51
|
Shi J, Guo YH, Xie F, Chen QF, Zhang MT. Redox-Active Ligand Assisted Catalytic Water Oxidation by a Ru IV =O Intermediate. Angew Chem Int Ed Engl 2020; 59:4000-4008. [PMID: 31880387 DOI: 10.1002/anie.201910614] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Indexed: 01/15/2023]
Abstract
Water splitting is one of the most promising solutions for storing solar energy in a chemical bond. Water oxidation is still the bottleneck step because of its inherent difficulty and the limited understanding of the O-O bond formation mechanism. Molecular catalysts provide a platform for understanding this process in depth and have received wide attention since the first Ru-based catalyst was reported in 1982. RuV =O is considered a key intermediate to initiate the O-O bond formation through either a water nucleophilic attack (WNA) pathway or a bimolecular coupling (I2M) pathway. Herein, we report a Ru-based catalyst that displays water oxidation reactivity with RuIV =(O) with the help of a redox-active ligand at pH 7.0. The results of electrochemical studies and DFT calculations disclose that ligand oxidation could significantly improve the reactivity of RuIV =O toward water oxidation. Under these conditions, sustained water oxidation catalysis occurs at reasonable rates with low overpotential (ca. 183 mV).
Collapse
Affiliation(s)
- Jing Shi
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Hua Guo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fei Xie
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
52
|
Luque-Urrutia JA, Kamdar JM, Grotjahn DB, Solà M, Poater A. Understanding the performance of a bisphosphonate Ru water oxidation catalyst. Dalton Trans 2020; 49:14052-14060. [DOI: 10.1039/d0dt02253e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water oxidation catalysts (WOCs) are a key part of generating H2 from water and sunlight, consequently, it is a promising process for the production of clean energy.
Collapse
Affiliation(s)
- Jesús A. Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Jayneil M. Kamdar
- Department of Chemistry and Biochemistry
- San Diego State University
- San Diego
- USA
| | - Douglas B. Grotjahn
- Department of Chemistry and Biochemistry
- San Diego State University
- San Diego
- USA
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| |
Collapse
|
53
|
Al-Zuraiji SM, Benkó T, Illés L, Németh M, Frey K, Sulyok A, Pap JS. Utilization of hydrophobic ligands for water-insoluble Fe(II) water oxidation catalysts – Immobilization and characterization. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
54
|
Zhang R, Huang JH, Meng DX, Ge FY, Wang LF, Xu YK, Liu XG, Meng MM, Lu ZZ, Zheng HG, Huang W. Three metal–organic framework isomers of different pore sizes for selective CO2 adsorption and isomerization studies. Dalton Trans 2020; 49:5618-5624. [DOI: 10.1039/d0dt00793e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three MOF isomers including framework-catenation and framework-topological isomers were synthesized for adsorbing carbon dioxide with high selectivity.
Collapse
|
55
|
Fagiolari L, Zaccaria F, Costantino F, Vivani R, Mavrokefalos CK, Patzke GR, Macchioni A. Ir- and Ru-doped layered double hydroxides as affordable heterogeneous catalysts for electrochemical water oxidation. Dalton Trans 2020; 49:2468-2476. [DOI: 10.1039/c9dt04306c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Doping low-cost LDHs with noble metal atoms represents a promising approach to develop effective heterogeneous Water Oxidation Catalysts.
