51
|
Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene. Neurochem Res 2013; 38:1266-77. [PMID: 23564290 DOI: 10.1007/s11064-013-1030-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/06/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated axons with only a borderline impairment in conduction and Rotor-Rod. Plantar muscle reinnervation occurred within 21 days in all mice. Shortly after reinnervation the conduction of P0+/- regenerated axons was markedly slower than WT, however, this difference decayed with time. Nevertheless, after 1 month, regenerated P0+/- axons had longer strength-duration time constant, larger threshold changes during hyperpolarizing electrotonus and longer relative refractory period. Their performance at Rotor-Rod remained also markedly impaired. In contrast, the number and diameter distribution of regenerating myelinated fibers became similar to regenerated WT. Our data suggest that in the presence of heterozygously P0 deficient Schwann cells, regenerating motor axons retain their ability to reinnervate their targets and remyelinate, though their functional recovery is delayed.
Collapse
|
52
|
Pareyson D, Marchesi C, Salsano E. Dominant Charcot-Marie-Tooth syndrome and cognate disorders. HANDBOOK OF CLINICAL NEUROLOGY 2013; 115:817-845. [PMID: 23931817 DOI: 10.1016/b978-0-444-52902-2.00047-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a group of genetically heterogeneous disorders sharing a similar phenotype, characterized by wasting and weakness mainly involving the distal muscles of lower and upper limbs, variably associated with distal sensory loss and skeletal deformities. This chapter deals with dominantly transmitted CMT and related disorders, namely hereditary neuropathy with liability to pressure palsies (HNPP) and hereditary neuralgic amyotrophy (HNA). During the last 20 years, several genes have been uncovered associated with CMT and our understanding of the underlying molecular mechanisms has greatly improved. Consequently, a precise genetic diagnosis is now possible in the majority of cases, thus allowing proper genetic counseling. Although, unfortunately, treatment is still unavailable for all types of CMT, several cellular and animal models have been developed and some compounds have proved effective in these models. The first trials with ascorbic acid in CMT type 1A have been completed and, although negative, are providing relevant information on disease course and on how to prepare for future trials.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinics of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy.
| | | | | |
Collapse
|
53
|
Kleopa KA, Abrams CK, Scherer SS. How do mutations in GJB1 cause X-linked Charcot-Marie-Tooth disease? Brain Res 2012; 1487:198-205. [PMID: 22771394 PMCID: PMC3488165 DOI: 10.1016/j.brainres.2012.03.068] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/24/2012] [Indexed: 11/26/2022]
Abstract
The X-linked form of Charcot-Marie-Tooth disease (CMT1X) is the second most common form of hereditary motor and sensory neuropathy. The clinical phenotype is characterized by progressive weakness, atrophy, and sensory abnormalities that are most pronounced in the distal extremities. Some patients have CNS manifestations. Affected males have moderate to severe symptoms, whereas heterozygous females are usually less affected. Neurophysiology shows intermediate slowing of conduction and length-dependent axonal loss. Nerve biopsies show more prominent axonal degeneration than de/remyelination. Mutations in GJB1, the gene that encodes the gap junction (GJ) protein connexin32 (Cx32) cause CMT1X; more than 400 different mutations have been described. Many Cx32 mutants fail to form functional GJs, or form GJs with abnormal biophysical properties. Schwann cells and oligodendrocytes express Cx32, and the GJs formed by Cx32 play an important role in the homeostasis of myelinated axons. Animal models of CMT1X demonstrate that loss of Cx32 in myelinating Schwann cells causes a demyelinating neuropathy. Effective therapies remain to be developed. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Kleopas A Kleopa
- Neurology Clinics and Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | |
Collapse
|
54
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012; 3:204-14. [PMID: 23293578 DOI: 10.1159/000343487] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
55
|
Azzedine H, Senderek J, Rivolta C, Chrast R. Molecular genetics of charcot-marie-tooth disease: from genes to genomes. Mol Syndromol 2012. [PMID: 23293578 DOI: 10.1159/000343487/msy-0003-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50-70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs.
Collapse
Affiliation(s)
- H Azzedine
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
56
|
Houlden H, Reilly MM. Molecular genetics of autosomal-dominant demyelinating Charcot-Marie-Tooth disease. Neuromolecular Med 2012; 8:43-62. [PMID: 16775366 DOI: 10.1385/nmm:8:1-2:43] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 12/15/2005] [Accepted: 01/11/2006] [Indexed: 12/20/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous group of disorders and is the most common inherited neuromuscular disorder, with an estimated overall prevalence of 17-40/10,000. Although there has been major advances in the understanding of the genetic basis of CMT in recent years, the most useful classification is still a neurophysiological classification that divides CMT into type 1 (demyelinating; median motor conduction velocity < 38 m/s) and type 2 (axonal; median motor conduction velocity > 38 m/s). An intermediate type is also increasingly being described. Inheritance can be autosomal-dominant (AD), X-linked, or autosomal-recessive (AR). AD CMT1 is the most common type of CMT and was the first form of CMT in which a causative gene was described. This review provides an up-to-date overview of AD CMT1 concentrating on the molecular genetics as the clinical, neurophysiological, and pathological features have been covered elsewhere. Four genes (PMP22, MPZ, LITAF, and EGR2) have been described in the last 15 yr associated with AD CMTI and a further gene (NEFL), originally described as causing AD CMT2 can also cause AD CMT1 (by neurophysiological criteria). Studies have shown many of these genes, when mutated, can cause a wide range of CMT phenotypes from the relatively mild CMT1 to the more severe Dejerine-Sottas disease and congenital hypomyelinating neuropathy, and even in some cases axonal CMT2. This review discusses what is known about these genes and in particular how they cause a peripheral neuropathy, when mutated.
Collapse
Affiliation(s)
- Henry Houlden
- Centre for Neuromuscular Disease and Department of Molecular Neurosciences, National Hospital for Neurology and Neurosurgery and Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | |
Collapse
|
57
|
Huang J, Lu L, Zhang J, Hu X, Zhang Y, Liang W, Wu S, Luo Z. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS One 2012; 7:e39526. [PMID: 22737243 PMCID: PMC3380893 DOI: 10.1371/journal.pone.0039526] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 05/23/2012] [Indexed: 02/02/2023] Open
Abstract
Background Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. Methodology/Findings In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. Conclusions/Significance Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect.
Collapse
Affiliation(s)
- Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Lei Lu
- Department of oral anatomy and physiology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Xueyu Hu
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yongguang Zhang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Fuzhou General Hospital, Fuzhou, China
| | - Wei Liang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Siyu Wu
- Department of Orthopaedics, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Zhuojing Luo
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|
58
|
Somandin C, Gerber D, Pereira JA, Horn M, Suter U. LITAF (SIMPLE) regulates Wallerian degeneration after injury but is not essential for peripheral nerve development and maintenance: implications for Charcot-Marie-Tooth disease. Glia 2012; 60:1518-28. [PMID: 22729949 DOI: 10.1002/glia.22371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/23/2012] [Indexed: 01/05/2023]
Abstract
Missense mutations affecting the LITAF gene (also known as SIMPLE) lead to the dominantly inherited peripheral neuropathy Charcot-Marie-Tooth disease type 1C (CMT1C). In this study, we sought to determine the requirement of Litaf function in peripheral nerves, the only known affected tissue in CMT1C. We reasoned that this knowledge is a prerequisite for a thorough understanding of the underlying disease mechanism with regard to potential contributions by Litaf loss of function. In addition, we anticipated to obtain valuable information about the basic function of the Litaf protein in peripheral nerves. To address these issues, we generated mice without Litaf expression using gene disruption in embryonic stem cells and analyzed Litaf-deficient peripheral nerves during development, in maintenance, and after injury. Our results show that Litaf function is not absolutely required for peripheral nerve development and maintenance. In injured nerves, however, we found that lack of Litaf led to increased numbers of macrophages during Wallerian degeneration, accelerated myelin destruction, and the emergence of more axonal sprouts. Consistent with these data, the migration of Litaf-deficient macrophages was increased upon chemokine stimulation. We conclude that loss of Litaf function is unlikely to be a major contributor to CMT1C, but modulating effects of macrophages need to be considered in the etiology of the disease.
