51
|
Hill VK, Kim JS, James CD, Waldman T. Correction of PTEN mutations in glioblastoma cell lines via AAV-mediated gene editing. PLoS One 2017; 12:e0176683. [PMID: 28464039 PMCID: PMC5413031 DOI: 10.1371/journal.pone.0176683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022] Open
Abstract
PTEN is among the most commonly mutated tumor suppressor genes in human cancer. However, studying the role of PTEN in the pathogenesis of cancer has been limited, in part, by the paucity of human cell-based isogenic systems that faithfully model PTEN loss. In an effort to remedy this problem, gene editing was used to correct an endogenous mutant allele of PTEN in two human glioblastoma multiforme (GBM) cell lines– 42MGBA and T98G. PTEN correction resulted in reduced cellular proliferation that was Akt-dependent in 42MGBA cells and Akt-independent in T98G cells. This is the first report of human cancer cell lines in which mutant PTEN has been corrected by gene editing. The isogenic sets of gene edited cell lines reported here will likely prove useful for further study of PTEN mutations in the pathogenesis of cancer, and for the discovery and validation of novel therapeutics targeting the PTEN pathway.
Collapse
Affiliation(s)
- Victoria K. Hill
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, Washington DC, United States of America
| | - Jung-Sik Kim
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, Washington DC, United States of America
| | - C. David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Todd Waldman
- Georgetown University School of Medicine, Lombardi Comprehensive Cancer Center, Washington DC, United States of America
- * E-mail:
| |
Collapse
|
52
|
Mizuno S, Takeichi T, Sato J, Nakamura M, Goto H, Sugiura K, Akiyama M. Multiple keratotic papules and plaques on the trunk in Cowden's disease with MALT lymphoma. J Dermatol 2017; 45:238-240. [PMID: 28391632 DOI: 10.1111/1346-8138.13851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sayaka Mizuno
- Department of Dermatology, Nagoya University, Nagoya, Japan
| | | | - Junichi Sato
- Department of Gastroenterology and Hepatology, Nagoya University, Nagoya, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University, Nagoya, Japan
| | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Nagoya University, Nagoya, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | | |
Collapse
|
53
|
Liang H, Chen X, Yin Q, Ruan D, Zhao X, Zhang C, McNutt MA, Yin Y. PTENβ is an alternatively translated isoform of PTEN that regulates rDNA transcription. Nat Commun 2017; 8:14771. [PMID: 28332494 PMCID: PMC5376652 DOI: 10.1038/ncomms14771] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022] Open
Abstract
PTEN is a critical tumour suppressor that is frequently mutated in human cancer. We have previously identified a CUG initiated PTEN isoform designated PTENα, which functions in mitochondrial bioenergetics. Here we report the identification of another N-terminal extended PTEN isoform, designated PTENβ. PTENβ translation is initiated from an AUU codon upstream of and in-frame with the AUG initiation sequence for canonical PTEN. We show that the Kozak context and a downstream hairpin structure are critical for this alternative initiation. PTENβ localizes predominantly in the nucleolus, and physically associates with and dephosphorylates nucleolin, which is a multifunctional nucleolar phosphoprotein. Disruption of PTENβ alters rDNA transcription and promotes ribosomal biogenesis, and this effect can be reversed by re-introduction of PTENβ. Our data show that PTENβ regulates pre-rRNA synthesis and cellular proliferation. These results demonstrate the complexity of the PTEN protein family and the diversity of its functions.
Collapse
Affiliation(s)
- Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xi Chen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qi Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Cong Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Michael A. McNutt
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
54
|
Tsujita Y, Mitsui-Sekinaka K, Imai K, Yeh TW, Mitsuiki N, Asano T, Ohnishi H, Kato Z, Sekinaka Y, Zaha K, Kato T, Okano T, Takashima T, Kobayashi K, Kimura M, Kunitsu T, Maruo Y, Kanegane H, Takagi M, Yoshida K, Okuno Y, Muramatsu H, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Kojima S, Ogawa S, Ohara O, Okada S, Kobayashi M, Morio T, Nonoyama S. Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency. J Allergy Clin Immunol 2016; 138:1672-1680.e10. [PMID: 27426521 DOI: 10.1016/j.jaci.2016.03.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Activated phosphatidylinositol 3-kinase δ syndrome (APDS) is a recently discovered primary immunodeficiency disease (PID). Excess phosphatidylinositol 3-kinase (PI3K) activity linked to mutations in 2 PI3K genes, PIK3CD and PIK3R1, causes APDS through hyperphosphorylation of AKT, mammalian target of rapamycin (mTOR), and S6. OBJECTIVE This study aimed to identify novel genes responsible for APDS. METHODS Whole-exome sequencing was performed in Japanese patients with PIDs. Immunophenotype was assessed through flow cytometry. Hyperphosphorylation of AKT, mTOR, and S6 in lymphocytes was examined through immunoblotting, flow cytometry, and multiplex assays. RESULTS We identified heterozygous mutations of phosphatase and tensin homolog (PTEN) in patients with PIDs. Immunoblotting and quantitative PCR analyses indicated that PTEN expression was decreased in these patients. Patients with PTEN mutations and those with PIK3CD mutations, including a novel E525A mutation, were further analyzed. The clinical symptoms and immunologic defects of patients with PTEN mutations, including lymphocytic AKT, mTOR, and S6 hyperphosphorylation, resemble those of patients with APDS. Because PTEN is known to suppress the PI3K pathway, it is likely that defective PTEN results in activation of the PI3K pathway. CONCLUSION PTEN loss-of-function mutations can cause APDS-like immunodeficiency because of aberrant PI3K pathway activation in lymphocytes.
Collapse
Affiliation(s)
- Yuki Tsujita
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan; Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan; Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kiyotaka Zaha
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Mitsuaki Kimura
- Department of Allergy and Clinical Immunology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Tomoaki Kunitsu
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan; Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
55
|
Anusic S, Clemens RKJ, Meier TO, Amann-Vesti BR. Assessment of PTEN-associated vascular malformations in a patient with Bannayan-Riley-Ruvalcaba syndrome. BMJ Case Rep 2016; 2016:bcr-2016-215188. [PMID: 27358095 DOI: 10.1136/bcr-2016-215188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Misdiagnosis of phosphatase and tensin homologue hamartoma syndromes is common. Correct diagnosis has a relevant impact on patients, as the risk of malignancies is high and treatment options are limited. We report the case of a 24-year-old man who presented with symptomatic vascular intramuscular lesions of the left forearm and right calf, macrocephaly, post Hashimoto thyroiditis, a multicystic intracranial paratrigonal lesion, lentiginous hyperpigmented maculae on the foreskin and multiple skin lesions. MRI showed extended fibrofatty changes and malformed vessels in the forearm and calf lesions, also, arteriovenous shunting was present in these lesions. The patient had been treated by embolisation and surgically in the past, with limited results. A multidisciplinary assessment and genetic counselling were undertaken and a surveillance programme was initiated. Treatment options of the symptomatic vascular lesions include excision or possibly cryoablation. Physiotherapy to prevent progression of the contractures should be initiated meanwhile.
