51
|
Naik AK, Byrd AT, Lucander ACK, Krangel MS. Hierarchical assembly and disassembly of a transcriptionally active RAG locus in CD4 +CD8 + thymocytes. J Exp Med 2018; 216:231-243. [PMID: 30545902 PMCID: PMC6314527 DOI: 10.1084/jem.20181402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/29/2018] [Accepted: 11/21/2018] [Indexed: 01/17/2023] Open
Abstract
Naik et al. show that GATA3, Runx1, and E2A are essential for hierarchical assembly of a transcriptionally active RAG locus chromatin hub in CD4+CD8+ thymocytes. Signal-dependent down-regulation of RAG expression is associated with hub disassembly and depends on Ikaros. Expression of Rag1 and Rag2 is tightly regulated in developing T cells to mediate TCR gene assembly. Here we have investigated the molecular mechanisms governing the assembly and disassembly of a transcriptionally active RAG locus chromatin hub in CD4+CD8+ thymocytes. Rag1 and Rag2 gene expression in CD4+CD8+ thymocytes depends on Rag1 and Rag2 promoter activation by a distant antisilencer element (ASE). We identify GATA3 and E2A as critical regulators of the ASE, and Runx1 and E2A as critical regulators of the Rag1 promoter. We reveal hierarchical assembly of a transcriptionally active chromatin hub containing the ASE and RAG promoters, with Rag2 recruitment and expression dependent on assembly of a functional ASE–Rag1 framework. Finally, we show that signal-dependent down-regulation of RAG gene expression in CD4+CD8+ thymocytes depends on Ikaros and occurs with disassembly of the RAG locus chromatin hub. Our results provide important new insights into the molecular mechanisms that orchestrate RAG gene expression in developing T cells.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Aaron T Byrd
- Department of Immunology, Duke University Medical Center, Durham, NC
| | | | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC
| |
Collapse
|
52
|
Hosokawa H, Romero-Wolf M, Yui MA, Ungerbäck J, Quiloan MLG, Matsumoto M, Nakayama KI, Tanaka T, Rothenberg EV. Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16. Nat Immunol 2018; 19:1427-1440. [PMID: 30374131 PMCID: PMC6240390 DOI: 10.1038/s41590-018-0238-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
Multipotent progenitors confirm their T cell-lineage identity in the DN2 pro-T cell stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomic analysis revealed that Bcl11b associates with multiple cofactors, and that its direct action was needed to recruit these cofactors to selective target sites. These sites of Bcl11b-dependent cofactor recruitment were enriched near functionally regulated target genes, and deletion of individual cofactors relieved repression of many Bcl11b-repressed genes. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via Id2 and Zbtb16 (encoding PLZF), which were directly repressed by Bcl11b and controlled distinct alternative programs. Thus, this study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mary A Yui
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Maria L G Quiloan
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University, Chuo-ku, Chiba, Japan.,AMED-CREST, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
53
|
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Front Med 2018; 12:374-386. [PMID: 30043222 DOI: 10.1007/s11684-018-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt's lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.
Collapse
|
54
|
Bcl11b and combinatorial resolution of cell fate in the T-cell gene regulatory network. Proc Natl Acad Sci U S A 2018; 114:5800-5807. [PMID: 28584128 DOI: 10.1073/pnas.1610617114] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
T-cell development from hematopoietic progenitors depends on multiple transcription factors, mobilized and modulated by intrathymic Notch signaling. Key aspects of T-cell specification network architecture have been illuminated through recent reports defining roles of transcription factors PU.1, GATA-3, and E2A, their interactions with Notch signaling, and roles of Runx1, TCF-1, and Hes1, providing bases for a comprehensively updated model of the T-cell specification gene regulatory network presented herein. However, the role of lineage commitment factor Bcl11b has been unclear. We use self-organizing maps on 63 RNA-seq datasets from normal and perturbed T-cell development to identify functional targets of Bcl11b during commitment and relate them to other regulomes. We show that both activation and repression target genes can be bound by Bcl11b in vivo, and that Bcl11b effects overlap with E2A-dependent effects. The newly clarified role of Bcl11b distinguishes discrete components of commitment, resolving how innate lymphoid, myeloid, and dendritic, and B-cell fate alternatives are excluded by different mechanisms.
Collapse
|
55
|
Identification of novel lncRNAs regulated by the TAL1 complex in T-cell acute lymphoblastic leukemia. Leukemia 2018; 32:2138-2151. [PMID: 29654272 DOI: 10.1038/s41375-018-0110-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/05/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
TAL1/SCL is one of the most prevalent oncogenes in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 and its regulatory partners (GATA3, RUNX1, and MYB) positively regulate each other and coordinately regulate the expression of their downstream target genes in T-ALL cells. However, long non-coding RNAs (lncRNAs) regulated by these factors are largely unknown. Here we established a bioinformatics pipeline and analyzed RNA-seq datasets with deep coverage to identify lncRNAs regulated by TAL1 in T-ALL cells. Our analysis predicted 57 putative lncRNAs that are activated by TAL1. Many of these transcripts were regulated by GATA3, RUNX1, and MYB in a coordinated manner. We identified two novel transcripts that were activated in multiple T-ALL cell samples but were downregulated in normal thymocytes. One transcript near the ARID5B gene locus was specifically expressed in TAL1-positive T-ALL cases. The other transcript located between the FAM49A and MYCN gene locus was also expressed in normal hematopoietic stem cells and T-cell progenitor cells. In addition, we identified a subset of lncRNAs that were negatively regulated by TAL1 and positively regulated by E-proteins in T-ALL cells. This included a known lncRNA (lnc-OAZ3-2:7) located near the RORC gene, which was expressed in normal thymocytes but repressed in TAL1-positive T-ALL cells.
Collapse
|
56
|
Up-regulation of Transcription Factor 3 Is Correlated With Poor Prognosis in Cervical Carcinoma. Int J Gynecol Cancer 2018; 27:1422-1430. [PMID: 28604457 DOI: 10.1097/igc.0000000000001032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Transcription factor 3 (TCF3, or E2A) is a multifunctional bHLH (basic helix loop helix) transcription factor. The role of TCF3 expression in cancer and the multiple cell signaling pathways that regulate or are influenced by TCF3 are unclear. Therefore, the expression level of TCF3 in patients with cervical squamous cell carcinoma (CSCC) is discussed in this study. METHODS Total RNA was extracted using real-time quantitative reverse transcription-polymerase chain reaction. Western blotting was applied to confirm the results. Immunohistochemistry was used to characterize the expression patterns of TCF3 in CSCC specimens. The close relationship between the expression levels of TCF3 and the 5-year overall survival time was described by survival curves. The association between TCF3 expression and clinicopathological characteristics of 119 CSCC patients was analyzed by Chi-square, Fisher exact test, and Cox regression analysis. TCF3 was overexpressed or inhibited by plasmid transfection, and the proliferation, invasion, and migration of cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing, and Transwell assays. RESULTS The expression of TCF3 was higher in CSCC tissues than in nonmalignant cervical tissues. Messenger RNA (mRNA) and protein in patient tissues were increased compared with nonmalignant cervical tissues. Moreover, the level of expression in early-stage disease was higher than in the advanced stage. From FIGO (International Federation of Gynecology and Obstetrics) stages I to IV, immunohistochemistry staining intensity gradually increased. A high level of expression was closely related to clinical stages. The expression of TCF3 was negatively correlated with overall survival time. TCF3 can promote HeLa cell growth, invasion, and migration in vitro. CONCLUSIONS Based on our results, TCF3 is clearly associated with the progression of CSCC. This is the first time that it has been reported that TCF3 can act as a tumor promoter in cervical cancer and thus might be of great significance in the prognosis of CSCC.
