51
|
Hib Vaccines: Past, Present, and Future Perspectives. J Immunol Res 2016; 2016:7203587. [PMID: 26904695 PMCID: PMC4745871 DOI: 10.1155/2016/7203587] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022] Open
Abstract
Haemophilus influenzae type b (Hib) causes many severe diseases, including epiglottitis, pneumonia, sepsis, and meningitis. In developed countries, the annual incidence of meningitis caused by bacteria is approximately 5–10 cases per population of 100,000. The Hib conjugate vaccine is considered protective and safe. Adjuvants, molecules that can enhance and/or regulate the fundamental immunogenicity of an antigen, comprise a wide range of diverse compounds. While earlier developments of adjuvants created effective products, there is still a need to create new generations, rationally designed based on recent discoveries in immunology, mainly in innate immunity. Many factors may play a role in the immunogenicity of Hib conjugate vaccines, such as the polysaccharides and proteins carrier used in vaccine construction, as well as the method of conjugation. A Hib conjugate vaccine has been constructed via chemical synthesis of a Hib saccharide antigen. Two models of carbohydrate-protein conjugate have been established, the single ended model (terminal amination-single method) and cross-linked lattice matrix (dual amination method). Increased knowledge in the fields of immunology, molecular biology, glycobiology, glycoimmunology, and the biology of infectious microorganisms has led to a dramatic increase in vaccine efficacy.
Collapse
|
52
|
Yagnik B, Padh H, Desai P. Construction of a new shuttle vector for DNA delivery into mammalian cells using non-invasive Lactococcus lactis. Microbes Infect 2015; 18:237-44. [PMID: 26655884 DOI: 10.1016/j.micinf.2015.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/31/2015] [Accepted: 11/22/2015] [Indexed: 10/22/2022]
Abstract
Use of food grade Lactococcus lactis (L. lactis) is fast emerging as a safe alternative for delivery of DNA vaccine. To attain efficient DNA delivery, L. lactis, a non-invasive bacterium is converted to invasive strain either by expressing proteins like Internalin A (InlA) or Fibronectin binding protein A (FnBPA) or through chemical treatments. However the safety status of invasive L. lactis is questionable. In the present report, we have shown that non-invasive L. lactis efficiently delivered the newly constructed reporter plasmid pPERDBY to mammalian cells without any chemical enhancers. The salient features of the vector are; I) Ability to replicate in two different hosts; Escherichia coli (E. coli) and Lactic Acid Bacteria (LAB), II) One of the smallest reporter plasmid for DNA vaccine, III) Enhanced Green Fluorescence Protein (EGFP) linked to Multiple Cloning Site (MCS), IV) Immunostimulatory CpG motifs functioning as an adjuvant. Expression of EGFP in pPERDBY transfected CHO-K1 and Caco-2 cells demonstrates its functionality. Non-invasive r-L. lactis was found efficient in delivering pPERDBY to Caco-2 cells. The in vitro data presented in this article supports the hypothesis that in the absence of invasive proteins or relevant chemical treatment, L. lactis was found efficient in delivering DNA to mammalian cells.
Collapse
Affiliation(s)
- Bhrugu Yagnik
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad 380054, Gujarat, India.
| | - Harish Padh
- Sardar Patel University, Vallabh Vidhyanagar 388120, Gujarat, India.
| | - Priti Desai
- Department of Cell and Molecular Biology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad 380054, Gujarat, India.
| |
Collapse
|
53
|
Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chem Rev 2015; 116:1496-539. [PMID: 26492834 DOI: 10.1021/acs.chemrev.5b00303] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| | - Willi Smolan
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| | - Kristin Schacht
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
54
|
Experimental Immunization Based on Plasmodium Antigens Isolated by Antibody Affinity. J Immunol Res 2015; 2015:723946. [PMID: 26539558 PMCID: PMC4619943 DOI: 10.1155/2015/723946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022] Open
Abstract
Vaccines blocking malaria parasites in the blood-stage diminish mortality and morbidity caused by the disease. Here, we isolated antigens from total parasite proteins by antibody affinity chromatography to test an immunization against lethal malaria infection in a murine model. We used the sera of malaria self-resistant ICR mice to lethal Plasmodium yoelii yoelii 17XL for purification of their IgGs which were subsequently employed to isolate blood-stage parasite antigens that were inoculated to immunize BALB/c mice. The presence of specific antibodies in vaccinated mice serum was studied by immunoblot analysis at different days after vaccination and showed an intensive immune response to a wide range of antigens with molecular weight ranging between 22 and 250 kDa. The humoral response allowed delay of the infection after the inoculation to high lethal doses of P. yoelii yoelii 17XL resulting in a partial protection against malaria disease, although final survival was managed in a low proportion of challenged mice. This approach shows the potential to prevent malaria disease with a set of antigens isolated from blood-stage parasites.
Collapse
|
55
|
Improved immunogenicity and protective efficacy of a divalent DNA vaccine encoding Brucella L7/L12-truncated Omp31 fusion protein by a DNA priming and protein boosting regimen. Mol Immunol 2015; 66:384-91. [DOI: 10.1016/j.molimm.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
|
56
|
Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice. Mol Immunol 2015; 65:287-92. [DOI: 10.1016/j.molimm.2015.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/20/2022]
|
57
|
Finocchiaro LME, Fondello C, Gil-Cardeza ML, Rossi ÚA, Villaverde MS, Riveros MD, Glikin GC. Cytokine-Enhanced Vaccine and Interferon-β plus Suicide Gene Therapy as Surgery Adjuvant Treatments for Spontaneous Canine Melanoma. Hum Gene Ther 2015; 26:367-76. [PMID: 25762364 DOI: 10.1089/hum.2014.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We present here a nonviral immunogene therapy trial for canine malignant melanoma, an aggressive disease displaying significant clinical and histopathological overlapping with human melanoma. As a surgery adjuvant approach, it comprised the co-injection of lipoplexes bearing herpes simplex virus thymidine kinase and canine interferon-β genes at the time of surgery, combined with the periodic administration of a subcutaneous genetic vaccine composed of tumor extracts and lipoplexes carrying the genes of human interleukin-2 and human granulocyte-macrophage colony-stimulating factor. Following complete surgery (CS), the combined treatment (CT) significantly raised the portion of local disease-free canine patients from 11% to 83% and distant metastases-free (M0) from 44% to 89%, as compared with surgery-only-treated controls (ST). Even after partial surgery (PS), CT better controlled the systemic disease (M0: 82%) than ST (M0: 48%). Moreover, compared with ST, CT caused a significant 7-fold (CS) and 4-fold (PS) rise of overall survival, and >17-fold (CS) and >13-fold (PS) rise of metastasis-free survival. The dramatic increase of PS metastasis-free survival (>1321 days) and CS recurrence- and metastasis-free survival (both >2251 days) demonstrated that CT was shifting a rapidly lethal disease into a chronic one. In conclusion, this surgery adjuvant CT was able of significantly delaying or preventing postsurgical recurrence and distant metastasis, increasing disease-free and overall survival, and maintaining the quality of life. The high number of canine patients involved in CT (301) and the extensive follow-up (>6 years) with minimal or absent toxicity warrant the long-term safety and efficacy of this treatment. This successful clinical outcome justifies attempting a similar scheme for human melanoma.
