51
|
Teng CS, Cavin L, Maxson RE, Sánchez-Villagra MR, Crump JG. Resolving homology in the face of shifting germ layer origins: Lessons from a major skull vault boundary. eLife 2019; 8:e52814. [PMID: 31869306 PMCID: PMC6927740 DOI: 10.7554/elife.52814] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The vertebrate skull varies widely in shape, accommodating diverse strategies of feeding and predation. The braincase is composed of several flat bones that meet at flexible joints called sutures. Nearly all vertebrates have a prominent 'coronal' suture that separates the front and back of the skull. This suture can develop entirely within mesoderm-derived tissue, neural crest-derived tissue, or at the boundary of the two. Recent paleontological findings and genetic insights in non-mammalian model organisms serve to revise fundamental knowledge on the development and evolution of this suture. Growing evidence supports a decoupling of the germ layer origins of the mesenchyme that forms the calvarial bones from inductive signaling that establishes discrete bone centers. Changes in these relationships facilitate skull evolution and may create susceptibility to disease. These concepts provide a general framework for approaching issues of homology in cases where germ layer origins have shifted during evolution.
Collapse
Affiliation(s)
- Camilla S Teng
- Department of Stem Cell Biology and Regenerative MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Lionel Cavin
- Department of Earth SciencesNatural History Museum of GenevaGenevaSwitzerland
| | - Robert E Maxson
- Department of Biochemistry, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | | | - J Gage Crump
- Department of Stem Cell Biology and Regenerative MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
52
|
Topa A, Rohlin A, Andersson MK, Fehr A, Lovmar L, Stenman G, Kölby L. NGS targeted screening of 100 Scandinavian patients with coronal synostosis. Am J Med Genet A 2019; 182:348-356. [PMID: 31837199 DOI: 10.1002/ajmg.a.61427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Craniosynostosis (CS), the premature closure of one or more cranial sutures, occurs both as part of a syndrome or in isolation (nonsyndromic form). Here, we have studied the prevalence and spectrum of genetic alterations associated with coronal suture closure in 100 Scandinavian patients treated at a single craniofacial unit. All patients were phenotypically assessed and analyzed with a custom-designed 63 gene NGS-panel. Most cases (78%) were syndromic forms of CS. Pathogenic and likely pathogenic variants explaining the phenotype were found in 80% of the families with syndromic CS and in 14% of those with nonsyndromic CS. Sixty-five percent of the families had mutations in the CS core genes FGFR2, TWIST1, FGFR3, TCF12, EFNB1, FGFR1, and POR. Five novel pathogenic/likely pathogenic variants in TWIST1, TCF12, and EFNB1 were identified. We also found novel variants in SPECC1L, IGF1R, and CYP26B1 with a possible modulator phenotypic effect. Our findings demonstrate that NGS targeted sequencing is a powerful tool to detect pathogenic mutations in patients with coronal CS and further emphasize the importance of thorough assessment of the patient's phenotype for reliable interpretation of the molecular findings. This is particularly important in patients with complex phenotypes and rare forms of CS.
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias K Andersson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - André Fehr
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
53
|
Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 2019; 19:716-732. [PMID: 31666716 PMCID: PMC7055151 DOI: 10.1038/s41568-019-0213-x] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
Experimental evidence accumulated over decades has implicated epithelial-mesenchymal plasticity (EMP), which collectively encompasses epithelial-mesenchymal transition and the reverse process of mesenchymal-epithelial transition, in tumour metastasis, cancer stem cell generation and maintenance, and therapeutic resistance. However, the dynamic nature of EMP processes, the apparent need to reverse mesenchymal changes for the development of macrometastases and the likelihood that only minor cancer cell subpopulations exhibit EMP at any one time have made such evidence difficult to accrue in the clinical setting. In this Perspectives article, we outline the existing preclinical and clinical evidence for EMP and reflect on recent controversies, including the failure of initial lineage-tracing experiments to confirm a major role for EMP in dissemination, and discuss accumulating data suggesting that epithelial features and/or a hybrid epithelial-mesenchymal phenotype are important in metastasis. We also highlight strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis, with the view that this will yield a potent and broad class of therapeutic agents.
Collapse
Affiliation(s)
- Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Translational Research Institute (TRI), Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, Queensland, Australia
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology and Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Redfern
- Department of Medicine, School of Medicine, University of Western Australia, Fiona Stanley Hospital Campus, Perth, Western Australia, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.
| |
Collapse
|
54
|
Language Development, Hearing Loss, and Intracranial Hypertension in Children With TWIST1-Confirmed Saethre-Chotzen Syndrome. J Craniofac Surg 2019; 30:1506-1511. [PMID: 31299755 DOI: 10.1097/scs.0000000000005241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Saethre-Chotzen syndrome (SCS) is an autosomal dominant condition defined by mutations affecting the TWIST1 gene on chromosome 7p21.1. Previous research has identified an elevated prevalence of intracranial hypertension and hearing impairment associated with this syndrome. This study aimed to investigate the influence of hearing history and presence of intracranial hypertension on language development in children with SCS.A retrospective study note analysis was performed for all patients with a confirmed TWIST1 gene abnormality who attended the Oxford Craniofacial Unit and underwent a language assessment over a 22-year period. Intracranial pressure monitoring, hearing status, and language outcomes were examined in detail.Thirty patients with genetically confirmed SCS and language assessment data were identified. Twenty-eight patients underwent surgical intervention; 10 presented with intracranial hypertension (5 prior to, and 5 after primary surgical intervention). Language data coinciding with the presentation of intracranial hypertension were available for 8 children. About 44% of children with intracranial hypertension presented with concurrent receptive and expressive language delay (n = 4/8). For both children (n = 2) with longitudinal language data available, the onset of intracranial hypertension reflected a concurrent decline in language skills. Audiometric data were available for 25 children, 80% (n = 20/25) had a history of hearing loss. About 50% of these had confirmed conductive hearing loss with middle ear effusion and the other 50% had presumed conductive hearing loss with middle ear effusion. About 100% of the children with available hearing data in our study had evidence of middle ear effusion in at least 1 ear. Results also indicated that 43% (n = 13/30) of the children presented with receptive and/or expressive language delay during childhood.Given the importance of hearing for language development and the preliminary findings of a potential decline in language skills in children during periods of intracranial hypertension, regular follow-up of hearing, language, and intracranial hypertension are indicated in children with SCS.
Collapse
|
55
|
Armand T, Schaefer E, Di Rocco F, Edery P, Collet C, Rossi M. Genetic bases of craniosynostoses: An update. Neurochirurgie 2019; 65:196-201. [DOI: 10.1016/j.neuchi.2019.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022]
|
56
|
Yilmaz E, Mihci E, Nur B, Alper ÖM, Taçoy Ş. Recent Advances in Craniosynostosis. Pediatr Neurol 2019; 99:7-15. [PMID: 31421914 DOI: 10.1016/j.pediatrneurol.2019.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 12/25/2018] [Accepted: 01/24/2019] [Indexed: 12/27/2022]
Abstract
Craniosynostosis is a pathologic craniofacial disorder and is defined as the premature fusion of one or more cranial (calvarial) sutures. Cranial sutures are fibrous joints consisting of nonossified mesenchymal cells that play an important role in the development of healthy craniofacial skeletons. Early fusion of these sutures results in incomplete brain development that may lead to complications of several severe medical conditions including seizures, brain damage, mental delay, complex deformities, strabismus, and visual and breathing problems. As a congenital disease, craniosynostosis has a heterogeneous origin that can be affected by genetic and epigenetic alterations, teratogens, and environmental factors and make the syndrome highly complex. To date, approximately 200 syndromes have been linked to craniosynostosis. In addition to being part of a syndrome, craniosynostosis can be nonsyndromic, formed without any additional anomalies. More than 50 nuclear genes that relate to craniosynostosis have been identified. Besides genetic factors, epigenetic factors like microRNAs and mechanical forces also play important roles in suture fusion. As craniosynostosis is a multifactorial disorder, evaluating the craniosynostosis syndrome requires and depends on all the information obtained from clinical findings, genetic analysis, epigenetic or environmental factors, or gene modulators. In this review, we will focus on embryologic and genetic studies, as well as epigenetic and environmental studies. We will discuss published studies and correlate the findings with unknown aspects of craniofacial disorders.
Collapse
Affiliation(s)
- Elanur Yilmaz
- Department of Medical Biology and Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Ercan Mihci
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Banu Nur
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Özgül M Alper
- Department of Medical Biology and Genetics, Akdeniz University Medical School, Antalya, Turkey.
| | - Şükran Taçoy
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| |
Collapse
|
57
|
Wilderman A, VanOudenhove J, Kron J, Noonan JP, Cotney J. High-Resolution Epigenomic Atlas of Human Embryonic Craniofacial Development. Cell Rep 2019; 23:1581-1597. [PMID: 29719267 PMCID: PMC5965702 DOI: 10.1016/j.celrep.2018.03.129] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 11/29/2022] Open
Abstract
Defects in patterning during human embryonic development frequently result in craniofacial abnormalities. The gene regulatory programs that build the craniofacial complex are likely controlled by information located between genes and within intronic sequences. However, systematic identification of regulatory sequences important for forming the human face has not been performed. Here, we describe comprehensive epigenomic annotations from human embryonic craniofacial tissues and systematic comparisons with multiple tissues and cell types. We identified thousands of tissue-specific craniofacial regulatory sequences and likely causal regions for rare craniofacial abnormalities. We demonstrate significant enrichment of common variants associated with orofacial clefting in enhancers active early in embryonic development, while those associated with normal facial variation are enriched near the end of the embryonic period. These data are provided in easily accessible formats for both craniofacial researchers and clinicians to aid future experimental design and interpretation of noncoding variation in those affected by craniofacial abnormalities.