Collapse
|
57
|
Roy S, Moore AJ, Love C, Reddy A, Rajagopalan D, Dave SS, Li L, Murre C, Zhuang Y. Id Proteins Suppress E2A-Driven Invariant Natural Killer T Cell Development prior to TCR Selection. Front Immunol 2018; 9:42. [PMID: 29416542 PMCID: PMC5787561 DOI: 10.3389/fimmu.2018.00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023] Open
Abstract
A family of transcription factors known as E proteins, and their antagonists, Id proteins, regulate T cell differentiation at critical developmental checkpoints. Id proteins promote the differentiation of conventional αβ T cells and suppress the expansion of innate-like αβ T cells known as invariant natural killer T (iNKT) cells. However, it remains to be determined whether Id proteins differentially regulate these distinct lineage choices in early stages of T cell development. In this manuscript, we report that in Id-deficient mice, uninhibited activity of the E protein family member E2A mediates activation of genes that support iNKT cell development and function. There is also biased rearrangement in Id-deficient DP cells that promotes selection into the iNKT lineage in these mice. The observed expansion of iNKT cells is not abrogated by blocking pre-TCR signaling, which is required for conventional αβ T cell development. Finally, E2A is found to be a key transcriptional regulator of both iNKT and γδNKT lineages, which appear to have shared lineage history. Therefore, our study reveals a previously unappreciated role of E2A in coordinating the development of the iNKT lineage at an early stage, prior to their TCR-mediated selection alongside conventional αβ T cells.
Collapse
Affiliation(s)
- Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Amanda J Moore
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, United States
| | - Cassandra Love
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC, United States
| | - Anupama Reddy
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC, United States
| | - Deepthi Rajagopalan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC, United States
| | - Sandeep S Dave
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC, United States
| | - Leping Li
- Biostatistics and Computational Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Durham, NC, United States
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, United States
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
58
|
Rauch KS, Hils M, Lupar E, Minguet S, Sigvardsson M, Rottenberg ME, Izcue A, Schachtrup C, Schachtrup K. Id3 Maintains Foxp3 Expression in Regulatory T Cells by Controlling a Transcriptional Network of E47, Spi-B, and SOCS3. Cell Rep 2017; 17:2827-2836. [PMID: 27974197 DOI: 10.1016/j.celrep.2016.11.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/17/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022] Open
Abstract
The transcription factor Foxp3 dominantly controls regulatory T (Treg) cell function, and only its continuous expression guarantees the maintenance of full Treg cell-suppressive capacity. However, transcriptional regulators maintaining Foxp3 transcription are incompletely described. Here, we report that high E47 transcription factor activity in Treg cells resulted in unstable Foxp3 expression. Under homeostatic conditions, Treg cells expressed high levels of the E47 antagonist Id3, thus restricting E47 activity and maintaining Foxp3 expression. In contrast, stimulation of Id3-deficient or E47-overexpressing Treg cells resulted in the loss of Foxp3 expression in a subset of Treg cells in vivo and in vitro. Mechanistic analysis indicated that E47 activated expression of the transcription factor Spi-B and the suppressor of cytokine signaling 3 (SOCS3), which both downregulated Foxp3 expression. These findings demonstrate that the balance of Id3 and E47 controls the maintenance of Foxp3 expression in Treg cells and, thus, contributes to Treg cell plasticity.
Collapse
Affiliation(s)
- Katharina S Rauch
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Miriam Hils
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ekaterina Lupar
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Mikael Sigvardsson
- Institution for Clinical and Experimental Sciences, Faculty of Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ana Izcue
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Christian Schachtrup
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University Medical Center Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
59
|
Regulatory T cells characterized by low Id3 expression are highly suppressive and accumulate during chronic infection. Oncotarget 2017; 8:102835-102851. [PMID: 29262527 PMCID: PMC5732693 DOI: 10.18632/oncotarget.22159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022] Open
Abstract
Foxp3+ regulatory T (Treg) cells are broadly divided into naive-like and activated Treg cells, however recent studies suggest further Treg cell heterogeneity. Treg cells contribute to impaired T cell responses in chronic infections, but the role of specific Treg cell subpopulations in viral infections is not well defined. Here, we report that activated Treg cells are separated into two transcriptionally distinct subpopulations characterized by low or high expression of the transcriptional regulator Id3. Id3lo Treg cells are a highly suppressive Treg cell subpopulation, expressing elevated levels of immunomodulatory molecules and are capable of broadly targeting T cell responses. Viral infection and interleukin-2 promote the differentiation of Id3hi into Id3lo Treg cells and during chronic infection Id3lo Treg cells are the predominant Treg cell population. Thus, our report provides a framework, in which different activated Treg cell subpopulations specifically affect immune responses, possibly contributing to T cell dysfunction in chronic infections.
Collapse
|
60
|
The E-Id Protein Axis Specifies Adaptive Lymphoid Cell Identity and Suppresses Thymic Innate Lymphoid Cell Development. Immunity 2017; 46:818-834.e4. [PMID: 28514688 DOI: 10.1016/j.immuni.2017.04.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/26/2017] [Accepted: 04/27/2017] [Indexed: 01/24/2023]
Abstract
Innate and adaptive lymphoid development is orchestrated by the activities of E proteins and their antagonist Id proteins, but how these factors regulate early T cell progenitor (ETP) and innate lymphoid cell (ILC) development remains unclear. Using multiple genetic strategies, we demonstrated that E proteins E2A and HEB acted in synergy in the thymus to establish T cell identity and to suppress the aberrant development of ILCs, including ILC2s and lymphoid-tissue-inducer-like cells. E2A and HEB orchestrated T cell fate and suppressed the ILC transcription signature by activating the expression of genes associated with Notch receptors, T cell receptor (TCR) assembly, and TCR-mediated signaling. E2A and HEB acted in ETPs to establish and maintain a T-cell-lineage-specific enhancer repertoire, including regulatory elements associated with the Notch1, Rag1, and Rag2 loci. On the basis of these and previous observations, we propose that the E-Id protein axis specifies innate and adaptive lymphoid cell fate.
Collapse
|
61
|
Yu B, Zhang K, Milner JJ, Toma C, Chen R, Scott-Browne JP, Pereira RM, Crotty S, Chang JT, Pipkin ME, Wang W, Goldrath AW. Epigenetic landscapes reveal transcription factors that regulate CD8 + T cell differentiation. Nat Immunol 2017; 18:573-582. [PMID: 28288100 PMCID: PMC5395420 DOI: 10.1038/ni.3706] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022]
Abstract
Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Kai Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - J Justin Milner
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Clara Toma
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Runqiang Chen
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, USA
| | - James P Scott-Browne
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Renata M Pereira
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
62
|
Li J, Roy S, Kim YM, Li S, Zhang B, Love C, Reddy A, Rajagopalan D, Dave S, Diehl AM, Zhuang Y. Id2 Collaborates with Id3 To Suppress Invariant NKT and Innate-like Tumors. THE JOURNAL OF IMMUNOLOGY 2017; 198:3136-3148. [PMID: 28258199 DOI: 10.4049/jimmunol.1601935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
Inhibitor of DNA binding (Id) proteins, including Id1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins is associated with a broad spectrum of tumors, recent studies have identified that Id3 plays a tumor-suppressor role in the development of Burkitt's lymphoma in humans and hepatosplenic T cell lymphomas in mice. In this article, we report rapid lymphoma development in Id2/Id3 double-knockout mice that is caused by unchecked expansion of invariant NKT (iNKT) cells or a unique subset of innate-like CD1d-independent T cells. These populations began to expand in neonatal mice and, upon malignant transformation, resulted in mortality between 3 and 11 mo of age. The malignant cells also gave rise to lymphomas upon transfer to Rag-deficient and wild-type hosts, reaffirming their inherent tumorigenic potential. Microarray analysis revealed a significantly modified program in these neonatal iNKT cells that ultimately led to their malignant transformation. The lymphoma cells demonstrated chromosome instability along with upregulation of several signaling pathways, including the cytokine-cytokine receptor interaction pathway, which can promote their expansion and migration. Dysregulation of genes with reported driver mutations and the NF-κB pathway were found to be shared between Id2/Id3 double-knockout lymphomas and human NKT tumors. Our work identifies a distinct premalignant state and multiple tumorigenic pathways caused by loss of function of Id2 and Id3. Thus, conditional deletion of Id2 and Id3 in developing T cells establishes a unique animal model for iNKT and relevant innate-like lymphomas.