Collapse
Affiliation(s)
- Christian Somandin
- Department of Biology, Institute of Molecular Health Sciences, Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
59
|
Saporta MAC, Shy BR, Patzko A, Bai Y, Pennuto M, Ferri C, Tinelli E, Saveri P, Kirschner D, Crowther M, Southwood C, Wu X, Gow A, Feltri ML, Wrabetz L, Shy ME. MpzR98C arrests Schwann cell development in a mouse model of early-onset Charcot-Marie-Tooth disease type 1B. ACTA ACUST UNITED AC 2012; 135:2032-47. [PMID: 22689911 DOI: 10.1093/brain/aws140] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in myelin protein zero (MPZ) cause Charcot-Marie-Tooth disease type 1B. Many dominant MPZ mutations, including R98C, present as infantile onset dysmyelinating neuropathies. We have generated an R98C 'knock-in' mouse model of Charcot-Marie-Tooth type 1B, where a mutation encoding R98C was targeted to the mouse Mpz gene. Both heterozygous (R98C/+) and homozygous (R98C/R98C) mice develop weakness, abnormal nerve conduction velocities and morphologically abnormal myelin; R98C/R98C mice are more severely affected. MpzR98C is retained in the endoplasmic reticulum of Schwann cells and provokes a transitory, canonical unfolded protein response. Ablation of Chop, a mediator of the protein kinase RNA-like endoplasmic reticulum kinase unfolded protein response pathway restores compound muscle action potential amplitudes of R98C/+ mice but does not alter the reduced conduction velocities, reduced axonal diameters or clinical behaviour of these animals. R98C/R98C Schwann cells are developmentally arrested in the promyelinating stage, whereas development is delayed in R98C/+ mice. The proportion of cells expressing c-Jun, an inhibitor of myelination, is elevated in mutant nerves, whereas the proportion of cells expressing the promyelinating transcription factor Krox-20 is decreased, particularly in R98C/R98C mice. Our results provide a potential link between the accumulation of MpzR98C in the endoplasmic reticulum and a developmental delay in myelination. These mice provide a model by which we can begin to understand the early onset dysmyelination seen in patients with R98C and similar mutations.
Collapse
Affiliation(s)
- Mario A C Saporta
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Fledrich R, Stassart RM, Sereda MW. Murine therapeutic models for Charcot-Marie-Tooth (CMT) disease. Br Med Bull 2012; 102:89-113. [PMID: 22551516 DOI: 10.1093/bmb/lds010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION OR BACKGROUND Charcot-Marie-Tooth (CMT) disease represents a broad group of inherited motor and sensory neuropathies which can originate from various genetic aberrations, e.g. mutations, deletions and duplications. SOURCES OF DATA We performed a literature review on murine animal models of CMT disease with regard to experimental therapeutic approaches. Hereby, we focussed on the demyelinating subforms of CMT (CMT1). PubMed items were CMT, animal model, demyelination and therapy. AREAS OF AGREEMENT Patients affected by CMT suffer from slowly progressive, distally pronounced muscle atrophy caused by an axonal loss. The disease severity is highly variable and impairments may result in wheelchair boundness. No therapy is available yet. AREAS OF CONTROVERSY Numerous rodent models for the various CMT subtypes are available today. The selection of the correct animal model for the specific CMT subtype provides an important prerequisite for the successful translation of experimental findings in patients. GROWING POINTS Despite more than 20 years of remarkable progress in CMT research, the disease is still left untreatable. There is a growing number of experimental therapeutic strategies that may be translated into future clinical trials in patients with CMT. AREAS TIMELY FOR DEVELOPING RESEARCH The slow disease progression and insensitive outcome measures hamper clinical therapy trials in CMT. Biomarkers may provide powerful tools to monitor therapeutic efficacy. Recently, we have shown that transcriptional profiling can be utilized to assess and predict the disease severity in a transgenic rat model and in affected humans.
Collapse
Affiliation(s)
- Robert Fledrich
- Research Group 'Molecular and Translational Neurology', Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | | | |
Collapse
|
61
|
Clinical and cellular characterization of two novel MPZ mutations, p.I135M and p.Q187PfsX63. Clin Neurol Neurosurg 2012; 114:124-9. [DOI: 10.1016/j.clineuro.2011.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 08/19/2011] [Accepted: 09/27/2011] [Indexed: 11/17/2022]
|
62
|
Kleopa KA. The role of gap junctions in Charcot-Marie-Tooth disease. J Neurosci 2011; 31:17753-60. [PMID: 22159091 PMCID: PMC6634164 DOI: 10.1523/jneurosci.4824-11.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kleopas A Kleopa
- Neurology Clinics and Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus.
| |
Collapse
|
63
|
Myelin and axon pathology in a long-term study of PMP22-overexpressing mice. J Neuropathol Exp Neurol 2011; 70:386-98. [PMID: 21487305 DOI: 10.1097/nen.0b013e318217eba0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We analyzed clinical and pathological disease in 2 peripheral myelin protein-22 (PMP22) overexpressing mouse models for 1.5 years. C22 mice have 7 and C3-PMP mice have 3 to 4 copies of the human PMP22 gene. C3-PMP mice showed no overt clinical signs at 3 weeks and developed mild neuromuscular impairment; C22 mice showed signs at 3 weeks that progressed to severe impairment. Adult C3-PMP mice had very similar, stable, low nerve conduction velocities similar to adults with human Charcot-Marie-Tooth disease type 1A (CMT1A); velocities were much lower in C22 mice. Myelination was delayed, and normal myelination was not reached in either model but the degree of dysmyelination in C3-PMP mice was considerably less than that in C22 mice; myelination was stable in the adult mice. Numbers of myelinated, fibers were reduced at 3 weeks in both models, suggesting that normal numbers of myelinated fibers are not reached during development in the models. In adult C3-PMP and wild-type mice, there was no detectable loss of myelinated fibers,whereas there was clear loss of myelinated fibers in C22 mice.In C3-PMP mice, there is a balance between myelination status and axonal function early in life, whereas in C22 mice, early reduction of axons is more severe and there is major loss of axons in adulthood. We conclude that C3-PMP mice may be an appropriate model for most CMT1A patients, whereas C22 mice may be more relevant to severely affected patients in the CMT1 spectrum.