Collapse
Affiliation(s)
- Lucia Fagiolari
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| | - Francesco Zaccaria
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| | - Ferdinando Costantino
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences
- Università di Perugia - Via del Liceo 1
- I-06123 Perugia
- Italy
| | | | - Greta R. Patzke
- Department of Chemistry
- University of Zurich - Winterthurerstrasse 190
- CH-8057 Zurich
- Switzerland
| | - Alceo Macchioni
- Department of Chemistry
- Biology and Biotechnology
- Università di Perugia and CIRCC-Via Elce di Sotto 8
- I-06123 Perugia
- Italy
| |
Collapse
|
56
|
Pan H, Duan L, Liao R. Capturing the Role of Phosphate in the Ni‐PY5 Catalyzed Water Oxidation. ChemCatChem 2019. [DOI: 10.1002/cctc.201901439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hui Pan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology (SUSTech) Shenzhen 518055 P. R. China
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
57
|
Lubitz W, Chrysina M, Cox N. Water oxidation in photosystem II. PHOTOSYNTHESIS RESEARCH 2019; 142:105-125. [PMID: 31187340 PMCID: PMC6763417 DOI: 10.1007/s11120-019-00648-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
Biological water oxidation, performed by a single enzyme, photosystem II, is a central research topic not only in understanding the photosynthetic apparatus but also for the development of water splitting catalysts for technological applications. Great progress has been made in this endeavor following the report of a high-resolution X-ray crystallographic structure in 2011 resolving the cofactor site (Umena et al. in Nature 473:55-60, 2011), a tetra-manganese calcium complex. The electronic properties of the protein-bound water oxidizing Mn4OxCa complex are crucial to understand its catalytic activity. These properties include: its redox state(s) which are tuned by the protein matrix, the distribution of the manganese valence and spin states and the complex interactions that exist between the four manganese ions. In this short review we describe how magnetic resonance techniques, particularly EPR, complemented by quantum chemical calculations, have played an important role in understanding the electronic structure of the cofactor. Together with isotope labeling, these techniques have also been instrumental in deciphering the binding of the two substrate water molecules to the cluster. These results are briefly described in the context of the history of biological water oxidation with special emphasis on recent work using time resolved X-ray diffraction with free electron lasers. It is shown that these data are instrumental for developing a model of the biological water oxidation cycle.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Maria Chrysina
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra, Australia
| |
Collapse
|
58
|
Corbucci I, Zaccaria F, Heath R, Gatto G, Zuccaccia C, Albrecht M, Macchioni A. Iridium Water Oxidation Catalysts Based on Pyridine‐Carbene Alkyl‐Substituted Ligands. ChemCatChem 2019. [DOI: 10.1002/cctc.201901092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilaria Corbucci
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| | - Francesco Zaccaria
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| | - Rachel Heath
- Department für Chemie und BiochemieUniversität Bern Bern CH-3012 Switzerland
| | - Giordano Gatto
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| | - Cristiano Zuccaccia
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| | - Martin Albrecht
- Department für Chemie und BiochemieUniversität Bern Bern CH-3012 Switzerland
| | - Alceo Macchioni
- Department of Chemistry Biology and BiotechnologyUniversità di Perugia and CIRCC Perugia I-06123 Italy
| |
Collapse
|
59
|
Karmalkar DG, Sankaralingam M, Seo MS, Ezhov R, Lee YM, Pushkar YN, Kim WS, Fukuzumi S, Nam W. A High-Valent Manganese(IV)-Oxo-Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angew Chem Int Ed Engl 2019; 58:16124-16129. [PMID: 31489757 DOI: 10.1002/anie.201910032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/20/2022]
Abstract
A mononuclear nonheme manganese(IV)-oxo complex binding the Ce4+ ion, [(dpaq)MnIV (O)]+ -Ce4+ (1-Ce4+ ), was synthesized by reacting [(dpaq)MnIII (OH)]+ (2) with cerium ammonium nitrate (CAN). 1-Ce4+ was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI-MS, resonance Raman, XANES, and EXAFS, showing an Mn-O bond distance of 1.69 Å with a resonance Raman band at 675 cm-1 . Electron-transfer and oxygen atom transfer reactivities of 1-Ce4+ were found to be greater than those of MnIV (O) intermediates binding redox-inactive metal ions (1-Mn+ ). This study reports the first example of a redox-active Ce4+ ion-bound MnIV -oxo complex and its spectroscopic characterization and chemical properties.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | | | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, IN, 47907, USA
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Yulia N Pushkar
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, IN, 47907, USA
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
60
|
Karmalkar DG, Sankaralingam M, Seo MS, Ezhov R, Lee Y, Pushkar YN, Kim W, Fukuzumi S, Nam W. A High‐Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deepika G. Karmalkar
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | | | - Mi Sook Seo
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Roman Ezhov
- Department of Physics and Astronomy Purdue University 525 Northwestern Ave. West Lafayette IN 47907 USA
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yulia N. Pushkar
- Department of Physics and Astronomy Purdue University 525 Northwestern Ave. West Lafayette IN 47907 USA
| | - Won‐Suk Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi 468-0073 Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
61
|
Abdi Z, Bagheri R, Song Z, Najafpour MM. Water oxidation by Ferritin: A semi-natural electrode. Sci Rep 2019; 9:11499. [PMID: 31395911 PMCID: PMC6687787 DOI: 10.1038/s41598-019-47661-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Ferritin is a protein (ca. 12 nm) with a central pocket of 6 nm diameter, and hydrated iron oxide stored in this central cavity of this protein. The protein shell has a complicated structure with 24 subunits. Transmission electron microscopy images of ferritin showed nanosized iron oxides (ca. 4-6 nm) in the protein structure. In high-resolution transmission electron microscopy images of the iron core, d-spacings of 2.5-2.6 Å were observed, which is corresponded to d-spacings of ferrihydrite crystal structure. Our experiments showed that at pH 11, the modified electrode by this biomolecule is active for water oxidation (turnover frequency: 0.001 s-1 at 1.7 V). Using affected by bacteria, we showed that Fe ions in the structure of ferritin are critical for water oxidation.