Collapse
Affiliation(s)
- Sandra Anusic
- Clinic for Angiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Thomas Oleg Meier
- Clinic for Angiology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
56
|
Molecular Genetics of the PI3K-AKT-mTOR Pathway in Genodermatoses: Diagnostic Implications and Treatment Opportunities. J Invest Dermatol 2016; 136:15-23. [PMID: 26763419 DOI: 10.1038/jid.2015.331] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/12/2015] [Accepted: 06/30/2015] [Indexed: 01/19/2023]
Abstract
A number of critical signaling pathways are required for homeostatic regulation of cell survival, differentiation, and proliferation during organogenesis. One of them is the PI3K-AKT-mTOR pathway consisting of a cascade of inhibitor/activator molecules. Recently, a number of heritable diseases with skin involvement, manifesting particularly with tissue overgrowth, have been shown to result from mutations in the genes in the PI3K-AKT-mTOR and interacting intracellular pathways. Many of these conditions represent an overlapping spectrum of phenotypic manifestations forming a basis for novel, unifying classifications. Identification of the mutant genes and specific mutations in these patients has implications for diagnostics and genetic counseling and provides a rational basis for the development of novel treatment modalities for this currently intractable group of disorders.
Collapse
|
57
|
Inherited PTEN mutations and the prediction of phenotype. Semin Cell Dev Biol 2016; 52:30-8. [DOI: 10.1016/j.semcdb.2016.01.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
|
58
|
Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, Anderson KV, Bague S, Scaltriti M, Antonescu CR, Baselga E, Baselga J. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med 2016; 8:332ra42. [PMID: 27030594 PMCID: PMC4962922 DOI: 10.1126/scitranslmed.aaf1164] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
Venous malformations (VM) are vascular malformations characterized by enlarged and distorted blood vessel channels. VM grow over time and cause substantial morbidity because of disfigurement, bleeding, and pain, representing a clinical challenge in the absence of effective treatments (Nguyenet al, 2014; Uebelhoeret al, 2012). Somatic mutations may act as drivers of these lesions, as suggested by the identification of TEK mutations in a proportion of VM (Limayeet al, 2009). We report that activating PIK3CA mutations gives rise to sporadic VM in mice, which closely resemble the histology of the human disease. Furthermore, we identified mutations in PIK3CA and related genes of the PI3K (phosphatidylinositol 3-kinase)/AKT pathway in about 30% of human VM that lack TEK alterations. PIK3CA mutations promote downstream signaling and proliferation in endothelial cells and impair normal vasculogenesis in embryonic development. We successfully treated VM in mouse models using pharmacological inhibitors of PI3Kα administered either systemically or topically. This study elucidates the etiology of a proportion of VM and proposes a therapeutic approach for this disease.
Collapse
Affiliation(s)
- Pau Castel
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - F Javier Carmona
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Joaquim Grego-Bessa
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Michael F Berger
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agnès Viale
- Genomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Silvia Bague
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 167 Sant Antoni M. Claret, Barcelona 08025, Spain
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eulàlia Baselga
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - José Baselga
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
59
|
Stumpf M, den Hertog J. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development. PLoS One 2016; 11:e0148508. [PMID: 26848951 PMCID: PMC4743836 DOI: 10.1371/journal.pone.0148508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022] Open
Abstract
The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten.
Collapse
Affiliation(s)
- Miriam Stumpf
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
60
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
61
|
Abstract
Starting from the discovery of "inhibitory chromosomes" by Theodor Boveri to the finding by Henry Harris that fusing a normal cell to a cancer cell reduced tumorigenic potential, the notion of tumor suppression was recognized well before any tumor-suppressor genes were discovered. Although not the first to be revealed, PTEN has been demonstrated to be one of the most frequently altered tumor suppressors in cancer. This introductory chapter provides a historical perspective on our current understanding of PTEN including some of the seminal discoveries in the tumor suppressor field, the events leading to PTEN's discovery, and an introduction to some of the most important researchers and their studies which have shed light on PTEN biology and function as we know it today.
Collapse
Affiliation(s)
- Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Princess Margaret Cancer Centre, Room 4211, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.
| |
Collapse
|
62
|
den Hertog J. Tumor Suppressors in Zebrafish: From TP53 to PTEN and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:87-101. [PMID: 27165350 DOI: 10.1007/978-3-319-30654-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zebrafish are increasingly being used to study cancer. Almost all tumor types have been found in zebrafish. However, tumor incidence is relatively low and tumors develop late in life. Functional inactivation of tumor suppressors is a crucial step in cancer progression and more and more tumor suppressor genes are being studied in zebrafish. Most often tumor suppressors have been inactivated by reverse genetics approaches using targeted disruption. However, some tumor suppressor mutants were identified by forward genetic screens for mutants with a particular phenotype. Some of the latter genes had not been recognized as tumor suppressors yet. Similarly, a screen for genes that suppress tumor formation in zebrafish in vivo led to the identification of a novel tumor suppressor gene. In this review, I will provide an overview of what the zebrafish has taught us about tumor suppressors.
Collapse
Affiliation(s)
- Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands. .,Institute of Biology, Leiden University, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
63
|
Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat 2015; 165:1-8. [DOI: 10.1007/s10549-015-3665-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
|
64
|
Exploring Different Strategies for Efficient Delivery of Colorectal Cancer Therapy. Int J Mol Sci 2015; 16:26936-52. [PMID: 26569228 PMCID: PMC4661854 DOI: 10.3390/ijms161125995] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer death in the world. Currently available chemotherapy of CRC usually delivers the drug to both normal as well as cancerous tissues, thus leading to numerous undesirable effects. Much emphasis is being laid on the development of effective drug delivery systems for achieving selective delivery of the active moiety at the anticipated site of action with minimized unwanted side effects. Researchers have employed various techniques (dependent on pH, time, pressure and/or bacteria) for targeting drugs directly to the colonic region. On the other hand, systemic drug delivery strategies to specific molecular targets (such as FGFR, EGFR, CD44, EpCAM, CA IX, PPARγ and COX-2) overexpressed by cancerous cells have also been shown to be effective. This review aims to put forth an overview of drug delivery technologies that have been, and may be developed, for the treatment of CRC.
Collapse
|
65
|
Homem CCF, Repic M, Knoblich JA. Proliferation control in neural stem and progenitor cells. Nat Rev Neurosci 2015; 16:647-59. [PMID: 26420377 DOI: 10.1038/nrn4021] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural circuit function can be drastically affected by variations in the number of cells that are produced during development or by a reduction in adult cell number owing to disease. For this reason, unique cell cycle and cell growth control mechanisms operate in the developing and adult brain. In Drosophila melanogaster and in mammalian neural stem and progenitor cells, these mechanisms are intricately coordinated with the developmental age and the nutritional, metabolic and hormonal state of the animal. Defects in neural stem cell proliferation that result in the generation of incorrect cell numbers or defects in neural stem cell differentiation can cause microcephaly or megalencephaly.