Collapse
Affiliation(s)
- Jia Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Young-Mi Kim
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Shibo Li
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Cassandra Love
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anupama Reddy
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Deepthi Rajagopalan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Sandeep Dave
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
63
|
He R, Hou S, Liu C, Zhang A, Bai Q, Han M, Yang Y, Wei G, Shen T, Yang X, Xu L, Chen X, Hao Y, Wang P, Zhu C, Ou J, Liang H, Ni T, Zhang X, Zhou X, Deng K, Chen Y, Luo Y, Xu J, Qi H, Wu Y, Ye L. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature 2017; 537:412-428. [PMID: 27501245 DOI: 10.1038/nature19317] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/20/2016] [Indexed: 12/29/2022]
Abstract
During chronic viral infection, virus-specific CD8(+) T cells become exhausted, exhibit poor effector function and lose memory potential. However, exhausted CD8(+) T cells can still contain viral replication in chronic infections, although the mechanism of this containment is largely unknown. Here we show that a subset of exhausted CD8(+) T cells expressing the chemokine receptor CXCR5 has a critical role in the control of viral replication in mice that were chronically infected with lymphocytic choriomeningitis virus (LCMV). These CXCR5(+) CD8(+) T cells were able to migrate into B-cell follicles, expressed lower levels of inhibitory receptors and exhibited more potent cytotoxicity than the CXCR5(-) [corrected] subset. Furthermore, we identified the Id2-E2A signalling axis as an important regulator of the generation of this subset. In patients with HIV, we also identified a virus-specific CXCR5(+) CD8(+) T-cell subset, and its number was inversely correlated with viral load. The CXCR5(+) subset showed greater therapeutic potential than the CXCR5(-) [corrected] subset when adoptively transferred to chronically infected mice, and exhibited synergistic reduction of viral load when combined with anti-PD-L1 treatment. This study defines a unique subset of exhausted CD8(+) T cells that has a pivotal role in the control of viral replication during chronic viral infection.
Collapse
Affiliation(s)
- Ran He
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Shiyue Hou
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Cheng Liu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Anli Zhang
- Shanghai Public Health Clinical Center &Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Qiang Bai
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Miao Han
- State Key Laboratory of Genetic Engineering &MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yu Yang
- Shanghai Public Health Clinical Center &Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering &MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Shen
- State Key Laboratory of Genetic Engineering &MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xinxin Yang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yaxing Hao
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Pengcheng Wang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Chuhong Zhu
- Department of Anatomy, School of Basic Medicine, Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Oncology, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering &MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center &Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Xinyuan Zhou
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Kai Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing 400000, China
| | - Yadong Luo
- Chongqing Public Health Medical Center, Chongqing 400000, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center &Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
64
|
Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol 2016; 36:2543-52. [PMID: 27457619 DOI: 10.1128/mcb.00150-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that E proteins induce activation-induced deaminase (AID) expression in activated B cells. Here, we examined the role of Id3 in germinal center (GC) cells. We found that Id3 expression is high in follicular B lineage cells but declines in GC cells. Immunized mice with Id3 expression depleted displayed a block in germinal center B cell maturation, showed reduced numbers of marginal zone B cells and class-switched cells, and were associated with decreased antibody titers and lower numbers of plasma cells. In vitro, Id3-depleted B cells displayed a defect in class switch recombination. Whereas AID levels were not altered in Id3-depleted activated B cells, the expression of a subset of genes encoding signaling components of antigen receptor-, cytokine receptor-, and chemokine receptor-mediated signaling was significantly impaired. We propose that during the GC reaction, Id3 levels decline to activate the expression of genes encoding signaling components that mediate B cell receptor- and or cytokine receptor-mediated signaling to promote the differentiation of GC B cells.
Collapse
|
65
|
CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol 2016; 17:1187-96. [DOI: 10.1038/ni.3543] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 12/12/2022]
|
66
|
Shaw LA, Bélanger S, Omilusik KD, Cho S, Scott-Browne JP, Nance JP, Goulding J, Lasorella A, Lu LF, Crotty S, Goldrath AW. Id2 reinforces TH1 differentiation and inhibits E2A to repress TFH differentiation. Nat Immunol 2016; 17:834-43. [PMID: 27213691 PMCID: PMC4915968 DOI: 10.1038/ni.3461] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
Abstract
The differentiation of helper T cells into effector subsets is critical to host protection. Transcription factors of the E-protein and Id families are important arbiters of T cell development, but their role in the differentiation of the TH1 and TFH subsets of helper T cells is not well understood. Here, TH1 cells showed more robust Id2 expression than that of TFH cells, and depletion of Id2 via RNA-mediated interference increased the frequency of TFH cells. Furthermore, TH1 differentiation was blocked by Id2 deficiency, which led to E-protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired the generation of TH1 cells following infection with Toxoplasma gondii. The TFH cell-defining transcriptional repressor Bcl6 bound the Id2 locus, which provides a mechanism for the bimodal Id2 expression and reciprocal development of TH1 cells and TFH cells.
Collapse
Affiliation(s)
- Laura A. Shaw
- Department of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Simon Bélanger
- Division of Vaccine Discovery, La Jolla Institute, La Jolla, CA
| | - Kyla D. Omilusik
- Department of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Sunglim Cho
- Department of Biological Sciences, University of California San Diego, La Jolla, CA
| | | | - J. Philip Nance
- Division of Vaccine Discovery, La Jolla Institute, La Jolla, CA
| | - John Goulding
- Department of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Li-Fan Lu
- Department of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute, La Jolla, CA
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Ananda W. Goldrath
- Department of Biological Sciences, University of California San Diego, La Jolla, CA
| |
Collapse
|
67
|
Gloury R, Zotos D, Zuidscherwoude M, Masson F, Liao Y, Hasbold J, Corcoran LM, Hodgkin PD, Belz GT, Shi W, Nutt SL, Tarlinton DM, Kallies A. Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. J Exp Med 2016; 213:1095-111. [PMID: 27217539 PMCID: PMC4886367 DOI: 10.1084/jem.20152003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/15/2016] [Indexed: 12/27/2022] Open
Abstract
Gloury et al. reveal an essential role for the Id3–E-protein axis in the transcriptional regulation of humoral immunity. The generation of high-affinity antibodies requires germinal center (GC) development and differentiation of long-lived plasma cells in a multilayered process that is tightly controlled by the activity of multiple transcription factors. Here, we reveal a new layer of complexity by demonstrating that dynamic changes in Id3 and E-protein activity govern both GC and plasma cell differentiation. We show that down-regulation of Id3 in B cells is essential for releasing E2A and E2-2, which in a redundant manner are required for antigen-induced B cell differentiation. We demonstrate that this pathway controls the expression of multiple key factors, including Blimp1, Xbp1, and CXCR4, and is therefore critical for establishing the transcriptional network that controls GC B cell and plasma cell differentiation.
Collapse
Affiliation(s)
- Renee Gloury
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dimitra Zotos
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Malou Zuidscherwoude
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frederick Masson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yang Liao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jhaguaral Hasbold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Phil D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Computing and Information Systems, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David M Tarlinton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
68
|
Stradner MH, Cheung KP, Lasorella A, Goldrath AW, D'Cruz LM. Id2 regulates hyporesponsive invariant natural killer T cells. Immunol Cell Biol 2016; 94:640-5. [PMID: 26880074 PMCID: PMC4980213 DOI: 10.1038/icb.2016.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
While the invariant natural killer T (iNKT)-cell response to primary stimulation with the glycolipid, α-galactosylceramide (αGalCer), is robust, the secondary response to this stimulus is muted resulting in a hyporesponsive state characterized by anti-inflammatory interleukin-10 (IL-10) production and high expression of programmed cell death 1 (PD1) and neuropilin 1 (NRP1). The E protein transcription factors and their negative regulators, the Id proteins, have previously been shown to regulate iNKT cell thymic development, subset differentiation and peripheral survival. Here, we provide evidence that the expression of the transcriptional regulator Id2 is downregulated upon stimulation of iNKT cells with their cognate antigen. Moreover, loss of Id2 expression by iNKT cells resulted in a hyporesponsive state, with splenic Id2-deficient iNKT cells expressing low levels of TBET, high levels of PD1 and NRP1 and production of IL-10 upon stimulation. We propose that downregulation of Id2 expression is an essential component of induction of the anti-inflammatory, hyporesponsive state in iNKT cells.