Collapse
Affiliation(s)
- Liliana M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo," Universidad de Buenos Aires , 1417 Buenos Aires, Argentina
| | - Chiara Fondello
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo," Universidad de Buenos Aires , 1417 Buenos Aires, Argentina
| | - María L Gil-Cardeza
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo," Universidad de Buenos Aires , 1417 Buenos Aires, Argentina
| | - Úrsula A Rossi
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo," Universidad de Buenos Aires , 1417 Buenos Aires, Argentina
| | - Marcela S Villaverde
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo," Universidad de Buenos Aires , 1417 Buenos Aires, Argentina
| | - María D Riveros
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo," Universidad de Buenos Aires , 1417 Buenos Aires, Argentina
| | - Gerardo C Glikin
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo," Universidad de Buenos Aires , 1417 Buenos Aires, Argentina
| |
Collapse
|
58
|
Hassan IA, Wang S, Xu L, Yan R, Song X, Li X. Immunoglobulin and cytokine changes induced following immunization with a DNA vaccine encoding Toxoplasma gondii selenium-dependent glutathione reductase protein. Exp Parasitol 2014; 146:1-10. [DOI: 10.1016/j.exppara.2014.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 01/30/2023]
|
59
|
Nayak SK, Shibasaki Y, Nakanishi T. Immune responses to live and inactivated Nocardia seriolae and protective effect of recombinant interferon gamma (rIFN γ) against nocardiosis in ginbuna crucian carp, Carassius auratus langsdorfii. FISH & SHELLFISH IMMUNOLOGY 2014; 39:354-364. [PMID: 24882019 DOI: 10.1016/j.fsi.2014.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
Looking into the fact that substantial mortality and morbidity is associated with intracellular Gram +ve bacterium, Nocardia seriolae infection, an effective vaccine against this pathogen is necessary to control the significant losses in aquaculture practices. Therefore, an attempt was made to evaluate the effect of live (sub-lethal) and inactivated (antigenic form) N. seriolae on cellular and humoral immunity in ginbuna crucian carp, Carassius auratus langsdorfii as well as the therapeutic potency of recombinant interferon gamma (rIFN γ) against N. seriolae infection. Effect of live and inactivated N. seriolae immunisation on the proliferation of CD4(+) T cells, CD8α(+) T cells and surface Ig M(+) cells in peripheral blood leucocytes, spleen, head kidney and trunk kidney of ginbuna was studied after 1st, 3rd, 7th, 15th and 30th day post immunisation. The percentage of CD8α(+) T cells in spleen and head kidney of ginbuna was significantly higher at 3rd day post immunisation. Similarly, surface Ig M(+) cells level was found to increase in both live and inactivated N. seriolae immunised groups. On the contrary, high percentage of CD4(+) T cells was observed in live N. seriolae immunised group in both the head and trunk kidneys at 30th day post immunisation. The humoral immune response to live and inactivated N. seriolae immunised ginbuna showed high antibody titre at 15th day post immunisation but the level declined subsequently in both the immunised groups. On challenge with virulent N. seriolae (1.2 × 10(8) CFU/ml), the relative percent survival was 62.5 and 75 in live and inactivated N. seriolae immunised groups, respectively. Furthermore, we have also studied the therapeutic potency of rIFN γ and found the possible involvement of IFN γ in resistance mechanism in fish. Administration of rIFN γ into ginbuna (at 10 μg/fish) one day before challenge study was found to protect ginbuna. The relative percent survival of ginbuna was 43.75 and 60 when challenged with 2 different doses of N. seriolae i.e., 1.2 × 10(8) CFU/ml and 5 × 10(7) CFU/ml, respectively. In summary, this study indicates that both forms of N. seriolae immunisation as well as rIFN γ indeed elicit an effective protective immunity which will help in designing suitable vaccine and/or adjunct therapy against N. seriolae infection in fish.
Collapse
Affiliation(s)
- Sukanta Kumar Nayak
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, 751002 Bhubaneswar, Odisha, India.
| | - Yasuhiro Shibasaki
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Teruyuki Nakanishi
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
60
|
Suicide plus immune gene therapy prevents post-surgical local relapse and increases overall survival in an aggressive mouse melanoma setting. Int Immunopharmacol 2014; 22:167-75. [PMID: 24973616 DOI: 10.1016/j.intimp.2014.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 01/10/2023]
Abstract
In an aggressive B16-F10 murine melanoma model, we evaluated the effectiveness and antitumor mechanisms triggered by a surgery adjuvant treatment that combined a local suicide gene therapy (SG) with a subcutaneous genetic vaccine (Vx) composed of B16-F10 cell extracts and lipoplexes carrying the genes of human interleukin-2 and murine granulocyte and macrophage colony stimulating factor. Pre-surgical SG treatment, neither alone nor combined with Vx was able to slow down the fast evolution of this tumor. After surgery, both SG and SG + Vx treatments, significantly prevented (in 50% of mice) or delayed (in the remaining 50%) post-surgical recurrence, as well as significantly prolonged recurrence-free (SG and SG + Vx) and overall median survival (SG + Vx). The treatment induced the generation of a pseudocapsule wrapping and separating the tumor from surrounding host tissue. Both, SG and the subcutaneous Vx, induced this envelope that was absent in the control group. On the other hand, PET scan imaging of the SG + Vx group suggested the development of an effective systemic immunostimulation that enhanced (18)FDG accrual in the thymus, spleen and vertebral column. When combined with surgery, direct intralesional injection of suicide gene plus distal subcutaneous genetic vaccine displayed efficacy and systemic antitumor immune response without host toxicity. This suggests the potential value of the assayed approach for clinical purposes.
Collapse
|
61
|
Oriss TB, Krishnamoorthy N, Raundhal M, Morse C, Chakraborty K, Khare A, Huff R, Ray P, Ray A. Cutting Edge: MMP-9 inhibits IL-23p19 expression in dendritic cells by targeting membrane stem cell factor affecting lung IL-17 response. THE JOURNAL OF IMMUNOLOGY 2014; 192:5471-5475. [PMID: 24829419 DOI: 10.4049/jimmunol.1303183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We reported previously that c-kit ligation by membrane-bound stem cell factor (mSCF) boosts IL-6 production in dendritic cells (DCs) and a Th17-immune response. However, Th17 establishment also requires heterodimeric IL-23, but the mechanisms that regulate IL-23 gene expression in DCs are not fully understood. We show that IL-23p19 gene expression in lung DCs is dependent on mSCF, which is regulated by the metalloproteinase MMP-9. Th1-inducing conditions enhanced MMP-9 activity, causing cleavage of mSCF, whereas the opposite was true for Th17-promoting conditions. In MMP-9(-/-) mice, a Th1-inducing condition could maintain mSCF and enhance IL-23p19 in DCs, promoting IL-17-producing CD4(+) T cells in the lung. Conversely, mSCF cleavage from bone marrow DCs in vitro by rMMP-9 led to reduced IL-23p19 expression under Th17-inducing conditions, with dampening of intracellular AKT phosphorylation. Collectively, these results show that the c-kit/mSCF/MMP-9 axis regulates IL-23 gene expression in DCs to control IL-17 production in the lung.