Collapse
Affiliation(s)
- Andrea Wilderman
- Graduate Program in Genetics and Developmental Biology, UConn Health, Farmington, CT 06030, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | | | - Jeffrey Kron
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - James P Noonan
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Justin Cotney
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
58
|
TWIST1 Heterodimerization with E12 Requires Coordinated Protein Phosphorylation to Regulate Periostin Expression. Cancers (Basel) 2019; 11:cancers11091392. [PMID: 31540485 PMCID: PMC6770789 DOI: 10.3390/cancers11091392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 11/16/2022] Open
Abstract
Diffuse invasion into adjacent brain matter by glioblastoma (GBM) is largely responsible for their dismal prognosis. Previously, we showed that the TWIST1 (TW) bHLH transcription factor and its regulated gene periostin (POSTN) promote invasive phenotypes of GBM cells. Since TW functional effects are regulated by phosphorylation and dimerization, we investigated how phosphorylation of serine 68 in TW regulates TW dimerization, POSTN expression, and invasion in glioma cells. Compared with wild-type TW, the hypophosphorylation mutant, TW(S68A), impaired TW heterodimerization with the E12 bHLH transcription factor and cell invasion in vitro but had no effect on TW homodimerization. Overexpression of TW:E12 forced dimerization constructs (FDCs) increased glioma cell invasion and upregulated pro-invasive proteins, including POSTN, in concert with cytoskeletal reorganization. By contrast, TW:TW homodimer FDCs inhibited POSTN expression and cell invasion in vitro. Further, phosphorylation of analogous PXSP phosphorylation sites in TW:E12 FDCs (TW S68 and E12 S139) coordinately regulated POSTN and PDGFRa mRNA expression. These results suggested that TW regulates pro-invasive phenotypes in part through coordinated phosphorylation events in TW and E12 that promote heterodimer formation and regulate downstream targets. This new mechanistic understanding provides potential therapeutic strategies to inhibit TW-POSTN signaling in GBM and other cancers.
Collapse
|
59
|
TCF12 overexpression as a poor prognostic factor in ovarian cancer. Pathol Res Pract 2019; 215:152527. [DOI: 10.1016/j.prp.2019.152527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 02/03/2023]
|
60
|
Cheng H, Gottlieb L, Marchi E, Kleyner R, Bhardwaj P, Rope AF, Rosenheck S, Moutton S, Philippe C, Eyaid W, Alkuraya FS, Toribio J, Mena R, Prada CE, Stessman H, Bernier R, Wermuth M, Kauffmann B, Blaumeiser B, Kooy RF, Baralle D, Mancini GMS, Conway SJ, Xia F, Chen Z, Meng L, Mihajlovic L, Marmorstein R, Lyon GJ. Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15. Hum Mol Genet 2019; 28:2900-2919. [PMID: 31127942 PMCID: PMC6736318 DOI: 10.1093/hmg/ddz111] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.
Collapse
Affiliation(s)
- Hanyin Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leah Gottlieb
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Robert Kleyner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Puja Bhardwaj
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Alan F Rope
- Kaiser Permanente Center for Health Research, Portland, OR 97227, USA
- Genome Medical, South San Francisco, CA 94080, USA
| | - Sarah Rosenheck
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Sébastien Moutton
- Reference Center for Developmental Anomalies, Department of Medical Genetics, Dijon University Hospital, Dijon, France
- Génétique des Anomalies du développement, INSERM U1231, Lipides Nutrition et Cancer, UMR1231, Université de Bourgogne, F-21000, Dijon 21070, France
| | - Christophe Philippe
- Génétique des Anomalies du développement, INSERM U1231, Lipides Nutrition et Cancer, UMR1231, Université de Bourgogne, F-21000, Dijon 21070, France
- Laboratoire de Génétique, Innovation Diagnostic Génomique des Maladies Rares UF6254, Plate-forme de Biologie Hospitalo-Universitaire, Centre Hospitalier Universitaire, Dijon 21070, France
| | - Wafaa Eyaid
- King Abdulaziz Medical City, King Saud Bin AbdulAziz University—Health Science, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Janet Toribio
- Division of Cardiology, CEDIMAT, Santo Domingo 51000, Dominican Republic
| | - Rafael Mena
- Neonatal Intensive Care Unit, Centro de Obstetricia y Ginecologia, Santo Domingo, Dominican Republic
- Division Of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Holly Stessman
- Department of Pharmacology, Creighton University Medical School, Omaha, NE 68178, USA
| | - Raphael Bernier
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Marieke Wermuth
- Klinik für Kinder-und Jugendmedizin, Neuropädiatrie, Klinikum Links der Weser, Senator-Weβling-Str.1. in 28211 Bremen, Germany
| | - Birgit Kauffmann
- Klinik für Kinder-und Jugendmedizin, Neuropädiatrie, Klinikum Links der Weser, Senator-Weβling-Str.1. in 28211 Bremen, Germany
| | | | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 5YA, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Zhao Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | | | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
61
|
Abstract
The formation of the cranial sutures, in utero, occurs when the ossification of the skull bones reaches predestined positions around gestational week 15 to 20. Craniosynostosis, and the consequent skull shape deformities, is treated with surgery including osteotomies of the fused sutures. The occasional appearance of a new suture in the osteotomy lines has previously been described as sporadic events. In this retrospective study, a 4-year consecutive series of osteotomies combined with springs for craniosynostosis were systematically analysed regarding the appearance of neosutures. In total, 84 patients were included and in 16 patients (19%) a new radiologically normal suture appeared in a part of the suture that was completely closed preoperatively. Additionally, in 7 patients (8%) a new suture appeared in a part of the suture that had a discernible suture prior to surgery.In conclusion, in this consecutive and well-defined patient cohort operated for craniosynostosis, the formation of a neosuture is not a rare, and speculatively not a random, event. The appearance of a new suture long after the normal time period for suture formation in utero indicates that the craniosynostosis may just as well be caused by disturbed formation of the suture as actual premature closure.
Collapse
Affiliation(s)
- Karin Säljö
- Department of Plastic Surgery, Sahlgrenska University Hospital, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
62
|
Goos JAC, Vogel WK, Mlcochova H, Millard CJ, Esfandiari E, Selman WH, Calpena E, Koelling N, Carpenter EL, Swagemakers SMA, van der Spek PJ, Filtz TM, Schwabe JWR, Iwaniec UT, Mathijssen IMJ, Leid M, Twigg SRF. A de novo substitution in BCL11B leads to loss of interaction with transcriptional complexes and craniosynostosis. Hum Mol Genet 2019; 28:2501-2513. [PMID: 31067316 PMCID: PMC6644156 DOI: 10.1093/hmg/ddz072] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Departments of Plastic and Reconstructive Surgery and Hand Surgery
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Walter K Vogel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Hana Mlcochova
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Christopher J Millard
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Elahe Esfandiari
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Wisam H Selman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nils Koelling
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Evan L Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Sigrid M A Swagemakers
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Peter J van der Spek
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - John W R Schwabe
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR, USA
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
63
|
Yilmaz E, Mihci E, Nur B, Alper OM. Coronal craniosynostosis due to TCF12 mutations in patients from Turkey. Am J Med Genet A 2019; 179:2241-2245. [PMID: 31353793 DOI: 10.1002/ajmg.a.61311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 12/30/2022]
Abstract
Craniosynostosis consists of premature fusion of one or more cranial sutures and can be seen as part of a syndrome or diagnosed as nonsyndromic (isolated). Although more than 180 craniosynostosis syndromes have been identified, 70% of the cases are diagnosed as nonsyndromic. On the other hand, genetic causes of the cases are mostly unknown and the overall frequency of the genetic diagnosis is around 25%. In this study, we used targeted Next Generation Sequencing (NGS) analysis to identify the genetic variations of two craniosynostosis cases. We have identified two different truncating mutations, a known NM_207036.1:c.778_779delAT;p.(Met260Valfs*5) and a novel NM_207036.1:c.1102_1108delTCACCTC;p.(Pro369Glnfs*26) TCF12 variants. Additionally, upon physical examination of these two cases, we have observed some shared clinical similarities as well as differences such as bilateral simian crease and hidden cleft palate. This is the first study that reports the TCF12 mutations in Turkish patients with coronal suture synostosis.
Collapse
Affiliation(s)
- Elanur Yilmaz
- Department of Medical Biology and Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Ercan Mihci
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Banu Nur
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Ozgul M Alper
- Department of Medical Biology and Genetics, Akdeniz University Medical School, Antalya, Turkey
| |
Collapse
|
64
|
On the traces of tcf12: Investigation of the gene expression pattern during development and cranial suture patterning in zebrafish (Danio rerio). PLoS One 2019; 14:e0218286. [PMID: 31188878 PMCID: PMC6561585 DOI: 10.1371/journal.pone.0218286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
The transcription factor 12 (tcf12) is a basic Helix-Loop-Helix protein (bHLH) of the E-protein family, proven to play an important role in developmental processes like neurogenesis, mesoderm formation, and cranial vault development. In humans, mutations in TCF12 lead to craniosynostosis, a congenital birth disorder characterized by the premature fusion of one or several of the cranial sutures. Current research has been primarily focused on functional studies of TCF12, hence the cellular expression profile of this gene during embryonic development and early stages of ossification remains poorly understood. Here we present the establishment and detailed analysis of two transgenic tcf12:EGFP fluorescent zebrafish (Danio rerio) reporter lines. Using these transgenic lines, we analyzed the general spatiotemporal expression pattern of tcf12 during different developmental stages and put emphasis on skeletal development and cranial suture patterning. We identified robust tcf12 promoter-driven EGFP expression in the central nervous system (CNS), the heart, the pronephros, and the somites of zebrafish embryos. Additionally, expression was observed inside the muscles and bones of the viscerocranium in juvenile and adult fish. During cranial vault development, the transgenic fish show a high amount of tcf12 expressing cells at the growth fronts of the ossifying frontal and parietal bones and inside the emerging cranial sutures. Subsequently, we tested the transcriptional activity of three evolutionary conserved non-coding elements (CNEs) located in the tcf12 locus by transient transgenic assays and compared their in vivo activity to the expression pattern determined in the transgenic tcf12:EGFP lines. We could validate two of them as tcf12 enhancer elements driving specific gene expression in the CNS during embryogenesis. Our newly established transgenic lines enhance the understanding of tcf12 gene regulation and open up the possibilities for further functional investigation of these novel tcf12 enhancer elements in zebrafish.
Collapse
|
65
|
Abstract
Management strategies for syndromic craniosynostosis patients require multidisciplinary subspecialty teams to provide optimal care for complex reconstructive approaches. The most common craniosynostosis syndromes include Apert (FGFR2), Crouzon (FGFR2), Muenke (FGFR3), Pfeiffer (FGFR1 and FGFR2), and Saethre-Chotzen (TWIST). Bicoronal craniosynostosis (turribrachycephaly) is most commonly associated with syndromic craniosynostosis. Disease presentation varies from mild sutural involvement to severe pansynostoses, with a spectrum of extracraniofacial dysmorphic manifestations. Understanding the multifaceted syndromic presentations while appreciating the panoply of variable presentations is central to delivering necessary individualized care. Cranial vault remodeling aims to relieve restriction of cranial development and elevated intracranial pressure and restore normal morphology.