Collapse
Affiliation(s)
- Zahra Abdi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Robabeh Bagheri
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Zhenlun Song
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
62
|
Toda H, Nakajima K, Nishibayashi Y. Catalytic Water Oxidation Reaction with Use of Triarylaminium Radicals as Single-electron Oxidants and Pyridines as Bases. CHEM LETT 2019. [DOI: 10.1246/cl.190333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroki Toda
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunari Nakajima
- Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
63
|
Chakraborty B, Gan‐Or G, Duan Y, Raula M, Weinstock IA. Visible‐Light‐Driven Water Oxidation with a Polyoxometalate‐Complexed Hematite Core of 275 Iron Atoms. Angew Chem Int Ed Engl 2019; 58:6584-6589. [DOI: 10.1002/anie.201900492] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/20/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Biswarup Chakraborty
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Gal Gan‐Or
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Yan Duan
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Manoj Raula
- Amity Institute of Applied SciencesAmity University Noida 201313 India
| | - Ira A. Weinstock
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| |
Collapse
|
64
|
Zahran ZN, Tsubonouchi Y, Mohamed EA, Yagi M. Recent Advances in the Development of Molecular Catalyst-Based Anodes for Water Oxidation toward Artificial Photosynthesis. CHEMSUSCHEM 2019; 12:1775-1793. [PMID: 30793506 DOI: 10.1002/cssc.201802795] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Catalytic water oxidation represents a bottleneck for developing artificial photosynthetic systems that store solar energy as renewable fuels. A variety of molecular water oxidation catalysts (WOCs) have been reported over the last two decades. In view of their applications in artificial photosynthesis devices, it is essential to immobilize molecular catalysts onto the surfaces of conducting/semiconducting supports for fabricating efficient and stable water oxidation anodes/photoanodes. Molecular WOC-based anodes are essential for developing photovoltaic artificial photosynthesis devices and, moreover, the performance of molecular WOC on anodes will provide important insight into designing extended molecular WOC-based photoanodes for photoelectrochemical (PEC) water oxidation. This Review concerns recent progress in the development of molecular WOC-based anodes over the last two decades and looks at the prospects for using such anodes in artificial photosynthesis.
Collapse
Affiliation(s)
- Zaki N Zahran
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
- Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yuta Tsubonouchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
| | - Eman A Mohamed
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
| |
Collapse
|
65
|
Chakraborty B, Gan‐Or G, Duan Y, Raula M, Weinstock IA. Visible‐Light‐Driven Water Oxidation with a Polyoxometalate‐Complexed Hematite Core of 275 Iron Atoms. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biswarup Chakraborty
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Gal Gan‐Or
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Yan Duan
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| | - Manoj Raula
- Amity Institute of Applied SciencesAmity University Noida 201313 India
| | - Ira A. Weinstock
- Department of ChemistryBen-Gurion University of the Negev and the Ilse Katz Institute for Nanoscale Science & Technology Beer Sheva 84105 Israel
| |
Collapse
|
66
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 413] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|
67
|
Li YY, Gimbert C, Llobet A, Siegbahn PEM, Liao RZ. Quantum Chemical Study of the Mechanism of Water Oxidation Catalyzed by a Heterotrinuclear Ru 2 Mn Complex. CHEMSUSCHEM 2019; 12:1101-1110. [PMID: 30604589 DOI: 10.1002/cssc.201802395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The heterotrinuclear complex A {[RuII (H2 O)(tpy)]2 (μ-[MnII (H2 O)2 (bpp)2 ])}4+ [tpy=2,2':6',2''-terpyridine, bpp=3,5-bis(2-pyridyl)pyrazolate] was found to catalyze water oxidation both electrochemically and photochemically with [Ru(bpy)3 ]3+ (bpy=2,2'-bipyridine) as the photosensitizer and Na2 S2 O8 as the electron acceptor in neutral phosphate buffer. The mechanism of water oxidation catalyzed by this unprecedented trinuclear complex was studied by density functional calculations. The calculations showed that a series of oxidation and deprotonation events take place from A, leading to the formation of complex 1 (formal oxidation state of Ru1IV MnIII Ru2III ), which is the starting species for the catalytic cycle. Three sequential oxidations of 1 result in the generation of the catalytically competing species 4 (formal oxidation state of Ru1IV MnV Ru2IV ), which triggers the O-O bond formation. The direct coupling of two adjacent oxo ligands bound to Ru and Mn leads to the production of a superoxide intermediate Int1. This step was calculated to have a barrier of 7.2 kcal mol-1 at the B3LYP*-D3 level. Subsequent O2 release from Int1 turns out to be quite facile. Other possible pathways were found to be much less favorable, including water nucleophilic attack, the coupling of an oxo and a hydroxide, and the direct coupling pathway at a lower oxidation state (RuIV MnIV RuIV ).