Collapse
|
64
|
Recent Advances in the Genetics of Hereditary Axonal Sensory-Motor Neuropathies Type 2. Curr Neurol Neurosci Rep 2011; 11:262-73. [DOI: 10.1007/s11910-011-0185-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
65
|
Moldovan M, Alvarez S, Pinchenko V, Klein D, Nielsen FC, Wood JN, Martini R, Krarup C. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons. ACTA ACUST UNITED AC 2010; 134:585-601. [PMID: 21169333 DOI: 10.1093/brain/awq336] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies with conventional nerve conduction studies, behavioural studies using rotor-rod measurements, and histological measures to assess membrane dysfunction and its progression in protein zero deficient homozygous mutants as compared with age-matched wild-type controls. The involvement of Na(V)1.8 was investigated by pharmacologic block using the subtype-selective Na(V)1.8 blocker A-803467 and chronically in Na(V)1.8 knock-outs. We found that in the context of dysmyelination, abnormal potassium ion currents and membrane depolarization, the ectopic Na(V)1.8 channels further impair the motor axon excitability in protein zero deficient homozygous mutants to an extent that precipitates conduction failure in severely affected axons. Our data suggest that a Na(V)1.8 channelopathy contributed to the poor motor function of protein zero deficient homozygous mutants, and that the conduction failure was associated with partially reversible reduction of the electrically evoked muscle response and of the clinical function as indicated by the partial recovery of function at rotor-rod measurements. As a consequence of these findings of partially reversible dysfunction, we propose that the Na(V)1.8 voltage gated sodium channel should be considered as a novel therapeutic target for Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Mihai Moldovan
- Institute of Neuroscience and Pharmacology, Panum, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Antonellis A, Dennis MY, Burzynski G, Huynh J, Maduro V, Hodonsky CJ, Khajavi M, Szigeti K, Mukkamala S, Bessling SL, Pavan WJ, McCallion AS, Lupski JR, Green ED. A rare myelin protein zero (MPZ) variant alters enhancer activity in vitro and in vivo. PLoS One 2010; 5:e14346. [PMID: 21179557 PMCID: PMC3002941 DOI: 10.1371/journal.pone.0014346] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/26/2010] [Indexed: 01/16/2023] Open
Abstract
Background Myelin protein zero (MPZ) is a critical structural component of myelin in the peripheral nervous system. The MPZ gene is regulated, in part, by the transcription factors SOX10 and EGR2. Mutations in MPZ, SOX10, and EGR2 have been implicated in demyelinating peripheral neuropathies, suggesting that components of this transcriptional network are candidates for harboring disease-causing mutations (or otherwise functional variants) that affect MPZ expression. Methodology We utilized a combination of multi-species sequence comparisons, transcription factor-binding site predictions, targeted human DNA re-sequencing, and in vitro and in vivo enhancer assays to study human non-coding MPZ variants. Principal Findings Our efforts revealed a variant within the first intron of MPZ that resides within a previously described SOX10 binding site is associated with decreased enhancer activity, and alters binding of nuclear proteins. Additionally, the genomic segment harboring this variant directs tissue-relevant reporter gene expression in zebrafish. Conclusions This is the first reported MPZ variant within a cis-acting transcriptional regulatory element. While we were unable to implicate this variant in disease onset, our data suggests that similar non-coding sequences should be screened for mutations in patients with neurological disease. Furthermore, our multi-faceted approach for examining the functional significance of non-coding variants can be readily generalized to study other loci important for myelin structure and function.
Collapse
Affiliation(s)
- Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Megan Y. Dennis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Grzegorz Burzynski
- McKusick–Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jimmy Huynh
- McKusick–Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valerie Maduro
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chani J. Hodonsky
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mehrdad Khajavi
- Department of Molecular and Human Genetics, Houston, Texas, United States of America
| | - Kinga Szigeti
- Department of Molecular and Human Genetics, Houston, Texas, United States of America
- Department of Neurology, Houston, Texas, United States of America
| | - Sandeep Mukkamala
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seneca L. Bessling
- McKusick–Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - NISC Comparative Sequencing Program
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew S. McCallion
- McKusick–Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Hospital, Houston, Texas, United States of America
| | - Eric D. Green
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
67
|
Vavlitou N, Sargiannidou I, Markoullis K, Kyriacou K, Scherer SS, Kleopa KA. Axonal pathology precedes demyelination in a mouse model of X-linked demyelinating/type I Charcot-Marie Tooth neuropathy. J Neuropathol Exp Neurol 2010; 69:945-58. [PMID: 20720503 PMCID: PMC3034224 DOI: 10.1097/nen.0b013e3181efa658] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The X-linked demyelinating/type I Charcot-Marie-Tooth neuropathy (CMT1X) is an inherited peripheral neuropathy caused by mutations in GJB1, the gene that encodes the gap junction protein connexin32. Connexin32 is expressed by myelinating Schwann cells and forms gap junctions in noncompact myelin areas, but axonal involvement is more prominent in X-linked compared with other forms of demyelinating Charcot-Marie-Tooth disease. To clarify the cellular and molecular mechanisms of axonal pathology in CMT1X, we studied Gjb1-null mice at early stages (i.e. 2-4 months old) of the neuropathy, when there is minimal or no demyelination. The diameters of large myelinated axons were progressively reduced in Gjb1-null mice compared with those in wild-type littermates. Furthermore, neurofilaments were relatively more dephosphorylated and more densely packed starting at 2 months of age. Increased expression of β-amyloid precursor protein, a marker of axonal damage, was also detected in Gjb1-null nerves. Finally, fast axonal transport, assayed by sciatic nerve ligation experiments, was slower in distal axons of Gjb1-null versus wild-type animals with reduced accumulation of synaptic vesicle-associated proteins. These findings demonstrate that axonal abnormalities including impaired cytoskeletal organization and defects in axonal transport precede demyelination in this mouse model of CMT1X.
Collapse
Affiliation(s)
- Natalie Vavlitou
- Neuroscience Laboratory and Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
68
|
Lee YC, Lin KP, Chang MH, Liao YC, Tsai CP, Liao KK, Soong BW. Cellular characterization of MPZ mutations presenting with diverse clinical phenotypes. J Neurol 2010; 257:1661-8. [PMID: 20461396 DOI: 10.1007/s00415-010-5590-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/05/2010] [Accepted: 04/30/2010] [Indexed: 11/25/2022]
Abstract
Mutations in MPZ, which encodes myelin protein zero (P(0)), may lead to different subtypes of Charcot-Marie-Tooth disease (CMT). The aim of this study was to characterize the cellular manifestations of various MPZ mutations associated with CMT1, Dejerine-Sottas syndrome (DSS) and CMT2, and to correlate their cellular and clinical phenotypes. Nine P(0) mutants associated with CMT1 (P(0)S63F, R98H, R277S, and S233fs), DSS (P(0) I30T and R98C), and CMT2 (P(0)S44F, D75V, and T124M), were investigated. Wild-type and mutant P(0) fused with fluorescent proteins were expressed in vitro to monitor their intracellular localization. An adhesiveness assay was used to evaluate the adhesiveness of the transfected cells. Protein localization and cell adhesiveness of each mutant protein were compared and correlated with their clinical phenotypes. Three different intracellular localization patterns of the mutant P(0) were observed. Wild-type P(0), P(0)I30T, S44F, S63F, D75V, T124M, and R227S were mostly localized on the cell membrane, P(0)R98H, and R98C were found in the endoplasmic reticulum (ER) or Golgi apparatus, and P(0)S233fs formed aggregates within the ER. Cells expressing mutant P(0), as compared with those expressing wild-type P(0), demonstrated variable degrees of reduction in the cell adhesiveness. The molecular patho-mechanisms of MPZ mutations are likely very complex and the clinical phenotype must be influenced by many genetic or environmental factors. This complexity may contribute to the highly variable clinical manifestations resulting from different MPZ mutations.
Collapse
Affiliation(s)
- Yi-Chung Lee
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
69
|
Lancaster E, Elman LB, Scherer SS. A patient with neurofibromatosis type 1 and Charcot-Marie-Tooth disease type 1B. Muscle Nerve 2010; 41:555-8. [PMID: 19918771 DOI: 10.1002/mus.21546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe a patient with both neurofibromatosis type 1 and Charcot-Marie-Tooth disease type 1B. Although one might expect an overwhelming tumor burden due to the combination of these two disorders, the two mutations did not appear to interact.