Collapse
Affiliation(s)
- Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213
| | - Nandini Krishnamoorthy
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213.,Department of Immunology, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213
| | - Mahesh Raundhal
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213.,Department of Immunology, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213
| | - Christina Morse
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213
| | - Krishnendu Chakraborty
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213
| | - Anupriya Khare
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213
| | - Rachael Huff
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213.,Department of Immunology, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213.,Department of Immunology, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, Pittsburgh, PA 15213
| |
Collapse
|
62
|
Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands. Vaccines (Basel) 2014; 2:323-53. [PMID: 26344622 PMCID: PMC4494261 DOI: 10.3390/vaccines2020323] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/07/2023] Open
Abstract
Vaccine efficacy is optimized by addition of immune adjuvants. However, although adjuvants have been used for over a century, to date, only few adjuvants are approved for human use, mostly aimed at improving vaccine efficacy and antigen-specific protective antibody production. The mechanism of action of immune adjuvants is diverse, depending on their chemical and molecular nature, ranging from non-specific effects (i.e., antigen depot at the immunization site) to specific activation of immune cells leading to improved host innate and adaptive responses. Although the detailed molecular mechanism of action of many adjuvants is still elusive, the discovery of Toll-like receptors (TLRs) has provided new critical information on immunostimulatory effect of numerous bacterial components that engage TLRs. These ligands have been shown to improve both the quality and the quantity of host adaptive immune responses when used in vaccine formulations targeted to infectious diseases and cancer that require both humoral and cell-mediated immunity. The potential of such TLR adjuvants in improving the design and the outcomes of several vaccines is continuously evolving, as new agonists are discovered and tested in experimental and clinical models of vaccination. In this review, a summary of the recent progress in development of TLR adjuvants is presented.
Collapse
|
63
|
Ilyinskii PO, Roy CJ, O'Neil CP, Browning EA, Pittet LA, Altreuter DH, Alexis F, Tonti E, Shi J, Basto PA, Iannacone M, Radovic-Moreno AF, Langer RS, Farokhzad OC, von Andrian UH, Johnston LPM, Kishimoto TK. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine 2014; 32:2882-95. [PMID: 24593999 PMCID: PMC4059049 DOI: 10.1016/j.vaccine.2014.02.027] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-α and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank Alexis
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Tonti
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinjun Shi
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pamela A Basto
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Matteo Iannacone
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar F Radovic-Moreno
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Robert S Langer
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
64
|
Nishikawa M, Ogawa K, Umeki Y, Mohri K, Kawasaki Y, Watanabe H, Takahashi N, Kusuki E, Takahashi R, Takahashi Y, Takakura Y. Injectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen delivery. J Control Release 2014; 180:25-32. [PMID: 24530618 DOI: 10.1016/j.jconrel.2014.02.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/15/2014] [Accepted: 02/02/2014] [Indexed: 12/31/2022]
Abstract
DNA nanotechnology-based nanosystems and macrosystems have attracted much attention in the biomedical research field. The nature of DNA endows these systems with biodegradable, biocompatible, and immunomodulatory properties. Here, we present an injectable hydrogel system that consists only of chemically synthesized short DNA strands, water, and salts. Several preparations of polypod-like structured DNA, or polypodna, were designed, including tri-, tetra-, penta- and hexapodna, as the building blocks of self-gelling DNA hydrogel. Under physiological conditions, properly designed polypodna preparations formed a hydrogel. The analysis of the modulus data of the hydrogel consisting of two sets of hexapodna preparations showed that this injectable hydrogel was reorganized at a time scale of 0.25s. Then, DNA hydrogel containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides was used to stimulate innate immunity through Toll-like receptor 9, the receptor for CpG DNA. Gel formation significantly increased the activity of immunostimulatory CpG DNA, retarded the clearance after intradermal injection into mice, and increased the immune responses to ovalbumin (OVA) incorporated into the hydrogel as a model antigen. OVA/CpG DNA hydrogel induced much less local or systemic adverse reactions than OVA injected with complete Freund's adjuvant or alum. GpC DNA hydrogel containing no CpG sequences was less effective, indicating the importance of immunomodulation by CpG DNA hydrogel. Thus, we have created an efficient system for sustained delivery of antigens or other bioactive compounds.
Collapse
Affiliation(s)
- Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kohei Ogawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuka Umeki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohta Mohri
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohji Kawasaki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroshi Watanabe
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Natsuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eri Kusuki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rei Takahashi
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
65
|
Toll-like receptors in lymphoid malignancies: Double-edged sword. Crit Rev Oncol Hematol 2014; 89:262-83. [DOI: 10.1016/j.critrevonc.2013.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/04/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
|
66
|
Campbell JD, Kell SA, Kozy HM, Lum JA, Sweetwood R, Chu M, Cunningham CR, Salamon H, Lloyd CM, Coffman RL, Hessel EM. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice. Thorax 2014; 69:565-573. [PMID: 24464743 DOI: 10.1136/thoraxjnl-2013-204605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG-containing oligodeoxynucleotides (CpG-ODNs) are potent inhibitors of T helper 2 mediated allergic airway disease in sensitised mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. OBJECTIVE To optimise the treatment regimen for sustained efficacy and to determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. METHODS We set up a chronic allergic-asthma model using ragweed-sensitised mice exposed weekly to intranasal ragweed. Using this model, the effects of a limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were evaluated during treatment and for several weeks after treatments had stopped but weekly allergen exposures continued. Treatment efficacy was evaluated by measuring effects on lung T helper 2 cytokines and eosinophilia, and lung dendritic cell function and T-cell responses. RESULTS Twelve intranasal 1018 ISS treatments induced significant suppression of bronchoalveolar lavage eosinophilia and interleukin 4, 5 and 13 levels. This suppression of allergic T helper 2 parameters was maintained through 13 weekly ragweed exposures administered after treatment cessation. Subsequent experiments demonstrated that at least five treatments were required for lasting suppression. Although CpG-ODN induced moderate T helper 1 responses, suppression of allergic airway disease did not require interferon γ but was associated with induction of a regulatory T-cell response. CONCLUSIONS A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen.
Collapse
Affiliation(s)
| | | | | | | | | | - Mabel Chu
- Dynavax Technologies, Berkeley, CA 94710
| | | | | | - Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | | | | |
Collapse
|
67
|
Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S, Auray G, Eng N, Garlapati S, Babiuk LA, Potter A. Combination adjuvants: the next generation of adjuvants? Expert Rev Vaccines 2014; 10:95-107. [DOI: 10.1586/erv.10.154] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
68
|
Intapan PM, Hirunpetcharat C, Kularbkaew C, Yutanawiboonchai W, Janwan P, Maleewong W. Modulation of antibody responses against Gnathostoma spinigerum in mice immunized with crude antigen formulated in CpG oligonucleotide and montanide ISA720. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:637-44. [PMID: 24516267 PMCID: PMC3916451 DOI: 10.3347/kjp.2013.51.6.637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/07/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022]
Abstract
This study aimed to investigate the antibody responses in mice immunized with Gnathostoma spinigerum crude antigen (GsAg) incorporated with the combined adjuvant, a synthetic oligonucleotide containing unmethylated CpG motif (CpG ODN 1826) and a stable water in oil emulsion (Montanide ISA720). Mice immunized with GsAg and combined adjuvant produced all antibody classes and subclasses to GsAg except IgA. IgG2a/2b/3 but not IgG1 subclasses were enhanced by immunization with CpG ODN 1826 when compared with the control groups immunized with non-CpG ODN and Montanide ISA or only with Montanide ISA, suggesting a biased induction of a Th1-type response by CpG ODN. After challenge infection with live G. spinigerum larvae, the levels of IgG2a/2b/3 antibody subclasses decreased immediately and continuously, while the IgG1 subclass remained at high levels. This also corresponded to a continuous decrease of the IgG2a/IgG1 ratio after infection. Only IgM and IgG1 antibodies, but not IgG2a/2b/3, were significantly produced in adjuvant control groups after infection. These findings suggest that G. spinigerum infection potently induces a Th2-type biased response.