Collapse
Affiliation(s)
- Rajendra Sawh-Martinez
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University, 330 Cedar Street, Boardman Building, 3rd Floor, New Haven, CT 06511, USA
| | - Derek M Steinbacher
- Section of Plastic and Reconstructive Surgery, Oral and Maxillofacial Surgery, Department of Surgery, Yale-New Haven Hospital, Yale University, 330 Cedar Street, Boardman Building, 3rd Floor, New Haven, CT 06511, USA.
| |
Collapse
|
66
|
Glass GE, O'Hara J, Canham N, Cilliers D, Dunaway D, Fenwick AL, Jeelani N, Johnson D, Lester T, Lord H, Morton JEV, Nishikawa H, Noons P, Schwiebert K, Shipster C, Taylor‐Beadling A, Twigg SRF, Vasudevan P, Wall SA, Wilkie AOM, Wilson LC. ERF-related craniosynostosis: The phenotypic and developmental profile of a new craniosynostosis syndrome. Am J Med Genet A 2019; 179:615-627. [PMID: 30758909 PMCID: PMC6491982 DOI: 10.1002/ajmg.a.61073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/20/2018] [Accepted: 12/24/2018] [Indexed: 12/25/2022]
Abstract
Mutations in the ERF gene, coding for ETS2 repressor factor, a member of the ETS family of transcription factors cause a recently recognized syndromic form of craniosynostosis (CRS4) with facial dysmorphism, Chiari-1 malformation, speech and language delay, and learning difficulties and/or behavioral problems. The overall prevalence of ERF mutations in patients with syndromic craniosynostosis is around 2%, and 0.7% in clinically nonsyndromic craniosynostosis. Here, we present findings from 16 unrelated probands with ERF-related craniosynostosis, with additional data from 20 family members sharing the mutations. Most of the probands exhibited multisutural (including pan-) synostosis but a pattern involving the sagittal and lambdoid sutures (Mercedes-Benz pattern) predominated. Importantly the craniosynostosis was often postnatal in onset, insidious and progressive with subtle effects on head morphology resulting in a median age at presentation of 42 months among the probands and, in some instances, permanent visual impairment due to unsuspected raised intracranial pressure (ICP). Facial dysmorphism (exhibited by all of the probands and many of the affected relatives) took the form of orbital hypertelorism, mild exorbitism and malar hypoplasia resembling Crouzon syndrome but, importantly, a Class I occlusal relationship. Speech delay, poor gross and/or fine motor control, hyperactivity and poor concentration were common. Cranial vault surgery for raised ICP and/or Chiari-1 malformation was expected when multisutural synostosis was observed. Variable expressivity and nonpenetrance among genetically affected relatives was encountered. These observations form the most complete phenotypic and developmental profile of this recently identified craniosynostosis syndrome yet described and have important implications for surgical intervention and follow-up.
Collapse
Affiliation(s)
- Graeme E. Glass
- Department of SurgerySidra MedicineDohaQatar
- Division of Clinical SurgeryWeill Cornell Medical CollegeDohaQatar
| | - Justine O'Hara
- Department of Craniofacial SurgeryGreat Ormond Street HospitalLondonUnited Kingdom
| | - Natalie Canham
- North West Thames Regional Genetics Service, Kennedy Galton CentreNorthwick Park and St. Mark's HospitalsHarrowUnited Kingdom
| | - Deirdre Cilliers
- Clinical Genetics Service, Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation Trust, Nuffield Orthopedic CentreOxfordUnited Kingdom
| | - David Dunaway
- Department of Craniofacial SurgeryGreat Ormond Street HospitalLondonUnited Kingdom
| | - Aimee L. Fenwick
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Noor‐Owase Jeelani
- Department of SurgerySidra MedicineDohaQatar
- Department of Craniofacial SurgeryGreat Ormond Street HospitalLondonUnited Kingdom
| | - David Johnson
- Craniofacial Unit, Department of Plastic and Reconstructive SurgeryOxford University Hospitals NHS Trust, John Radcliffe HospitalOxfordUnited Kingdom
| | - Tracy Lester
- Oxford Genetics LaboratoriesOxford University Hospitals NHS Foundation Trust, The Churchill HospitalOxfordUnited Kingdom
| | - Helen Lord
- Oxford Genetics LaboratoriesOxford University Hospitals NHS Foundation Trust, The Churchill HospitalOxfordUnited Kingdom
| | - Jenny E. V. Morton
- Department of Clinical GeneticsWest Midlands Regional Clinical Genetics Service and Birmingham Health PartnersBirminghamUnited Kingdom
- Department of Clinical GeneticsBirmingham Women's and Children's Hospitals, NHS Foundation TrustBirminghamUnited Kingdom
| | - Hiroshi Nishikawa
- Department of Craniofacial SurgeryBirmingham Children's HospitalBirminghamUnited Kingdom
| | - Peter Noons
- Department of Clinical GeneticsWest Midlands Regional Clinical Genetics Service and Birmingham Health PartnersBirminghamUnited Kingdom
- Department of Clinical GeneticsBirmingham Women's and Children's Hospitals, NHS Foundation TrustBirminghamUnited Kingdom
| | - Kemmy Schwiebert
- Department of Clinical & Academic OphthalmologyGreat Ormond Street HospitalLondonUnited Kingdom
| | - Caroleen Shipster
- Department of Craniofacial SurgeryGreat Ormond Street HospitalLondonUnited Kingdom
| | - Alison Taylor‐Beadling
- Molecular Genetics Laboratory, North East Thames Regional Genetics ServiceGreat Ormond Street HospitalLondonUnited Kingdom
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Pradeep Vasudevan
- Department of Clinical GeneticsUniversity Hospitals of Leicester, Glenfield HospitalLeicesterUnited Kingdom
| | - Steven A. Wall
- Craniofacial Unit, Department of Plastic and Reconstructive SurgeryOxford University Hospitals NHS Trust, John Radcliffe HospitalOxfordUnited Kingdom
| | - Andrew O. M. Wilkie
- Clinical Genetics Service, Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation Trust, Nuffield Orthopedic CentreOxfordUnited Kingdom
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
- Craniofacial Unit, Department of Plastic and Reconstructive SurgeryOxford University Hospitals NHS Trust, John Radcliffe HospitalOxfordUnited Kingdom
| | - Louise C. Wilson
- Clinical Genetics ServiceGreat Ormond Street HospitalLondonUnited Kingdom
| |
Collapse
|
67
|
Goumenos A, Tsoutsou E, Traeger-Synodinos J, Petychakis D, Gavra M, Kolialexi A, Frysira H. Two novel variants in the TCF12 gene identified in cases with craniosynostosis. APPLICATION OF CLINICAL GENETICS 2019; 12:19-25. [PMID: 30858722 PMCID: PMC6385741 DOI: 10.2147/tacg.s190855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Craniosynostosis (CS) is a condition where one or more of the cranial sutures fuse prematurely. It affects almost 1/2,000 newborns, and includes both syndromic and non-syndromic cases. To date, variants in over 70 different genes have been associated with the expression of CS. In this report, we describe two unrelated cases that presented with coronal CS. TCF12 sequencing analysis revealed novel frameshift nucleotide variants, which were evaluated as pathogenic according to the current guidelines for interpreting sequence variants. These findings expand the spectrum of TCF12 gene variants related with CS and support the importance of screening for such variants in patients with coronal synostosis.
Collapse
Affiliation(s)
- Athanasios Goumenos
- Choremio Research Laboratory, Department of Medical Genetics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece,
| | - Eirini Tsoutsou
- Choremio Research Laboratory, Department of Medical Genetics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece,
| | - Joanne Traeger-Synodinos
- Choremio Research Laboratory, Department of Medical Genetics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece,
| | - Dimitrios Petychakis
- Choremio Research Laboratory, Department of Medical Genetics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece, .,Department of Pediatric Haematology-Oncology, Agia Sophia Children's Hospital, Athens, Greece
| | - Maria Gavra
- CT, MRI & PET/CT Department, Agia Sophia Children's Hospital, Athens, Greece
| | - Aggeliki Kolialexi
- Choremio Research Laboratory, Department of Medical Genetics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece,
| | - Helena Frysira
- Choremio Research Laboratory, Department of Medical Genetics, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece,
| |
Collapse
|
68
|
A systematic approach in the diagnosis of paediatric skull lesions: what radiologists need to know. Pol J Radiol 2019; 84:e92-e111. [PMID: 31019602 PMCID: PMC6479152 DOI: 10.5114/pjr.2019.83101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Paediatric skull lesions are commonly identified on imaging. They can be challenging to image, given their location and size, and often require several imaging modalities to narrow down the differential diagnosis. Accurate diagnosis of these lesions is paramount because the clinical therapy can vary tremendously. In this review, we provide a simple and systematic approach to clinical-radiological features of primary skull lesions. We highlight the imaging characteristics and differentiate pathologies based on imaging appearances. We also accentuate the role of cross-sectional imaging in lesion identification and management implications.
Collapse
|
69
|
O'Hara J, Ruggiero F, Wilson L, James G, Glass G, Jeelani O, Ong J, Bowman R, Wyatt M, Evans R, Samuels M, Hayward R, Dunaway DJ. Syndromic Craniosynostosis: Complexities of Clinical Care. Mol Syndromol 2019; 10:83-97. [PMID: 30976282 DOI: 10.1159/000495739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Patients with syndromic craniosynostosis have a molecularly identified genetic cause for the premature closure of their cranial sutures and associated facial and extra-cranial features. Their clinical complexity demands comprehensive management by an extensive multidisciplinary team. This review aims to marry genotypic and phenotypic knowledge with clinical presentation and management of the craniofacial syndromes presenting most frequently to the craniofacial unit at Great Ormond Street Hospital for Children NHS Foundation Trust.