Collapse
Affiliation(s)
- Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Carolina Gimbert
- Institute of Chemical Research of Catalonia (ICIQ-BIST), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ-BIST), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
68
|
Richmond CJ, Escayola S, Poater A. Axial Ligand Effects of Ru-BDA Complexes in the O-O Bond Formation via the I2M Bimolecular Mechanism in Water Oxidation Catalysis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Craig J. Richmond
- Level 5; RMIT Europe Media-TIC Building; c/ Roc Boronat, 117 08018 Barcelona Catalonia Spain
| | - Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química; Universitat de Girona; c/ Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química; Universitat de Girona; c/ Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
69
|
Liu Y, Lau TC. Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. J Am Chem Soc 2019; 141:3755-3766. [DOI: 10.1021/jacs.8b13100] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yingying Liu
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tai-Chu Lau
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
70
|
Fukuzumi S, Lee YM, Nam W. Kinetics and mechanisms of catalytic water oxidation. Dalton Trans 2019; 48:779-798. [PMID: 30560964 DOI: 10.1039/c8dt04341h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanisms of thermal and photochemical oxidation of water with homogeneous and heterogeneous catalysts, including conversion from homogeneous to heterogeneous catalysts in the course of water oxidation, are discussed in this review article. Molecular and homogeneous catalysts have the advantage to clarify the catalytic mechanisms by detecting active intermediates in catalytic water oxidation. On the other hand, heterogeneous nanoparticle catalysts have advantages for practical applications due to high catalytic activity, robustness and easier separation of catalysts by filtration as compared with molecular homogeneous precursors. Ligand oxidation of homogeneous catalysts sometimes results in the dissociation of ligands to form nanoparticles, which act as much more efficient catalysts for water oxidation. Since it is quite difficult to identify active intermediates on the heterogeneous catalyst surface, the mechanism of water oxidation has hardly been clarified under heterogeneous catalytic conditions. This review focuses on the kinetics and mechanisms of catalytic water oxidation with homogeneous catalysts, which may be converted to heterogeneous nanoparticle catalysts depending on various reaction conditions.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | |
Collapse
|
71
|
Parent AR, Nakazono T, Tsubonouchi Y, Taira N, Sakai K. Mechanisms of water oxidation using ruthenium, cobalt, copper, and iron molecular catalysts. ADVANCES IN INORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.adioch.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
72
|
Puerta-Oteo R, Jiménez MV, Pérez-Torrente JJ. Molecular water oxidation catalysis by zwitterionic carboxylate bridge-functionalized bis-NHC iridium complexes. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02306a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carboxylate functionalized bis-NHC ligands allow for the stabilization of high-valent iridium intermediate species involved in homogeneous water oxidation catalysis.
Collapse
Affiliation(s)
- Raquel Puerta-Oteo
- Department of Inorganic Chemistry
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC)
- University of Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
| | - M. Victoria Jiménez
- Department of Inorganic Chemistry
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC)
- University of Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
| | - Jesús J. Pérez-Torrente
- Department of Inorganic Chemistry
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC)
- University of Zaragoza-CSIC
- Facultad de Ciencias
- 50009 Zaragoza
| |
Collapse
|
73
|
Lloret-Fillol J, Costas M. Water oxidation at base metal molecular catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
74
|
Wang JW, Zhong DC, Lu TB. Artificial photosynthesis: Catalytic water oxidation and CO2 reduction by dinuclear non-noble-metal molecular catalysts. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
75
|
Liu T, Zhang B, Sun L. Iron-Based Molecular Water Oxidation Catalysts: Abundant, Cheap, and Promising. Chem Asian J 2018; 14:31-43. [DOI: 10.1002/asia.201801253] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/25/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Tianqi Liu
- Department of Chemistry; KTH Royal Institute of Technology; Teknikringen 30 Stockholm 10044 Sweden
| | - Biaobiao Zhang
- Department of Chemistry; KTH Royal Institute of Technology; Teknikringen 30 Stockholm 10044 Sweden
| | - Licheng Sun
- Department of Chemistry; KTH Royal Institute of Technology; Teknikringen 30 Stockholm 10044 Sweden
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
76
|
Macchioni A. The Middle-Earth between Homogeneous and Heterogeneous Catalysis in Water Oxidation with Iridium. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alceo Macchioni
- Department of Chemistry; Biology and Biotechnology; University of Perugia; Via Elce di Sotto 8 06123 - Perugia Italy
| |
Collapse
|
77
|
Non-redox metal ions accelerated oxygen atom transfer by Mn-Me3tacn complex with H2O2 as oxygen resource. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
78
|
Kottrup KG, D’Agostini S, van Langevelde PH, Siegler MA, Hetterscheid DGH. Catalytic Activity of an Iron-Based Water Oxidation Catalyst: Substrate Effects of Graphitic Electrodes. ACS Catal 2018; 8:1052-1061. [PMID: 29430332 PMCID: PMC5805403 DOI: 10.1021/acscatal.7b03284] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/15/2017] [Indexed: 01/23/2023]
Abstract
![]()
The
synthesis, characterization, and electrochemical studies of
the dinuclear complex [(MeOH)Fe(Hbbpya)-μ-O-(Hbbpya)Fe(MeOH)](OTf)4 (1) (with Hbbpya = N,N-bis(2,2′-bipyrid-6-yl)amine)
are described. With the help of online electrochemical mass spectrometry,
the complex is demonstrated to be active as a water oxidation catalyst.