Collapse
Affiliation(s)
- Pewpan M Intapan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand. ; Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chakrit Hirunpetcharat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Churairat Kularbkaew
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Penchom Janwan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand. ; Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand. ; Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
69
|
Plotkin SA, Schaffner W. A hepatitis B vaccine with a novel adjuvant. Vaccine 2013; 31:5297-9. [PMID: 24051160 DOI: 10.1016/j.vaccine.2013.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/17/2013] [Accepted: 09/10/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Stanley A Plotkin
- University of Pennsylvania, 4650 Wismer Road, Doylestown, PA 18902, United States.
| | | |
Collapse
|
70
|
Ray M, Farma JM, Hsu C. Translational research in melanoma. Surg Oncol Clin N Am 2013; 22:785-804. [PMID: 24012399 DOI: 10.1016/j.soc.2013.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent breakthroughs in the fundamental understanding of the cellular and molecular basis of melanoma have culminated in new therapies with unquestionable efficacy. Immunotherapy and targeted therapy strategies have completely transformed the contemporary management of advanced melanoma. The translational research behind these developments is discussed, with an emphasis on immune checkpoint blockade and inhibition of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Madhury Ray
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
71
|
Knuschke T, Epple M, Westendorf AM. The type of adjuvant strongly influences the T-cell response during nanoparticle-based immunization. Hum Vaccin Immunother 2013; 10:164-9. [PMID: 23982325 DOI: 10.4161/hv.26203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Potent vaccines require the ability to effectively induce immune responses. Especially for the control of infectious diseases with intracellular pathogens, like viruses or bacteria, potent T-cell responses are indispensable. Several delivery systems such as nanoparticles have been considered to boost the immunogenicity of pathogen derived peptides or subunits for the induction of potent T-cell responses. Since they can be further functionalized with immunostimulants, like Toll-like receptor (TLR) agonists, they improve the response by enhanced activation of the innate immune system. Currently, TLR agonists like unmethylated CpG oligonucleotides and the synthetic dsRNA derivate polyriboinosinic acid-polyribocytidylic acid (poly[I:C]) are widely used as vaccine adjuvants. CpG and poly(I:C) trigger different TLRs and therefore show differential signal transduction. Recently, we established biodegradable calcium phosphate (CaP) nanoparticles as potent T cell inducing vaccination vehicles. In this commentary we discuss the role of CpG and poly(I:C) for the effective induction of virus-specific T cells during immunization with CaP nanoparticles. The presented results underline the importance of the right formulation of vaccines for specific immunization purpose.
Collapse
Affiliation(s)
- Torben Knuschke
- Infection Immunology; Institute of Medical Microbiology; University Hospital Essen; University of Duisburg-Essen; Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry; University of Duisburg-Essen; Campus Essen, and Center for Nanointegration Duisburg-Essen (CeNIDE); Essen, Germany
| | - Astrid M Westendorf
- Infection Immunology; Institute of Medical Microbiology; University Hospital Essen; University of Duisburg-Essen; Essen, Germany
| |
Collapse
|
72
|
Razi Soofiyani S, Baradaran B, Lotfipour F, Kazemi T, Mohammadnejad L. Gene therapy, early promises, subsequent problems, and recent breakthroughs. Adv Pharm Bull 2013; 3:249-55. [PMID: 24312844 PMCID: PMC3848228 DOI: 10.5681/apb.2013.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 01/27/2023] Open
Abstract
Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist's ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers) refractory to conventional treatment, to date gene therapy is considered for many non-life-threatening conditions including those adversely influence on a patient's quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years.
Collapse
Affiliation(s)
- Saeideh Razi Soofiyani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz,
Iran
- Immonuology Research Center, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Behzad Baradaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz,
Iran
- Immonuology Research Center, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Farzaneh Lotfipour
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immonuology Research Center, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Leila Mohammadnejad
- Immonuology Research Center, Tabriz University of Medical Sciences, Tabriz,
Iran
| |
Collapse
|
73
|
Berti F, Adamo R. Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem Biol 2013; 8:1653-63. [PMID: 23841819 DOI: 10.1021/cb400423g] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vaccination is a key strategy for the control of various infectious diseases. Many pathogens, such as Streptococcus pneumoniae , Haemophilus influenzae type b (Hib), and Neisseria meningitidis produce on their surfaces dense and complex glycan structures, which represent an optimal target for eliciting carbohydrate specific antibodies able to confer protection against those bacteria. Glycoconjugates represent nowadays an important class of efficacious and safe commercial vaccines. It has been known for a long time that covalent linkage of poorly immunogenic carbohydrates to protein is fundamental to provide T cell epitopes for eliciting a memory response of the immune system against the saccharide. However, while the traditional mechanism of action of glycoconjugates has considered peptides generated from the carrier protein to be responsible of T cell help recruitment, only recently evidence of the active involvement of the carbohydrate part in determining the T cell help has been shown. In addition, zwitterionic polysaccharides have been proven to activate the adaptive immune system without further conjugation to protein. Progress in this interface area between chemistry and biology, in combination with novel synthetic and biosynthetic methods for the preparation of glycoconjugates, is opening new perspectives to clarify their mechanism of action and give new insights for the design of improved carbohydrate-based vaccines.
Collapse
Affiliation(s)
- Francesco Berti
- Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| | - Roberto Adamo
- Novartis Vaccines and Diagnostics, Research Center, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
74
|
Shima F, Uto T, Akagi T, Akashi M. Synergistic stimulation of antigen presenting cells via TLR by combining CpG ODN and poly(γ-glutamic acid)-based nanoparticles as vaccine adjuvants. Bioconjug Chem 2013; 24:926-33. [PMID: 23631730 DOI: 10.1021/bc300611b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CpG oligodeoxynucleotide (ODN) encapsulated poly(γ-glutamic acid)-graft-l-phenylalanine ethyl ester (γ-PGA-Phe) nanoparticles (NPs) employing polycations were prepared to develop vaccine delivery and adjuvant systems. The CpG ODN was stably encapsulated into the NPs when protamine was used as the polycation. The CpG ODN-encapsulated γ-PGA-Phe NPs were taken up by macrophages and CpG ODN which was encapsulated into the NPs internalized into endo/lysosomes, where the toll-like receptor (TLR) 9, which recognizes CpG ODN, is expressed. The examination of release behavior in vitro revealed that the encapsulated CpG ODN into NPs was released when these NPs were immersed into the early endosomal environment. Interestingly, CpG ODN-encapsulated γ-PGA-Phe NPs synergistically activated macrophages. This may be due to the multiple stimulation of TLRs by γ-PGA-Phe NPs (TLR4 ligand) and CpG ODN (TLR9 ligand). We previously reported that γ-PGA-Phe NPs are excellent vaccine adjuvants for inducing potent innate and adaptive immune responses via TLR4. Moreover, coencapsulated CpG ODN and antigen in γ-PGA-Phe NPs induced potent antigen-specific cellular immunity at a higher level than the mixture of CpG ODN and antigen which is the conventional vaccine system. These findings suggest that the conjugation strategies of biologically derived adjuvant and polymeric NPs will aid the development of a novel approach for safe and effective vaccine delivery and adjuvant systems.