Collapse
Affiliation(s)
- Justine O'Hara
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Federica Ruggiero
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Louise Wilson
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Greg James
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Graeme Glass
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Owase Jeelani
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Juling Ong
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Richard Bowman
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Michelle Wyatt
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Robert Evans
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Martin Samuels
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Richard Hayward
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - David J Dunaway
- Great Ormond Street Craniofacial Unit, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Trust, London, UK
| |
Collapse
|
70
|
Wu X, Gu Y. Signaling Mechanisms Underlying Genetic Pathophysiology of Craniosynostosis. Int J Biol Sci 2019; 15:298-311. [PMID: 30745822 PMCID: PMC6367540 DOI: 10.7150/ijbs.29183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis, is the premature fusion of one or more cranial sutures which is the second most common cranial facial anomalies. The premature cranial sutures leads to deformity of skull shape and restricts the growth of brain, which might elicit severe neurologic damage. Craniosynostosis exhibit close correlations with a varieties of syndromes. During the past two decades, as the appliance of high throughput DNA sequencing techniques, steady progresses has been made in identifying gene mutations in both syndromic and nonsyndromic cases, which allow researchers to better understanding the genetic roles in the development of cranial vault. As the enrichment of known mutations involved in the pathogenic of premature sutures fusion, multiple signaling pathways have been investigated to dissect the underlying mechanisms beneath the disease. In addition to genetic etiology, environment factors, especially mechanics, have also been proposed to have vital roles during the pathophysiological of craniosynostosis. However, the influence of mechanics factors in the cranial development remains largely unknown. In this review, we present a brief overview of the updated genetic mutations and environmental factors identified in both syndromic and nonsyndromic craniosynostosis. Furthermore, potential molecular signaling pathways and its relations have been described.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| |
Collapse
|
71
|
Abstract
Occurring once in every 2000 live births, craniosynostosis is one of the most frequent congenital anomalies encountered by the craniofacial surgeon. Syndromic craniosynostoses account for approximately 15 percent of cases and demonstrate Mendelian patterns of inheritance with well-established genetic causes; however, nonsyndromic craniosynostoses, which account for approximately 85 percent of cases, are genetically heterogeneous and largely unexplored. Nonsyndromic craniosynostosis is sporadic in more than 95 percent of affected families; thus, surgeons have suggested for decades that nonsyndromic craniosynostosis is likely a fluke occurrence. Contrary to this, recent studies have established that genetics underlie a substantial fraction of nonsyndromic craniosynostosis risk. Given the predominantly sporadic occurrence of disease, parents are often bewildered by the primary occurrence of nonsyndromic craniosynostosis or even recurrence in their own families and request genetic testing. Existing genetic testing panels are useful when the phenotype strongly resembles a known syndrome, wherein the risk of disease recurrence can be accurately predicted for future offspring of the parents and the future offspring of the affected child. The diagnostic utility of existing panels for nonsyndromic craniosynostosis, however, is extremely low, and these tests are quite costly. Recent genetic studies have identified several novel genes and pathways that cause nonsyndromic craniosynostosis, providing genetic evidence linking the causes of syndromic and nonsyndromic craniosynostoses, and allowing for genotype-based prediction of risk of recurrence in some nonsyndromic families. Based on analysis of exome sequence data from 384 families, the authors provide recommendations for a new genetic testing protocol for children with nonsyndromic craniosynostosis, which include testing nonsyndromic cases of sagittal, metopic, and coronal craniosynostosis.
Collapse
|
72
|
Deviating dental arch morphology in mild coronal craniosynostosis syndromes. Clin Oral Investig 2018; 23:2995-3003. [PMID: 30392078 PMCID: PMC7398388 DOI: 10.1007/s00784-018-2710-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/17/2018] [Indexed: 11/21/2022]
Abstract
Objectives To determine whether the intramaxillary relationship of patients with Muenke syndrome and Saethre-Chotzen syndrome or TCF12-related craniosynostosis are systematically different than those of a control group. Material and methods Forty-eight patients (34 patients with Muenke syndrome, 8 patients with Saethre-Chotzen syndrome, and 6 patients with TCF12-related craniosynostosis) born between 1982 and 2010 (age range 4.84 to 16.83 years) that were treated at the Department of Oral Maxillofacial Surgery, Special Dental Care and Orthodontics, Children’s Hospital Erasmus University Medical Center, Sophia, Rotterdam, the Netherlands, were included. Forty-seven syndromic patients had undergone one craniofacial surgery according to the craniofacial team protocol. The dental arch measurements intercanine width (ICW), intermolar width (IMW), arch depth (AD), and arch length (AL) were calculated. The control group existed of 329 nonsyndromic children. Results All dental arch dimensions in Muenke (ICW, IMW, AL, p < 0.001, ADmax, p = 0.008; ADman, p = 0.002), Saethre-Chotzen syndrome, or TCF12-related craniosynostosis patients (ICWmax, p = 0.005; ICWman, IMWmax, AL, p < 0.001) were statistically significantly smaller than those of the control group. Conclusions In this study, we showed that the dental arches of the maxilla and the mandible of patients with Muenke syndrome and Saethre-Chotzen syndrome or TCF12-related craniosynostosis are smaller compared to those of a control group. Clinical relevance To gain better understanding of the sutural involvement in the midface and support treatment capabilities of medical and dental specialists in these patients, we suggest the concentration of patients with Muenke and Saethre-Chotzen syndromes or TCF12-related craniosynostosis in specialized teams for a multi-disciplinary approach and treatment.
Collapse
|
73
|
Teng CS, Ting MC, Farmer DT, Brockop M, Maxson RE, Crump JG. Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen syndrome. eLife 2018; 7:37024. [PMID: 30375332 PMCID: PMC6207424 DOI: 10.7554/elife.37024] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023] Open
Abstract
Cranial sutures separate the skull bones and house stem cells for bone growth and repair. In Saethre-Chotzen syndrome, mutations in TCF12 or TWIST1 ablate a specific suture, the coronal. This suture forms at a neural-crest/mesoderm interface in mammals and a mesoderm/mesoderm interface in zebrafish. Despite this difference, we show that combinatorial loss of TCF12 and TWIST1 homologs in zebrafish also results in specific loss of the coronal suture. Sequential bone staining reveals an initial, directional acceleration of bone production in the mutant skull, with subsequent localized stalling of bone growth prefiguring coronal suture loss. Mouse genetics further reveal requirements for Twist1 and Tcf12 in both the frontal and parietal bones for suture patency, and to maintain putative progenitors in the coronal region. These findings reveal conservation of coronal suture formation despite evolutionary shifts in embryonic origins, and suggest that the coronal suture might be especially susceptible to imbalances in progenitor maintenance and osteoblast differentiation. Some of the most common birth defects involve improper development of the head and face. One such birth defect is called craniosynostosis. Normally, an infant’s skull bones are not fully fused together. Instead, they are held together by soft tissue that allows the baby’s skull to more easily pass through the birth canal. This tissue also houses specialized cells called stem cells that allow the brain and skull to grow with the child. But in craniosynostosis these stem cells behave abnormally, which fuses the skull bones together and prevents the skull and brain from growing properly during childhood. One form of craniosynostosis called Saethre-Chotzen syndrome is caused by mutations in one of two genes that ensure the proper separation of two bones in the roof of the skull. Mice with mutations in the mouse versions of these genes develop the same problem and are used to study this condition. Mouse studies have looked mostly at what happens after birth. Studies looking at what happens in embryos with these mutations could help scientists learn more. One way to do so would be to genetically engineer zebrafish with the equivalent mutations. This is because zebrafish embryos are transparent and grow outside their mother’s body, making it easier for scientists to watch them develop. Now, Teng et al. have grown zebrafish with mutations in the zebrafish versions of the genes that cause Saethre-Chotzen syndrome. In the experiments, imaging tools were used to observe the live fish as they developed. This showed that the stem cells in their skulls become abnormal much earlier than previous studies had suggested. Teng et al. also showed that similar stem cells are responsible for growth of the skull in zebrafish and mice. Babies with craniosynostosis often need multiple, risky surgeries to separate their skull bones and allow their brain and head to grow. Unfortunately, these bones often fuse again because they have abnormal stem cells. Teng et al. provide new information on what goes wrong in these stem cells. Hopefully, this new information will help scientists to one day correct the defective stem cells in babies with craniosynostosis, thus reducing the number of surgeries needed to correct the problem.
Collapse
Affiliation(s)
- Camilla S Teng
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States.,Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Man-Chun Ting
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - D'Juan T Farmer
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
| | - Mia Brockop
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Robert E Maxson
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, United States
| |
Collapse
|
74
|
Chivoret N, Arnaud E, Giraudat K, O'Brien F, Pamphile L, Meyer P, Renier D, Collet C, Di Rocco F. Bilambdoid and sagittal synostosis: Report of 39 cases. Surg Neurol Int 2018; 9:206. [PMID: 30386676 PMCID: PMC6194734 DOI: 10.4103/sni.sni_454_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 11/07/2022] Open
Abstract
Background: Bilambdoid and sagittal synostosis (BLSS), also called “Mercedes Benz synostosis,” is a multisutural craniosynostosis that has been described as a specific entity. However, this synostotic pattern can also be found in syndromic craniostenosis. To better define this entity we reviewed our experience with bilambdoid and sagittal synostosis. Methods: We searched our prospective database for cases of bilambdoid and sagittal synostosis among all types of craniosynostosis. Two groups were distinguished – patients with isolated BLSS and the group of syndromic craniostenosis for whom BLSS was observed at initial presentation. We reviewed the clinical findings, associated diseases, and their management specifically for isolated BLSS patients. Results: Thirty-nine patients were diagnosed with bilambdoid and sagittal synostosis among 4250 cases of craniosynostosis treated in our department over a period of 42 years. Among them, 8 were finally diagnosed as Crouzon syndrome. Of the 31 patients identified with isolated bilambdoid and sagittal synostosis, 25 (81%) were males and 6 (19%) were females. The average age at diagnosis was 17 months. At diagnosis, 16% of the population presented with papillary edema and 58% posterior digitate impressions. Two types of craniofacial dysmorphy were observed – a pattern with narrow occiput (71% of cases) and a pattern with dolichocephaly (29% of cases). Cerebellar tonsillar herniation was the most frequently associated malformation (61% of the isolated BLSS). Surgical management evolved during the years, and several surgical techniques were used to treat patients with BLSS, including isolated biparietal vault remodeling, posterior vault remodelling, and posterior vault expansion with internal or external distraction. In some cases, a craniocervical junction decompression was also performed. The mean follow-up was 82 months (7 years). The overall mental development was within normal limits in most children, but a mental delay was found in 25%. Conclusion: Bilambdoid and sagittal synostosis constitute an isolated entity in almost 80% of the cases, whereas in the remaining 20% it is part of a faciocraniosynostosis syndrome. Two phenotypes may be found. Early surgical management is indicated, and several techniques can be used in this heterogeneous population. A cerebellar tonsillar prolapse is present in a majority of cases.
