Liu Y, Jiang FL. On the Route to Quantitative Detection and Real-Time Monitoring of Glutathione in Living Cells by Reversible Fluorescent Probes. Anal Chem 2020; 92:14285-14291. [PMID: 33063515 DOI: 10.1021/acs.analchem.0c03418] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the last few decades, growing numbers of fluorescent probes have been developed to detect intracellular GSH. However, the majority of probes for GSH were irreversible without monitoring the changes of intracellular GSH concentration. Therefore, recently, fluorescent probes for monitoring concentrations of GSH in real-time in living cells have come into being to address this challenge. This Perspective aimed at the development of reversible probes for GSH was organized by structural features, chemical reactions, and physicochemical properties. The reversible probes designed by a coumarin skeleton as a read-out fluorophore and the Michael addition reaction as a response mechanism accounted for most of the reported reversible probes. The performances of reversible fluorescent probes based on Michael addition could be roughly predicted by fundamental laws of kinetics and thermodynamics in physical chemistry. Essentially, the design principles included a highly reactive site for GSH, a small thermodynamic driving force, a desirable Kd of 1-10 mM, and excellent cell membrane permeability. Prospectively, the development of various mechanisms and fluorophores will be effective measures to enrich the types of reversible probes for GSH.
Collapse
Affiliation(s)
- Ming Tian
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Hubei Province Key Laboratory for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,Guangxi Key Laboratory of Natural Polymer Chemistry, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
85
|
Chen D, Feng Y. Recent Progress of Glutathione (GSH) Specific Fluorescent Probes: Molecular Design, Photophysical Property, Recognition Mechanism and Bioimaging. Crit Rev Anal Chem 2020; 52:649-666. [PMID: 32941060 DOI: 10.1080/10408347.2020.1819193] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The selective detection of glutathione (GSH) in vitro and in vivo has attracted great attentions, credited to its important role in life activities and association with a series of diseases. Among all kinds of analytical techniques, the fluorescent probe for GSH detection become prevalent recently because of its ease of operation, high temporal-spatial resolution, visualization and noninvasiveness, etc. The special structural features of GSH, such as the nucleophilicity of sulfhydryl group, the concerted reaction ability of amino group, the negative charged nature, the latent hydrogen bonding ability along with its flexible molecular chain, are all potent factors to be employed to design the specific fluorescent probe for GSH and discriminate it from other bio-species including its analogues cysteine (Cys) and homocysteine (Hcy). This paper reviewed the studies in the last 3 years and was organized based on the reaction mechanism of each probe. According to the reactivity of GSH, various recognition mechanisms including Michael addition, nucleophilic aromatic substitution, ordinary nucleophilic substitution, multi-site reaction, and other unique reactions have been utilized to construct the GSH specific fluorescent probes, and the molecular design strategy, photophysical property, recognition mechanism, and bioimaging application of each reported probe were all discussed here systematically. Great progress has been made in this area, and we believe the analyses and summarization of these excellent studies would provide valuable message and inspiration to researchers to advance the research toward clinic applications.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Yangzhen Feng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, P. R. China
| |
Collapse
|
86
|
SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons. J Neurosci 2020; 40:7980-7994. [PMID: 32887745 DOI: 10.1523/jneurosci.1367-20.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. De novo loss-of-function variants in this gene cause a neurodevelopmental disorder defined by cognitive impairment, social-communication disorder, and early-onset seizures. Cell biological studies in mouse and rat neurons have shown that Syngap1 regulates developing excitatory synapse structure and function, with loss-of-function variants driving formation of larger dendritic spines and stronger glutamatergic transmission. However, studies to date have been limited to mouse and rat neurons. Therefore, it remains unknown how SYNGAP1 loss of function impacts the development and function of human neurons. To address this, we used CRISPR/Cas9 technology to ablate SYNGAP1 protein expression in neurons derived from a commercially available induced pluripotent stem cell line (hiPSC) obtained from a human female donor. Reducing SynGAP protein expression in developing hiPSC-derived neurons enhanced dendritic morphogenesis, leading to larger neurons compared with those derived from isogenic controls. Consistent with larger dendritic fields, we also observed a greater number of morphologically