Comparing the results obtained for different electrode materials shows
a clear substrate influence of the electrode, as the complex shows
a significantly lower catalytic overpotential on graphitic working
electrodes in comparison to other electrode materials. Cyclic voltammetry
experiments provide evidence that the structure of complex 1 undergoes reversible changes under high-potential conditions, regenerating
the original structure of complex 1 upon returning to
lower potentials. Results from electrochemical quartz crystal microbalance
experiments rule out that catalysis proceeds via deposition of catalytically
active material on the electrode surface.
Collapse
Affiliation(s)
- Konstantin G. Kottrup
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Silvia D’Agostini
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Phebe H. van Langevelde
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
79
|
Mononuclear first-row transition-metal complexes as molecular catalysts for water oxidation. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)63001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
80
|
Du HY, Chen SC, Su XJ, Jiao L, Zhang MT. Redox-Active Ligand Assisted Multielectron Catalysis: A Case of Co III Complex as Water Oxidation Catalyst. J Am Chem Soc 2018; 140:1557-1565. [PMID: 29309165 DOI: 10.1021/jacs.8b00032] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Water oxidation is the key step in both natural and artificial photosynthesis to capture solar energy for fuel production. The design of highly efficient and stable molecular catalysts for water oxidation based on nonprecious metals is still a great challenge. In this article, the electrocatalytic oxidation of water by Na[(L4-)CoIII], where L is a substituted tetraamido macrocyclic ligand, was investigated in aqueous solution (pH 7.0). We found that Na[(L4-)CoIII] is a stable and efficient homogeneous catalyst for electrocatalytic water oxidation with 380 mV onset overpotential in 0.1 M phosphate buffer (pH 7.0). Both ligand- and metal-centered redox features are involved in the catalytic cycle. In this cycle, Na[(L4-)CoIII] was first oxidized to [(L2-)CoIIIOH] via a ligand-centered proton-coupled electron transfer process in the presence of water. After further losing an electron and a proton, the resting state, [(L2-)CoIIIOH], was converted to [(L2-)CoIV═O]. Density functional theory (DFT) calculations at the B3LYP-D3(BJ)/6-311++G(2df,2p)//B3LYP/6-31+G(d,p) level of theory confirmed the proposed catalytic cycle. According to both experimental and DFT results, phosphate-assisted water nucleophilic attack to [(L2-)CoIV═O] played a key role in O-O bond formation.
Collapse
Affiliation(s)
- Hao-Yi Du
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Si-Cong Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiao-Jun Su
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
81
|
Najafpour MM, Feizi H. Water oxidation catalyzed by two cobalt complexes: new challenges and questions. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02602a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, two cobalt complexes as true catalysts for water oxidation were investigated.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Hadi Feizi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
82
|
Shen J, Wang M, Gao J, Han H, Liu H, Sun L. Improvement of Electrochemical Water Oxidation by Fine-Tuning the Structure of Tetradentate N 4 Ligands of Molecular Copper Catalysts. CHEMSUSCHEM 2017; 10:4581-4588. [PMID: 28868648 DOI: 10.1002/cssc.201701458] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Two copper complexes, [(L1)Cu(OH2 )](BF4 )2 [1; L1=N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)-1,2-diaminoethane] and [(L2)Cu(OH2 )](BF4 )2 [2, L2=2,7-bis(2-pyridyl)-3,6-diaza-2,6-octadiene], were prepared as molecular water oxidation catalysts. Complex 1 displayed an overpotential (η) of 1.07 V at 1 mA cm-2 and an observed rate constant (kobs ) of 13.5 s-1 at η 1.0 V in pH 9.0 phosphate buffer solution, whereas 2 exhibited a significantly smaller η (0.70 V) to reach 1 mA cm-2 and a higher kobs (50.4 s-1 ) than 1 under identical test conditions. Additionally, 2 displayed better stability than 1 in controlled potential electrolysis experiments with a faradaic efficiency of 94 % for O2 evolution at 1.58 V, when a casing tube was used for the Pt cathode. A possible mechanism for 1- and 2-catalyzed O2 evolution reactions is discussed based on the experimental evidence. These comparative results indicate that fine-tuning the structures of tetradentate N4 ligands can bring about significant change in the performance of copper complexes for electrochemical water oxidation.