Collapse
Affiliation(s)
- Martin H Stradner
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Kitty P Cheung
- Division of Biology, University of California San Diego, La Jolla, CA, USA
| | - Anna Lasorella
- Department of Pediatrics and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ananda W Goldrath
- Division of Biology, University of California San Diego, La Jolla, CA, USA
| | - Louise M D'Cruz
- Department of Immunology, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, USA
| |
Collapse
|
69
|
Cauchy P, Maqbool MA, Zacarias-Cabeza J, Vanhille L, Koch F, Fenouil R, Gut M, Gut I, Santana MA, Griffon A, Imbert J, Moraes-Cabé C, Bories JC, Ferrier P, Spicuglia S, Andrau JC. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation. Nucleic Acids Res 2015; 44:3567-85. [PMID: 26673693 PMCID: PMC4856961 DOI: 10.1093/nar/gkv1475] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Ets1 is a sequence-specific transcription factor that plays an important role during hematopoiesis, and is essential for the transition of CD4−/CD8− double negative (DN) to CD4+/CD8+ double positive (DP) thymocytes. Using genome-wide and functional approaches, we investigated the binding properties, transcriptional role and chromatin environment of Ets1 during this transition. We found that while Ets1 binding at distal sites was associated with active genes at both DN and DP stages, its enhancer activity was attained at the DP stage, as reflected by levels of the core transcriptional hallmarks H3K4me1/3, RNA Polymerase II and eRNA. This dual, stage-specific ability reflected a switch from non-T hematopoietic toward T-cell specific gene expression programs during the DN-to-DP transition, as indicated by transcriptome analyses of Ets1−/− thymic cells. Coincidentally, Ets1 associates more specifically with Runx1 in DN and with TCF1 in DP cells. We also provide evidence that Ets1 predominantly binds distal nucleosome-occupied regions in DN and nucleosome-depleted regions in DP. Finally and importantly, we demonstrate that Ets1 induces chromatin remodeling by displacing H3K4me1-marked nucleosomes. Our results thus provide an original model whereby the ability of a transcription factor to bind nucleosomal DNA changes during differentiation with consequences on its cognate enhancer activity.
Collapse
Affiliation(s)
- Pierre Cauchy
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Muhammad A Maqbool
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| | - Joaquin Zacarias-Cabeza
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Laurent Vanhille
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Frederic Koch
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Romain Fenouil
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Marta Gut
- Centre Nacional D'Anàlisi Genòmica, Parc Científic de Barcelona, Baldiri i Reixac 4, Barcelona ES-08028, Spain
| | - Ivo Gut
- Centre Nacional D'Anàlisi Genòmica, Parc Científic de Barcelona, Baldiri i Reixac 4, Barcelona ES-08028, Spain
| | - Maria A Santana
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Aurélien Griffon
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Jean Imbert
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Carolina Moraes-Cabé
- INSERM UMR 1126 Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris F-75475, France
| | - Jean-Christophe Bories
- INSERM UMR 1126 Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris F-75475, France
| | - Pierre Ferrier
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Salvatore Spicuglia
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| |
Collapse
|
70
|
Rothenberg EV, Ungerbäck J, Champhekar A. Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control. Adv Immunol 2015; 129:109-74. [PMID: 26791859 DOI: 10.1016/bs.ai.2015.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA; Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ameya Champhekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
71
|
Menner AJ, Rauch KS, Aichele P, Pircher H, Schachtrup C, Schachtrup K. Id3 Controls Cell Death of 2B4+ Virus-Specific CD8+ T Cells in Chronic Viral Infection. THE JOURNAL OF IMMUNOLOGY 2015; 195:2103-14. [PMID: 26232435 DOI: 10.4049/jimmunol.1402607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 01/22/2023]
Abstract
Sustained Ag persistence in chronic infection results in a deregulated CD8(+) T cell response that is characterized by T cell exhaustion and cell death of Ag-specific CD8(+) T cells. Yet, the underlying transcriptional mechanisms regulating CD8(+) T cell exhaustion and cell death are poorly defined. Using the experimental mouse model of lymphocytic choriomeningitis virus infection, we demonstrate that the transcriptional regulator Id3 controls cell death of virus-specific CD8(+) T cells in chronic infection. By comparing acute and chronic infection, we showed that Id3 (-) virus-specific CD8(+) T cells were less abundant, whereas the absolute numbers of Id3 (+) virus-specific CD8(+) T cells were equal in chronic and acute infection. Phenotypically, Id3 (-) and Id3 (+) cells most prominently differed with regard to expression of the surface receptor 2B4; although Id3 (-) cells were 2B4(+), almost all Id3 (+) cells lacked expression of 2B4. Lineage-tracing experiments showed that cells initially expressing Id3 differentiated into Id3 (-)2B4(+) cells; in turn, these cells were terminally differentiated and highly susceptible to cell death under conditions of persisting Ag. Enforced Id3 expression specifically increased the persistence of 2B4(+) virus-specific CD8(+) T cells by decreasing susceptibility to Fas/Fas ligand-mediated cell death. Thus, our findings reveal that the transcriptional regulator Id3 promotes the survival of virus-specific CD8(+) T cells in chronic infection and suggest that targeting Id3 might be beneficial for preventing cell death of CD8(+) T cells in chronic infection or for promoting cell death of uncontrolled, hyperactive CD8(+) T cells to prevent immunopathology.
Collapse
Affiliation(s)
- Alexandra J Menner
- Center for Chronic Immunodeficiency, University Medical Center and University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Katharina S Rauch
- Center for Chronic Immunodeficiency, University Medical Center and University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Peter Aichele
- Center for Microbiology and Hygiene, Institute for Immunology, University Medical Center and University of Freiburg, 79104 Freiburg, Germany; and
| | - Hanspeter Pircher
- Center for Microbiology and Hygiene, Institute for Immunology, University Medical Center and University of Freiburg, 79104 Freiburg, Germany; and
| | - Christian Schachtrup
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Kristina Schachtrup
- Center for Chronic Immunodeficiency, University Medical Center and University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
72
|
Abstract
The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins.
Collapse
Affiliation(s)
- Mihalis Verykokakis
- Committee on Immunology and Department of Pathology, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
73
|
Stone EL, Pepper M, Katayama CD, Kerdiles YM, Lai CY, Emslie E, Lin YC, Yang E, Goldrath AW, Li MO, Cantrell DA, Hedrick SM. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity 2015; 42:239-251. [PMID: 25692700 PMCID: PMC4334393 DOI: 10.1016/j.immuni.2015.01.017] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/13/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
T follicular helper (Tfh) cells are essential in the induction of high-affinity, class-switched antibodies. The differentiation of Tfh cells is a multi-step process that depends upon the co-receptor ICOS and the activation of phosphoinositide-3 kinase leading to the expression of key Tfh cell genes. We report that ICOS signaling inactivates the transcription factor FOXO1, and a Foxo1 genetic deletion allowed for generation of Tfh cells with reduced dependence on ICOS ligand. Conversely, enforced nuclear localization of FOXO1 inhibited Tfh cell development even though ICOS was overexpressed. FOXO1 regulated Tfh cell differentiation through a broad program of gene expression exemplified by its negative regulation of Bcl6. Final differentiation to germinal center Tfh cells (GC-Tfh) was instead FOXO1 dependent as the Foxo1−/− GC-Tfh cell population was substantially reduced. We propose that ICOS signaling transiently inactivates FOXO1 to initiate a Tfh cell contingency that is completed in a FOXO1-dependent manner. ICOS signaling transiently inactivates FOXO1 to generate Tfh cells FOXO1 regulates a Tfh cell gene program exemplified by negative regulation of Bcl6 Enforced nuclear localization of FOXO1 prevents Tfh cell differentiation FOXO1 promotes final GC-Tfh cell differentiation
Collapse
Affiliation(s)
- Erica L Stone
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| | - Carol D Katayama
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Yann M Kerdiles
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Chen-Yen Lai
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Elizabeth Emslie
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Yin C Lin
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Edward Yang
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Ananda W Goldrath
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Doreen A Cantrell
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Stephen M Hedrick
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA; Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA.