Collapse
Affiliation(s)
- Nathalie Chivoret
- Craniofacial Unit, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Paris, France
| | - Eric Arnaud
- Craniofacial Unit, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Paris, France
| | - Kim Giraudat
- Craniofacial Unit, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Paris, France
| | - Frazer O'Brien
- Craniofacial Unit, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Paris, France
| | - Leslie Pamphile
- Craniofacial Unit, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Paris, France
| | - Philippe Meyer
- Department of Anesthesia, Hôpital Necker-Enfants Malades, Paris, France
| | - Dominique Renier
- Craniofacial Unit, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Paris, France
| | - C Collet
- Service de Biochimie, Hôpital Lariboisière, APHP, Paris, France
| | - Federico Di Rocco
- Craniofacial Unit, Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
75
|
Zhou Y, Koelling N, Fenwick AL, McGowan SJ, Calpena E, Wall SA, Smithson SF, Wilkie AO, Twigg SR. Disruption of TWIST1 translation by 5' UTR variants in Saethre-Chotzen syndrome. Hum Mutat 2018; 39:1360-1365. [PMID: 30040876 PMCID: PMC6175480 DOI: 10.1002/humu.23598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 11/24/2022]
Abstract
Saethre-Chotzen syndrome (SCS), one of the most common forms of syndromic craniosynostosis (premature fusion of the cranial sutures), results from haploinsufficiency of TWIST1, caused by deletions of the entire gene or loss-of-function variants within the coding region. To determine whether non-coding variants also contribute to SCS, we screened 14 genetically undiagnosed SCS patients using targeted capture sequencing, and identified novel single nucleotide variants (SNVs) in the 5' untranslated region (UTR) of TWIST1 in two unrelated SCS cases. We show experimentally that these variants, which create translation start sites in the TWIST1 leader sequence, reduce translation from the main open reading frame (mORF). This is the first demonstration that non-coding SNVs of TWIST1 can cause SCS, and highlights the importance of screening the 5' UTR in clinically diagnosed SCS patients without a coding mutation. Similar 5' UTR variants, particularly of haploinsufficient genes, may represent an under-ascertained cause of monogenic disease.
Collapse
Affiliation(s)
- Yan Zhou
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Nils Koelling
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Aimée L. Fenwick
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Simon J. McGowan
- Analysis, Visualisation and Informatics Group, MRC WIMM Centre for Computational BiologyMRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Steven A. Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Sarah F. Smithson
- Department of Clinical Genetics, St Michaels Hospital & School of Clinical SciencesUniversity of BristolBristolUK
| | - Andrew O.M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Stephen R.F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
76
|
Abstract
In 1993, Jabs et al. were the first to describe a genetic origin of craniosynostosis. Since this discovery, the genetic causes of the most common syndromes have been described. In 2015, a total of 57 human genes were reported for which there had been evidence that mutations were causally related to craniosynostosis. Facilitated by rapid technological developments, many others have been identified since then. Reviewing the literature, we characterize the most common craniosynostosis syndromes followed by a description of the novel causes that were identified between January 2015 and December 2017.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
77
|
Abstract
Craniosynostosis is a common craniofacial birth defect. This review focusses on the advances that have been achieved through studying the pathogenesis of craniosynostosis using mouse models. Classic methods of gene targeting which generate individual gene knockout models have successfully identified numerous genes required for normal development of the skull bones and sutures. However, the study of syndromic craniosynostosis has largely benefited from the production of knockin models that precisely mimic human mutations. These have allowed the detailed investigation of downstream events at the cellular and molecular level following otherwise unpredictable gain-of-function effects. This has greatly enhanced our understanding of the pathogenesis of this disease and has the potential to translate into improvement of the clinical management of this condition in the future.
Collapse
Affiliation(s)
- Kevin K L Lee
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philip Stanier
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Erwin Pauws
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
78
|
Abstract
Craniosynostosis refers to a condition during early development in which one or more of the fibrous sutures of the skull prematurely fuse by turning into bone, which produces recognizable patterns of cranial shape malformations depending on which suture(s) are affected. In addition to cases with isolated cranial dysmorphologies, craniosynostosis appears in syndromes that include skeletal features of the eyes, nose, palate, hands, and feet as well as impairment of vision, hearing, and intellectual development. Approximately 85% of the cases are nonsyndromic sporadic and emerge after de novo structural genome rearrangements or single nucleotide variation, while the remainders consist of syndromic cases following mendelian inheritance. By karyotyping, genome wide linkage, and CNV analyses as well as by whole exome and whole genome sequencing, numerous candidate genes for craniosynostosis belonging to the FGF, Wnt, BMP, Ras/ERK, ephrin, hedgehog, STAT, and retinoic acid signaling pathways have been identified. Many of the craniosynostosis-related candidate genes form a functional network based upon protein-protein or protein-DNA interactions. Depending on which node of this craniosynostosis-related network is affected by a gene mutation or a change in gene expression pattern, a distinct craniosynostosis syndrome or set of phenotypes ensues. Structural variations may alter the dosage of one or several genes or disrupt the genomic architecture of genes and their regulatory elements within topologically associated chromatin domains. These may exert dominant effects by either haploinsufficiency, dominant negative partial loss of function, gain of function, epistatic interaction, or alteration of levels and patterns of gene expression during development. Molecular mechanisms of dominant modes of action of these mutations may include loss of one or several binding sites for cognate protein partners or transcription factor binding sequences. Such losses affect interactions within functional networks governing development and consequently result in phenotypes such as craniosynostosis. Many of the novel variants identified by genome wide CNV analyses, whole exome and whole genome sequencing are incorporated in recently developed diagnostic algorithms for craniosynostosis.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
79
|
Barba M, Di Pietro L, Massimi L, Geloso MC, Frassanito P, Caldarelli M, Michetti F, Della Longa S, Romitti PA, Di Rocco C, Arcovito A, Parolini O, Tamburrini G, Bernardini C, Boyadjiev SA, Lattanzi W. BBS9 gene in nonsyndromic craniosynostosis: Role of the primary cilium in the aberrant ossification of the suture osteogenic niche. Bone 2018; 112:58-70. [PMID: 29674126 PMCID: PMC5970090 DOI: 10.1016/j.bone.2018.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022]
Abstract
Nonsyndromic craniosynostosis (NCS) is the premature ossification of skull sutures, without associated clinical features. Mutations in several genes account for a small number of NCS patients; thus, the molecular etiopathogenesis of NCS remains largely unclear. Our study aimed at characterizing the molecular signaling implicated in the aberrant ossification of sutures in NCS patients. Comparative gene expression profiling of NCS patient sutures identified a fused suture-specific signature, including 17 genes involved in primary cilium signaling and assembly. Cells from fused sutures displayed a reduced potential to form primary cilia compared to cells from control patent sutures of the same patient. We identified specific upregulated splice variants of the Bardet Biedl syndrome-associated gene 9 (BBS9), which encodes a structural component of the ciliary BBSome complex. BBS9 expression increased during in vitro osteogenic differentiation of suture-derived mesenchymal cells of NCS patients. Also, Bbs9 expression increased during in vivo ossification of rat sutures. BBS9 functional knockdown affected the expression of primary cilia on patient suture cells and their osteogenic potential. Computational modeling of the upregulated protein isoforms (observed in patients) predicted that their binding affinity within the BBSome may be affected, providing a possible explanation for the aberrant suture ossification in NCS.
Collapse
Affiliation(s)
- Marta Barba
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Lorena Di Pietro
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Concetta Geloso
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Paolo Frassanito
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Massimo Caldarelli
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabrizio Michetti
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, 52242, IA, USA
| | - Concezio Di Rocco
- Department of Neurosurgery, International Neuroscience Institute, 30625 Hannover, Germany
| | - Alessandro Arcovito
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, 25124 Brescia, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Camilla Bernardini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Simeon A Boyadjiev
- Section of Genomics, Department of Pediatrics, University of California, 95817 Sacramento, CA, USA
| | - Wanda Lattanzi
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy.
| |
Collapse
|
80
|
Co-occurrence of frameshift mutations in SMAD6 and TCF12 in a child with complex craniosynostosis. Hum Genome Var 2018; 5:14. [PMID: 30038786 PMCID: PMC6023907 DOI: 10.1038/s41439-018-0014-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022] Open
Abstract
Non-syndromic craniosynostosis (CS) affects 1 in 2350 live births. Recent studies have shown that a significant fraction of cases are caused by de novo or rare transmitted mutations that promote premature osteoblast differentiation in cranial sutures. Rare heterozygous loss-of-function (LOF) mutations in SMAD6 and TCF12 are highly enriched in patients with non-syndromic sagittal and coronal CS, respectively. Interestingly, both mutations show striking incomplete penetrance, suggesting a role for modifying alleles; in the case of SMAD6, a common variant near BMP2 drastically increases penetrance of sagittal CS. Here, we report a proband presenting with both sagittal and coronal craniosynostosis with the highly unusual recurrence of CS within two months of initial surgery, requiring a second operation to re-establish suture patency at six months of age. Exome sequencing revealed a rare transmitted frameshift mutation in SMAD6 (p. 152 fs*27) inherited from an unaffected parent, absence of the common BMP2 risk variant, and a de novo frameshift mutation in TCF12 (p.E548fs*14). SMAD6 and TCF12 independently inhibit transcriptional targets of BMP signaling. The findings are consistent with epistasis of these mutations, increasing penetrance and severity of CS in this proband. They also add to the list of composite phenotypes resulting from two Mendelian mutations, and support the utility of exome sequencing in atypical CS cases.
Collapse
|
81
|
Sowińska-Seidler A, Olech EM, Socha M, Larysz D, Jamsheer A. Novel 1q22-q23.1 duplication in a patient with lambdoid and metopic craniosynostosis, muscular hypotonia, and psychomotor retardation. J Appl Genet 2018; 59:281-289. [PMID: 29845577 PMCID: PMC6060980 DOI: 10.1007/s13353-018-0447-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 11/27/2022]
Abstract
Craniosynostosis (CS) refers to the group of craniofacial malformations characterized by the premature closure of one or more cranial sutures. The disorder is clinically and genetically heterogeneous and occurs usually as an isolated trait, but can also be syndromic. In 30-60% of patients, CS is caused by known genetic factors; however, in the rest of the cases, causative molecular lesions remain unknown. In this paper, we report on a sporadic male patient affected by complex CS (metopic and unilateral lambdoid synostosis), muscular hypotonia, psychomotor retardation, and facial dysmorphism. Since a subset of CS results from submicroscopic chromosomal aberrations, we performed array comparative genomic hybridization (array CGH) in order to identify possibly causative copy-number variation. Array CGH followed by breakpoint sequencing revealed a previously unreported de novo 1.26 Mb duplication at chromosome 1q22-q23.1 that encompassed two genes involved in osteoblast differentiation: BGLAP, encoding osteocalcin (OCN), and LMNA, encoding lamin A/C. OCN is a major component of bone extracellular matrix and a marker of osteogenesis, whereas mutations in LMNA cause several genetic disorders called laminopathies, including mandibuloacral dysostosis (MAD) that manifests with low bone mass, severe bone deformities, and delayed closure of the cranial sutures. Since LMNA and BGLAP overexpression promote osteoblast differentiation and calcification, phenotype of our patient may result from misexpression of the genes. Based on our findings, we hypothesize that both LMNA and BGLAP may be implicated in the pathogenesis of CS in humans. However, further studies are needed to establish the exact pathomechanism underlying development of this defect.