Collapse
Affiliation(s)
- Eric Lancaster
- Department of Neurology, University of Pennsylvania Medical Center, 3400 Spruce Street, 3W Gates Neurology, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
70
|
Gow A, Wrabetz L. CHOP and the endoplasmic reticulum stress response in myelinating glia. Curr Opin Neurobiol 2009; 19:505-10. [PMID: 19744850 DOI: 10.1016/j.conb.2009.08.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
The unfolded protein response (UPR) comprises kinase signaling and transcription factor activation cascades delineated over the past 20 years. Most studies conclude that this stress response is adaptive but, nevertheless, includes maladaptive programs involving CHOP expression that drives cell-autonomous apoptosis. Herein, we highlight several studies of UPR diseases involving myelinating glia of the central and peripheral nervous systems that do not support a primary role for CHOP in apoptosis. In oligodendrocytes, CHOP expression apparently protects against death whereas in Schwann cells, CHOP promotes demyelination in the absence of cell death. Together, these studies demonstrate that CHOP should be viewed more broadly as a cell-specific and context-specific mediator of adaptive or maladaptive responses to stress rather than a proapoptotic transcription factor.
Collapse
Affiliation(s)
- Alexander Gow
- Wayne State University, 3217 Scott Hall, 540 E Canfield, Detroit, MI, USA.
| | | |
Collapse
|
71
|
Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. ACTA ACUST UNITED AC 2009; 4:111-27. [PMID: 19497142 DOI: 10.1017/s1740925x0900009x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.
Collapse
|
72
|
Katona I, Wu X, Feely SME, Sottile S, Siskind CE, Miller LJ, Shy ME, Li J. PMP22 expression in dermal nerve myelin from patients with CMT1A. Brain 2009; 132:1734-40. [PMID: 19447823 DOI: 10.1093/brain/awp113] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by a 1.4 Mb duplication on chromosome 17p11.2, which contains the peripheral myelin protein-22 (PMP22) gene. Increased levels of PMP22 in compact myelin of peripheral nerves have been demonstrated and presumed to cause the phenotype of CMT1A. The objective of the present study was to determine whether an extra copy of the PMP22 gene in CMT1A disrupts the normally coordinated expression of PMP22 protein in peripheral nerve myelin and to evaluate PMP22 over-expression in patients with CMT1A and determine whether levels of PMP22 are molecular markers of disease severity. PMP22 expression was measured by taking skin biopsies from patients with CMT1A (n = 20) and both healthy controls (n = 7) and patients with Hereditary Neuropathy with liability to Pressure Palsies (HNPP) (n = 6), in which patients have only a single copy of PMP22. Immunological electron microscopy was performed on the skin biopsies to quantify PMP22 expression in compact myelin. Similar biopsies were analysed by real time PCR to measure PMP22 mRNA levels. Results were also correlated with impairment in CMT1A, as measured by the validated CMT Neuropathy Score. Most, but not all patients with CMT1A, had elevated PMP22 levels in myelin compared with the controls. The levels of PMP22 in CMT1A were highly variable, but not in HNPP or the controls. However, there was no correlation between neurological disabilities and the level of over-expression of PMP22 protein or mRNA in patients with CMT1A. The extra copy of PMP22 in CMT1A results in disruption of the tightly regulated expression of PMP22. Thus, variability of PMP22 levels, rather than absolute level of PMP22, may play an important role in the pathogenesis of CMT1A.
Collapse
Affiliation(s)
- Istvan Katona
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Cai Z, Blumbergs PC, Finnie JW, Manavis J, Thompson PD. Selective Vulnerability of Peripheral Nerves in Avian Riboflavin Deficiency Demyelinating Polyneuropathy. Vet Pathol 2009; 46:88-96. [DOI: 10.1354/vp.46-1-88] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Riboflavin (vitamin B2) deficiency in young chickens produces a demyelinating peripheral neuropathy. In this study, day-old broiler meat chickens were fed a riboflavin-deficient diet (1.8 mg/kg) and killed on posthatch days 6, 11, 16, 21, and 31, while control chickens were given a conventional diet containing 5.0 mg/kg riboflavin. Pathologic changes were found in sciatic, cervical, and lumbar spinal nerves of riboflavin-deficient chickens from day 11 onwards, characterized by endoneurial oedema, hypertrophic Schwann cells, tomacula (redundant myelin swellings), demyelination/remyelination, lipid deposition, and fibroblastic onion bulb formation. Similar changes were also found in large and medium intramuscular nerves, although they were less severe in the latter. However, by contrast, ventral and dorsal spinal nerve roots, distal intramuscular nerves, and subcutaneous nerves were normal at all time points examined. These findings demonstrate, for the first time, that riboflavin deficiency in young, rapidly growing chickens produces selective injury to peripheral nerve trunks, with relative sparing of spinal nerve roots and distal nerve branches to muscle and skin. These novel findings suggest that the response of Schwann cells in peripheral nerves with riboflavin deficiency differs because either there are subsets of these cells in, or there is variability in access of nutrients to, different sites within the nerves.
Collapse
Affiliation(s)
- Z. Cai
- Hanson Institute Centre for Neurological Diseases, Institute of Medical and Veterinary Science, Adelaide
- Department of Neurology and University Department of Medicine, Royal Adelaide Hospital, Australia
| | - P. C. Blumbergs
- Department of Pathology, The University of Adelaide, Australia
| | - J. W. Finnie
- Hanson Institute Centre for Neurological Diseases, Institute of Medical and Veterinary Science, Adelaide
- Department of Neurology and University Department of Medicine, Royal Adelaide Hospital, Australia
| | - J. Manavis
- Hanson Institute Centre for Neurological Diseases, Institute of Medical and Veterinary Science, Adelaide
| | - P. D. Thompson
- Department of Neurology and University Department of Medicine, Royal Adelaide Hospital, Australia
| |
Collapse
|
74
|
Ip CW, Kroner A, Kohl B, Wessig C, Martini R. Tacrolimus (FK506) causes disease aggravation in models for inherited peripheral myelinopathies. Neurobiol Dis 2008; 33:207-12. [PMID: 19028581 DOI: 10.1016/j.nbd.2008.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/07/2008] [Accepted: 10/13/2008] [Indexed: 01/10/2023] Open
Abstract
Mice hetero- or homozygously deficient for myelin protein zero (P0+/-, P0-/- mice) are models for distinct forms of inherited de- or dysmyelinating neuropathies, respectively. P0+/- mice show a demyelinating neuropathy with a pathogenetic implication of CD8+ T-lymphocytes and macrophages, while P0-/- mice show dysmyelination with axonal loss. It was, therefore, of interest to treat both mutants with FK506 (Tacrolimus), an agent with immunosuppressive and neuroprotective properties. Treatment of P0+/- mice led to an aggravation of demyelination, without affecting nervous CD8+ T-lymphocytes, but reducing splenic CD4+ cells. Treatment of P0-/- mice resulted in a substantial increase of the dysmyelination-related axon loss. Treatment of wildtype mice did not cause pathological changes in peripheral nerves. Our study shows that FK506 may not be suitable for the treatment of the human nerve disorders. Furthermore, when used as an immunosuppressant, the drug may generate detrimental neurological side effects in patients with an additional hereditary neuropathy.