Collapse
Affiliation(s)
- Catarina C F Homem
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria.,Chronic Diseases Research Center, NOVA Medical School, Rua Camara Pestana, 6, 1150-082 Lisbon, Portugal
| | - Marko Repic
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
66
|
Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol 2015; 17:1169-81. [PMID: 26280536 DOI: 10.1038/ncb3218] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
Abstract
PTEN is one of the most frequently mutated tumour suppressors and reduction in PTEN protein stability also plays a role in tumorigenesis. Although several ubiquitin ligases for PTEN have been identified, the deubiquitylase for de-polyubiquitylation and stabilization of PTEN is less defined. Here, we report OTUD3 as a deubiquitylase of PTEN. OTUD3 interacts with, de-polyubiquitylates and stabilizes PTEN. Depletion of OTUD3 leads to the activation of Akt signalling, induction of cellular transformation and cancer metastasis. OTUD3 transgenic mice exhibit higher levels of the PTEN protein and are less prone to tumorigenesis. Reduction of OTUD3 expression, concomitant with decreased PTEN abundance, correlates with human breast cancer progression. Furthermore, we identified loss-of-function OTUD3 mutations in human cancers, which either abolish OTUD3 catalytic activity or attenuate the interaction with PTEN. These findings demonstrate that OTUD3 is an essential regulator of PTEN and that the OTUD3-PTEN signalling axis plays a critical role in tumour suppression.
Collapse
|
67
|
Iskandarli M, Yaman B, Aslan A. A case of Bannayan-Riley-Ruvalcaba syndrome. A new clinical finding and brief review. Int J Dermatol 2015; 55:1040-3. [PMID: 26228616 DOI: 10.1111/ijd.13013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Mehdi Iskandarli
- Department of Dermatology and Venereology, Ege University Faculty of Medicine, Bornova, Izmir, Turkey
| | - Banu Yaman
- Department of Pathology, Ege University Faculty of Medicine, Bornova, Izmir, Turkey
| | - Asli Aslan
- Department of Pediatry, Ege University Faculty of Medicine, Bornova, Izmir, Turkey
| |
Collapse
|
68
|
Lee MS, Jeong MH, Lee HW, Han HJ, Ko A, Hewitt SM, Kim JH, Chun KH, Chung JY, Lee C, Cho H, Song J. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun 2015; 6:7769. [PMID: 26183061 PMCID: PMC4518267 DOI: 10.1038/ncomms8769] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
The activity of the phosphatase and tensin homologue (PTEN) is known to be suppressed via post-translational modification. However, the mechanism and physiological significance by which post-translational modifications lead to PTEN suppression remain unclear. Here we demonstrate that PTEN destabilization is induced by EGFR- or oncogenic PI3K mutation-mediated AKT activation in cervical cancer. EGFR/PI3K/AKT-mediated ubiquitination and degradation of PTEN are dependent on the MKRN1 E3 ligase. These processes require the stabilization of MKRN1 via AKT-mediated phosphorylation. In cervical cancer patients with high levels of pAKT and MKRN1 expression, PTEN protein levels are low and correlate with a low 5-year survival rate. Taken together, our results demonstrate that PI3K/AKT signals enforce positive-feedback regulation by suppressing PTEN function. Mutations and post-translational modifications of the PI3K/AKT pathway inhibitor PTEN are a feature of many cancers, but these have not been associated with cervical cancer. Here, the authors identify a PI3K/AKT-mediated ubiquitination degradation pathway of PTEN that occurs in patients with cervical cancer.
Collapse
Affiliation(s)
- Min-Sik Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Man-Hyung Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun-Woo Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyun-Ji Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, NIH MSC 1500, Bethesda, Maryland 20892, USA
| | - Jae-Hoon Kim
- 1] Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Republic of Korea [2] Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, NIH MSC 1500, Bethesda, Maryland 20892, USA
| | - Cheolju Lee
- BRI, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hanbyoul Cho
- 1] Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Republic of Korea [2] Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
69
|
Tilot AK, Frazier TW, Eng C. Balancing Proliferation and Connectivity in PTEN-associated Autism Spectrum Disorder. Neurotherapeutics 2015; 12:609-19. [PMID: 25916396 PMCID: PMC4489960 DOI: 10.1007/s13311-015-0356-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Germline mutations in PTEN, which encodes a widely expressed phosphatase, was mapped to 10q23 and identified as the susceptibility gene for Cowden syndrome, characterized by macrocephaly and high risks of breast, thyroid, and other cancers. The phenotypic spectrum of PTEN mutations expanded to include autism with macrocephaly only 10 years ago. Neurological studies of patients with PTEN-associated autism spectrum disorder (ASD) show increases in cortical white matter and a distinctive cognitive profile, including delayed language development with poor working memory and processing speed. Once a germline PTEN mutation is found, and a diagnosis of phosphatase and tensin homolog (PTEN) hamartoma tumor syndrome made, the clinical outlook broadens to include higher lifetime risks for multiple cancers, beginning in childhood with thyroid cancer. First described as a tumor suppressor, PTEN is a major negative regulator of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) signaling pathway-controlling growth, protein synthesis, and proliferation. This canonical function combines with less well-understood mechanisms to influence synaptic plasticity and neuronal cytoarchitecture. Several excellent mouse models of Pten loss or dysfunction link these neural functions to autism-like behavioral abnormalities, such as altered sociability, repetitive behaviors, and phenotypes like anxiety that are often associated with ASD in humans. These models also show the promise of mTOR inhibitors as therapeutic agents capable of reversing phenotypes ranging from overgrowth to low social behavior. Based on these findings, therapeutic options for patients with PTEN hamartoma tumor syndrome and ASD are coming into view, even as new discoveries in PTEN biology add complexity to our understanding of this master regulator.