defined excitatory synapses in cultures containing these neurons. Moreover, neurons with reduced SynGAP protein had stronger excitatory synapses and expressed synaptic activity earlier in development. Finally, distributed network spiking activity appeared earlier, was substantially elevated, and exhibited greater bursting behavior in SYNGAP1 null neurons. We conclude that SYNGAP1 regulates the postmitotic maturation of human neurons made from hiPSCs, which influences how activity develops within nascent neural networks. Alterations to this fundamental neurodevelopmental process may contribute to the etiology of SYNGAP1-related disorders.SIGNIFICANCE STATEMENT SYNGAP1 is a major genetic risk factor for global developmental delay, autism spectrum disorder, and epileptic encephalopathy. While this gene is well studied in rodent neurons, its function in human neurons remains unknown. We used CRISPR/Cas9 technology to disrupt SYNGAP1 protein expression in neurons derived from an induced pluripotent stem cell line. We found that induced neurons lacking SynGAP expression exhibited accelerated dendritic morphogenesis, increased accumulation of postsynaptic markers, early expression of synapse activity, enhanced excitatory synaptic strength, and early onset of neural network activity. We conclude that SYNGAP1 regulates the postmitotic differentiation rate of developing human neurons and disrupting this process impacts the function of nascent neural networks. These altered developmental processes may contribute to the etiology of SYNGAP1 disorders.
Collapse
|
87
|
Guo WH, Qi X, Yu X, Liu Y, Chung CI, Bai F, Lin X, Lu D, Wang L, Chen J, Su LH, Nomie KJ, Li F, Wang MC, Shu X, Onuchic JN, Woyach JA, Wang ML, Wang J. Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry. Nat Commun 2020; 11:4268. [PMID: 32848159 PMCID: PMC7450057 DOI: 10.1038/s41467-020-17997-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Current efforts in the proteolysis targeting chimera (PROTAC) field mostly focus on choosing an appropriate E3 ligase for the target protein, improving the binding affinities towards the target protein and the E3 ligase, and optimizing the PROTAC linker. However, due to the large molecular weights of PROTACs, their cellular uptake remains an issue. Through comparing how different warhead chemistry, reversible noncovalent (RNC), reversible covalent (RC), and irreversible covalent (IRC) binders, affects the degradation of Bruton's Tyrosine Kinase (BTK), we serendipitously discover that cyano-acrylamide-based reversible covalent chemistry can significantly enhance the intracellular accumulation and target engagement of PROTACs and develop RC-1 as a reversible covalent BTK PROTAC with a high target occupancy as its corresponding kinase inhibitor and effectiveness as a dual functional inhibitor and degrader, a different mechanism-of-action for PROTACs. Importantly, this reversible covalent strategy is generalizable to improve other PROTACs, opening a path to enhance PROTAC efficacy.
Collapse
Affiliation(s)
- Wen-Hao Guo
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoli Qi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xin Yu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yang Liu
- Division of Cancer Medicine, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Fang Bai
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianwei Chen
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lynn Hsiao Su
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Krystle J Nomie
- Division of Cancer Medicine, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meng C Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael L Wang
- Division of Cancer Medicine, Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
88
|
Xie X, Hua X, Wang Z, Yang X, Huang H. Real-Time Imaging Redox Status in Biothiols and Ferric Metabolism of Cancer Cells in Ferroptosis Based on Switched Fluorescence Response of Gold Carbon Dots. Anal Chem 2020; 92:11420-11428. [PMID: 32657119 DOI: 10.1021/acs.analchem.0c02420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ferroptosis is an iron-dependent form of regulated cell death. In this study, a ratiometric fluorescent probe, gold carbon dots (GCDs) consisting of carbon skeleton and gold nanoclusters, was used for in situ imaging to monitor redox status in biothiols (glutathione and cysteine) and ferric metabolism of cancer cells in ferroptosis. The as-prepared GCDs can selectively respond to biothiols, interestingly, the fluorescence may be switched to sense ferric ions without interference by biothiols under proper conditions. The robust GCDs-probe exhibits excellent photobleaching resistance and can reversibly respond to intracellular biothiols/ferric ion with high temporal resolution. The 8 h real-time imaging of living cells was employed to track the fluctuation of biothiols, showing the change of redox status in ferroptosis. In addition, release of ferric ions in cells was monitored. The real-time imaging of depletion of biothiols and release of ferric ion in cells indicates the GCDs-probe can monitor how the ferroptosis regulates redox status in biothiols and ferric metabolism.