Collapse
Affiliation(s)
- Chi Wang Ip
- Department of Neurology, Developmental Neurobiology, University of Wuerzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
75
|
Martini R, Fischer S, López-Vales R, David S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008; 56:1566-1577. [DOI: 10.1002/glia.20766] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
76
|
Kroner A, Schwab N, Ip CW, Sommer C, Wessig C, Wiendl H, Martini R. The co-inhibitory molecule PD-1 modulates disease severity in a model for an inherited, demyelinating neuropathy. Neurobiol Dis 2008; 33:96-103. [PMID: 18996482 DOI: 10.1016/j.nbd.2008.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/27/2008] [Accepted: 09/20/2008] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that mice heterozygously deficient for P0 are characterized by a late onset myelin disorder implicating CD8+ T-lymphocytes and macrophages. We now investigated the impact of the co-inhibitory molecule "programmed death" (PD)-1 (CD279), a CD28-related receptor expressed on activated T- and B-lymphocytes on the pathogenic phenotype of CD8+ T-lymphocytes in the P0 myelin mutants. PD-1 deficiency in P0+/- mice leads to a stronger increase of CD8+ T-lymphocytes and a substantially aggravated histological phenotype in the PNS compared to P0+/- mice expressing PD-1. Correspondingly, functional down-stream features, such as electrophysiological parameters, walking coordination and mechano-sensation are more affected than in PD-1-expressing myelin mutants. Our study demonstrates that a monogenic nerve disorder can be substantially modified by immune-controlling mechanisms. Thus, understanding the implication of disease-modifiers in inherited demyelination could be of pivotal interest for limiting the detrimental impact of primarily genetically-mediated myelin disorders by fostering immuno-regulatory pathways.
Collapse
Affiliation(s)
- Antje Kroner
- Department of Neurology, University of Wuerzburg, Wuerzburg
| | | | | | | | | | | | | |
Collapse
|
77
|
Pennuto M, Tinelli E, Malaguti M, Del Carro U, D'Antonio M, Ron D, Quattrini A, Feltri ML, Wrabetz L. Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 2008; 57:393-405. [PMID: 18255032 DOI: 10.1016/j.neuron.2007.12.021] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/30/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
Deletion of serine 63 from P0 glycoprotein (P0S63del) causes Charcot-Marie-Tooth 1B neuropathy in humans, and P0S63del produces a similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum and fails to be incorporated into myelin. Here we report that P0S63del is misfolded and Schwann cells mount a consequential canonical unfolded protein response (UPR), including expression of the transcription factor CHOP, previously associated with apoptosis in ER-stressed cells. UPR activation and CHOP expression respond dynamically to P0S63del levels and are reversible but are associated with only limited apoptosis of Schwann cells. Nonetheless, Chop ablation in S63del mice completely rescues their motor deficit and reduces active demyelination 2-fold. This indicates that signaling through the CHOP arm of the UPR provokes demyelination in inherited neuropathy. S63del mice also provide an opportunity to explore how cells can dysfunction yet survive in prolonged ER stress-important for neurodegeneration related to misfolded proteins.
Collapse
Affiliation(s)
- Maria Pennuto
- DIBIT, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Woolley AG, Tait KJ, Hurren BJ, Fisher L, Sheard PW, Duxson MJ. Developmental loss of NT-3 in vivo results in reduced levels of myelin-specific proteins, a reduced extent of myelination and increased apoptosis of Schwann cells. Glia 2008; 56:306-17. [PMID: 18080292 DOI: 10.1002/glia.20614] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work investigates the role of NT-3 in peripheral myelination. Recent articles, based in vitro, propose that NT-3 acting through its high-affinity receptor TrkC may act to inhibit myelin formation by enhancing Schwann cell motility and/or migration. Here, we investigate this hypothesis in vivo by examining myelination formation in NT-3 mutant mice. On the day of birth, soon after the onset of myelination, axons showed normal ensheathment by Schwann cells, no change in the proportion of axons which had begun to myelinate, and no change in either myelin thickness or number of myelin lamellae. However in postnatal day 21 mice, when myelination is substantially complete, we observed an unexpected reduction in mRNA and protein levels for MAG and P(0), and in myelin thickness. This is the opposite result to that predicted from previous in vitro studies, where removal of an inhibitory NT-3 signal would have been expected to enhance myelination. These results suggest that, in vivo, the importance of NT-3 as a major support factor for Schwann cells (Meier et al., (1999) J Neurosci 19:3847-3859) over-rides its potential role as an myelin inhibitor, with the net effect that loss of NT-3 results in degradation of Schwann cell functions, including myelination. In support of this idea, Schwann cells of NT-3 null mutants showed increased expression of activated caspase-3. Finally, we observed significant reduction in width of the Schwann cell periaxonal collar in NT-3 mutant animals suggesting that loss of NT-3 and resulting reduction in MAG levels may alter signaling at the axon-glial interface.
Collapse
Affiliation(s)
- Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
79
|
Grandis M, Vigo T, Passalacqua M, Jain M, Scazzola S, La Padula V, Brucal M, Benvenuto F, Nobbio L, Cadoni A, Mancardi GL, Kamholz J, Shy ME, Schenone A. Different cellular and molecular mechanisms for early and late-onset myelin protein zero mutations. Hum Mol Genet 2008; 17:1877-89. [PMID: 18337304 DOI: 10.1093/hmg/ddn083] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutations in the gene MPZ, encoding myelin protein zero (MPZ), cause inherited neuropathies collectively called Charcot-Marie-Tooth type 1B (CMT1B). Based on the age of onset, clinical and pathological features, most MPZ mutations are separable into two groups: one causing a severe, early-onset, demyelinating neuropathy and a second, causing a late-onset neuropathy with prominent axonal loss. To investigate potential pathomechanisms underlying the two phenotypes, we transiently transfected HeLa cells with two late-onset (T95M, H10P) and two early-onset (H52R, S22_W28 deletion) mutations and analyzed their effects on intracellular protein trafficking, glycosylation, cell viability and intercellular adhesion. We found that the two late-onset mutations were both transported to the cell membrane and moderately reduced MPZ-mediated intercellular adhesion. The two early-onset mutations caused two distinct abnormalities. H52R was correctly glycosylated and trafficked to the plasma membrane, but strongly affected intercellular adhesion. When co-expressed with wild-type MPZ (wtMPZ), a functional dominant negative effect was observed. Alternatively, S22_W28 deletion was retained within the cytoplasm and reduced both adhesion caused by wtMPZ and cellular viability. Since the same trafficking patterns were observed in transfected murine Schwann cells, they are not an artifact of heterologous cell expression. Our results suggest that at least some late-onset mutations cause a partial loss of function in the transfected cells, whereas multiple abnormal gain of function pathways can result in early-onset neuropathy. Further characterization of these pathways will lead to a better understanding of the pathogenesis of CMT1B and a rational basis for treating these debilitating inherited neuropathies.
Collapse
Affiliation(s)
- Marina Grandis
- Department of Neurosciences, Ophthalmology and Genetics, Universityof Genova, 16132 Genova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Fricker B, Muller A, René F. Evaluation Tools and Animal Models of Peripheral Neuropathies. NEURODEGENER DIS 2008; 5:72-108. [DOI: 10.1159/000112835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/12/2007] [Indexed: 11/19/2022] Open
|
81
|
Fischer S, Weishaupt A, Troppmair J, Martini R. Increase of MCP-1 (CCL2) in myelin mutant Schwann cells is mediated by MEK-ERK signaling pathway. Glia 2008; 56:836-43. [DOI: 10.1002/glia.20657] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
82
|
Hurley PA, Crook JM, Shepherd RK. Schwann cells revert to non-myelinating phenotypes in the deafened rat cochlea. Eur J Neurosci 2007; 26:1813-21. [PMID: 17868369 DOI: 10.1111/j.1460-9568.2007.05811.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Loss of sensory hair cells within the cochlea results in a permanent sensorineural hearing loss and initiates the gradual degeneration of spiral ganglion neurons (SGNs) - the primary afferent neurons of the cochlea. While these neurons are normally myelinated via Schwann cells, loss of myelin occurs as a precursor to neural degeneration. However, the relationship between demyelination and the status of Schwann cells in deafness is not well understood. We used a marker of peripheral myelin (myelin protein zero; P0) and a marker of Schwann cells (S100) to determine the temporal sequence of myelin and Schwann cell loss as a function of duration of deafness. Rat pups were systemically deafened for periods ranging from 2 weeks to greater than 6 months by co-administration of frusemide and gentamicin. Cochleae were cryosectioned and quantitative immunohistochemistry used to determine the extent of P0 and S100 labelling within the peripheral processes, SGN soma and their central processes within the modiolus. SGN density was also determined for each cochlear turn. P0 labelling decreased throughout the cochlea with increasing duration of deafness. The reduction in P0 labelling occurred at a faster rate than the SGN loss. In contrast, S100 labelling was not significantly reduced compared with age-matched controls in any cochlear region until 6 months post-deafening. These results suggest that Schwann cells may revert to non-myelinating phenotypes in response to deafness and exhibit greater survival traits than SGNs. The potential clinical significance of these findings for cochlear implants is discussed.