Collapse
Affiliation(s)
- Amanda K. Tilot
- />Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
| | - Thomas W. Frazier
- />Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Center for Autism, Pediatric Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Department of Pediatrics, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Charis Eng
- />Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- />Stanley Shalom Zielony Institute of Nursing Excellence, Cleveland Clinic, Cleveland, OH 44195 USA
- />Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
- />Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106 USA
- />Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
70
|
Hopkins BD, Parsons RE. Molecular pathways: intercellular PTEN and the potential of PTEN restoration therapy. Clin Cancer Res 2015; 20:5379-83. [PMID: 25361917 DOI: 10.1158/1078-0432.ccr-13-2661] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phosphatase and Tensin homolog deleted on chromosome Ten (PTEN) acts as a tumor suppressor through both PI3K-dependent and -independent mechanisms. Reduced PTEN activity has been shown to affect not only tumor cell proliferation and survival but also the microenvironmental context in which nascent tumors develop. As a result of the multifaceted tumor-suppressive roles of PTEN, tumors evolve by selecting for clones in which PTEN activity is lost. PTEN activity within tumors can be modulated in numerous ways, including direct mutation, epigenetic regulation, and amplification or mutation of other proteins that can regulate or degrade PTEN. These events functionally prevent PTEN protein from acting within tumor cells. Paracrine roles for PTEN gene products (exosomal PTEN and PTEN-L) have recently been identified, through which PTEN gene products produced in one cell are able to enter recipient cells and contribute to PTEN functions. In preclinical models purified PTEN-L protein was able to enter tumor xenografts and downregulate PI3K signaling as well as cause tumor cell death. Here, we review the role of PTEN as a multifaceted tumor suppressor and reflect upon the potential for PTEN restoration therapy.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
71
|
Casar Tena T, Burkhalter MD, Philipp M. Left-right asymmetry in the light of TOR: An update on what we know so far. Biol Cell 2015; 107:306-18. [PMID: 25943139 PMCID: PMC4744706 DOI: 10.1111/boc.201400094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/29/2015] [Indexed: 01/06/2023]
Abstract
The internal left‐right (LR) asymmetry is a characteristic that exists throughout the animal kingdom from roundworms over flies and fish to mammals. Cilia, which are antenna‐like structures protruding into the extracellular space, are involved in establishing LR asymmetry during early development. Humans who suffer from dysfunctional cilia often develop conditions such as heterotaxy, where internal organs appear to be placed randomly. As a consequence to this failure in asymmetry development, serious complications such as congenital heart defects (CHD) occur. The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has recently emerged as an important regulator regarding symmetry breaking. The mTOR pathway governs fundamental processes such as protein translation or metabolism. Its activity can be transduced by two complexes, which are called TORC1 and TORC2, respectively. So far, only TORC1 has been implicated with asymmetry development and appears to require very precise regulation. A number of recent papers provided evidence that dysregulated TORC1 results in alterations of motile cilia and asymmetry defects. In here, we give an update on what we know so far of mTORC1 in LR asymmetry development.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, 89081, Germany
| | - Martin D Burkhalter
- Leibniz Institute for Age Research Fritz Lippmann Institute, Jena, 07745, Germany
| | - Melanie Philipp
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, 89081, Germany
| |
Collapse
|
72
|
Abstract
Malformations of cortical development (MCDs) are a common cause of neurodevelopmental delay and epilepsy and are caused by disruptions in the normal development of the cerebral cortex. Several causative genes have been identified in patients with MCD. There is increasing evidence of role of de novo mutations, including those occurring post fertilization, in MCD. These somatic mutations may not be detectable by traditional methods of genetic testing performed on blood DNA. Identification of the genetic cause can help in guiding families in future pregnancies. Research has highlighted how elucidation of key molecular pathways can also allow for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Saumya S Jamuar
- Department of Paediatrics, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore; Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Paediatrics Academic Programme, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA.
| |
Collapse
|
73
|
Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kumar S, Levine B, Maiuri MC, Martin SJ, Penninger J, Piacentini M, Rubinsztein DC, Simon HU, Simonsen A, Thorburn AM, Velasco G, Ryan KM, Kroemer G. Autophagy in malignant transformation and cancer progression. EMBO J 2015; 34:856-80. [PMID: 25712477 PMCID: PMC4388596 DOI: 10.15252/embj.201490784] [Citation(s) in RCA: 944] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/15/2022] Open
Abstract
Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Federico Pietrocola
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - Ravi K Amaravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark IRCCS Fondazione Santa Lucia and Department of Biology University of Rome Tor Vergata, Rome, Italy
| | - Patrice Codogno
- Université Paris Descartes Sorbonne Paris Cité, Paris, France Institut Necker Enfants-Malades (INEM), Paris, France INSERM U1151, Paris, France CNRS UMR8253, Paris, France
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - David A Gewirtz
- Department of Pharmacology, Toxicology and Medicine, Virginia Commonwealth University, Richmond Virginia, VA, USA
| | | | - Alec Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Chiara Maiuri
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Gustave Roussy Cancer Campus, Villejuif, France
| | - Seamus J Martin
- Department of Genetics, Trinity College, The Smurfit Institute, Dublin, Ireland
| | - Josef Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy National Institute for Infectious Diseases IRCCS 'Lazzaro Spallanzani', Rome, Italy
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andrew M Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University of Madrid, Madrid, Spain Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France INSERM U1138, Paris, France Université Paris Descartes Sorbonne Paris Cité, Paris, France Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
74
|
Generalized overgrowth syndromes with prenatal onset. Curr Probl Pediatr Adolesc Health Care 2015; 45:97-111. [PMID: 25861999 DOI: 10.1016/j.cppeds.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Abstract
Children with generalized overgrowth syndromes are large at birth, or have excessive postnatal growth. Many of these syndromes are associated with an increase in neoplasia. Consideration of the possibility of overgrowth syndrome in a pediatric patient who presents with increased growth parameters, variable malformations and neurodevelopmental phenotype, and distinctive features, is important for medical management, reproductive counseling, and tumor surveillance for some of the disorders. This review describes the clinical features and surveillance recommendations for the common generalized overgrowth syndromes the pediatrician may encounter. It also provides a glimpse into advances of recent years in understanding the molecular mechanisms responsible for the disrupted growth regulation in these disorders.
Collapse
|
75
|
Mendelian disorders of PI metabolizing enzymes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:867-81. [PMID: 25510381 DOI: 10.1016/j.bbalip.2014.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 12/18/2022]
Abstract
More than twenty different genetic diseases have been described that are caused by mutations in phosphoinositide metabolizing enzymes, mostly in phosphoinositide phosphatases. Although generally ubiquitously expressed, mutations in these enzymes, which are mainly loss-of-function, result in tissue-restricted clinical manifestations through mechanisms that are not completely understood. Here we analyze selected disorders of phosphoinositide metabolism grouped according to the principle tissue affected: the nervous system, muscle, kidney, the osteoskeletal system, the eye, and the immune system. We will highlight what has been learnt so far from the study of these disorders about not only the cellular and molecular pathways that are involved or are governed by phosphoinositides, but also the many gaps that remain to be filled to gain a full understanding of the pathophysiological mechanisms underlying the clinical manifestations of this steadily growing class of diseases, most of which still remain orphan in terms of treatment. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
76
|
Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta Rev Cancer 2014; 1855:104-21. [PMID: 25450577 DOI: 10.1016/j.bbcan.2014.09.008] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
PI3K/AKT signaling leads to reduced apoptosis, stimulates cell growth and increases proliferation. Under normal conditions, PI3K/AKT activation is tightly controlled and dependent on both extracellular growth signals and the availability of amino acids and glucose. Genetic aberrations leading to PI3K/AKT hyper-activation are observed at considerable frequency in all major nodes in most tumors. In colorectal cancer the most commonly observed pathway changes are IGF2 overexpression, PIK3CA mutations and PTEN mutations and deletions. Combined, these alterations are found in about 40% of large bowel tumors. In addition, but not mutually exclusive to these, KRAS mutations are observed at a similar frequency. There are however additional, less frequent and more poorly understood events that may also push the PI3K/AKT pathway into overdrive and thus promote malignant growth. Here we discuss aberrations of components at the genetic, epigenetic, transcriptional, post-transcriptional, translational and post-translational level where perturbations may drive excessive PI3K/AKT signaling. Integrating multiple molecular levels will advance our understanding of this cancer critical circuit and more importantly, improve our ability to pharmacologically target the pathway in view of clonal development, tumor heterogeneity and drug resistance mechanisms. In this review, we revisit the PI3K/AKT pathway cancer susceptibility syndromes, summarize the known aberrations at the different regulatory levels and the prognostic and predictive values of these alterations in colorectal cancer.