Collapse
Affiliation(s)
- Fumiaki Shima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
75
|
Halperin SA, Ward BJ, Dionne MS, Langley JM, McNeil SA, Smith B, MacKinnon-Cameron D, Heyward WL, Martin JT. Immunogenicity of an investigational hepatitis B vaccine (hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligodeoxyribonucleotide) in nonresponders to licensed hepatitis B vaccine. Hum Vaccin Immunother 2013; 9:1438-44. [DOI: 10.4161/hv.24256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
76
|
Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis. Br J Nutr 2013; 110:1617-29. [PMID: 23544404 DOI: 10.1017/s0007114513000767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lactic acid bacteria confer a variety of health benefits. Here, we investigate the mechanisms by which Lactobacillus brevis KB290 (KB290) enhances cell-mediated cytotoxic activity. Female BALB/c mice aged 9 weeks were fed a diet containing KB290 (3 × 10(9) colony-forming units/g) or starch for 1 d. The resulting cytotoxic activity of splenocytes against YAC-1 cells was measured using flow cytometry and analysed for gene expression using DNA microarray technology. KB290 enhanced the cell-mediated cytotoxic activity of splenocytes. DNA microarray analysis identified 327 up-regulated and 347 down-regulated genes that characterised the KB290 diet group. The up-regulated genes were significantly enriched in Gene Ontology terms related to immunity, and, especially, a positive regulation of T-cell-mediated cytotoxicity existed among these terms. Almost all the genes included in the term encoded major histocompatibility complex (MHC) class I molecules involved in the presentation of antigen to CD8(+) cytotoxic T cells. Marco and Signr1 specific to marginal zone macrophages (MZM), antigen-presenting cells, were also up-regulated. Flow cytometric analysis confirmed that the proportion of MZM was significantly increased by KB290 ingestion. Additionally, the over-represented Kyoto Encyclopedia of Genes and Genomes pathways among the up-regulated genes were those for natural killer (NK) cell-mediated cytotoxicity and antigen processing and presentation. The results for the selected genes associated with NK cells and CD8(+) cytotoxic T cells were confirmed by quantitative RT-PCR. These results suggest that enhanced cytotoxic activity could be caused by the activation of NK cells and/or of CD8(+) cytotoxic T cells stimulated via MHC class I presentation.
Collapse
|
77
|
Mukherjee C, Mäkinen K, Savolainen J, Leino R. Chemistry and Biology of Oligovalent β-(1→2)-Linked Oligomannosides: New Insights into Carbohydrate-Based Adjuvants in Immunotherapy. Chemistry 2013; 19:7961-74. [DOI: 10.1002/chem.201203963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Indexed: 11/10/2022]
|
78
|
Yu YZ, Li N, Ma Y, Wang S, Yu WY, Sun ZW. Three types of human CpG motifs differentially modulate and augment immunogenicity of nonviral and viral replicon DNA vaccines as built-in adjuvants. Eur J Immunol 2012; 43:228-39. [PMID: 23037552 DOI: 10.1002/eji.201242690] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/14/2012] [Accepted: 10/01/2012] [Indexed: 01/20/2023]
Abstract
NakedDNA vaccines given by intramuscular injection are efficient in mouse models, but they require improvement for human use. As the immunogenicity of DNA vaccines depends, to a large extent, on the presence of CpG motifs as built-in adjuvants, we addressed this issue by inserting three types of human CpG motifs (A-type, B-type, and C-type) into the backbone of nonviral DNA and viral DNA replicon vectors with distinct immunostimulatory activities on human PBMCs. The adjuvant effects of CpG modifications in DNA vaccines expressing three types of antigens (β-Gal, AHc, or PA4) were then characterized in mice and found to significantly enhance antigen-specific humoral and cell-mediated immune responses. The three types of CpG motifs also differentially affected and modulated immune responses and protective potency against botulinum neurotoxin serotype A and Bacillus anthracis A16R challenge. Taken together, these results demonstrate that insertion of human CpG motifs can differentially modulate the immunogenicity of nonviral DNA vaccines as well as viral DNA replicon vaccines. Our study provides not only a better understanding of the in vivo activities of CpG motif adjuvants but implications for the rational design of such motifs as built-in adjuvants for DNA vectors targeting specific antigens.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, China.
| | | | | | | | | | | |
Collapse
|
79
|
Finocchiaro LME, Glikin GC. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma: 9 years of follow-up. Cancer Gene Ther 2012; 19:852-61. [PMID: 23059870 DOI: 10.1038/cgt.2012.72] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present here the updated results after 9 years of the beginning of a trial on canine patients with malignant melanoma. This surgery adjuvant approach combined local suicide gene therapy with a subcutaneous vaccine composed by tumor cells extracts and xenogeneic cells producing human interleukin-2 and granulocyte-macrophage colony-stimulating factor. Toxicity was absent or minimal in all patients (0≤VCOG-CTCAE grade≤1). With respect to surgery-treated controls (ST), the complete surgery (CS) arm of this combined treatment (CT) significantly increased the fraction of local disease-free patients from 13 to 81% and distant metastases free from 32 to 84%. Even though less effective than the CS arm, the partial surgery (PS) arm of this CT was significantly better controlling the disease than only surgery (14% while PS-ST: 0%, P<0.01 and CS-ST: 5%, P<0.05). In addition, CT produced a significant sevenfold (CS) and threefold (PS) increase in overall survival. The CS-CT arm significantly improved both CS-ST metastasis-free- and melanoma overall survival from 99 days (respective ranges: 11-563 and 10-568) to >2848 days (81-2848 and 35-2848). Thus, more of 50% of our CT patients died of melanoma unrelated causes, transforming a lethal disease into a chronic one. Finally, surgery adjuvant CT delayed or prevented post-surgical recurrence and distant metastasis, significantly improved disease-free and overall survival maintaining the quality of life. Long-term safety and efficacy of this treatment are supported by the high number of CT patients (283) and extensive follow-up (>9 years). The successful clinical outcome encourages the further translation of similar approaches to human gene therapy trials.