Collapse
|
83
|
Nave KA, Sereda MW, Ehrenreich H. Mechanisms of disease: inherited demyelinating neuropathies--from basic to clinical research. ACTA ACUST UNITED AC 2007; 3:453-64. [PMID: 17671523 DOI: 10.1038/ncpneuro0583] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/25/2007] [Indexed: 01/30/2023]
Abstract
The hereditary motor and sensory neuropathies (also known as Charcot-Marie-Tooth disease or CMT) are characterized by a length-dependent loss of axonal integrity in the PNS, which leads to progressive muscle weakness and sensory deficits. The 'demyelinating' neuropathies (CMT disease types 1 and 4) are genetically heterogeneous, but their common feature is that the primary defect perturbs myelination. As we discuss in this Review, several new genes associated with CMT1 and CMT4 have recently been identified. The emerging view is that a range of different subcellular defects in Schwann cells can cause axonal loss, which represents the final common pathway of all CMT disease and is independent of demyelination. We propose that Schwann cells provide a first line of axonal neuroprotection. A better understanding of axon-glia interactions should open the way to therapeutic interventions for demyelinating neuropathies. Transgenic animal models have become essential for dissecting CMT disease mechanisms and exploring novel therapies.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | | | |
Collapse
|
84
|
Da Y, Jia J. Study of antibodies to PMP22, IL-6 and TNF-alpha concentrations in serum in a CMTX1 family. Neurosci Lett 2007; 424:73-7. [PMID: 17714866 DOI: 10.1016/j.neulet.2007.06.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
To further understand X-linked dominant Charcot-Marie-Tooth disease (CMTX1), we followed a family of 22 members in China, including 8 patients, 2 asymptomatic carriers and 12 normal family members. Twenty-two family members as well as 60 normal controls unrelated to this family were screened for point mutation by denaturing high performance liquid chromatography (DHPLC). All patients and asymptomatic carriers from this family, but none of the normal population controls, showed a T-C transition at position 266 in codon 89 of exon 2 of connexin 32, resulting in a leucine to proline (L89P) exchange. To study whether the immune system is involved in the pathogenesis of CMTX1 patients and asymptomatic carriers, we measured serum concentrations of antibodies to peripheral nerve myelin protein 22 (PMP22), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-alpha) by ELISA. Serological results were also compared with those from GBS patients (n=11) and with normal subjects (n=20). Our analysis showed anti-PMP22 sera reactivity in 50.0% of CMTX1 patients, 63.6% of GBS patients and 10% of normal controls. Our results also indicated that anti-PMP22 antibodies in the CMTX1 family varied with sex. Anti-PMP22 antibodies were found in all male patients but not in all females, which may be one of the reasons that male patients usually have more severe clinical symptoms than that of female patients. There was no statistical difference in serum concentrations of IL-6 and TNF-alpha between CMTX1 patients and normal subjects. In conclusion, we identified a L89P mutation for the first time in a CMTX1 family in China and an associated response to PMP22 in males.
Collapse
Affiliation(s)
- Yuwei Da
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | | |
Collapse
|
85
|
Meyer zu Hörste G, Hu W, Hartung HP, Lehmann HC, Kieseier BC. The immunocompetence of Schwann cells. Muscle Nerve 2007; 37:3-13. [PMID: 17823955 DOI: 10.1002/mus.20893] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Schwann cells are the myelinating glial cells of the peripheral nervous system that support and ensheath axons with myelin to enable rapid saltatory signal propagation in the axon. Immunocompetence, however, has only recently been recognized as an important feature of Schwann cells. An autoimmune response against components of the peripheral nervous system triggers disabling inflammatory neuropathies in patients and corresponding animal models. The immune system participates in nerve damage and disease manifestation even in non-inflammatory hereditary neuropathies. A growing body of evidence suggests that Schwann cells may modulate local immune responses by recognizing and presenting antigens and may also influence and terminate nerve inflammation by secreting cytokines. This review summarizes current knowledge on the interaction of Schwann cells with the immune system, which is involved in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Gerd Meyer zu Hörste
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
86
|
Gaboreanu AM, Hrstka R, Xu W, Shy M, Kamholz J, Lilien J, Balsamo J. Myelin protein zero/P0 phosphorylation and function require an adaptor protein linking it to RACK1 and PKC alpha. ACTA ACUST UNITED AC 2007; 177:707-16. [PMID: 17502419 PMCID: PMC2064215 DOI: 10.1083/jcb.200608060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Point mutations in the cytoplasmic domain of myelin protein zero (P0; the major myelin protein in the peripheral nervous system) that alter a protein kinase Cα (PKCα) substrate motif (198HRSTK201) or alter serines 199 and/or 204 eliminate P0-mediated adhesion. Mutation in the PKCα substrate motif (R198S) also causes a form of inherited peripheral neuropathy (Charcot Marie Tooth disease [CMT] 1B), indicating that PKCα-mediated phosphorylation of P0 is important for myelination. We have now identified a 65-kD adaptor protein that links P0 with the receptor for activated C kinase 1 (RACK1). The interaction of p65 with P0 maps to residues 179–197 within the cytoplasmic tail of P0. Mutations or deletions that abolish p65 binding reduce P0 phosphorylation and adhesion, which can be rescued by the substitution of serines 199 and 204 with glutamic acid. A mutation in the p65-binding sequence G184R occurs in two families with CMT, and mutation of this residue results in the loss of both p65 binding and adhesion function.
Collapse
Affiliation(s)
- Ana-Maria Gaboreanu
- Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Roglio I, Giatti S, Pesaresi M, Bianchi R, Cavaletti G, Lauria G, Garcia-Segura LM, Melcangi RC. Neuroactive steroids and peripheral neuropathy. ACTA ACUST UNITED AC 2007; 57:460-9. [PMID: 17543391 DOI: 10.1016/j.brainresrev.2007.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 02/01/2023]
Abstract
Peripheral neuropathy, either inherited or acquired, represents a very common disorder for which effective clinical treatments are not available yet. Observations here summarized indicate that neuroactive steroids, such as progesterone, testosterone and their reduced metabolites, might represent a promising therapeutic option. Peripheral nerves are able to synthesize and metabolize neuroactive steroids and are a target for these molecules, since they express classical and non-classical steroid receptors. Neuroactive steroids modulate the expression of key transcription factors for Schwann cell function, regulate Schwann cell proliferation and promote the expression of myelin proteins involved in the maintenance of myelin multilamellar structure, such as myelin protein zero and peripheral myelin protein 22. These actions may result in the protection and regeneration of peripheral nerves affected by different forms of pathological alterations. Indeed, neuroactive steroids are able to counteract biochemical, morphological and functional alterations of peripheral nerves in different experimental models of neuropathy, including the alterations caused by aging, diabetic neuropathy and physical injury. Therefore, neuroactive steroids, pharmacological agents able to increase their local synthesis and synthetic ligands for their receptors have a promising potential for the treatment of different forms of peripheral neuropathy.