Collapse
Affiliation(s)
- Stine Aske Danielsen
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter Wold Eide
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Arild Nesbakken
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Tormod Guren
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
77
|
PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev 2014; 38:229-36; discussion 236-7. [DOI: 10.1007/s10143-014-0597-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/08/2014] [Accepted: 11/01/2014] [Indexed: 01/09/2023]
|
78
|
Stumpf M, Choorapoikayil S, den Hertog J. Pten function in zebrafish: anything but a fish story. Methods 2014; 77-78:191-6. [PMID: 25461815 DOI: 10.1016/j.ymeth.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 12/13/2022] Open
Abstract
Zebrafish is an excellent model system for the analysis of gene function. We and others use zebrafish to investigate the function of the tumor suppressor, Pten, in tumorigenesis and embryonic development. Zebrafish have two pten genes, ptena and ptenb. The recently identified N-terminal extension of human PTEN that may facilitate cell membrane transfer, appears not to be conserved in zebrafish Ptena or Ptenb. Mutants that retain a single wild type pten allele develop tumors, predominantly hemangiosarcomas. Homozygous double mutants are embryonic lethal. Zebrafish embryos lacking functional Pten display enhanced proliferation of endothelial cells, resulting in hyperbranching of blood vessels. In addition, ptena-/-ptenb-/- mutant embryos display enhanced proliferation of hematopoietic stem and progenitor cells and concomitant arrest of differentiation, although Pten-deficient cells commit to all blood cell lineages. Zebrafish is an ideal model for intravital imaging and future work using ptena-/-ptenb-/- mutants will enhance our understanding of the function of Pten in vivo.
Collapse
Affiliation(s)
- Miriam Stumpf
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Suma Choorapoikayil
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands; CNRS, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, Univ Montpellier 2, 34095 Montpellier, France
| | - Jeroen den Hertog
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands; Institute of Biology Leiden, Leiden University, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
79
|
Abstract
With improved genetic testing and genomic sequencing, abnormalities are increasingly being identified in affected or germline tissues in DNA of patients with vascular tumors, vascular malformations, and lymphedema. Recognition of the genetics of vascular anomalies should help clinicians make more specific diagnoses, anticipate diagnosis-specific morbidities, provide better genetic counseling, and have a better understanding of the pathogenesis of these anomalies. Growing pharmacologic options, including therapies targeted to specific mutations, with obvious parallels to cancer treatment now allow the pediatric hematologist-oncologist to assume a more prominent role in clinical care and research for patients with these diagnoses. We summarize genes and genetic loci that have been associated with vascular anomalies and offer guidelines for patient evaluations.
Collapse
|
80
|
Mester J, Eng C. Cowden syndrome: Recognizing and managing a not-so-rare hereditary cancer syndrome. J Surg Oncol 2014; 111:125-30. [DOI: 10.1002/jso.23735] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/04/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Jessica Mester
- Cleveland Clinic Genomic Medicine Institute; Cleveland OH
| | - Charis Eng
- Cleveland Clinic Genomic Medicine Institute; Cleveland OH
| |
Collapse
|
81
|
Sun L, Liu J, Yuan Q, Xing C, Yuan Y. Association between PTEN Gene IVS4 polymorphism and risk of cancer: a meta-analysis. PLoS One 2014; 9:e98851. [PMID: 24901890 PMCID: PMC4047023 DOI: 10.1371/journal.pone.0098851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/07/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phosphatase and tensin homolog (PTEN) is a well established tumor suppressor gene. Recently, increasing studies investigated the association between PTEN IVS4 polymorphism (rs3830675) and risk of various types of cancer. However, the results from the individual studies were controversial. The aim of this meta-analysis was to elucidate whether PTEN IVS4 polymorphism was associated with cancer risk. METHODS Databases including PubMed, Web of knowledge and Chinese National Knowledge Infrastructure (CNKI) were systematically searched to identify potentially eligible literatures. Odds ratios (OR) and their 95% confidence interval (CI) were used to assess the strength of association between PTEN IVS4 polymorphism and cancer risk. RESULTS A total of seven case-control studies were finally included in this meta-analysis. The pooled analysis suggested that individuals with PTEN IVS4 (-/-) genotype were significantly associated with increased risk of cancer (OR = 1.45, 95% CI = 1.19-1.76, P<0.001) and subgroup of digestive tract cancer (OR = 1.67, 95% CI = 1.28-2.18, P<0.001) compared with (+/+) genotype. The allele analysis revealed that (-) allele was significantly associated with increased risk of cancer (OR = 1.30, 95% CI = 1.12-1.50, P = 0.001) and subgroup of digestive tract cancer (OR = 1.42, 95% CI = 1.16-1.74, P = 0.001) compared with (+) allele. No significant association was observed between PTEN IVS4 (+/-) genotype and risk of cancer. CONCLUSION PTEN IVS4 (-/-) genotype was significantly associated with increased risk of cancer especially for digestive tract cancer compared with (+/+) genotype. The (-) allele of PTEN IVS4 (rs3830675) polymorphism was significantly associated with increased risk of cancer especially for digestive tract cancer compared with (+) allele. The recessive effect model and dominant effect model also demonstrated significant association between PTEN IVS4 (rs3830675) polymorphism and increased cancer risk especially for digestive tract cancer. Further large-scale and well-designed studies regarding different ethnicities are still required to confirm the results of our meta-analysis.