Collapse
Affiliation(s)
- Xiaoxue Xie
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China, 411201
| | - Xinyi Hua
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China, 411201
| | - Ziqi Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China, 411201
| | - Xiumei Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China, 411201
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China, 411201
| |
Collapse
|
89
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
90
|
Liu H, Song W, Zhang S, Chan KS, Guo Z, Shen Z. A ratiometric fluorescent probe for real-time monitoring of intracellular glutathione fluctuations in response to cisplatin. Chem Sci 2020; 11:8495-8501. [PMID: 34123110 PMCID: PMC8163343 DOI: 10.1039/d0sc02889d] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Real-time imaging of fluctuations in intracellular glutathione (GSH) concentrations is critical to understanding the mechanism of GSH-related cisplatin-resistance. Here, we describe a ratiometric fluorescence probe based on a reversible Michael addition reaction of GSH with the vinyl-functionalized boron-dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) 1. The probe was applied for real-time monitoring of the fluctuations in GSH levels in cells under cisplatin treatment. Notably, in cellular cisplatin-sensitive A549 cells, GSH concentrations rose until cell death, while in cisplatin-resistant cell lines, GSH levels first rose to the maximum then fell back to the initial concentration without significant apoptosis. These results indicate that different trends in GSH fluctuation can help distinguish cisplatin-resistant from cisplatin-sensitive cells. As such, this study has shown that probe 1 may potentially be used for real-time monitoring of intracellular GSH levels in response to therapeutics. Real-time imaging of intracellular glutathione in response to cisplatin by a ratiometric fluorescent probe reveals that the different trends in intracellular GSH levels is crucial in distinguishing cisplatin-resistant from cisplatin-sensitive cells.![]()
Collapse
Affiliation(s)
- Hanzhuang Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210046 China
| | - Wenting Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210046 China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210046 China
| | - Kin Shing Chan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210046 China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210046 China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210046 China
| |
Collapse
|
91
|
Liu H, Wang S, Gao H, Shen Z. Reversible Reaction‐Based Fluorescent Probes for Dynamic Sensing and Bioimaging. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hui Liu
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| | - Sisi Wang
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University 210046 Nanjing P. R. China
| |
Collapse
|
92
|
Khatun S, Yang S, Zhao YQ, Lu Y, Podder A, Zhou Y, Bhuniya S. Highly Chemoselective Self-Calibrated Fluorescent Probe Monitors Glutathione Dynamics in Nucleolus in Live Cells. Anal Chem 2020; 92:10989-10995. [DOI: 10.1021/acs.analchem.9b05175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sabina Khatun
- Amrita Centre for Industrial Research & Innovation, Amrita School of engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Tamilnadu 641112, India
| | - Suo Yang
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yu Qiang Zhao
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuxun Lu
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Arup Podder
- Amrita Centre for Industrial Research & Innovation, Amrita School of engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Tamilnadu 641112, India
| | - Ying Zhou
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita School of engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Tamilnadu 641112, India
- Department of Chemical Engineering & Materials Science, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| |
Collapse
|
93
|
Tian M, Liu XY, He H, Ma XZ, Liang C, Liu Y, Jiang FL. Real-Time Imaging of Intracellular Glutathione Levels Based on a Ratiometric Fluorescent Probe with Extremely Fast Response. Anal Chem 2020; 92:10068-10075. [PMID: 32538069 DOI: 10.1021/acs.analchem.0c01881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glutathione (GSH), the most abundant nonprotein thiol found in living organisms, are involved in the etiology and progression of many human diseases including cancer. So, monitoring changes of cellular GSH levels has an important guiding significance. To date, however, majority of probes can only qualitatively detect GSH in living cells. Herein, with coumarin as the read-out fluorophore and Michael addition as the sensing mechanism, six fluorescent probes were designed and synthesized. Among them, RP-2 exhibited a reversible and extremely fast response toward GSH (half time: ∼3 s), which endowed RP-2 the capacity of real-time imaging. Among the reversible probes based on Michael addition, RP-2 had both the largest forward and reverse rate constants thus far. The reaction between RP-2 and GSH was studied in detail by density functional theory and fluorescence spectroscopy. Real-time imaging of GSH levels in living cells was achieved with a temporal resolution of seconds. To simplify the processing of images, a program was developed and validated. RP-2 was expected to serve as a new fluorescent imaging tool to understand the function of intracellular GSH in the future.