| |
Collapse
|
74
|
Miyazaki M, Miyazaki K, Chen S, Chandra V, Wagatsuma K, Agata Y, Rodewald HR, Saito R, Chang AN, Varki N, Kawamoto H, Murre C. The E-Id protein axis modulates the activities of the PI3K-AKT-mTORC1-Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis. Genes Dev 2015; 29:409-25. [PMID: 25691468 PMCID: PMC4335296 DOI: 10.1101/gad.255331.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Miyazaki et al. show that Id2 and Id3 suppress the development and expansion of innate variant TFH cells by acting upstream of the Hif1a/Foxo/AKT/mTORC1 pathway as well as the c-myc/p19Arf module. Mice depleted for Id2 and Id3 expression developed colitis and αβ T-cell lymphomas, and the transcription signatures of Id2- and Id3-depleted lymphomas revealed similarities to genetic deficiencies associated with Burkitt lymphoma. It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naïve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. We found that Id2 and Id3 induced Foxo1 and Foxp1 expression to antagonize the activation of a TFH transcription signature. We show that Id2 and Id3 acted upstream of the Hif1a/Foxo/AKT/mTORC1 pathway as well as the c-myc/p19Arf module to control cellular expansion. We found that mice depleted for Id2 and Id3 expression developed colitis and αβ T-cell lymphomas. Lymphomas depleted for Id2 and Id3 expression displayed elevated levels of c-myc, whereas p19Arf abundance declined. Transcription signatures of Id2- and Id3-depleted lymphomas revealed similarities to genetic deficiencies associated with Burkitt lymphoma. We propose that, in response to antigen receptor and/or cytokine signaling, the E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1–Hif1a and c-myc/p19Arf pathways to control cellular expansion and homeostatic proliferation.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Kazuko Miyazaki
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Shuwen Chen
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Vivek Chandra
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Keisuke Wagatsuma
- Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan
| | - Yasutoshi Agata
- Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Rintaro Saito
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Aaron N Chang
- Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Nissi Varki
- Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA
| | - Hiroshi Kawamoto
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Cornelis Murre
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
75
|
Abstract
The Tcra enhancer (Eα) is essential for Tcra locus germ-line transcription and primary Vα-to-Jα recombination during thymocyte development. We found that Eα is inhibited late during thymocyte differentiation and in αβ T lymphocytes, indicating that it is not required to drive transcription of rearranged Tcra genes. Eα inactivation resulted in the disruption of functional long-range enhancer-promoter interactions and was associated with loss of Eα-dependent histone modifications at promoter and enhancer regions, and reduced expression and recruitment of E2A to the Eα enhanceosome in T cells. Enhancer activity could not be recovered by T-cell activation, by forced expression of E2A or by the up-regulation of this and other transcription factors in the context of T helper differentiation. Our results argue that the major function of Eα is to coordinate the formation of a chromatin hub that drives Vα and Jα germ-line transcription and primary rearrangements in thymocytes and imply the existence of an Eα-independent mechanism to activate transcription of the rearranged Tcra locus in αβ T cells.
Collapse
|
76
|
Kang J, Malhotra N. Transcription factor networks directing the development, function, and evolution of innate lymphoid effectors. Annu Rev Immunol 2015; 33:505-38. [PMID: 25650177 PMCID: PMC4674156 DOI: 10.1146/annurev-immunol-032414-112025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity.
Collapse
Affiliation(s)
- Joonsoo Kang
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| | | |
Collapse
|
77
|
Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2015; 41:529-42. [PMID: 25367570 DOI: 10.1016/j.immuni.2014.10.004] [Citation(s) in RCA: 1319] [Impact Index Per Article: 146.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 12/22/2022]
Abstract
Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high-affinity antibodies and memory B cells. Tfh cell differentiation is a multistage, multifactorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
78
|
Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 2014; 14:529-45. [PMID: 25060579 PMCID: PMC4153685 DOI: 10.1038/nri3702] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells acquire their ultimate identities by activating combinations of transcription factors that initiate and sustain expression of the appropriate cell type-specific genes. T cell development depends on the progression of progenitor cells through three major phases, each of which is associated with distinct transcription factor ensembles that control the recruitment of these cells to the thymus, their proliferation, lineage commitment and responsiveness to T cell receptor signals, all before the allocation of cells to particular effector programmes. All three phases are essential for proper T cell development, as are the mechanisms that determine the boundaries between each phase. Cells that fail to shut off one set of regulators before the next gene network phase is activated are predisposed to leukaemic transformation.
Collapse
Affiliation(s)
- Mary A Yui
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | - Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
79
|
Miyazaki M, Miyazaki K, Chen S, Itoi M, Miller M, Lu LF, Varki N, Chang AN, Broide DH, Murre C. Id2 and Id3 maintain the regulatory T cell pool to suppress inflammatory disease. Nat Immunol 2014; 15:767-76. [PMID: 24973820 PMCID: PMC4365819 DOI: 10.1038/ni.2928] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/22/2014] [Indexed: 12/15/2022]
Abstract
Regulatory T (Treg) cells suppress the development of inflammatory disease, but our knowledge of transcriptional regulators that control this function remains incomplete. Here we show that expression of Id2 and Id3 in Treg cells was required to suppress development of fatal inflammatory disease. We found that T cell antigen receptor (TCR)-driven signaling initially decreased the abundance of Id3, which led to the activation of a follicular regulatory T (TFR) cell-specific transcription signature. However, sustained lower abundance of Id2 and Id3 interfered with proper development of TFR cells. Depletion of Id2 and Id3 expression in Treg cells resulted in compromised maintenance and localization of the Treg cell population. Thus, Id2 and Id3 enforce TFR cell checkpoints and control the maintenance and homing of Treg cells.
Collapse
Affiliation(s)
- Masaki Miyazaki
- 1] Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA. [2]
| | - Kazuko Miyazaki
- 1] Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA. [2]
| | - Shuwen Chen
- 1] Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA. [2]
| | - Manami Itoi
- Department of Immunology and Microbiology, Meiji University of Integrative Medicine, Hiyoshi-cho, Kyoto, Japan
| | - Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Li-Fan Lu
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Nissi Varki
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Aaron N Chang
- Center for Computational Biology, Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, USA
| | - David H Broide
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
80
|
T-cell TGF-β signaling abrogation restricts medulloblastoma progression. Proc Natl Acad Sci U S A 2014; 111:E3458-66. [PMID: 25082897 DOI: 10.1073/pnas.1412489111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer cell secretion of TGF-β is a potent mechanism for immune evasion. However, little is known about how central nervous system tumors guard against immune eradication. We sought to determine the impact of T-cell TGF-β signaling blockade on progression of medulloblastoma (MB), the most common pediatric brain tumor. Genetic abrogation of T-cell TGF-β signaling mitigated tumor progression in the smoothened A1 (SmoA1) transgenic MB mouse. T regulatory cells were nearly abolished and antitumor immunity was mediated by CD8 cytotoxic T lymphocytes. To define the CD8 T-cell subpopulation responsible, primed CD8 T cells were adoptively transferred into tumor-bearing immunocompromised SmoA1 recipients. This led to generation of CD8(+)/killer cell lectin-like receptor G1 high (KLRG1(hi))/IL-7R(lo) short-lived effector cells that expressed granzyme B at the tumor. These results identify a cellular immune mechanism whereby TGF-β signaling blockade licenses the T-cell repertoire to kill pediatric brain tumor cells.