Collapse
Affiliation(s)
- Junyu Shen
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, PR China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, PR China
| | - Jinsuo Gao
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Hongxian Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023, PR China
| | - Hong Liu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, PR China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, PR China
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| |
Collapse
|
83
|
Li M, Bernhard S. Synthetically tunable iridium(III) bis-pyridine-2-sulfonamide complexes as efficient and durable water oxidation catalysts. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Sabenya G, Lázaro L, Gamba I, Martin-Diaconescu V, Andris E, Weyhermüller T, Neese F, Roithova J, Bill E, Lloret-Fillol J, Costas M. Generation, Spectroscopic, and Chemical Characterization of an Octahedral Iron(V)-Nitrido Species with a Neutral Ligand Platform. J Am Chem Soc 2017; 139:9168-9177. [DOI: 10.1021/jacs.7b00429] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gerard Sabenya
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Laura Lázaro
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Ilaria Gamba
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Erik Andris
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Thomas Weyhermüller
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jana Roithova
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Julio Lloret-Fillol
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Paisos Catalans 16, 43007 Tarragona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| |
Collapse
|
85
|
Draksharapu A, Rasheed W, Klein JEMN, Que L. Facile and Reversible Formation of Iron(III)–Oxo–Cerium(IV) Adducts from Nonheme Oxoiron(IV) Complexes and Cerium(III). Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis University of Minnesota Minneapolis MN 55455 USA
| | - Waqas Rasheed
- Department of Chemistry and Center for Metals in Biocatalysis University of Minnesota Minneapolis MN 55455 USA
| | - Johannes E. M. N. Klein
- Department of Chemistry and Center for Metals in Biocatalysis University of Minnesota Minneapolis MN 55455 USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
86
|
Draksharapu A, Rasheed W, Klein JEMN, Que L. Facile and Reversible Formation of Iron(III)-Oxo-Cerium(IV) Adducts from Nonheme Oxoiron(IV) Complexes and Cerium(III). Angew Chem Int Ed Engl 2017; 56:9091-9095. [PMID: 28598024 DOI: 10.1002/anie.201704322] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 11/09/2022]
Abstract
Ceric ammonium nitrate (CAN) or CeIV (NH4 )2 (NO3 )6 is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)FeIII -O-CeIV (OH2 )(NO3 )4 ]+ (3), a complex obtained from the reaction of [(N4Py)FeII (NCMe)]2+ with 2 equiv CAN or [(N4Py)FeIV =O]2+ (2) with CeIII (NO3 )3 in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the FeIV and CeIV centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 FeIV in 2 to S=5/2 in 3, which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that FeIV =O complexes may avail of reaction pathways involving multiple spin states having little or no barrier.
Collapse
Affiliation(s)
- Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Waqas Rasheed
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Johannes E M N Klein
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
87
|
Koepke SJ, Light KM, VanNatta PE, Wiley KM, Kieber-Emmons MT. Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms. J Am Chem Soc 2017; 139:8586-8600. [PMID: 28558469 DOI: 10.1021/jacs.7b03278] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Deployment of solar fuels derived from water requires robust oxygen-evolving catalysts made from earth abundant materials. Copper has recently received much attention in this regard. Mechanistic parallels between Cu and single-site Ru/Ir/Mn water oxidation catalysts, including intermediacy of terminal Cu oxo/oxyl species, are prevalent in the literature; however, intermediacy of late transition metal oxo species would be remarkable given the high d-electron count would fill antibonding orbitals, making these species high in energy. This may suggest alternate pathways are at work in copper-based water oxidation. This report characterizes a dinuclear copper water oxidation catalyst, {[(L)Cu(II)]2-(μ-OH)2}(OTf)2 (L = Me2TMPA = bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine) in which water oxidation proceeds with high Faradaic efficiency (>90%) and moderate rates (33 s-1 at ∼1 V overpotential, pH 12.5). A large kinetic isotope effect (kH/kD = 20) suggests proton coupled electron transfer in the initial oxidation as the rate-determining step. This species partially dissociates in aqueous solution at pH 12.5 to generate a mononuclear {[(L)Cu(II)(OH)]}+ adduct (Keq = 0.0041). Calculations that reproduce the experimental findings reveal that oxidation of either the mononuclear or dinuclear species results in a common dinuclear intermediate, {[LCu(III)]2-(μ-O)2}2+, which avoids formation of terminal Cu(IV)═O/Cu(III)-O• intermediates. Calculations further reveal that both intermolecular water nucleophilic attack and redox isomerization of {[LCu(III)]2-(μ-O)2}2+ are energetically accessible pathways for O-O bond formation. The consequences of these findings are discussed in relation to differences in water oxidation pathways between Cu catalysts and catalysts based on Ru, Ir, and Mn.