Collapse
Affiliation(s)
- L M E Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
80
|
Dang Z, Feng J, Yagi K, Sugimoto C, Li W, Oku Y. Mucosal adjuvanticity of fibronectin-binding peptide (FBP) fused with Echinococcus multilocularis tetraspanin 3: systemic and local antibody responses. PLoS Negl Trop Dis 2012; 6:e1842. [PMID: 23029596 PMCID: PMC3459843 DOI: 10.1371/journal.pntd.0001842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/15/2012] [Indexed: 12/24/2022] Open
Abstract
Background Studies have shown that a bacterial fibronectin attachment protein (FAP) is able to stimulate strong systemic and mucosal antibody responses when it is used alone or co-administrated with other antigens (Ags). Thus, it has been suggested to be a promising adjuvant candidate for the development of efficient vaccines. However, the co-administered Ags and FAP were cloned, expressed and purified individually to date. In a recent study, we first evaluated the adjuvanticity of a fibronectin-binding peptide (FBP, 24 amino acids) of Mycobacterium avium FAP fused with Echinococcus multilocularis tetraspanin 3 (Em-TSP3) by detecting systemic and local antibody responses in intranasally (i.n.) immunized BALB/c mice. Methodology/Principal Findings Em-TSP3 and FBP fragments were linked with a GSGGSG linker and expressed as a single fusion protein (Em-TSP3-FBP) using the pBAD/Thio-TOPO expression vector. BALB/c mice were immunized i.n. with recombinant Em-TSP3-FBP (rEm-TSP3-FBP) and rEm-TSP3+CpG and the systemic and local antibody responses were detected by ELISA. The results showed that both rEm-TSP3-FBP and rEm-TSP3+CpG evoked strong serum IgG (p<0.001) and IgG1 responses (p<0.001), whereas only the latter induced a high level IgG2α production (p<0.001), compared to that of rEm-TSP3 alone without any adjuvant. There were no significant differences in IgG and IgG1 production between the groups. Low level of serum IgA and IgM were detected in both groups. The tendency of Th1 and Th2 cell immune responses were assessed via detecting the IgG1/IgG2α ratio after the second and third immunizations. The results indicated that i.n. immunization with rEm-TSP3-FBP resulted in an increased IgG1/IgG2α ratio (a Th2 tendency), while rEm-TSP3+CpG caused a rapid Th1 response that later shifted to a Th2 response. Immunization with rEm-TSP3-FBP provoked significantly stronger IgA antibody responses in intestine (p<0.05), lung (p<0.001) and spleen (p<0.001) compared to those by rEm-TSP3+CpG. Significantly high level IgA antibodies were detected in nasal cavity (p<0.05) and liver (p<0.05) samples from both groups when compared to rEm-TSP3 alone without any adjuvant, with no significant difference between them. Conclusions I.n. administration of rEm-TSP3-FBP can induce strong systemic and mucosal antibody responses in immunized BALB/c mice, suggesting that fusion of Em-TSP3 with FBP is a novel, prospective strategy for developing safe and efficient human mucosal vaccines against alveolar echinococcosis (AE). Echinococcus metacestodes form a laminated layer and develop strategies to escape host immune responses once the infection established on the liver of intermediated host. One of the most important strategies is thought to be immunoregulation, where some molecules (e.g., antigen B) impair dendritic cell (DC) differentiation and polarize immature DC maturation towards a non-protective Th2 cell response. Therefore, it is more feasible to kill Echinococcus oncospheres in the early stage of infection in the intestine and blood. Systemic and local immune responses are believed to play a crucial role on oncosphere exclusion. Among antigen delivery systems, i.n. administration is the most efficient one, inducing both systemic and a full-range of mucosal immune responses. FAP is necessary to M. avium and S. pyogenes to efficiently attach and invade epithelial cells, and has been suggested as a potent vaccine adjuvant. Mucosal immune responses are induced after FAP binds to the fibronectin protein of host microfold (M) cells and DCs are activated. We developed a one-step delivery system where FAP and other Ags can be expressed, purified and immunized as one protein. The systemic and, in particular, the mucosal antibody responses induced by the fusion protein were detected to evaluate the adjuvanticity of FBP.
Collapse
Affiliation(s)
- Zhisheng Dang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
81
|
Strategies to alleviate original antigenic sin responses to influenza viruses. Proc Natl Acad Sci U S A 2012; 109:13751-6. [PMID: 22869731 DOI: 10.1073/pnas.0912458109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Original antigenic sin is a phenomenon wherein sequential exposure to closely related influenza virus variants reduces antibody (Ab) response to novel antigenic determinants in the second strain and, consequently, impairs the development of immune memory. This could pose a risk to the development of immune memory in persons previously infected with or vaccinated against influenza. Here, we explored strategies to overcome original antigenic sin responses in mice sequentially exposed to two closely related hemagglutinin 1 neuraminidase 1 (H1N1) influenza strains A/PR/8/34 and A/FM/1/47. We found that dendritic cell-activating adjuvants [Bordetella pertussis toxin (PT) or CpG ODN or a squalene-based oil-in-water nanoemulsion (NE)], upon administration during the second viral exposure, completely protected mice from a lethal challenge and enhanced neutralizing-Ab titers against the second virus. Interestingly, PT and NE adjuvants when administered during the first immunization even prevented original antigenic sin in subsequent immunization without any adjuvants. As an alternative to using adjuvants, we also found that repeated immunization with the second viral strain relieved the effects of original antigenic sin. Taken together, our studies provide at least three ways of overcoming original antigenic sin.
Collapse
|
82
|
Chinnathambi S, Chen S, Ganesan S, Hanagata N. Binding mode of CpG oligodeoxynucleotides to nanoparticles regulates bifurcated cytokine induction via Toll-like receptor 9. Sci Rep 2012; 2:534. [PMID: 22837814 PMCID: PMC3405294 DOI: 10.1038/srep00534] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/06/2012] [Indexed: 12/23/2022] Open
Abstract
The interaction of cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) with Toll-like receptor 9 (TLR9) activates the immune system. Multimeric class A CpG ODNs induce interferon-α (IFN-α) and, to a lesser extent, interleukin-6. By contrast, monomeric class B CpG ODNs induce interleukin-6 but not IFN-α. This difference suggests that the multimerization of CpG ODN molecules is a key factor in IFN-α induction. We multimerized class B CpG ODN2006x3-PD molecules that consist entirely of a phosphodiester backbone onto quantum dot silicon nanoparticles with various binding modes. Herein, we present the binding mode–dependent bifurcation of cytokine induction and discuss its possible mechanism of CpG ODN and TLR9 interaction. Our discoveries also suggest that nanoparticles play roles in not only delivery of CpG ODNs but also control of CpG ODN activity.
Collapse
|
83
|
Hanagata N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine 2012; 7:2181-95. [PMID: 22619554 PMCID: PMC3356174 DOI: 10.2147/ijn.s30197] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Unmethylated cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) are recognized by Toll-like receptor 9 (TLR9) found in antigen-presenting cells and B cells and can activate the immune system. Using CpG ODNs as an adjuvant has been found to be effective for treating infectious diseases, cancers, and allergies. Because natural ODNs with only a phosphodiester backbone are easily degraded by nuclease (deoxyribonuclease [DNase]) in serum, CpG ODNs with a phosphorothioate backbone have been studied for clinical application. CpG ODNs with a phosphorothioate backbone have raised concern regarding undesirable side effects; however, several CpG ODNs with only a phosphodiester backbone have been reported to be stable in serum and to show an immunostimulatory effect. In recent years, research has been conducted on delivery systems for CpG ODNs using nanoparticles (NPs). The advantages of NP-based delivery of CpG ODN include (1) it can protect CpG ODN from DNase, (2) it can retain CpG ODN inside the body for a long period of time, (3) it can improve the cellular uptake efficiency of CpG ODN, and (4) it can deliver CpG ODN to the target tissues. Because the target cells of CpG ODN are cells of the immune system and TLR9, the receptor of CpG ODN is localized in endolysosomes, CpG ODN delivery systems are required to have qualities different from other nucleic acid drugs such as antisense DNA and small interfering RNA. Studies until now have reported various NPs as carriers for CpG ODN delivery. This review presents DNase-resistant CpG ODNs with various structures and their immunostimulatory effects and also focuses on delivery systems of CpG ODNs that utilize NPs. Because CpG ODNs interact with TLR9 and activate both the innate and the adaptive immune system, the application of CpG ODNs for the treatment of cancers, infectious diseases, and allergies holds great promise.