Collapse
|
81
|
Belle I, Mahlios J, McKenzie A, Zhuang Y. Aberrant production of IL-13 by T cells promotes exocrinopathy in Id3 knockout mice. Cytokine 2014; 69:226-33. [PMID: 25010390 DOI: 10.1016/j.cyto.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/24/2014] [Accepted: 06/11/2014] [Indexed: 12/24/2022]
Abstract
Elevated levels of the cytokine IL-13 has been found to be associated with autoimmune diseases, including Sjögren's Syndrome. However, whether IL-13 plays a causative role in disease development is not known and cannot be easily studied in humans. Our previous work has shown that levels of IL-13 are elevated in Id3 knockout mice, which has been established as a model for primary Sjögren's Syndrome. Here, we utilized an IL-13 reporter to determine the source of the elevated IL-13 levels observed in Id3 knockout mice and assess its contribution to SS pathology. Our results indicate that T cells, notably CD4 and γδ T cells, in Id3 knockout mice acquire IL-13 competency at an elevated rate well before disease symptoms become apparent. We also show that T cells developing early in life are more predisposed to produce IL-13. Finally, analysis of Id3 and IL-13 double deficient mice demonstrated that IL-13 plays an essential role in the deterioration of gland function. Our study provides crucial genetic evidence that enhanced IL-13 production by T cells can play a causative role in the exocrinopathy observed in Id3 knockout mice.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Josh Mahlios
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
82
|
Transcription of RORγt in developing Th17 cells is regulated by E-proteins. Mucosal Immunol 2014; 7:521-32. [PMID: 24064669 PMCID: PMC4381430 DOI: 10.1038/mi.2013.69] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 02/04/2023]
Abstract
In the present study we investigated the molecular mechanisms regulating the expression of RAR-related orphan receptor gamma t (RORγt), the central factor controlling interleukin (IL)-17 transcription and Th17 differentiation. In key studies, we found that cells from mice with major deletions of E-protein transcription factors, E2A and HEB, display greatly reduced RORγt/IL-17 expression and that E-protein-deficient mice exhibit greatly diminished IL-17-dependent inflammation in experimental allergic encephalitis models. In additional studies, we unexpectedly found that cells from mice with deletion of Id3, a protein that inhibits E-protein binding to DNA, display diminished RORγt/IL-17 expression and mice deficient in this protein exhibit decreased Th17-mediated inflammation in a cell-transfer colitis model. The explanation of these initially paradoxical findings came from studies showing that Id3 deficiency leads to increased IL-4-induced GATA-3 expression, the latter a negative regulator of RORγt transcription; thus, increased Id3 expression likely has a net positive effect on RORγt expression via its inhibition of IL-4 production. Finally, we found that both E-proteins and Id3 are upregulated in tandem by the cytokines that induce Th17 differentiation, transforming growth factor-β, and IL-6, implying that these transcription factors are critical regulators of Th17 induction.
Collapse
|
83
|
Miyazaki K, Miyazaki M, Murre C. The establishment of B versus T cell identity. Trends Immunol 2014; 35:205-10. [PMID: 24679436 PMCID: PMC4030559 DOI: 10.1016/j.it.2014.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/20/2023]
Abstract
In B cell progenitors, E-proteins E2A and HEB (HeLa E-box binding protein) are crucial for the induction of a B lineage-specific program of gene expression and for orchestrating the assembly of the immunoglobulin loci. In the thymus E2A and HEB act differently, activating the expression of genes closely associated with the establishment of T cell identity and promoting the rearrangement of T cell receptor (TCR) loci. These findings have raised the question as to how E-proteins exert these different activities. We review here the distinct regulatory networks that establish B versus T cell identity, and how genomic architecture and location of genes is modulated in these lineage decisions. We conclude by proposing a model wherein stochasticity in the nuclear location of the early B cell factor 1 (Ebf1) locus in multipotent progenitors determines this lineage choice.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Masaki Miyazaki
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
84
|
A functionally significant polymorphism in ID3 is associated with human coronary pathology. PLoS One 2014; 9:e90222. [PMID: 24603695 PMCID: PMC3946163 DOI: 10.1371/journal.pone.0090222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/27/2014] [Indexed: 01/25/2023] Open
Abstract
Aims We previously identified association between the ID3 SNP rs11574 and carotid intima-media thickness in the Diabetes Heart Study, a predominantly White diabetic population. The nonsynonymous SNP rs11574 results in an amino acid substitution in the C-terminal region of ID3, attenuating the dominant negative function of ID3 as an inhibitor of basic HLH factor E12-mediated transcription. In the current investigation, we characterize the association between the functionally significant polymorphism in ID3, rs11574, with human coronary pathology. Methods and Results The Multi-Ethnic Study of Atherosclerosis (MESA) is a longitudinal study of subclinical cardiovascular disease, including non-Hispanic White (n = 2,588), African American (n = 2,560) and Hispanic (n = 2,130) participants with data on coronary artery calcium (CAC). The Coronary Assessment in Virginia cohort (CAVA) included 71 patients aged 30–80 years, undergoing a medically necessary cardiac catheterization and intravascular ultrasound (IVUS) at the University of Virginia. ID3 SNP rs11574 risk allele was associated with the presence of CAC in MESA Whites (P = 0.017). In addition, the risk allele was associated with greater atheroma burden and stenosis in the CAVA cohort (P = 0.003, P = 0.04 respectively). The risk allele remained predictive of atheroma burden in multivariate analysis (Model 1: covariates age, gender, and LDL, regression coefficient = 9.578, SE = 3.657, p = 0.0110; Model 2: covariates Model 1, presence of hypertension, presence of diabetes, regression coefficient = 8.389, SE = 4.788, p = 0.0163). Conclusions We present additional cohorts that demonstrate association of ID3 SNP rs11574 directly with human coronary artery pathology as measured by CAC and IVUS: one a multiethnic, relatively healthy population with low levels of diabetes and the second a predominantly White population with a higher incidence of T2DM referred for cardiac catheterization.
Collapse
|
85
|
Abstract
The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed "default" pathway for common dendritic cell progenitors.
Collapse
|
86
|
Abstract
ChIP-seq has become the primary method for identifying in vivo protein-DNA interactions on a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of December 2012. Individually and in aggregate, these data are an important and information-rich resource. However, uncertainties about data quality confound their use by the wider research community. Recently, the Encyclopedia of DNA Elements (ENCODE) project developed and applied metrics to objectively measure ChIP-seq data quality. The ENCODE quality analysis was useful for flagging datasets for closer inspection, eliminating or replacing poor data, and for driving changes in experimental pipelines. There had been no similarly systematic quality analysis of the large and disparate body of published ChIP-seq profiles. Here, we report a uniform analysis of vertebrate transcription factor ChIP-seq datasets in the Gene Expression Omnibus (GEO) repository as of April 1, 2012. The majority (55%) of datasets scored as being highly successful, but a substantial minority (20%) were of apparently poor quality, and another ∼25% were of intermediate quality. We discuss how different uses of ChIP-seq data are affected by specific aspects of data quality, and we highlight exceptional instances for which the metric values should not be taken at face value. Unexpectedly, we discovered that a significant subset of control datasets (i.e., no immunoprecipitation and mock immunoprecipitation samples) display an enrichment structure similar to successful ChIP-seq data. This can, in turn, affect peak calling and data interpretation. Published datasets identified here as high-quality comprise a large group that users can draw on for large-scale integrated analysis. In the future, ChIP-seq quality assessment similar to that used here could guide experimentalists at early stages in a study, provide useful input in the publication process, and be used to stratify ChIP-seq data for different community-wide uses.
Collapse
|
87
|
D'Cruz LM, Stradner MH, Yang CY, Goldrath AW. E and Id proteins influence invariant NKT cell sublineage differentiation and proliferation. THE JOURNAL OF IMMUNOLOGY 2014; 192:2227-36. [PMID: 24470501 PMCID: PMC3943952 DOI: 10.4049/jimmunol.1302904] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disease outcome is known to be influenced by defined subsets of invariant NKT (iNKT) cells residing in distinct locations within peripheral tissue. However, the factors governing the development of these unique iNKT sublineages during thymic development are unknown. In this study we explored the mechanism by which E protein transcription factors and their negative regulators, the Id proteins, control the development of iNKT sublineages after positive selection. We found that E proteins directly bound the promyelocytic leukemia zinc finger (PLZF) promoter and were required for expression of this lineage-defining transcription factor and for the maturation and expansion of thymic iNKT cells. Moreover, expression of the negative regulators of E proteins, Id2 and Id3, defined distinct iNKT cell sublineages. Id3 was expressed in PLZF(high) NKT2 cells and loss of Id3 allowed for increased thymic iNKT cell expansion and abundance of the PLZF(+) NKT2 sublineage. Id2 was expressed in T-BET(+) NKT1 cells, and both Id proteins were required for the formation of this sublineage. Thus, we provide insight into E and Id protein regulation of iNKT cell proliferation and differentiation to specific sublineages during development in the thymus.