Collapse
Affiliation(s)
- Sara J Koepke
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112-0850, United States
| | - Kenneth M Light
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112-0850, United States
| | - Peter E VanNatta
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112-0850, United States
| | - Keaton M Wiley
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112-0850, United States
| | - Matthew T Kieber-Emmons
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
88
|
|
89
|
Kagalwala HN, Tong L, Zong R, Kohler L, Ahlquist MSG, Fan T, Gagnon KJ, Thummel RP. Evidence for Oxidative Decay of a Ru-Bound Ligand during Catalyzed Water Oxidation. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03278] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Husain N. Kagalwala
- Department
of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Lianpeng Tong
- Department
of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Ruifa Zong
- Department
of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Lars Kohler
- Department
of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| | - Mårten S. G. Ahlquist
- Division of Theoretical Chemistry & Biology, School of Biotechnology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Ting Fan
- Division of Theoretical Chemistry & Biology, School of Biotechnology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Kevin J. Gagnon
- Advanced
Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Randolph P. Thummel
- Department
of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States
| |
Collapse
|
90
|
|
91
|
Pattanayak S, Chowdhury DR, Garai B, Singh KK, Paul A, Dhar BB, Gupta SS. Electrochemical Formation of Fe V (O) and Mechanism of Its Reaction with Water During O-O Bond Formation. Chemistry 2017; 23:3414-3424. [PMID: 28012231 DOI: 10.1002/chem.201605061] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Indexed: 12/21/2022]
Abstract
A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles FeIII -bTAML), including the first electrochemical generation of FeV (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated FeV (O) as the active oxidant, formed due to two redox transitions, which were assigned as FeIV (O)/FeIII (OH2 ) and FeV (O)/FeIV (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H2 O on FeV (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised FeV (O) in CH3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pKa value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune, 411008, India
| | - Debarati Roy Chowdhury
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP, 462066, India
| | - Bikash Garai
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune, 411008, India
| | - Kundan K Singh
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune, 411008, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP, 462066, India
| | - Basab B Dhar
- Department of Chemistry, Shiv Nadar University, Goutam Buddha Nagar, UP, 201314, India
| | - Sayam Sen Gupta
- Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
92
|
High-valent metal-oxo complexes generated in catalytic oxidation reactions using water as an oxygen source. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.09.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
93
|
Hetterscheid DGH. In operando studies on the electrochemical oxidation of water mediated by molecular catalysts. Chem Commun (Camb) 2017; 53:10622-10631. [DOI: 10.1039/c7cc04944g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This feature article describes on-line studies regarding the water oxidation reaction mediated by molecular catalysts.
Collapse
|
94
|
Shaffer DW, Xie Y, Szalda DJ, Concepcion JJ. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes. Inorg Chem 2016; 55:12024-12035. [DOI: 10.1021/acs.inorgchem.6b02193] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | - David J. Szalda
- Department
of Natural Sciences, Baruch College, The City University of New York, New
York, New York 10010, United States
| | | |
Collapse
|
95
|
Esarey SL, Holland JC, Bartlett BM. Determining the Fate of a Non-Heme Iron Oxidation Catalyst Under Illumination, Oxygen, and Acid. Inorg Chem 2016; 55:11040-11049. [DOI: 10.1021/acs.inorgchem.6b01538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel L. Esarey
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joel C. Holland
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Bart M. Bartlett
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
96
|
A Nickel(II) Complex as a Homogeneous Electrocatalyst for Water Oxidation at Neutral pH: Dual Role of HPO42−in Catalysis. ChemCatChem 2016. [DOI: 10.1002/cctc.201600796] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
97
|
Kamdar JM, Marelius DC, Moore CE, Rheingold AL, Smith DK, Grotjahn DB. Ruthenium Complexes of 2,2′-Bipyridine-6,6′-diphosphonate Ligands for Water Oxidation. ChemCatChem 2016. [DOI: 10.1002/cctc.201600359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jayneil M. Kamdar
- Department of Chemistry and Biochemistry; San Diego State University; 5500 Campanile Drive San Diego CA 92182 USA
| | - David C. Marelius
- Department of Chemistry and Biochemistry; San Diego State University; 5500 Campanile Drive San Diego CA 92182 USA
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry; University of California San Diego; 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry; University of California San Diego; 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Diane K. Smith
- Department of Chemistry and Biochemistry; San Diego State University; 5500 Campanile Drive San Diego CA 92182 USA
| | - Douglas B. Grotjahn
- Department of Chemistry and Biochemistry; San Diego State University; 5500 Campanile Drive San Diego CA 92182 USA
| |
Collapse
|
98
|
Garain S, Barman K, Sinha TK, Jasimuddin S, Haeberle J, Henkel K, Schmeisser D, Mandal D. Cerium(III) Complex Modified Gold Electrode: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21294-21301. [PMID: 27490440 DOI: 10.1021/acsami.6b05236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exploring efficient and inexpensive electrocatalysts for the oxidation of water is of great importance for various electrochemical energy storage and conversion technologies. In the present study, a new water-soluble [Ce(III)(DMF) (HSO4)3] complex was synthesized and characterized by UV-vis, photoluminescence, and high-resolution X-ray photoelectron spectroscopy techniques. Owing to classic 5d → 4f transitions, an intense photoluminescence in the UV region was observed from the water-soluble [Ce(III)(DMF) (HSO4)3] complex. A stacking electrode was designed where self-assembled l-cysteine monolayer modified gold was immobilized with the synthesized cerium complex and was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The resulting electrode, i.e., [Ce(III)(DMF) (HSO4)3]-l-cysteine-Au stacks shows high electrocatalytic water oxidation behavior at an overpotential of η ≈ 0.34 V under neutral pH conditions. We also demonstrated a way where the overpotential is possible to decrease upon irradiation of UV light.