Collapse
Affiliation(s)
- Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Quan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
- * E-mail: (YY); (CX)
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
- * E-mail: (YY); (CX)
| |
Collapse
|
82
|
Mirzaa GM, Poduri A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:156-72. [PMID: 24888963 DOI: 10.1002/ajmg.c.31401] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Megalencephaly (MEG) is a developmental disorder characterized by brain overgrowth that occurs due to either increased number or size of neurons and glial cells. The former may be due to either increased neuronal proliferation or decreased apoptosis. The degree of brain overgrowth may be extensive, ranging from generalized MEG affecting the entire cortex-as with mutations in PTEN (phosphatase and tensin homolog on chromosome ten)-to unilateral hemispheric malformations-as in classic hemimegalencephaly (HME). On the other hand, some lesions are more focal or segmental. These developmental brain abnormalities may occur in isolation in some individuals, whereas others occur in the context of a syndrome involving dysmorphic features, skin findings, or other organ system involvement. Brain overgrowth disorders are often associated with malformations of cortical development, resulting in increased risk of epilepsy, intellectual disability, and autistic features, and some are associated with hydrocephalus. The past few years have witnessed a dramatic leap in our understanding of the molecular basis of brain overgrowth, particularly the identification of mosaic (or post-zygotic) mutations in core components of key cellular pathways such as the phosphatidylinositol 3-kinase (PI3K)-vakt murine thymoma viral oncogene homolog (AKT)-mTOR pathway. These molecular insights have broadened our view of brain overgrowth disorders that now appear to span a wide spectrum of overlapping phenotypic, neuroimaging, and neuropathologic features and molecular pathogenesis. These molecular advances also bring to light the possibility of pathway-based therapies for these often medically devastating developmental disorders.
Collapse
|
83
|
Rasool S, Rasool V, Naqvi T, Ganai BA, Shah BA. Genetic unraveling of colorectal cancer. Tumour Biol 2014; 35:5067-82. [PMID: 24573608 DOI: 10.1007/s13277-014-1713-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/29/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common disease in both men and women (being the third most common cancer in men and the second most common among women) and thus represents an important and serious public health issue, especially in the western world. Although it is a well-established fact that cancers of the large intestine produce symptoms relatively earlier at a stage that can be easily cured by resection, a large number of people lose their lives to this deadly disease each year. Recent times have seen an important change in the incidence of colorectal cancer in different parts of the world. The etiology of colorectal cancer is multifactorial and is likely to involve the actions of genes at multiple levels along the multistage carcinogenesis process. Exhaustive efforts have been made out in the direction of unraveling the role of various environmental factors, gene mutations, and polymorphisms worldwide (as well as in Kashmir-"a valley of gastrointestinal cancers") that have got a role to play in the development of this disease so that antitumor drugs could be developed against this cancer, first, and, finally, the responsiveness or resistance to these agents could be understood for combating this global issue.
Collapse
Affiliation(s)
- Sabha Rasool
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | | | | | | | | |
Collapse
|
84
|
Stanich PP, Pilarski R, Rock J, Frankel WL, El-Dika S, Meyer MM. Colonic manifestations of PTEN hamartoma tumor syndrome: Case series and systematic review. World J Gastroenterol 2014; 20:1833-1838. [PMID: 24587660 PMCID: PMC3930981 DOI: 10.3748/wjg.v20.i7.1833] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/12/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate our clinical experience with the colonic manifestations of phosphatase and tensin homolog on chromosome ten (PTEN) hamartoma tumor syndrome (PHTS) and to perform a systematic literature review regarding the same.
METHODS: This study was approved by the appropriate institutional review board prior to initiation. A clinical genetics database was searched for patients with PHTS or a component syndrome that received gastrointestinal endoscopy or pathology interpretation at our center. These patient’s records were retrospectively reviewed for clinical characteristics (including family history and genetic testing), endoscopy results and pathology findings. We also performed a systematic review of the literature for case series of PHTS or component syndromes that reported gastrointestinal manifestations and investigations published after consensus diagnostic criteria were established in 1996. These results were compiled and reported.
RESULTS: Eight patients from our institution met initial inclusion criteria. Of these, 5 patients underwent 4.2 colonoscopies at mean age 45.8 ± 10.8 years. All were found to have colon polyps during their clinical course and polyp histology included adenoma, hyperplastic, ganglioneuroma and juvenile. No malignant lesions were identified. Two had multiple histologic types. One patient underwent colectomy due to innumerable polyps and concern for future malignant potential. Systematic literature review of PHTS patients undergoing endoscopy revealed 107 patients receiving colonoscopy at mean age 37.4 years. Colon polyps were noted in 92.5% and multiple colon polyp histologies were reported in 53.6%. Common polyp histologies included hyperplastic (43.6%), adenoma (40.4%), hamartoma (38.3%), ganglioneuroma (33%) and inflammatory (24.5%) polyps. Twelve (11.2%) patients had colorectal cancer at mean age 46.7 years (range 35-62). Clinical outcomes secondary to colon polyposis and malignancy were not commonly reported.
CONCLUSION: PHTS has a high prevalence of colon polyposis with multiple histologic types. It should be considered a mixed polyposis syndrome. Systematic review found an increased prevalence of colorectal cancer and we recommend initiating colonoscopy for colorectal cancer surveillance at age 35 years.
Collapse
|
85
|
PTEN, Longevity and Age-Related Diseases. Biomedicines 2013; 1:17-48. [PMID: 28548055 PMCID: PMC5423463 DOI: 10.3390/biomedicines1010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of PTEN, this protein has been shown to be an effective suppressor of cancer and a contributor to longevity. This report will review, in depth, the associations between PTEN and other molecules, its mutations and regulations in order to present how PTEN can be used to increase longevity. This report will collect recent research of PTEN and use this to discuss PTEN’s role in caloric restriction, antioxidative defense of DNA-damage and the role it plays in suppressing tumors. The report will also discuss that variety of ways that PTEN can be compromised, through mutations, complete loss of alleles and its main antagonist, the PI3K/AKT pathway.
Collapse
|
86
|
Lachlan KL. Cowden syndrome and the PTEN hamartoma tumor syndrome: how to define rare genetic syndromes. J Natl Cancer Inst 2013; 105:1595-7. [PMID: 24136892 DOI: 10.1093/jnci/djt290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Katherine L Lachlan
- Affiliations of author: Wessex Clinical Genetics Service, University of Southampton Foundation NHS Trust, Southampton, UK; and Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southamption, UK
| |
Collapse
|
87
|
Mester J, Eng C. When overgrowth bumps into cancer: the PTEN-opathies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:114-21. [PMID: 23613428 DOI: 10.1002/ajmg.c.31364] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PTEN is a dual-specificity phosphatase and well-known tumor suppressor gene. When functioning properly, it works in its canonical pathway to inhibit AKT/mTOR and MAPK signaling, leading to cell death and growth regulation. PTEN mutations cause dysregulation of these pathways, resulting in cellular proliferation and overgrowth. When germline mutations are present as in patients with PTEN Hamartoma Tumor Syndrome (PHTS), benign and malignant neoplasias occur as well as cerebral overgrowth and neurodevelopmental abnormalities. This review article will summarize recent laboratory and clinical investigations relating to PTEN, highlighting the overgrowth aspects of this syndrome and the molecular drivers behind these key phenotypes. Finally, therapies developed targeted the PI3K/AKT/mTOR pathway for other tumor predisposition syndromes will be discussed.