Collapse
Affiliation(s)
- Ming Tian
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xing-Yu Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Huan He
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Ma
- National Engineering Research Center for Multimedia Software (NERCMS), School of Computer Science, Wuhan University, Wuhan 430072, P. R. China
| | - Chao Liang
- National Engineering Research Center for Multimedia Software (NERCMS), School of Computer Science, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Hubei Province Key Laboratory for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,Guangxi Key Laboratory of Natural Polymer Chemistry, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
94
|
Zhang Y, Li F, Jiang X, Jiang X, Wang Y, Zhang H, Zhang L, Fan S, Xin L, Yang B, Ji G, Huang C. Sophoricoside is a selective LXRβ antagonist with potent therapeutic effects on hepatic steatosis of mice. Phytother Res 2020; 34:3168-3179. [PMID: 32592532 DOI: 10.1002/ptr.6747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by the accumulation of triglycerides and associated with obesity, hyperlipidemia and insulin resistance. Currently, there is no therapy for NAFLD. Emerging evidences suggest that the inhibition of liver X receptor (LXR) activity may be a potential therapy for hepatic steatosis. Here, we identified that sophoricoside is a selective antagonist of LXRβ. Sophoricoside protected against obesity and glucose tolerance, and inhibited lipid accumulation in the liver of high-fat diet-induced obesity (DIO) mice and methionine and choline-deficient diet-induced nonalcoholic steatohepatitis mice. Furthermore, sophoricoside inhibited malondialdehyde, and increased superoxide dismutase and glutathione in the liver of the mice. In HepG2 cells, pretreatment with sophoricoside rescued GSH concentration decrease induced by H2 O2 treatment. Our data suggest that sophoricoside is a novel LXRβ selective antagonist and may improve glucose and lipid dysfunction, and attenuate lipid accumulation in the liver of DIO mice via anti-oxidant properties, which may be developed as a therapy for NAFLD.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Fei Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiqian Jiang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yahui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianjun Xin
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baican Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
95
|
Maharana D, Saha M, Dar JY, Rathore C, Sreepada RA, Xu XR, Koongolla JB, Li HX. Assessment of micro and macroplastics along the west coast of India: Abundance, distribution, polymer type and toxicity. CHEMOSPHERE 2020; 246:125708. [PMID: 31911330 DOI: 10.1016/j.chemosphere.2019.125708] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 05/06/2023]
Abstract
Considering the magnitude of pollution caused by marine plastics, the present study assessed their abundance, distribution, surface morphology and polymer type in ten sandy beaches spread across three states (Maharashtra, Karnataka and Goa) along the west coast of India (WCI). The total abundance of plastics (∼1-100 mm) in the studied beaches ranged from 4.1 to 23.4% (19±1-346 ± 2 items/m2). Location-wise, the abundances of both micro (43.6 ± 1.1-346 ± 2 items/m2) and macroplastics (21.6±3-195 ± 6 items/m2) were relatively higher in beaches along the Maharashtra coast. Surface morphology-wise, fragments were predominantly abundant in both micro (76±2-346 ± 2 items/m2) and macroplastics (50.6 ± 1.5-195 ± 6 items/m2) followed by pellets (43.3 ± 2.5-245.6 ± 2 items/m2). Fourier-transform infrared spectroscopy (FT-IR) analysis of plastics revealed a dominance of polyethylene (PE) followed by polypropylene (PP). IR spectra of the collected plastics at absorption band at 1750-1700 cm-1 reflect minimal surface oxidation. White-colored plastics were observed most frequently, followed by pale-yellow, dark-brown, green, blue, transparent and red. A short-term (72 h) experimental study to assess the toxicity of PE microbeads (∼1 mm) in a commercially important shrimp species, Litopenaeus vannamei revealed toxicological changes. An elevated level of lipid peroxidation (LPX)-the tagged biochemical marker, was recorded only at the maximum dose (0.15 mg/L) of PE microbeads. A moderate increase in the levels of enzymatic antioxidants (catalase and glutathione S-transferase) was also recorded at the same dose. Comprehensive information on marine plastics, including ecotoxicity provided in this study, would help in evolving strategies in minimizing plastic pollution along the WCI.
Collapse
Affiliation(s)
- Dusmant Maharana
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India; CAS-Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Mahua Saha
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Jaffer Yousuf Dar
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India.
| | - Chayanika Rathore
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - R A Sreepada
- Aquaculture Laboratory, Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Xiang-Rong Xu
- CAS-Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - J Bimali Koongolla
- CAS-Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Heng-Xiang Li
- CAS-Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
96
|
Chen P, Zhang Y, Xu M, Chen H, Zou H, Zhang X, Tong H, You C, Wu M. Proteomic landscape of liver tissue in old male mice that are long-term treated with polysaccharides from Sargassum fusiforme. Food Funct 2020; 11:3632-3644. [PMID: 32292988 DOI: 10.1039/d0fo00187b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sargassum fusiforme is a type of brown algae and well known as a longevity promoting vegetable in Northeastern Asia. The polysaccharides derived from Sargassum fusiforme (SFPs) have been suggested as an antioxidant component for anti-aging function. However, global molecular changes in vivo by SFPs have not been fully elucidated. Here, we present a proteomics study using liver tissues of aged male mice that were fed with SFPs. Of forty-nine protein spots, thirty-eight were up-regulated and eleven were down-regulated, showing significant changes in abundance by two-dimensional gel electrophoresis. These differentially expressed proteins were mainly involved in oxidation-reduction, amino acid metabolism, and energy metabolism. Forty-six proteins were integrated into a unified network, with catalase (Cat) at the center. Intriguingly, most of the proteins were speculated as mitochondrial-located proteins. Our findings suggested that SFPs modulated antioxidant enzymes to scavenge redundant free radicals, thus preventing oxidative damage. In conclusion, our study provides a proteomic view on how SFPs have beneficial effects on the aspects of antioxidant and energy metabolism during the aging process. This study facilitates the understanding of anti-aging molecular mechanisms in polysaccharides derived from Sargassum fusiforme.
Collapse
Affiliation(s)
- Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China. and Department of Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, Canada
| | - Man Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Hongjun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Huixi Zou
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Cuiping You
- Department of Central Laboratory, Linyi People's Hospital, Shandong University, Linyi 276000, China.