Collapse
Affiliation(s)
- Ilaria Roglio
- Department of Endocrinology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
88
|
LeBlanc SE, Ward RM, Svaren J. Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol 2007; 27:3521-9. [PMID: 17325040 PMCID: PMC1899967 DOI: 10.1128/mcb.01689-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/17/2006] [Accepted: 02/13/2007] [Indexed: 12/25/2022] Open
Abstract
Dominant mutations in the early growth response 2 (Egr2/Krox20) transactivator, a critical regulator of peripheral myelin development, have been associated with peripheral myelinopathies. These dominant mutants interfere with the expression of genes required for myelination by Schwann cells, including that for the most abundant peripheral myelin protein, Myelin protein zero (Mpz). In this study, we show that Egr2 mutants specifically affect an Egr2-responsive element within the Mpz first intron that also contains binding sites for the transcription factor Sox10. Furthermore, Egr2 activation through this element is impaired by mutation of the Sox10 binding sites. Using chromatin immunoprecipitation assays, we found that Egr2 and Sox10 bind to this element in myelinating sciatic nerve and that a dominant Egr2 mutant does not perturb Egr2 binding but rather attenuates binding of Sox10 to the Mpz intron element. Sox10 binding at other sites of Egr2/Sox10 synergy, including a novel site in the Myelin-associated glycoprotein (Mag) gene, is also reduced by the dominant Egr2 mutant. These results provide the first demonstration of binding of Egr2/Sox10 to adjacent sites in vivo and also demonstrate that neuropathy-associated Egr2 mutants antagonize binding of Sox10 at specific sites, thereby disrupting genetic control of the myelination program.
Collapse
|
89
|
Niemann A, Berger P, Suter U. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular Med 2007. [PMID: 16775378 DOI: 10.1385/nmm:] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We review the putative functions and malfunctions of proteins encoded by genes mutated in Charcot-Marie-Tooth disease (CMT; inherited motor and sensory neuropathies) in normal and affected peripheral nerves. Some proteins implicated in demyelinating CMT, peripheral myelin protein 22, protein zero (P0), and connexin32 (Cx32/GJB1) are crucial components of myelin. Periaxin is involved in connecting myelin to the surrounding basal lamina. Early growth response 2 (EGR2) and Sox10 are transcriptional regulators of myelin genes. Mutations in the small integral membrane protein of lysosome/late endosome, the myotubularin-related protein 2 (MTMR2), and MTMR13/set-binding factor 2 are involved in vesicle and membrane transport and the regulation of protein degradation. Pathomechanisms related to alterations of these processes are a widespread phenomenon in demyelinating neuropathies because mutations of myelin components may also affect protein biosynthesis, transport, and/or degradation. Related disease mechanisms are also involved in axonal neuropathies although there is considerably more functional heterogeneity. Some mutations, most notably in P0, GJB1, ganglioside-induced differentiation-associated protein 1 (GDAP1), neurofilament light chain (NF-L), and dynamin 2 (DNM2), can result in demyelinating or axonal neuropathies introducing additional complexity in the pathogenesis. Often, this relates to the intimate connection between Schwann cells and neurons/axons leading to axonal damage even if the mutation-caused defect is Schwann-cell-autonomous. This mechanism is likely for P0 and Cx32 mutations and provides the basis for the unifying hypothesis that also demyelinating neuropathies develop into functional axonopathies. In GDAP1 and DNM2 mutants, both Schwann cells and axons/neurons might be directly affected. NF-L mutants have a primary neuronal defect but also cause demyelination. The major challenge ahead lies in determining the individual contributions by neurons and Schwann cells to the pathology over time and to delineate the detailed molecular functions of the proteins associated with CMT in health and disease.
Collapse
Affiliation(s)
- Axel Niemann
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
90
|
Abstract
Peripheral neuropathy is a common disorder seen in general neurology and neuromuscular specialty clinics. Treatment options directed at the underlying cause can only be offered in a handful of conditions, such as those with possible autoimmune etiology. The remainder fall into the idiopathic or genetic category with no known treatment. This review surveys the evidence supporting the rationale for the therapeutic use of neurotrophins and other neurotrophic factors in these disorders in relationship to the underlying pathobiological process. Previous clinical trials are assessed, and increasingly better understood and appreciated therapeutic potential of neurotrophins is emphasized.
Collapse
Affiliation(s)
- Zarife Sahenk
- Neuromuscular Pathology, The Ohio State University, Columbus Children's Research Institute, Neuromuscular Program, Columbus, Ohio 43205, USA.
| |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW Mutations in a number of genes have been associated with inherited neuropathies (Charcot-Marie-Tooth or CMT disease). This review highlights how animal models of demyelinating CMT have improved our understanding of disease mechanisms. Transgenic CMT models also allow therapies to be developed in a preclinical setting. RECENT FINDINGS Rodent models for the most common subtypes of human CMT disease are now available, and two mouse mutants modeling the rare CMT4B subform have lately extended this repertoire. In a peripheral myelin protein 22 kDa (Pmp22) transgenic rat model of CMT1A, administration of a progesterone receptor antagonist reduced Pmp22 overexpression, axon loss and clinical impairments. Dietary ascorbic acid prevented dysmyelination and premature death in a Pmp22 transgenic mouse line. Neurotrophin-3 promoted small fiber remyelination in CMT1A xenografts and sensory functions in CMT1A patients. Gene expression profiling in rodent models of CMT may identify further therapeutical targets. While original classifications distinguish the demyelinating and axonal forms of CMT, recent findings emphasize that axon loss is a common feature, possibly caused by Schwann cell defects rather than demyelination per se. This supports our model that myelination and long-term axonal support are distinct functions of all myelinating glial cells. SUMMARY Animal models have opened up new perspectives on the pathomechanisms and possible treatment strategies of inherited neuropathies.
Collapse
|
92
|
Magnaghi V, Veiga S, Ballabio M, Gonzalez LC, Garcia-Segura LM, Melcangi RC. Sex-dimorphic effects of progesterone and its reduced metabolites on gene expression of myelin proteins by rat Schwann cells. J Peripher Nerv Syst 2006; 11:111-8. [PMID: 16787508 DOI: 10.1111/j.1085-9489.2006.00075.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Data obtained in our and other laboratories have indicated that progesterone (P) and its derivatives, dihydroprogesterone (DHP) and tetrahydroprogesterone (THP), stimulate the expression of two myelin proteins of the peripheral nervous system (PNS) [i.e., glycoprotein zero (P0) and peripheral myelin protein 22 (PMP22)]. We have now considered the effects of P and its derivatives on these and other myelin proteins [i.e., myelin-associated glycoprotein (MAG) and myelin and lymphocyte protein (MAL)] in sex-specific cultures of rat Schwann cells. Gene expression of myelin proteins was assessed by RNase protection assay. Treatment with P or DHP induced a stimulatory effect on P0 mRNA levels in male but not in female Schwann cells. In contrast, treatment with THP increased gene expression of P0 exclusively in female Schwann cells. A similar sex-difference was also evident for other myelin proteins. Indeed, PMP22 expression was stimulated by treatment with P in male cultures, whereas THP induced an increase of mRNA levels in female cultures. Moreover, MAG was stimulated by THP treatment in male cultures only, whereas MAL expression was unaffected by neuroactive steroid treatment in both male and female cultures. In conclusion, the present observations indicate that the effects of neuroactive steroids on myelin proteins are sexually dimorphic. This finding might represent an important background for sex-specific therapies of acquired and inherited peripheral neuropathies.