Collapse
Affiliation(s)
- Jessica Mester
- PTEN/Cowden Multidisciplinary Clinic, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
88
|
Piccione M, Fragapane T, Antona V, Giachino D, Cupido F, Corsello G. PTEN hamartoma tumor syndromes in childhood: Description of two cases and a proposal for follow-up protocol. Am J Med Genet A 2013; 161A:2902-8. [DOI: 10.1002/ajmg.a.36266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Maria Piccione
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D'Alessandro”; University of Palermo; Palermo Italy
| | - Tiziana Fragapane
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D'Alessandro”; University of Palermo; Palermo Italy
| | - Vincenzo Antona
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D'Alessandro”; University of Palermo; Palermo Italy
| | - Daniela Giachino
- Department of Clinical and Biological Sciences; University of Torino; Torino Italy
| | - Francesco Cupido
- Department of Surgical and Oncological Disciplines; University of Palermo; Palermo Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D'Alessandro”; University of Palermo; Palermo Italy
| |
Collapse
|
89
|
Conley-LaComb MK, Saliganan A, Kandagatla P, Chen YQ, Cher ML, Chinni SR. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol Cancer 2013; 12:85. [PMID: 23902739 PMCID: PMC3751767 DOI: 10.1186/1476-4598-12-85] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/01/2013] [Indexed: 02/08/2023] Open
Abstract
Introduction The chemokine CXCL12, also known as SDF-1, and its receptor, CXCR4, are overexpressed in prostate cancers and in animal models of prostate-specific PTEN deletion, but their regulation is poorly understood. Loss of the tumor suppressor PTEN (phosphatase and tensin homolog) is frequently observed in cancer, resulting in the deregulation of cell survival, growth, and proliferation. We hypothesize that loss of PTEN and subsequent activation of Akt, frequent occurrences in prostate cancer, regulate the CXCL12/CXCR4 signaling axis in tumor growth and bone metastasis. Methods Murine prostate epithelial cells from PTEN+/+, PTEN+/−, and PTEN−/− (prostate specific knockdown) mice as well as human prostate cancer cell lines C4-2B, PC3, and DU145 were used in gene expression and invasion studies with Akt inhibition. Additionally, HA-tagged Akt1 was overexpressed in DU145, and tumor growth in subcutaneous and intra-tibia bone metastasis models were analyzed. Results Loss of PTEN resulted in increased expression of CXCR4 and CXCL12 and Akt inhibition reversed expression and cellular invasion. These results suggest that loss of PTEN may play a key role in the regulation of this chemokine activity in prostate cancer. Overexpression of Akt1 in DU145 resulted in increased CXCR4 expression, as well as increased proliferation and cell cycle progression. Subcutaneous injection of these cells also resulted in increased tumor growth as compared to neo controls. Akt1 overexpression reversed the osteosclerotic phenotype associated with DU145 cells to an osteolytic phenotype and enhanced intra-osseous tumor growth. Conclusions These results suggest the basis for activation of CXCL12 signaling through CXCR4 in prostate cancer driven by the loss of PTEN and subsequent activation of Akt. Akt1-associated CXCL12/CXCR4 signaling promotes tumor growth, suggesting that Akt inhibitors may potentially be employed as anticancer agents to target expansion of PC bone metastases.
Collapse
Affiliation(s)
- M Katie Conley-LaComb
- Department of Urology, Wayne State University School of Medicine, 9245 Scott Hall 540 E, Canfield Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
90
|
Mishra N, Hall J. Identification of patients at risk for hereditary colorectal cancer. Clin Colon Rectal Surg 2013; 25:67-82. [PMID: 23730221 DOI: 10.1055/s-0032-1313777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diagnosis of hereditary colorectal cancer syndromes requires clinical suspicion and knowledge of such syndromes. Lynch syndrome is the most common cause of hereditary colorectal cancer. Other less common causes include familial adenomatous polyposis (FAP), Peutz-Jeghers syndrome (PJS), juvenile polyposis syndrome, and others. There have been a growing number of clinical and molecular tools used to screen and test at risk individuals. Screening tools include diagnostic clinical criteria, family history, genetic prediction models, and tumor testing. Patients who are high risk based on screening should be referred for genetic testing.
Collapse
Affiliation(s)
- Nitin Mishra
- Department of Colon and Rectal Surgery, Lahey Clinic, Burlington, Massachusetts
| | | |
Collapse
|
91
|
Choorapoikayil S, Weijts B, Kers R, de Bruin A, den Hertog J. Loss of Pten promotes angiogenesis and enhanced vegfaa expression in zebrafish. Dis Model Mech 2013; 6:1159-66. [PMID: 23720233 PMCID: PMC3759335 DOI: 10.1242/dmm.012377] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, the emergence of vessels from an existing vascular network, is pathologically associated with tumor progression and is of great interest for therapeutic intervention. PTEN is a frequently mutated tumor suppressor and has been linked to the progression of many types of tumors, including hemangiosarcomas in zebrafish. Here, we report that mutant zebrafish embryos lacking functional Pten exhibit enhanced angiogenesis, accompanied by elevated levels of phosphorylated Akt (pAkt). Inhibition of phosphoinositide 3-kinase (PI3K) by LY294002 treatment and application of sunitinib, a widely used anti-angiogenic compound, suppressed enhanced angiogenesis in Pten mutants. Vegfaa has a crucial role in angiogenesis and vegfaa expression was upregulated in embryos lacking functional Pten. Interestingly, vegfaa expression was also upregulated in hemangiosarcomas from haploinsufficient adult zebrafish Pten mutants. Elevated vegfaa expression in mutant embryos lacking functional Pten was suppressed by LY294002. Surprisingly, sunitinib treatment dramatically enhanced vegfaa expression in Pten mutant embryos, which might account for tumor relapse in human patients who are treated with sunitinib. Combined treatment with suboptimal concentrations of sunitinib and LY294002 rescued enhanced angiogenesis in pten mutant embryos without the dramatic increase in vegfaa expression, suggesting a new approach for therapeutic intervention in VEGFR-signaling-dependent tumors.