Collapse
Affiliation(s)
- Samiran Garain
- Organic Nano-Piezoelectric Device Laboratory, Department of Physics Jadavpur University Kolkata700032, India
| | - Koushik Barman
- Department of Chemistry, Assam University , Silchar 788011, India
| | - Tridib Kumar Sinha
- Materials Science Centre, Indian Institute of Technology (IIT) , Kharagpur 721302, India
| | - Sk Jasimuddin
- Department of Chemistry, Assam University , Silchar 788011, India
| | - Jörg Haeberle
- Brandenburgische Technische Universität Cottbus-Senftenberg , Angewandte Physik-Sensorik, K.-Wachsmann-Allee 17, 03046 Cottbus, Germany
| | - Karsten Henkel
- Brandenburgische Technische Universität Cottbus-Senftenberg , Angewandte Physik-Sensorik, K.-Wachsmann-Allee 17, 03046 Cottbus, Germany
| | - Dieter Schmeisser
- Brandenburgische Technische Universität Cottbus-Senftenberg , Angewandte Physik-Sensorik, K.-Wachsmann-Allee 17, 03046 Cottbus, Germany
| | - Dipankar Mandal
- Organic Nano-Piezoelectric Device Laboratory, Department of Physics Jadavpur University Kolkata700032, India
| |
Collapse
|
99
|
Panchbhai G, Singh WM, Das B, Jane RT, Thapper A. Mononuclear Iron Complexes with Tetraazadentate Ligands as Water Oxidation Catalysts. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600165] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gayatri Panchbhai
- Molecular Biomimetics; Department of Chemistry - Ångström Laboratory; Uppsala University; P. O. Box 523 75120 Uppsala Sweden
| | - Wangkheimayum Marjit Singh
- Molecular Biomimetics; Department of Chemistry - Ångström Laboratory; Uppsala University; P. O. Box 523 75120 Uppsala Sweden
| | - Biswanath Das
- Molecular Biomimetics; Department of Chemistry - Ångström Laboratory; Uppsala University; P. O. Box 523 75120 Uppsala Sweden
| | - Reuben T. Jane
- Molecular Biomimetics; Department of Chemistry - Ångström Laboratory; Uppsala University; P. O. Box 523 75120 Uppsala Sweden
| | - Anders Thapper
- Molecular Biomimetics; Department of Chemistry - Ångström Laboratory; Uppsala University; P. O. Box 523 75120 Uppsala Sweden
| |
Collapse
|
100
|
Bucci A, Menendez Rodriguez G, Bellachioma G, Zuccaccia C, Poater A, Cavallo L, Macchioni A. An Alternative Reaction Pathway for Iridium-Catalyzed Water Oxidation Driven by Cerium Ammonium Nitrate (CAN). ACS Catal 2016. [DOI: 10.1021/acscatal.6b01325] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alberto Bucci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di sotto, 8, I-06123 Perugia, Italy
| | - Gabriel Menendez Rodriguez
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di sotto, 8, I-06123 Perugia, Italy
| | - Gianfranco Bellachioma
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di sotto, 8, I-06123 Perugia, Italy
| | - Cristiano Zuccaccia
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di sotto, 8, I-06123 Perugia, Italy
| | - Albert Poater
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Catalonia, Spain
| | - Luigi Cavallo
- KAUST
Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alceo Macchioni
- Department
of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di sotto, 8, I-06123 Perugia, Italy
| |
Collapse
|