Collapse
Affiliation(s)
- Valerio Magnaghi
- Department of Endocrinology and Center of Excellence of Neurodegenerative Diseases, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
93
|
Wrabetz L, D'Antonio M, Pennuto M, Dati G, Tinelli E, Fratta P, Previtali S, Imperiale D, Zielasek J, Toyka K, Avila RL, Kirschner DA, Messing A, Feltri ML, Quattrini A. Different intracellular pathomechanisms produce diverse Myelin Protein Zero neuropathies in transgenic mice. J Neurosci 2006; 26:2358-68. [PMID: 16495463 PMCID: PMC6674823 DOI: 10.1523/jneurosci.3819-05.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Missense mutations in 22 genes account for one-quarter of Charcot-Marie-Tooth (CMT) hereditary neuropathies. Myelin Protein Zero (MPZ, P0) mutations produce phenotypes ranging from adult demyelinating (CMT1B) to early onset [Déjérine-Sottas syndrome (DSS) or congenital hypomyelination] to predominantly axonal neuropathy, suggesting gain of function mechanisms. To test this directly, we produced mice in which either the MpzS63C (DSS) or MpzS63del (CMT1B) transgene was inserted randomly, so that the endogenous Mpz alleles could compensate for any loss of mutant P0 function. We show that either mutant allele produces demyelinating neuropathy that mimics the corresponding human disease. However, P0S63C creates a packing defect in the myelin sheath, whereas P0S63del does not arrive to the myelin sheath and is instead retained in the endoplasmic reticulum, where it elicits an unfolded protein response (UPR). This is the first evidence for UPR in association with neuropathy and provides a model to determine whether and how mutant proteins can provoke demyelination from outside of myelin.
Collapse
|
94
|
Kobsar I, Oetke C, Kroner A, Wessig C, Crocker P, Martini R. Attenuated demyelination in the absence of the macrophage-restricted adhesion molecule sialoadhesin (Siglec-1) in mice heterozygously deficient in P0. Mol Cell Neurosci 2006; 31:685-91. [PMID: 16458537 DOI: 10.1016/j.mcn.2005.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 12/21/2005] [Indexed: 12/21/2022] Open
Abstract
Mouse mutants heterozygously deficient for the myelin component P0 mimic some forms of inherited neuropathies in humans. We have previously shown that both T lymphocytes and macrophages contribute to the demyelinating neuropathy. Both cell types appear to influence each other mutually, i.e., impaired T lymphocyte development in RAG-1-deficient P0 mutants leads to decreased macrophage numbers and retarded macrophage activation causes reduced T lymphocyte numbers in the peripheral nerves of P0(+/-) mice. In the present study, we investigated the possible role of the macrophage-restricted sialic acid-binding Ig-like lectin sialoadhesin (Sn, Siglec-1) in the pathogenesis of inherited demyelination in P0(+/-) mice. We found that most peripheral nerve macrophages express Sn in the mutants. Myelin mutants devoid of Sn show reduced numbers of CD8+ T lymphocytes and macrophages in peripheral nerves and less severe demyelination, resulting in improved nerve conduction properties. Our findings are potentially important in the development of future treatment strategies for inherited demyelinating neuropathies.
Collapse
Affiliation(s)
- Igor Kobsar
- Department of Neurology, Developmental Neurobiology, University of Wuerzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
95
|
Amici SA, Dunn WA, Murphy AJ, Adams NC, Gale NW, Valenzuela DM, Yancopoulos GD, Notterpek L. Peripheral myelin protein 22 is in complex with alpha6beta4 integrin, and its absence alters the Schwann cell basal lamina. J Neurosci 2006; 26:1179-89. [PMID: 16436605 PMCID: PMC6674566 DOI: 10.1523/jneurosci.2618-05.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral myelin protein 22 (PMP22) is a tetraspan membrane glycoprotein, the misexpression of which is associated with hereditary demyelinating neuropathies. Myelinating Schwann cells (SCs) produce the highest levels of PMP22, yet the function of the protein in peripheral nerve biology is unresolved. To investigate the potential roles of PMP22, we engineered a novel knock-out (-/-) mouse line by replacing the first two coding exons of pmp22 with the lacZ reporter. PMP22-deficient mice show strong beta-galactosidase reactivity in peripheral nerves, cartilage, intestines, and lungs, whereas phenotypically they display the characteristics of tomaculous neuropathy. In the absence of PMP22, myelination of peripheral nerves is delayed, and numerous axon-SC profiles show loose basal lamina, suggesting altered interactions of the glial cells with the extracellular matrix. The levels of beta4 integrin, a molecule involved in the linkage between SCs and the basal lamina, are severely reduced in nerves of PMP22-deficient mice. During early stages of myelination, PMP22 and beta4 integrin are coexpressed at the cell surface and can be coimmunoprecipitated together with laminin and alpha6 integrin. In agreement, in clone A colonic carcinoma cells, epitope-tagged PMP22 forms a complex with beta4 integrin. Together, these data indicate that PMP22 is a binding partner in the integrin/laminin complex and is involved in mediating the interaction of SCs with the extracellular environment.
Collapse
|
96
|
Fabrizi GM, Pellegrini M, Angiari C, Cavallaro T, Morini A, Taioli F, Cabrini I, Orrico D, Rizzuto N. Gene dosage sensitivity of a novel mutation in the intracellular domain of P0 associated with Charcot-Marie-Tooth disease type 1B. Neuromuscul Disord 2006; 16:183-7. [PMID: 16488608 DOI: 10.1016/j.nmd.2006.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 11/11/2005] [Accepted: 01/16/2006] [Indexed: 11/19/2022]
Abstract
Autosomal dominant Charcot-Marie-Tooth disease type 1B (CMT1B) is caused by heterozygous mutations in the extracellular domain of P0. Here, we investigated clinically, electrophysiologically and pathologically a pedigree with a novel mutation in the intracellular domain of P0 (P0ic). The mutational analysis included denaturing high performance liquid chromatography (DHPLC) and nucleotide sequencing. Two patients from subsequent generations were homozygous for an Asp195Tyr mutation in the intracellular domain of P0 (P0ic), whereas two healthy individuals with minimal electrophysiological changes were heterozygous for the same mutation. The authors conclude that mutations of P0ic may undergo a gene dosage effect manifesting semidominant inheritance.
Collapse
Affiliation(s)
- Gian Maria Fabrizi
- Section of Clinical Neurology, Department of Neurological and Visual Sciences, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro 10, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
MARTINI RUDOLF. P0-Deficient Knockout Mice as Tools to Understand Pathomechanisms in Charcot-Marie-Tooth 1B and P0-Related Déjérine-Sottas Syndrome. Ann N Y Acad Sci 2006; 883:273-280. [DOI: 10.1111/j.1749-6632.1999.tb08589.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
98
|
SHY MICHAELE, KAMHOLZ JOHN, LOVELACE ROBERTE. Introduction to the Third International Symposium on Charcot-Marie-Tooth Disorders. Ann N Y Acad Sci 2006; 883:xiii-xviii. [DOI: 10.1111/j.1749-6632.1999.tb08559.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
99
|
PAREYSON D, MENICHELLA D, BOTTI S, SGHIRLANZONI A, FALLICA E, MORA M, CIANO C, SHY ME, TARONI F. Heterozygous Null Mutation in the P
0
Gene Associated with Mild Charcot-Marie-Tooth Disease. Ann N Y Acad Sci 2006; 883:477-480. [DOI: 10.1111/j.1749-6632.1999.tb08615.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
100
|
MENICHELLA DANIELAMARIA, XU WENBO, JIANG HUIYUAN, SOHI JASLOVELEEN, VALLAT JEANMICHAEL, BARON PIERLUIGI, KAMHOLZ JOHN, SHY MICHAEL. The Absence of Myelin P0Protein Produces a Novel Molecular Phenotype in Schwann Cell. Ann N Y Acad Sci 2006; 883:281-293. [DOI: 10.1111/j.1749-6632.1999.tb08590.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|