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
97
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
98
|
Alcott CE, Yalamanchili HK, Ji P, van der Heijden ME, Saltzman A, Elrod N, Lin A, Leng M, Bhatt B, Hao S, Wang Q, Saliba A, Tang J, Malovannaya A, Wagner EJ, Liu Z, Zoghbi HY. Partial loss of CFIm25 causes learning deficits and aberrant neuronal alternative polyadenylation. eLife 2020; 9:e50895. [PMID: 32319885 PMCID: PMC7176433 DOI: 10.7554/elife.50895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/05/2020] [Indexed: 12/19/2022] Open
Abstract
We previously showed that NUDT21-spanning copy-number variations (CNVs) are associated with intellectual disability (Gennarino et al., 2015). However, the patients' CNVs also included other genes. To determine if reduced NUDT21 function alone can cause disease, we generated Nudt21+/- mice to mimic NUDT21-deletion patients. We found that although these mice have 50% reduced Nudt21 mRNA, they only have 30% less of its cognate protein, CFIm25. Despite this partial protein-level compensation, the Nudt21+/- mice have learning deficits, cortical hyperexcitability, and misregulated alternative polyadenylation (APA) in their hippocampi. Further, to determine the mediators driving neural dysfunction in humans, we partially inhibited NUDT21 in human stem cell-derived neurons to reduce CFIm25 by 30%. This induced APA and protein level misregulation in hundreds of genes, a number of which cause intellectual disability when mutated. Altogether, these results show that disruption of NUDT21-regulated APA events in the brain can cause intellectual disability.
Collapse
Affiliation(s)
- Callison E Alcott
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ping Ji
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Meike E van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Alexander Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
| | - Nathan Elrod
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Ai Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mei Leng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
| | - Bhoomi Bhatt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Afaf Saliba
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Mass Spectrometry Proteomics Core, Baylor College of MedicineHoustonUnited States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Eric J Wagner
- Department of Biochemistry & Molecular Biology, University of Texas Medical BranchGalvestonUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Section of Neurology, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of MedicineHoustonUnited States
| | - Huda Y Zoghbi
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
99
|
Liu Z, Zhou W, Li J, Zhang H, Dai X, Liu Y, Liu Y. High-efficiency dynamic sensing of biothiols in cancer cells with a fluorescent β-cyclodextrin supramolecular assembly. Chem Sci 2020; 11:4791-4800. [PMID: 34122936 PMCID: PMC8159256 DOI: 10.1039/d0sc00414f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022] Open
Abstract
A unique fluorescent supramolecular assembly was constructed using coumarin-modified β-cyclodextrin as a reversible ratiometric probe and an adamantane-modified cyclic arginine-glycine-aspartate peptide as a cancer-targeting agent via host-guest inclusion complexation. Importantly, the coumarin-modified β-cyclodextrin not only showed higher sensitivity than the parent coumarin derivatives owing to the presence of numerous hydroxyl groups on the cyclodextrin but also provided a hydrophobic cavity for encapsulation of a cancer-targeting agent. The assembly showed a reversible and fast response to biothiols with a micromolar dissociation constant, as well as outstanding cancer cell permeability, which can be used for high-efficiency real-time monitoring of biothiols in cancer cells. This supramolecular assembly strategy endows the fluorescent probe with superior performance for dynamic sensing of biothiols.
Collapse
Affiliation(s)
- Zhixue Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Weilei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jingjing Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Haoyang Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xianyin Dai
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yaohua Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
100
|
Armenta DA, Dixon SJ. Investigating Nonapoptotic Cell Death Using Chemical Biology Approaches. Cell Chem Biol 2020; 27:376-386. [PMID: 32220334 PMCID: PMC7185180 DOI: 10.1016/j.chembiol.2020.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
Nonapoptotic cell death is important for human health and disease. Here, we show how various tools and techniques drawn from the chemical biology field have played a central role in the discovery and characterization of nonapoptotic cell death pathways. Focusing on the example of ferroptosis, we describe how phenotypic screening, chemoproteomics, chemical genetic analysis, and other methods enabled the elucidation of this pathway. Synthetic small-molecule inducers and inhibitors of ferroptosis identified in early studies have now been leveraged to identify an even broader set of compounds that affect ferroptosis and to validate new chemical methods and probes for various ferroptosis-associated processes. A number of limitations associated with specific chemical biology tools or techniques have also emerged and must be carefully considered. Nevertheless, the study of ferroptosis provides a roadmap for how chemical biology methods may be used to discover and characterize nonapoptotic cell death mechanisms.
Collapse
Affiliation(s)
- David A. Armenta
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott J. Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA,Lead contact:
| |
Collapse
|