Collapse
Affiliation(s)
- Louise M D'Cruz
- Division of Biology, University of California San Diego, La Jolla, CA 92093
| | | | | | | |
Collapse
|
88
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
89
|
Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 2014; 507:513-8. [PMID: 24463518 PMCID: PMC4012617 DOI: 10.1038/nature12910] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
Abstract
In immune responses, activated T cells migrate to B cell follicles and develop to T follicular helper (Tfh) cells, a new subset of CD4+ T cells specialized in providing help to B lymphocytes in the induction of germinal centers 1,2. Although Bcl6 has been shown to be essential in Tfh cell function, it may not regulate the initial migration of T cells 3 or the induction of Tfh program as exampled by C-X-C chemokine receptor type 5 (CXCR5) upregulation 4. Here, we show that Achaete-Scute homologue 2 (Ascl2), a basic helix-loop-helix (bHLH) transcription factor 5, is selectively upregulated in its expression in Tfh cells. Ectopic expression of Ascl2 upregulates CXCR5 but not Bcl6 and downregulates C-C chemokine receptor 7 (CCR7) expression in T cells in vitro and accelerates T cell migration to the follicles and Tfh cell development in vivo. Genome-wide analysis indicates that Ascl2 directly regulates Tfh-related genes while inhibits expression of Th1 and Th17 genes. Acute deletion of Ascl2 as well as blockade of its function with the Id3 protein in CD4+ T cells results in impaired Tfh cell development and the germinal center response. Conversely, mutation of Id3, known to cause antibody-mediated autoimmunity, greatly enhances Tfh cell generation. Thus, Ascl2 directly initiates Tfh cell development.
Collapse
|
90
|
Huang A, Zhao H, Quan Y, Jin R, Feng B, Zheng M. E2A predicts prognosis of colorectal cancer patients and regulates cancer cell growth by targeting miR-320a. PLoS One 2014; 9:e85201. [PMID: 24454819 PMCID: PMC3890311 DOI: 10.1371/journal.pone.0085201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Transcriptional factor E2A is crucial for the normal development and differentiation of B and T lymphocytes. Dysregulation of E2A leads to leukemia and tumorigenesis of some solid tumors. The expression and clinical significance of E2A as well as its role in colorectal cancer (CRC) are still unknown. This study aims to assess E2A expression in CRC tissues, evaluate its prognosis value, and investigate its role in colon cancer cell growth. METHODS E2A expression in CRC tissues and normal mucosa was detected by immunohistochemical staining; Kaplan-Meier survival curve and Cox regression model were used to evaluate the prognostic value of E2A. Lentivirus was used to construct E2A stably knocked-down cells. MTT assay was employed to detect cell proliferation change; cell cycle was analyzed by flow cytometry; and chromatin immunoprecipitation (ChIP) assay was used to validate the predicted binding target of E2A. RESULTS Expression of E2A was lower in CRC tissues than normal mucosa; low E2A expression correlated with advanced TNM stage and larger tumor size, and predicted poor prognosis of CRC patients. E2A knockdown resulted in increased cell proliferation rate and cell cycle acceleration. ChIP assay showed miR-320a was a direct target of E2A and upregulation of miR-320a in E2A downregulated cells could reverse cell proliferation and cell cycle changes caused by E2A deficiency. CONCLUSIONS E2A is an independent prognostic factor for CRC patients and targets miR-320a to regulate cell proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Ao Huang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Hongchao Zhao
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Yingjun Quan
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Runsen Jin
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Bo Feng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
| | - Minhua Zheng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Shanghai, China
- * E-mail:
| |
Collapse
|
91
|
Abstract
As members of the basic helix-loop-helix (bHLH) family of transcription factors, E proteins function in the immune system by directing and maintaining a vast transcriptional network that regulates cell survival, proliferation, differentiation, and function. Proper activity of this network is essential to the functionality of the immune system. Aberrations in E protein expression or function can cause numerous defects, ranging from impaired lymphocyte development and immunodeficiency to aberrant function, cancer, and autoimmunity. Additionally, disruption of inhibitor of DNA-binding (Id) proteins, natural inhibitors of E proteins, can induce additional defects in development and function. Although E proteins have been investigated for several decades, their study continues to yield novel and exciting insights into the workings of the immune system. The goal of this chapter is to discuss the various classical roles of E proteins in lymphocyte development and highlight new and ongoing research into how these roles, if compromised, can lead to disease.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA.
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA
| |
Collapse
|
92
|
Santos PM, Ding Y, Borghesi L. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:160-8. [PMID: 24259504 DOI: 10.4049/jimmunol.1302502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.
Collapse
Affiliation(s)
- Patricia M Santos
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | | | |
Collapse
|
93
|
Li J, Wu D, Jiang N, Zhuang Y. Combined deletion of Id2 and Id3 genes reveals multiple roles for E proteins in invariant NKT cell development and expansion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5052-64. [PMID: 24123680 PMCID: PMC3837387 DOI: 10.4049/jimmunol.1301252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The invariant NKT (iNKT) cells represent a unique group of αβ T cells that have been classified based on their exclusive usage of the invariant Vα14Jα18 TCRα-chain and their innate-like effector function. Thus far, the transcriptional programs that control Vα14Jα18 TCRα rearrangements and the population size of iNKT cells are still incompletely defined. E protein transcription factors have been shown to play necessary roles in the development of multiple T cell lineages, including iNKT cells. In this study, we examined E protein functions in T cell development through combined deletion of genes encoding E protein inhibitors Id2 and Id3. Deletion of Id2 and Id3 in T cell progenitors resulted in a partial block at the pre-TCR selection checkpoint and a dramatic increase in numbers of iNKT cells. The increase in iNKT cells is accompanied with a biased rearrangement involving Vα14 to Jα18 recombination at the double-positive stage and enhanced proliferation of iNKT cells. We further demonstrate that a 50% reduction of E proteins can cause a dramatic switch from iNKT to innate-like γδ T cell fate in Id2- and Id3-deficient mice. Collectively, these findings suggest that Id2- and Id3-mediated inhibition of E proteins controls iNKT development by restricting lineage choice and population expansion.
Collapse
Affiliation(s)
- Jia Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Di Wu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
94
|
Perry HM, Oldham SN, Fahl SP, Que X, Gonen A, Harmon DB, Tsimikas S, Witztum JL, Bender TP, McNamara CA. Helix-loop-helix factor inhibitor of differentiation 3 regulates interleukin-5 expression and B-1a B cell proliferation. Arterioscler Thromb Vasc Biol 2013; 33:2771-9. [PMID: 24115031 DOI: 10.1161/atvbaha.113.302571] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Natural immunity is emerging as an important mediator of protection from atherogenesis. Natural IgM antibodies that recognize oxidation-specific epitopes on low-density lipoprotein or phospholipids and the B-1a B cells that produce them attenuate atherosclerosis. We previously demonstrated that Apoe(-/-) mice globally deficient in the helix-loop-helix protein inhibitor of differentiation 3 (Id3) develop early diet-induced atherosclerosis. Furthermore, B cell-mediated attenuation of atherosclerosis in B cell-deficient mice was dependent on Id3. Here, we sought to determine whether Id3 regulates B-1a B cells and the natural antibodies that they produce and identify mechanisms mediating these effects. APPROACH AND RESULTS Mice lacking Id3 had significantly fewer B-1a B cells in the spleen and peritoneal cavity and reduced serum levels of the natural antibody E06. B cell-specific deletion of Id3 revealed that this effect was not because of the loss of Id3 in B cells. Interleukin (IL)-33 induced abundant, Id3-dependent IL-5 production in the recently identified innate lymphoid cell, the natural helper (NH) cell, but not Th2 or mast cells. In addition, delivery of IL-5 to Id3-deficient mice restored B-1a B cell proliferation. B-1a B cells were present in aortic samples also containing NH cells. Aortic NH cells produced IL-5, a B-1a B cell mitogen in response to IL-33 stimulation. CONCLUSIONS These studies are the first to identify NH and B-1a B cells in the aorta and provide evidence that Id3 is a key regulator of NH cell IL-5 production and B-1a B cell homeostasis.