Collapse
Affiliation(s)
- Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland.
| | - Ewelina M Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Magdalena Socha
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Dawid Larysz
- Department of Radiotherapy, The Maria Skłodowska Curie Memorial Cancer Centre and Institute of Oncology, Gliwice Branch, 44-101, Gliwice, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland.
| |
Collapse
|
82
|
Electrocardiographic variables in children with syndromic craniosynostosis and primary snoring to mild obstructive sleep apnea: significance of identifying respiratory arrhythmia during sleep. Sleep Med 2018; 45:1-6. [PMID: 29680416 DOI: 10.1016/j.sleep.2017.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND In the spectrum of children with symptomatic sleep disordered breathing (SDB), some individuals - such as those with upper airway resistance syndrome (UARS) - do not have abnormalities on polysomnography (PSG). In this study we have assessed whether assessment of respiratory arrhythmia (RA) and heart rate variability (HRV) analysis helps in management of children with syndromic craniosynostosis and none-to-mild obstructive sleep apnea (OSA). METHODS Prospective cohort study in children aged 1-18 years old with syndromic craniosynostosis. Children were selected for HRV analysis from the ECG if their obstructive apnea-hypopnea index (oAHI) was between zero and five per hour (ie, oAHI ≤5/hour). Subjects were divided into groups based on the presence or absence of respiratory arrhythmia (with or without RA respectively) using the electrocardiogram (ECG). The main analysis included studying the relationship between RA and HRV, symptoms, interventions, and sleep architecture. RESULTS We identified 42 patients with, at worst, mild OSA. We found higher parasympathetic control and higher total power in children with RA during the non-rapid eye movement (non-REM) sleep. Children with RA also have a relatively higher percentage of paradoxical breathing during non-REM sleep (P = 0.042). Intracranial hypertension was distributed equally between groups. Last, RA patients showed increased parasympathetic activity that further increased in non-REM sleep. CONCLUSION In syndromic craniosynostosis cases with SDB and PSG showing oAHI ≤5/hour, the presence of RA may indicate subsequent need for treatment interventions, and a trend toward higher occurrence of clinical symptoms. ECG analyses of HRV variables in subjects with RA demonstrate increased parasympathetic activity and total power. Such findings may add to the diagnosis of apparently asymptomatic children.
Collapse
|
83
|
Role of Notch Signaling in the Physiological Patterning of Posterofrontal and Sagittal Cranial Sutures. J Craniofac Surg 2018; 28:1620-1625. [PMID: 28692512 DOI: 10.1097/scs.0000000000003721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The mutations in a Notch signaling ligand, jagged 1, are associated with unilateral coronal craniosynostosis in humans. However, the underlying mechanisms of Notch signaling in cranial suture biology still remain unclear. METHODS The temporal and spatial patterns of Notch signaling expression were examined in the posterofrontal and sagittal sutures of Sprague-Dawley rats by real-time quantitative reverse-transcription polymerase chain reaction at postnatal ages of 2, 15, and 25 days. The role of Notch signaling in the proliferation and differentiation of osteoblasts isolated from calvarial was examined in vitro by EdU incorporation assays and real-time quantitative reverse-transcription polymerase chain reaction after activating and inhibiting Notch signaling. RESULTS The mRNA levels of Notch family members (including Jagged 1, Delta 1, 3, 4, Notch 1-4, Hes 1, and Hes 5) decreased during the posterofrontal cranial suture fusion in rat. However, in the patent sagittal sutures, the mRNA levels of Notch family members (Jagged 2, Delta 1, Notch 1, Notch 3, Hes 5, and Hey 1) increased during suture development. The EdU incorporation assays revealed that the induction of Notch signaling in calvaria osteobalsts using Jagged 1 promoted the proliferation rates in those cells in vitro. Further studies showed that activation of Notch signaling calvaria osteobalsts using Jagged 1 led to the suppression of late osteogenetic markers such as type I collagen and osteocalcin. CONCLUSIONS The regulation of Notch signaling is of crucial importance during the physiological patterning of posterofrontal and sagittal cranial sutures. Thus, targeting this pathway may prove significant for the development of future therapeutic applications in craniosynostosis.
Collapse
|
84
|
Craniosynostosis as a clinical and diagnostic problem: molecular pathology and genetic counseling. J Appl Genet 2018; 59:133-147. [PMID: 29392564 DOI: 10.1007/s13353-017-0423-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022]
Abstract
Craniosynostosis (occurrence: 1/2500 live births) is a result of premature fusion of cranial sutures, leading to alterations of the pattern of cranial growth, resulting in abnormal shape of the head and dysmorphic facial features. In approximately 85% of cases, the disease is isolated and nonsyndromic and mainly involves only one suture. Syndromic craniosynostoses such as Crouzon, Apert, Pfeiffer, Muenke, and Saethre-Chotzen syndromes not only affect multiple sutures, but are also associated with the presence of additional clinical symptoms, including hand and feet malformations, skeletal and cardiac defects, developmental delay, and others. The etiology of craniosynostoses may involve genetic (also somatic mosaicism and regulatory mutations) and epigenetic factors, as well as environmental factors. According to the published data, chromosomal aberrations, mostly submicroscopic ones, account for about 6.7-40% of cases of syndromic craniosynostoses presenting with premature fusion of metopic or sagittal sutures. The best characterized is the deletion or translocation of the 7p21 region containing the TWIST1 gene. The deletions of 9p22 or 11q23-qter (Jacobsen syndrome) are both associated with trigonocephaly. The genes related to the pathogenesis of the craniosynostoses itself are those encoding transcription factors, e.g., TWIST1, MSX2, EN1, and ZIC1, and proteins involved in osteogenic proliferation, differentiation, and homeostasis, such as FGFR1, FGFR2, RUNX2, POR, and many others. In this review, we present the clinical and molecular features of selected craniosynostosis syndromes, genotype-phenotype correlation, family genetic counseling, and propose the most appropriate diagnostic algorithm.
Collapse
|
85
|
Twist1 induces distinct cell states depending on TGFBR1-activation. Oncotarget 2017; 7:30396-407. [PMID: 27105506 PMCID: PMC5058688 DOI: 10.18632/oncotarget.8878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/09/2016] [Indexed: 11/25/2022] Open
Abstract
Basic helix-loop-helix transcription factor Twist1 is a master regulator of Epithelial-Mesenchymal Transition (EMT), a cellular program implicated in different stages of development as well as metastatic dissemination of carcinomas. Here, we show that Twist1 requires TGF-beta type-I receptor (TGFBR1)-activation to bind an enhancer region of downstream effector ZEB1, thereby inducing ZEB1 transcription and EMT. When TGFBR1-phosphorylation is inhibited, Twist1 generates a distinct cell state characterized by collective invasion, simultaneous proliferation and expression of endothelial markers. By contrast, TGFBR1-activation directs Twist1 to induce stable mesenchymal transdifferentiation through EMT, thereby generating cells that display single-cell invasion, but lose their proliferative capacity. In conclusion, preventing Twist1-induced EMT by inhibiting TGFβ-signaling does not generally block acquisition of invasion, but switches mode from single-cell/non-proliferative to collective/proliferative. Together, these data reveal that transient Twist1-activation induces distinct cell states depending on signaling context and caution against the use of TGFβ-inhibitors as a therapeutic strategy to target invasiveness.
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW When providing accurate clinical diagnosis and genetic counseling in craniosynostosis, the challenge is heightened by knowledge that etiology in any individual case may be entirely genetic, entirely environmental, or anything in between. This review will scope out how recent genetic discoveries from next-generation sequencing have impacted on the clinical genetic evaluation of craniosynostosis. RECENT FINDINGS Survey of a 13-year birth cohort of patients treated at a single craniofacial unit demonstrates that a genetic cause of craniosynostosis can be identified in one quarter of cases. The substantial contributions of mutations in two genes, TCF12 and ERF, is confirmed. Important recent discoveries are mutations of CDC45 and SMO in specific craniosynostosis syndromes, and of SMAD6 in nonsyndromic midline synostosis. The added value of exome or whole genome sequencing in the diagnosis of difficult cases is highlighted. SUMMARY Strategies to optimize clinical genetic diagnostic pathways by combining both targeted and next-generation sequencing are discussed. In addition to improved genetic counseling, recent discoveries spotlight the important roles of signaling through the bone morphogenetic protein and hedgehog pathways in cranial suture biogenesis, as well as a key requirement for adequate cell division in suture maintenance.
Collapse
Affiliation(s)
- Andrew O M Wilkie
- aClinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital bOxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre cCraniofacial Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | |
Collapse
|
87
|
Abstract
Craniosynostosis is the premature fusion of the calvarial sutures that is associated with a number of physical and intellectual disabilities spanning from pediatric to adult years. Over the past two decades, techniques in molecular genetics and more recently, advances in high-throughput DNA sequencing have been used to examine the underlying pathogenesis of this disease. To date, mutations in 57 genes have been identified as causing craniosynostosis and the number of newly discovered genes is growing rapidly as a result of the advances in genomic technologies. While contributions from both genetic and environmental factors in this disease are increasingly apparent, there remains a gap in knowledge that bridges the clinical characteristics and genetic markers of craniosynostosis with their signaling pathways and mechanotransduction processes. By linking genotype to phenotype, outlining the role of cell mechanics may further uncover the specific mechanotransduction pathways underlying craniosynostosis. Here, we present a brief overview of the recent findings in craniofacial genetics and cell mechanics, discussing how this information together with animal models is advancing our understanding of craniofacial development.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
| | - Michael L. Cunningham
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, 1900 9 Ave, Seattle, WA, 98101, USA
- Department of Pediatrics, Division of Craniofacial Medicine and the, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, 3720 15 Ave NE, Seattle WA, 98105, USA
| |
Collapse
|
88
|
Azoury SC, Reddy S, Shukla V, Deng CX. Fibroblast Growth Factor Receptor 2 ( FGFR2) Mutation Related Syndromic Craniosynostosis. Int J Biol Sci 2017; 13:1479-1488. [PMID: 29230096 PMCID: PMC5723914 DOI: 10.7150/ijbs.22373] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/01/2017] [Indexed: 12/30/2022] Open
Abstract
Craniosynostosis results from the premature fusion of cranial sutures, with an incidence of 1 in 2,100-2,500 live births. The majority of cases are non-syndromic and involve single suture fusion, whereas syndromic cases often involve complex multiple suture fusion. The fibroblast growth factor receptor 2 (FGFR2) gene is perhaps the most extensively studied gene that is mutated in various craniosynostotic syndromes including Crouzon, Apert, Pfeiffer, Antley-Bixler, Beare-Stevenson cutis gyrata, Jackson-Weiss, Bent Bone Dysplasia, and Seathre-Chotzen-like syndromes. The majority of these mutations are missense mutations that result in constitutive activation of the receptor and downstream molecular pathways. Treatment involves a multidisciplinary approach with ultimate surgical fixation of the cranial deformity to prevent further sequelae. Understanding the molecular mechanisms has allowed for the investigation of different therapeutic agents that can potentially be used to prevent the disorders. Further research efforts are need to better understand screening and effective methods of early intervention and prevention. Herein, the authors provide a comprehensive update on FGFR2-related syndromic craniosynostosis.