Collapse
Affiliation(s)
- Suma Choorapoikayil
- Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
92
|
de Leon MP, Di Gregorio C, Giunti L, Roncucci L, Pedroni M, Tinca AC, Crucianelli F, Tricarico R, Genuardi M. Duodenal carcinoma in a 37-year-old man with Cowden/Bannayan syndrome. Dig Liver Dis 2013; 45:75-78. [PMID: 23117110 DOI: 10.1016/j.dld.2012.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/04/2012] [Accepted: 09/26/2012] [Indexed: 12/11/2022]
Abstract
A 37-year-old man was hospitalised because of anaemia and fatigue due to an infiltrating adenocarcinoma of the Treitz angle (duodenum), together with gastric, duodenal and colorectal polyps. After the operation, removal of colorectal lesions revealed the presence of ganglioneuromatosis of the large bowel. Further investigations showed lack of MLH1 protein expression and microsatellite instability in the duodenal neoplasm, while the gene was normally expressed in the polyps. MLH1 sequence and Multiple Ligation-dependent Probes Amplification analysis (from constitutional DNA) were normal. Analysis of the PTEN gene revealed the presence of a constitutional mutation (c.510 T>A; p.Ser170Arg) which had been associated with the Cowden phenotype. Further detailed clinical investigations revealed macrocephaly (63 cm), melanotic spots of the penis, small angiomas, millimetric trichilemmomas in the nose and multiple lipomas, which led to the diagnosis of Cowden/Bannayan disease. The unusual appearance of a duodenal carcinoma as the first symptom rendered the identification of the syndrome extremely difficult.
Collapse
Affiliation(s)
- Maurizio Ponz de Leon
- Department of Internal Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
The progress of molecular genetics helps clinicians to prove or exclude a suspected diagnosis for a vast and yet increasing number of genodermatoses. This leads to precise genetic counselling, prenatal diagnosis and preimplantation genetic haplotyping for many inherited skin conditions. It is also helpful in such occasions as phenocopy, late onset and incomplete penetrance, uniparental disomy, mitochondrial inheritance and pigmentary mosaicism. Molecular methods of two genodermatoses are explained in detail, i.e. genodermatoses with skin fragility and neurofibromatosis type 1.
Collapse
Affiliation(s)
- Vesarat Wessagowit
- Molecular Genetics Laboratory, The Institute of Dermatology, Bangkok, Thailand.
| |
Collapse
|
94
|
Bagai R, Ma PC. The Role of the Insulin-like Growth Factor-1 Receptor (IGF-1R), Phosphatase and Tensin Homolog (PTEN), c-Met, and the PI3-Kinase Pathway in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
95
|
Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 2012; 18:524-33. [PMID: 22749019 DOI: 10.1016/j.molmed.2012.05.007] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/24/2022]
Abstract
The mechanistic target of rapamycin (mTOR) kinase controls growth and metabolism, and its deregulation underlies the pathogenesis of many diseases, including cancer, neurodegeneration, and diabetes. mTOR complex 1 (mTORC1) integrates signals arising from nutrients, energy, and growth factors, but how exactly these signals are propagated await to be fully understood. Recent findings have placed the lysosome, a key mediator of cellular catabolism, at the core of mTORC1 regulation by amino acids. A multiprotein complex that includes the Rag GTPases, Ragulator, and the v-ATPase forms an amino acid-sensing machinery on the lysosomal surface that affects the decision between cell growth and catabolism at multiple levels. The involvement of a catabolic organelle in growth signaling may have important implications for our understanding of mTORC1-related pathologies.
Collapse
Affiliation(s)
- Alejo Efeyan
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
96
|
Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135:1348-69. [PMID: 22427329 PMCID: PMC3338922 DOI: 10.1093/brain/aws019] [Citation(s) in RCA: 698] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology, University of California at San Francisco, 505 Parnassus Avenue, San Francisco, CA 94913-0628, USA.
| | | | | | | | | |
Collapse
|
97
|
Hoekstra E, Peppelenbosch MP, Fuhler GM. The role of protein tyrosine phosphatases in colorectal cancer. Biochim Biophys Acta Rev Cancer 2012; 1826:179-88. [PMID: 22521639 DOI: 10.1016/j.bbcan.2012.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/17/2023]
Abstract
Colorectal cancer is one of the most common oncogenic diseases in the Western world. Several cancer associated cellular pathways have been identified, in which protein phosphorylation and dephosphorylation, especially on tyrosine residues, are one of most abundant regulatory mechanisms. The balance between these processes is under tight control by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Aberrant activity of oncogenic PTKs is present in a large portion of human cancers. Because of the counteracting role of PTPs on phosphorylation-based activation of signal pathways, it has long been thought that PTPs must act as tumor suppressors. This dogma is now being challenged, with recent evidence showing that dephosphorylation events induced by some PTPs may actually stimulate tumor formation. As such, PTPs might form a novel attractive target for anticancer therapy. In this review, we summarize the action of different PTPs, the consequences of their altered expression in colorectal cancer, and their potential as target for the treatment of this deadly disease.
Collapse
Affiliation(s)
- Elmer Hoekstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | |
Collapse
|
98
|
Ahmed SF, Deb S, Paul I, Chatterjee A, Mandal T, Chatterjee U, Ghosh MK. The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J Biol Chem 2012; 287:15996-6006. [PMID: 22427670 DOI: 10.1074/jbc.m111.321083] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor, PTEN is key to the regulation of diverse cellular processes, making it a prime candidate to be tightly regulated. The PTEN level is controlled in a major way by E3 ligase-mediated degradation through the Ubiquitin-Proteasome System (UPS). Nedd 4-1, XIAP, and WWP2 have been shown to maintain PTEN turnover. Here, we report that CHIP, the chaperone-associated E3 ligase, induces ubiquitination and regulates the proteasomal turnover of PTEN. It was apparent from our findings that PTEN transiently associates with the molecular chaperones and thereby gets diverted to the degradation pathway through its interaction with CHIP. The TPR domain of CHIP and parts of the N-terminal domain of PTEN are required for their interaction. Overexpression of CHIP leads to elevated ubiquitination and a shortened half-life of endogenous PTEN. On the other hand, depletion of endogenous CHIP stabilizes PTEN. CHIP is also shown to regulate PTEN-dependent transcription presumably through its down-regulation. PTEN shared an inverse correlation with CHIP in human prostate cancer patient samples, thereby triggering the prospects of a more complex mode of PTEN regulation in cancer.
Collapse
Affiliation(s)
- Syed Feroj Ahmed
- Signal Tranduction in Cancer and Stem Cells Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), 4 Raja S C Mullick Road, Kolkata, 700032, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
99
|
Affiliation(s)
- Dhirendra Govender
- Division of Anatomical Pathology, University of Cape Town and National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.
| | | |
Collapse
|
100
|
Abstract
Over the past two decades, our understanding of phospoinositide 3-kinases (PI3Ks) has progressed from the identification of an enzymatic activity associated with growth factors, GPCRs and certain oncogene products to a disease target in cancer and inflammation, with PI3K inhibitors currently in clinical trials. Elucidation of PI3K-dependent networks led to the discovery of the phosphoinositide-binding PH, PX and FYVE domains as conduits of intracellular lipid signalling, the determination of the molecular function of the tumour suppressor PTEN and the identification of AKT and mTOR protein kinases as key regulators of cell growth. Here we look back at the main discoveries that shaped the PI3K field.
Collapse
|