Collapse
Affiliation(s)
- Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
84
|
Halperin SA, Ward B, Cooper C, Predy G, Diaz-Mitoma F, Dionne M, Embree J, McGeer A, Zickler P, Moltz KH, Martz R, Meyer I, McNeil S, Langley JM, Martins E, Heyward WL, Martin JT. Comparison of safety and immunogenicity of two doses of investigational hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligodeoxyribonucleotide and three doses of a licensed hepatitis B vaccine in healthy adults 18-55 years of age. Vaccine 2012; 30:2556-63. [PMID: 22326642 DOI: 10.1016/j.vaccine.2012.01.087] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/23/2011] [Accepted: 01/28/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND The currently licensed aluminum-hydroxide-adjuvanted hepatitis B vaccines require three doses over a 6-month period to achieve high rates of protection in adults. We compared tolerability and immunogenicity of two doses of an investigational hepatitis B vaccine using hepatitis B surface antigen adjuvanted with an immunostimulatory phosphorothioate oligodeoxyribonucleotide (HBV-ISS) to three doses of a licensed alum-adjuvanted vaccine (HBV-Eng). METHODS In this randomized, observer-blind study, healthy adults received two doses of HBV-ISS at 0 and 4 weeks or three doses of HBV-Eng at 0, 4, and 24 weeks. The primary immunogenicity endpoint was the seroprotection rate (antibody ≥ 10 mIU/mL) 8 weeks after the second dose of HBV-ISS compared to 4 weeks after the third dose of HBV-Eng. RESULTS A total of 2415 participants were randomized in a ratio of 3:1 to HBV-ISS (n=1809) and HBV-Eng (n=606). The percentage of subjects exhibiting a seroprotective immune response at the primary time point was significantly higher (95.1%) for HBV-ISS than for HBV-Eng (81.1%). Superiority of the seroprotective rates for HBV-ISS was demonstrated at all time points measured. Geometric mean concentrations were also significantly higher in the HBV-ISS group at all time points measured except at week 28 (24 weeks post-second dose of HBV-ISS and 4 weeks post-third dose HBV-ISS) at which time the antibody concentrations were similar. Both vaccines were welltolerated although injection-site reactions were reported at a higher rate in HBV-ISS recipients. CONCLUSIONS A short, two-dose regimen of HBV-ISS induced a superior antibody response than a three-dose regimen of a licensed hepatitis B vaccine and was well tolerated.
Collapse
Affiliation(s)
- Scott A Halperin
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, and Capital Health, Halifax, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Xu L, Wang C, Zhou Y, Ren T, Wen Z. CpG oligonucleotides induce the differentiation of CD4(+)Th17 cells by triggering plasmacytoid dendritic cells in adoptively cell transfer immunotherapy. Immunol Lett 2012; 142:55-63. [PMID: 22249078 DOI: 10.1016/j.imlet.2011.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/28/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
Abstract
Our previous data showed that CpG-ODNs could significantly enhance the anti-tumor efficacy of adoptively cell transfer (ACT), which was closely correlated to accumulation of Th17 cells in tumor mass. Here we further investigated that CpG-ODNs had no significant effect on the migration and proliferation capacity of Th17 cells in tumor mass. Instead, we showed that CpG-ODNs could induce the differentiation of Th17 cells via dendritic cells (DCs) in tumor infiltrating lymphocytes (TILs). Notably, we found that plasmacytoid dendritic cells (pDCs), but not myeloid dendritic cells (mDCs), were responsible for the Th17 differentiation induced by CpG-ODNs via IL-6, TGF-β and IFN-α in vitro. Finally, we revealed that CpG-ODNs could stimulate pDCs to induce the differentiation of Th17 cells in vivo, which subsequently reduced the tumor size and prolonged the survival of tumor bearing nude mice. These data provided a novel insight into the mechanism of anti-tumor efficacy of CpG-ODNs based therapeutic strategy.
Collapse
Affiliation(s)
- Lin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | | | | | | | | |
Collapse
|
86
|
Visciano ML, Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Effects of adjuvants on IgG subclasses elicited by virus-like particles. J Transl Med 2012; 10:4. [PMID: 22221900 PMCID: PMC3311067 DOI: 10.1186/1479-5876-10-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 01/05/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Virus-Like Particles (VLPs) represent an efficient strategy to present and deliver conformational antigens to the immune system, inducing both arms of the adaptive immune response. Moreover, their particulate structure surrounded by cell membrane provides an adjuvanted effect to VLP-based immunizations. In the present study, the elicitation of different patterns of IgG subclasses by VLPs, administered in CpG ODN1826 or poly(I:C) adjuvants, has been evaluated in an animal model. RESULTS Adjuvanted VLPs elicited a higher titer of total specific IgG compared to VLPs alone. Furthermore, while VLPs alone induced a balanced TH2 pattern, VLPs formulated with either adjuvant elicited a TH1-biased IgG subclasses (IgG2a and IgG3), with poly(I:C) more potent than CpG ODN1826. CONCLUSIONS The results confirmed that adjuvants efficiently improve antigen immunogenicity and represent a suitable strategy to skew the adaptive immune response toward the differentiation of the desired T helper subset, also using VLPs as antigen.
Collapse
Affiliation(s)
- Maria Luisa Visciano
- Lab. of Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori "Fond. G. Pascale", Naples-Italy
| | - Maria Tagliamonte
- Lab. of Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori "Fond. G. Pascale", Naples-Italy
| | - Maria Lina Tornesello
- Lab. of Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori "Fond. G. Pascale", Naples-Italy
| | - Franco M Buonaguro
- Lab. of Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori "Fond. G. Pascale", Naples-Italy
| | - Luigi Buonaguro
- Lab. of Molecular Biology and Viral Oncogenesis, Istituto Nazionale Tumori "Fond. G. Pascale", Naples-Italy
| |
Collapse
|
87
|
Antitumor immunity produced by the liver Kupffer cells, NK cells, NKT cells, and CD8 CD122 T cells. Clin Dev Immunol 2011; 2011:868345. [PMID: 22190974 PMCID: PMC3235445 DOI: 10.1155/2011/868345] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/30/2011] [Accepted: 09/03/2011] [Indexed: 12/18/2022]
Abstract
Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR) ligands and an NKT cell ligand (α-galactocylceramide), activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN-γ, which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a positive feedback loop. These immunological events are essentially evoked to protect the host from bacterial and viral infections; however, these events also contribute to antitumor and antimetastatic immunity in the liver by activated liver NK cells and NKT cells. Bystander CD8+CD122+ T cells, and tumor-specific memory CD8+T cells, are also induced in the liver by α-galactocylceramide. Furthermore, adoptive transfer experiments have revealed that activated liver lymphocytes may migrate to other organs to inhibit tumor growth, such as the lungs and kidneys. The immunological mechanism underlying the development of hepatocellular carcinoma in cirrhotic livers in hepatitis C patients and liver innate immunity as a double-edged sword (hepatocyte injury/regeneration, septic shock, autoimmune disease, etc.) are also discussed.