Collapse
Affiliation(s)
- Saïd C. Azoury
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Vivek Shukla
- TGIB, NCI, National Institutes of Health, Bethesda, MD, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
89
|
Identification of stiffness-induced signalling mechanisms in cells from patent and fused sutures associated with craniosynostosis. Sci Rep 2017; 7:11494. [PMID: 28904366 PMCID: PMC5597583 DOI: 10.1038/s41598-017-11801-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/30/2017] [Indexed: 11/08/2022] Open
Abstract
Craniosynostosis is a bone developmental disease where premature ossification of the cranial sutures occurs leading to fused sutures. While biomechanical forces have been implicated in craniosynostosis, evidence of the effect of microenvironmental stiffness changes in the osteogenic commitment of cells from the sutures is lacking. Our aim was to identify the differential genetic expression and osteogenic capability between cells from patent and fused sutures of children with craniosynostosis and whether these differences are driven by changes in the stiffness of the microenvironment. Cells from both sutures demonstrated enhanced mineralisation with increasing substrate stiffness showing that stiffness is a stimulus capable of triggering the accelerated osteogenic commitment of the cells from patent to fused stages. The differences in the mechanoresponse of these cells were further investigated with a PCR array showing stiffness-dependent upregulation of genes mediating growth and bone development (TSHZ2, IGF1), involved in the breakdown of extracellular matrix (MMP9), mediating the activation of inflammation (IL1β) and controlling osteogenic differentiation (WIF1, BMP6, NOX1) in cells from fused sutures. In summary, this study indicates that stiffer substrates lead to greater osteogenic commitment and accelerated bone formation, suggesting that stiffening of the extracellular environment may trigger the premature ossification of the sutures.
Collapse
|
90
|
De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proc Natl Acad Sci U S A 2017; 114:E7341-E7347. [PMID: 28808027 DOI: 10.1073/pnas.1709255114] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-syndromic craniosynostosis (NSC) is a frequent congenital malformation in which one or more cranial sutures fuse prematurely. Mutations causing rare syndromic craniosynostoses in humans and engineered mouse models commonly increase signaling of the Wnt, bone morphogenetic protein (BMP), or Ras/ERK pathways, converging on shared nuclear targets that promote bone formation. In contrast, the genetics of NSC is largely unexplored. More than 95% of NSC is sporadic, suggesting a role for de novo mutations. Exome sequencing of 291 parent-offspring trios with midline NSC revealed 15 probands with heterozygous damaging de novo mutations in 12 negative regulators of Wnt, BMP, and Ras/ERK signaling (10.9-fold enrichment, P = 2.4 × 10-11). SMAD6 had 4 de novo and 14 transmitted mutations; no other gene had more than 1. Four familial NSC kindreds had mutations in genes previously implicated in syndromic disease. Collectively, these mutations contribute to 10% of probands. Mutations are predominantly loss-of-function, implicating haploinsufficiency as a frequent mechanism. A common risk variant near BMP2 increased the penetrance of SMAD6 mutations and was overtransmitted to patients with de novo mutations in other genes in these pathways, supporting a frequent two-locus pathogenesis. These findings implicate new genes in NSC and demonstrate related pathophysiology of common non-syndromic and rare syndromic craniosynostoses. These findings have implications for diagnosis, risk of recurrence, and risk of adverse neurodevelopmental outcomes. Finally, the use of pathways identified in rare syndromic disease to find genes accounting for non-syndromic cases may prove broadly relevant to understanding other congenital disorders featuring high locus heterogeneity.
Collapse
|
91
|
Ma T, Zhang A. Reconstructing context-specific gene regulatory network and identifying modules and network rewiring through data integration. Methods 2017; 124:36-45. [PMID: 28529066 DOI: 10.1016/j.ymeth.2017.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/05/2017] [Indexed: 12/01/2022] Open
Abstract
Reconstructing context-specific transcriptional regulatory network is crucial for deciphering principles of regulatory mechanisms underlying various conditions. Recently studies that reconstructed transcriptional networks have focused on individual organisms or cell types and relied on data repositories of context-free regulatory relationships. Here we present a comprehensive framework to systematically derive putative regulator-target pairs in any given context by integrating context-specific transcriptional profiling and public data repositories of gene regulatory networks. Moreover, our framework can identify core regulatory modules and signature genes underlying global regulatory circuitry, and detect network rewiring and core rewired modules in different contexts by considering gene modules and edge (gene interaction) modules collaboratively. We applied our methods to analyzing Autism RNA-seq experiment data and produced biologically meaningful results. In particular, all 11 hub genes in a predicted rewired autistic regulatory subnetwork have been linked to autism based on literature review. The predicted rewired autistic regulatory network may shed some new insight into disease mechanism.
Collapse
Affiliation(s)
- Tianle Ma
- Department of Computer Science and Engineering, University at Buffalo (SUNY), Buffalo, NY 14260-2500, United States.
| | - Aidong Zhang
- Department of Computer Science and Engineering, University at Buffalo (SUNY), Buffalo, NY 14260-2500, United States.
| |
Collapse
|
92
|
Cornelissen MJ, Apon I, van der Meulen JJNM, Groenenberg IAL, Kraan-van der Est MN, Mathijssen IMJ, Bonsel GJ, Cohen-Overbeek TE. Prenatal ultrasound parameters in single-suture craniosynostosis. J Matern Fetal Neonatal Med 2017; 31:2050-2057. [PMID: 28553772 DOI: 10.1080/14767058.2017.1335706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Although single-suture craniosynostosis is diagnosed sporadically during pregnancy, timely referral is critical for its treatment. Additionally, craniosynostosis leads to increased maternofetal trauma during birth. In the Netherlands, 95% of pregnant women receive a standard ultrasound at around 20 weeks of gestation, potentially an ideal setting for detecting craniosynostosis prenatally. To enhance the prenatal detection of the metopic and the sagittal suture synostosis, we wished to identify new screening parameters. MATERIALS AND METHODS We retrospectively analyzed data of the 20-week anomaly scan in trigonocephaly patients (n = 41), scaphocephaly patients (n = 41), and matched controls (n = 82). We measured six different cranial dimensions, including head circumference, biparietal diameter, and occipito-frontal diameter, defining the cephalic index as the ratio between biparietal and occipito-frontal diameter. RESULTS Prenatal biometric measurements did not differ significantly between trigonocephaly patients and controls. Although significantly lower in scaphocephaly patients (0.76 versus 0.79; p = .000), the cephalic index by itself is not appropriate for screening at 20 weeks of gestation. Longitudinal analysis suggests that a deflection in BPD curve is found in scaphocephaly patients, starting at 20 weeks of gestation. CONCLUSIONS Prenatal biometric measurements do not differ significantly between trigonocephaly patients and controls. The CI is lower in scaphocephaly patients. A deflection in BPD curve should be followed by 3 D imaging of the cranial sutures.
Collapse
Affiliation(s)
- Martijn J Cornelissen
- a Department of Plastic and Reconstructive Surgery and Handsurgery , Erasmus MC , Rotterdam , The Netherlands
| | - Inge Apon
- a Department of Plastic and Reconstructive Surgery and Handsurgery , Erasmus MC , Rotterdam , The Netherlands
| | | | - Irene A L Groenenberg
- b Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine , Erasmus MC , Rotterdam , The Netherlands
| | | | - Irene M J Mathijssen
- a Department of Plastic and Reconstructive Surgery and Handsurgery , Erasmus MC , Rotterdam , The Netherlands
| | - Gouke J Bonsel
- b Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine , Erasmus MC , Rotterdam , The Netherlands
| | - Titia E Cohen-Overbeek
- b Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine , Erasmus MC , Rotterdam , The Netherlands
| |
Collapse
|
93
|
Lattanzi W, Barba M, Di Pietro L, Boyadjiev SA. Genetic advances in craniosynostosis. Am J Med Genet A 2017; 173:1406-1429. [PMID: 28160402 DOI: 10.1002/ajmg.a.38159] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Craniosynostosis, the premature ossification of one or more skull sutures, is a clinically and genetically heterogeneous congenital anomaly affecting approximately one in 2,500 live births. In most cases, it occurs as an isolated congenital anomaly, that is, nonsyndromic craniosynostosis (NCS), the genetic, and environmental causes of which remain largely unknown. Recent data suggest that, at least some of the midline NCS cases may be explained by two loci inheritance. In approximately 25-30% of patients, craniosynostosis presents as a feature of a genetic syndrome due to chromosomal defects or mutations in genes within interconnected signaling pathways. The aim of this review is to provide a detailed and comprehensive update on the genetic and environmental factors associated with NCS, integrating the scientific findings achieved during the last decade. Focus on the neurodevelopmental, imaging, and treatment aspects of NCS is also provided.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Latium Musculoskeletal Tıssue Bank, Rome, Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simeon A Boyadjiev
- Division of Genomic Medicine, Department of Pediatrics, Davis Medical Center, University of California, Sacramento, California
| |
Collapse
|
94
|
Yi S, Yu M, Yang S, Miron RJ, Zhang Y. Tcf12, A Member of Basic Helix-Loop-Helix Transcription Factors, Mediates Bone Marrow Mesenchymal Stem Cell Osteogenic Differentiation In Vitro and In Vivo. Stem Cells 2017; 35:386-397. [PMID: 27574032 DOI: 10.1002/stem.2491] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/05/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023]
Abstract
Several basic Helix-Loop-Helix transcription factors have recently been identified to regulate mesenchymal stem cell (MSC) differentiation. In the present study, Tcf12 was investigated for its involvement in the osteoblastic cell commitment of MSCs. Tcf12 was found highly expressed in undifferentiated MSCs whereas its expression decreased following osteogenic culture differentiation. Interestingly, Tcf12 endogenous silencing using shRNA lentivirus significantly promoted the differentiation ability of MSCs evaluated by alkaline phosphatase staining, alizarin red staining and expression of osteoblast-specific markers by real-time PCR. Conversely, overexpression of Tcf12 in MSCs suppressed osteoblast differentiation. It was further found that silencing of Tcf12 activated bone morphogenetic protein (BMP) signaling and extracellular signal-regulated kinase (Erk)1/2 signaling pathway activity and upregulated the expression of phospho-SMAD1 and phospho-Erk1/2. A BMP inhibitor (LDN-193189) and Erk1/2 signaling pathway inhibitor (U0126) reduced these findings in the Tcf12 silencing group. Following these in vitro results, a poly-L-lactic acid/Hydroxyappatite scaffold carrying Tcf12 silencing lentivirus was utilized to investigate the repair of bone defects in vivo. The use of Tcf12 silencing lentivirus significantly promoted new bone formation in 3-mm mouse calvarial defects as assessed by micro-CT and histological examination whereas overexpression of Tcf12 inhibited new bone formation. Collectively, these data indicate that Tcf12 is a transcription factor highly expressed in the nuclei of stem cells and its downregulation plays an essential role in osteoblast differentiation partially via BMP and Erk1/2 signaling pathways. Stem Cells 2017;35:386-397.