Collapse
Affiliation(s)
- Heather M Perry
- From the Cardiovascular Research Center (H.M.P., S.N.O., D.B.H., C.A.M.), Department of Pathology (H.M.P.), Department of Medicine (S.N.O.), Beirne B. Carter Center for Immunology Research (S.P.F., C.A.M.), Department of Microbiology, Immunology and Cancer Biology (S.P.F., T.P.B.), Department of Biochemistry, Molecular Biology and Genetics (D.B.H., T.P.B.), Department of Medicine, Cardiovascular Division (C.A.M.), Department of Molecular Physiology and Biological Physics (C.A.M.), University of Virginia, Charlottesville; and the Department of Medicine, University of California, San Diego (X.Q., A.G., S.T., J.L.W.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Omilusik KD, Shaw LA, Goldrath AW. Remembering one's ID/E-ntity: E/ID protein regulation of T cell memory. Curr Opin Immunol 2013; 25:660-6. [PMID: 24094885 PMCID: PMC3839785 DOI: 10.1016/j.coi.2013.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 01/24/2023]
Abstract
Upon infection, CD8(+) T cells proliferate and differentiate into armed effector cells capable of eliminating the assaulting pathogen. Although the majority of the antigen-specific T cells will die as the immune response wanes, a few will survive indefinitely to establish the memory population and provide long-lived protection against reinfection. E protein transcription factors and their inhibitors, ID proteins, operate to balance expression of genes that control CD8(+) T cell differentiation through this process. Here, we discuss the role of ID2 and ID3 in promoting the generation and survival of effector and memory populations, particularly highlighting their reciprocal roles in shaping the CD8(+) T cell response unique to the inflammatory milieu. We further examine this coordinated control of gene expression in the context of additional transcription factors within the transcriptional network that programs CD8(+) effector and memory T cell differentiation.
Collapse
Affiliation(s)
- Kyla D Omilusik
- University of California San Diego, Division of Biology, 9500 Gilman Drive, La Jolla, CA 92093-0377, United States
| | | | | |
Collapse
|
96
|
Transcriptional regulation of haematopoietic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:187-212. [PMID: 23696358 DOI: 10.1007/978-94-007-6621-1_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Haematopoietic stem cells (HSCs) are a rare cell population found in the bone marrow of adult mammals and are responsible for maintaining the entire haematopoietic system. Definitive HSCs are produced from mesoderm during embryonic development, from embryonic day 10 in the mouse. HSCs seed the foetal liver before migrating to the bone marrow around the time of birth. In the adult, HSCs are largely quiescent but have the ability to divide to self-renew and expand, or to proliferate and differentiate into any mature haematopoietic cell type. Both the specification of HSCs during development and their cellular choices once formed are tightly controlled at the level of transcription. Numerous transcriptional regulators of HSC specification, expansion, homeostasis and differentiation have been identified, primarily from analysis of mouse gene knockout experiments and transplantation assays. These include transcription factors, epigenetic modifiers and signalling pathway effectors. This chapter reviews the current knowledge of these HSC transcriptional regulators, predominantly focusing on the transcriptional regulation of mouse HSCs, although transcriptional regulation of human HSCs is also mentioned where relevant. Due to the breadth and maturity of this field, we have prioritised recently identified examples of HSC transcriptional regulators. We go on to highlight additional layers of control that regulate expression and activity of HSC transcriptional regulators and discuss how chromosomal translocations that result in fusion proteins of these HSC transcriptional regulators commonly drive leukaemias through transcriptional dysregulation.
Collapse
|
97
|
Pham D, Walline CC, Hollister K, Dent AL, Blum JS, Firulli AB, Kaplan MH. The transcription factor Twist1 limits T helper 17 and T follicular helper cell development by repressing the gene encoding the interleukin-6 receptor α chain. J Biol Chem 2013; 288:27423-27433. [PMID: 23935104 DOI: 10.1074/jbc.m113.497248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytokine responsiveness is a critical component of the ability of cells to respond to the extracellular milieu. Transcription factor-mediated regulation of cytokine receptor expression is a common mode of altering responses to the external environment. We identify the transcription factor Twist1 as a component of a STAT3-induced feedback loop that controls IL-6 signals by directly repressing Il6ra. Human and mouse T cells lacking Twist1 have an increased ability to differentiate into Th17 cells. Mice with a T cell-specific deletion of Twist1 demonstrate increased Th17 and T follicular helper cell development, early onset experimental autoimmune encephalomyelitis, and increased antigen-specific antibody responses. Thus, Twist1 has a critical role in limiting both cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Duy Pham
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Crystal C Walline
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Kristin Hollister
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research
| | - Alexander L Dent
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research
| | - Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Anthony B Firulli
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research
| | - Mark H Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
98
|
Smeets MFMA, Chan AC, Dagger S, Bradley CK, Wei A, Izon DJ. Fli-1 overexpression in hematopoietic progenitors deregulates T cell development and induces pre-T cell lymphoblastic leukaemia/lymphoma. PLoS One 2013; 8:e62346. [PMID: 23667468 PMCID: PMC3646842 DOI: 10.1371/journal.pone.0062346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/20/2013] [Indexed: 12/28/2022] Open
Abstract
The Ets transcription factor Fli-1 is preferentially expressed in hematopoietic tissues and cells, including immature T cells, but the role of Fli-1 in T cell development has not been closely examined. To address this we retrovirally overexpressed Fli-1 in various in vitro and in vivo settings and analysed its effect on T cell development. We found that Fli-1 overexpression perturbed the DN to DP transition and inhibited CD4 development whilst enhancing CD8 development both in vitro and in vivo. Surprisingly, Fli-1 overexpression in vivo eventuated in development of pre-T cell lymphoblastic leukaemia/lymphoma (pre-T LBL). Known Fli-1 target genes such as the pro-survival Bcl-2 family members were not found to be upregulated. In contrast, we found increased NOTCH1 expression in all Fli-1 T cells and detected Notch1 mutations in all tumours. These data show a novel function for Fli-1 in T cell development and leukaemogenesis and provide a new mouse model of pre-T LBL to identify treatment options that target the Fli-1 and Notch1 signalling pathways.
Collapse
Affiliation(s)
- Monique F. M. A. Smeets
- Haematology and Leukaemia Unit, St. Vincent’s Institute, University of Melbourne, Fitzroy, Victoria, Australia
| | - Angela C. Chan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Samantha Dagger
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Andrew Wei
- Department of Clinical Haematology, The Alfred Hospital and The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - David J. Izon
- Haematology and Leukaemia Unit, St. Vincent’s Institute, University of Melbourne, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|
99
|
Will B, Vogler TO, Bartholdy B, Garrett-Bakelman F, Mayer J, Barreyro L, Pandolfi A, Todorova TI, Okoye-Okafor UC, Stanley RF, Bhagat TD, Verma A, Figueroa ME, Melnick A, Roth M, Steidl U. Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nat Immunol 2013; 14:437-45. [PMID: 23563689 PMCID: PMC3633104 DOI: 10.1038/ni.2572] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/20/2013] [Indexed: 12/15/2022]
Abstract
How hematopoietic stem cells coordinate the regulation of opposing cellular mechanisms like self-renewal and differentiation commitment remains unclear. Here, we identified the transcription factor and chromatin remodeler Satb1 as a critical regulator of the hematopoietic stem cell (HSC) fate. HSCs lacking Satb1 displayed defective self-renewal, less quiescence and accelerated lineage commitment, resulting in progressive depletion of functional HSCs. Increased commitment was caused by reduced symmetric self-renewal and increased symmetric differentiation divisions of Satb1-deficient HSCs. Satb1 simultaneously repressed gene sets involved in HSC activation and cellular polarity, including Numb and Myc, two key factors for stem cell fate specification. Thus, Satb1 is a regulator that promotes HSC quiescence and represses lineage commitment.
Collapse
Affiliation(s)
- Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Miyazaki M, Rivera RR, Miyazaki K, Lin YC, Agata Y, Murre C. Erratum: Corrigendum: The opposing roles of the transcription factor E2A and its antagonist Id3 that orchestrate and enforce the naive fate of T cells. Nat Immunol 2013. [DOI: 10.1038/ni0413-413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|