Collapse
Affiliation(s)
- Siqi Yi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
- Medical Research Institute, Wuhan University, Wuhan, People's Republic of China
| | - Miao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Shuang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Richard J Miron
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
- Medical Research Institute, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
95
|
Taylor GM, Cooper GM, Losee JE, Mooney MP, Gilbert J. Molecular Analysis of Ephrin A4 and Ephrin B1 in a Rabbit Model of Craniosynostosis: Likely Exclusion as the Loci of Origin. Cleft Palate Craniofac J 2017; 55:1020-1025. [PMID: 28135115 DOI: 10.1597/16-135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Craniosynostosis (CS) has a prevalence of approximately 1 in every 2000 live births and is characterized by the premature fusion of one or more cranial sutures. Failure to maintain the cell lineage boundary at the coronal suture is thought to be involved in the pathology of some forms of CS. The Ephrin family of receptor tyrosine kinases consists of membrane-bound receptors and ligands that control cell patterning and the formation of developmental boundaries. Mutations in the ephrin A4 (EFNA4) and ephrin B1 (EFNB1) ligands have been linked to nonsyndromic CS and craniofrontonasal syndrome, respectively, in patient samples. We have previously described a colony of rabbits with a heritable pattern of coronal suture synostosis, although the genetic basis for synostosis within this model remains unknown. The present study was performed to determine if EFNA4 or EFNB1 could be the loci of the causal mutation in this unique animal model. Sequencing of EFNA4 and EFNB1 was performed using templates obtained from wild-type (n = 4) and craniosynostotic (n = 4) rabbits. No structural coding errors were identified in either gene. A single-nucleotide transversion was identified in one wild-type rabbit within the third intron of EFNA4. These data indicate that the causal locus for heritable CS in this rabbit model is not located within the structural coding regions of either EFNA4 or EFNB1.
Collapse
|
96
|
Middelkamp S, van Heesch S, Braat AK, de Ligt J, van Iterson M, Simonis M, van Roosmalen MJ, Kelder MJE, Kruisselbrink E, Hochstenbach R, Verbeek NE, Ippel EF, Adolfs Y, Pasterkamp RJ, Kloosterman WP, Kuijk EW, Cuppen E. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med 2017; 9:9. [PMID: 28126037 PMCID: PMC5270341 DOI: 10.1186/s13073-017-0399-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Background Germline chromothripsis causes complex genomic rearrangements that are likely to affect multiple genes and their regulatory contexts. The contribution of individual rearrangements and affected genes to the phenotypes of patients with complex germline genomic rearrangements is generally unknown. Methods To dissect the impact of germline chromothripsis in a relevant developmental context, we performed trio-based RNA expression analysis on blood cells, induced pluripotent stem cells (iPSCs), and iPSC-derived neuronal cells from a patient with de novo germline chromothripsis and both healthy parents. In addition, Hi-C and 4C-seq experiments were performed to determine the effects of the genomic rearrangements on transcription regulation of genes in the proximity of the breakpoint junctions. Results Sixty-seven genes are located within 1 Mb of the complex chromothripsis rearrangements involving 17 breakpoints on four chromosomes. We find that three of these genes (FOXP1, DPYD, and TWIST1) are both associated with developmental disorders and differentially expressed in the patient. Interestingly, the effect on TWIST1 expression was exclusively detectable in the patient’s iPSC-derived neuronal cells, stressing the need for studying developmental disorders in the biologically relevant context. Chromosome conformation capture analyses show that TWIST1 lost genomic interactions with several enhancers due to the chromothripsis event, which likely led to deregulation of TWIST1 expression and contributed to the patient’s craniosynostosis phenotype. Conclusions We demonstrate that a combination of patient-derived iPSC differentiation and trio-based molecular profiling is a powerful approach to improve the interpretation of pathogenic complex genomic rearrangements. Here we have applied this approach to identify misexpression of TWIST1, FOXP1, and DPYD as key contributors to the complex congenital phenotype resulting from germline chromothripsis rearrangements. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0399-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Sebastiaan van Heesch
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.,Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Strasse 10, Berlin, 13125, Germany
| | - A Koen Braat
- Department of Cell Biology, Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, 3584CT, The Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Maarten van Iterson
- Department of Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333ZC, The Netherlands
| | - Marieke Simonis
- Cergentis B.V., Yalelaan 62, Utrecht, 3584CM, The Netherlands
| | - Markus J van Roosmalen
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Martijn J E Kelder
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology & Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Lundlaan 6, Utrecht, 3584EA, The Netherlands
| | - Ron Hochstenbach
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584EA, The Netherlands
| | - Elly F Ippel
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584EA, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Wigard P Kloosterman
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Ewart W Kuijk
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
| | - Edwin Cuppen
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
| |
Collapse
|
97
|
Exploring the Underlying Genetics of Craniofacial Morphology through Various Sources of Knowledge. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3054578. [PMID: 28053980 PMCID: PMC5178329 DOI: 10.1155/2016/3054578] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/15/2016] [Indexed: 12/23/2022]
Abstract
The craniofacial complex is the billboard of sorts containing information about sex, health, ancestry, kinship, genes, and environment. A thorough knowledge of the genes underlying craniofacial morphology is fundamental to understanding craniofacial biology and evolution. These genes can also provide an important foundation for practical efforts like predicting faces from DNA and phenotype-based facial diagnostics. In this work, we focus on the various sources of knowledge regarding the genes that affect patterns of craniofacial development. Although tremendous successes recently have been made using these sources in both methodology and biology, many challenges remain. Primary among these are precise phenotyping techniques and efficient modeling methods.
Collapse
|
98
|
Miller KA, Twigg SRF, McGowan SJ, Phipps JM, Fenwick AL, Johnson D, Wall SA, Noons P, Rees KEM, Tidey EA, Craft J, Taylor J, Taylor JC, Goos JAC, Swagemakers SMA, Mathijssen IMJ, van der Spek PJ, Lord H, Lester T, Abid N, Cilliers D, Hurst JA, Morton JEV, Sweeney E, Weber A, Wilson LC, Wilkie AOM. Diagnostic value of exome and whole genome sequencing in craniosynostosis. J Med Genet 2016; 54:260-268. [PMID: 27884935 PMCID: PMC5366069 DOI: 10.1136/jmedgenet-2016-104215] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/26/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
Abstract
Background Craniosynostosis, the premature fusion of one or more cranial sutures, occurs in ∼1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing. Methods We used exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high-priority cases, and in whom prior clinically driven genetic testing had been negative. Results We identified likely associated mutations in 15 patients (37.5%), involving 14 different genes. All genes were mutated in single families, except for IL11RA (two families). We classified the other positive diagnoses as follows: commonly mutated craniosynostosis genes with atypical presentation (EFNB1, TWIST1); other core craniosynostosis genes (CDC45, MSX2, ZIC1); genes for which mutations are only rarely associated with craniosynostosis (FBN1, HUWE1, KRAS, STAT3); and known disease genes for which a causal relationship with craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3). Conclusions This substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results.
Collapse
Affiliation(s)
- Kerry A Miller
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon J McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Julie M Phipps
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Aimée L Fenwick
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Steven A Wall
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Noons
- Department of Craniofacial Surgery, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Katie E M Rees
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Elizabeth A Tidey
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judith Craft
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - John Taylor
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, National Institute for Health Research, Oxford, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Helen Lord
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tracy Lester
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noina Abid
- Department of Paediatric Endocrinology, The Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Deirdre Cilliers
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jane A Hurst
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jenny E V Morton
- Clinical Genetics Unit, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, UK
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Astrid Weber
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Louise C Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
99
|
Park CK, Park I, Lee S, Sun CH, Koh Y, Park SH, Kim JE, Yun H, Lee SH. Genomic dynamics associated with malignant transformation in IDH1 mutated gliomas. Oncotarget 2016; 6:43653-66. [PMID: 26524630 PMCID: PMC4791257 DOI: 10.18632/oncotarget.6189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023] Open
Abstract
The genomic mechanism responsible for malignant transformation remains an open question for glioma researchers, where differing conclusions have been drawn based on diverse study conditions. Therefore, it is essential to secure direct evidence using longitudinal samples from the same patient. Moreover, malignant transformation of IDH1-mutated gliomas is of potential interest, as its genomic mechanism under influence of oncometabolite remains unclear, and even higher rate of malignant transformation was reported in IDH1-mutated low grade gliomas than in wild-type IDH1 tumors. We have analyzed genomic data using next-generation sequencing technology for longitudinal samples from 3 patients with IDH1-mutated gliomas whose disease had progressed from a low grade to a high grade phenotype. Comprehensive analysis included chromosomal aberrations as well as whole exome and transcriptome sequencing, and the candidate driver genes for malignant transformation were validated with public database. Integrated analysis of genomic dynamics in clonal evolution during the malignant transformation revealed alterations in the machinery regulating gene expression, including the spliceosome complex (U2AF2), transcription factors (TCF12), and chromatin remodelers (ARID1A). Moreover, consequential expression changes implied the activation of genes associated with the restoration of the stemness of cancer cells. The alterations in genetic regulatory mechanisms may be the key factor for the major phenotypic changes in IDH1 mutated gliomas. Despite being limited to a small number of cases, this analysis provides a direct example of the genomic changes responsible for malignant transformation in gliomas.
Collapse
Affiliation(s)
- Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | | | | | | | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Ja Eun Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | | | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
100
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|