Collapse
|
88
|
Quaglino E, Riccardo F, Macagno M, Bandini S, Cojoca R, Ercole E, Amici A, Cavallo F. Chimeric DNA Vaccines against ErbB2+ Carcinomas: From Mice to Humans. Cancers (Basel) 2011; 3:3225-41. [PMID: 24212954 PMCID: PMC3759195 DOI: 10.3390/cancers3033225] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 01/10/2023] Open
Abstract
DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2+ carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.
Collapse
Affiliation(s)
- Elena Quaglino
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Marco Macagno
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Rodica Cojoca
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Elisabetta Ercole
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Augusto Amici
- Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino, Italy; E-Mail:
| | - Federica Cavallo
- Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino, Italy; E-Mail:
| |
Collapse
|
89
|
Jahangiri A, Rasooli I, Gargari SLM, Owlia P, Rahbar MR, Amani J, Khalili S. An in silico DNA vaccine against Listeria monocytogenes. Vaccine 2011; 29:6948-58. [PMID: 21791233 DOI: 10.1016/j.vaccine.2011.07.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/09/2011] [Accepted: 07/11/2011] [Indexed: 01/14/2023]
Abstract
Listeria monocytogenes causes listeriosis with mortality rate >20%. Listeriolysin-O (LLO), a pore-forming hemolysin, belongs to the family of cholesterol-dependent toxins (CDTX) and plays roles in the pathogenicity. In this study bioinformatic analyses were carried out on LLO sequence as a major immunodominant listerial antigen toward designing a DNA vaccine stimulating cytotoxic T-lymphocytes (CTLs). Mouse and human constructs were designed based on predicted T cell epitopes and MHC class I binders, which were then tandemly fused together. LLO-derived construct codons and a variety of critical gene expression efficiency parameters were optimized. Post-translational modifications such as glycosylation, phosphorylation were analysed. The constructs corresponded to LLO sequences of L. monocytogenes in BLAST search. Neither human nor mouse construct was allergen. Secretory pathway was location of the human construct that enhances immune induction and contribute to the efficacy of the vaccine candidate. mRNAs from optimized DNA sequences of both human and mouse constructs are more stable than the native and are suitable for initiation of translation. The constructs contain several sites for phosphorylation that could improve its degradation and subsequent entry into the MHC class I pathway. Addition of GPI anchor, myristoylation and ubiquitin signals or proline (P), glutamic acid (E), serine (S), threonine (T) (PEST)-like motifs at the N-terminal of constructs increase efficacy of the DNA vaccine. Close physical contact between the favorable immunogen and the suitable CpG oligodeoxynucleotides (CpG ODN) promotes immune response. Vectors for checking the expression of constructs in mammalian cells and for harboring the foreign genes as DNA vaccine are suggested.
Collapse
Affiliation(s)
- Abolfazl Jahangiri
- Department of Biology, Shahed University, Tehran-Qom Express Way, Opposite Imam Khomeini's Shrine, Tehran-3319118651, Iran
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Asthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role. Chronic inflammation is associated with airway hyper-responsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness and coughing, as well as variable airflow obstruction within the lung. With time, such airflow obstruction may become permanent due to remodeling. It has been treated for more than 100 years by subcutaneous immunotherapy with allergen extracts but in recent years, other forms and types of immunotherapy have been introduced. Perhaps the most successful of these to date, is sublingual immunotherapy, which has attained significant usage in European countries but has yet to make inroads into clinical practice in North America. Other mechanisms to modify the inflammatory responses of asthma have included immunotherapy with recombinant allergens, the use of allergen peptides targeting antigen-specific T cells and the administration of Toll-like receptor agonists coupled to allergen proteins. As the inflammatory responses in asthma frequently involve IgE, a modified monoclonal antibody to IgE and interfering with its binding to the IgE receptor have gained acceptance for treating severe allergic asthma. Other monoclonal antibodies or recombinant receptor antagonists are being assessed for their ability to block other contributors to the inflammatory response. Finally, attempts have been made to generate autoantibody responses to cytokines implicated in asthma. Most of these therapies aim to modify or inhibit the so-called Th 2 immune response, which is implicated in many forms of asthma, or to inhibit cytokines involved in these responses. However, an added benefit of classical immunotherapy seems to be the ability to prevent the allergic progression to new sensitivities and new forms of allergic disease.
Collapse
Affiliation(s)
- Richard Warrington
- University of Manitoba, GC319, 820 Sherbook Street, Winnipeg, Manitoba, R3A 1R9, Canada.
| |
Collapse
|
91
|
Agallou M, Margaroni M, Karagouni E. Cellular vaccination with bone marrow-derived dendritic cells pulsed with a peptide of Leishmania infantum KMP-11 and CpG oligonucleotides induces protection in a murine model of visceral leishmaniasis. Vaccine 2011; 29:5053-64. [PMID: 21569815 DOI: 10.1016/j.vaccine.2011.04.089] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/07/2011] [Accepted: 04/15/2011] [Indexed: 12/21/2022]
Abstract
The use of dendritic cells (DCs) pulsed with defined Leishmania antigens could be a potential immune intervention tool for the induction of protection against infection. In the present study, bone marrow-derived DCs (BM-DCs) pulsed ex vivo with the peptide 12-31aa portion of kinetoplastid membrane protein (KMP)-11 (KMP-11(12-31aa) peptide) acquired a semimature phenotype expressing IL-12 and IL-10, whereas pulsing with the combination of the peptide and CpG oligodeoxynucleotides (ODNs) resulted in their functional maturation expressing mainly IL-12. Vaccination of genetically susceptible to parasite BALB/c mice with both peptide-pulsed BM-DCs elicited a peptide-specific mixed Th1/Th2 immune response, characterized by the production of IFNγ, IL-10 and IgG1 and IgG2a isotype antibodies. However, only BM-DCs pulsed with the combination of KMP-11(12-31aa) peptide and CpG ODNs induced the differentiation of peptide-specific Th17 cells, indicating the adjuvanticity of CpG ODNs. When BALB/c mice were vaccinated with KMP-11(12-31aa) peptide-pulsed BM-DCs, they exhibited only partial protection against Leishmania infantum challenge, whereas (KMP-11(12-31aa) peptide+CpG ODNs)-pulsed BM-DCs reduced efficiently the parasite load in visceral organs. Protective immunity was correlated with restoration of lymphoproliferative responses and a modulation of parasite-specific cellular responses towards Th1 and Th17 profile, confirmed by the isotype switching towards IgG2a, the enhanced production of IFNγ against IL-10, the absence of TGF-β and the overproduction of IL-17. Thus, ex vivo antigen-pulsed BM-DCs represent a powerful tool for the study of protective immune responses against leishmanial infection. Moreover, these findings suggest the use of BM-DCs as effective tools in antigen and adjuvant screening in the design of a protective vaccine against leishmaniasis and other pathogen-related infections.
Collapse
Affiliation(s)
- Maria Agallou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 115 21 Athens, Greece
| | | | | |
Collapse
|
92
|
Zheng J, Fu R, Li J, Wang X. CpG oligonucleotides suppress HepG2 cells-induced Jurkat cell apoptosis via the Fas-FasL-mediated pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:48. [PMID: 21535900 PMCID: PMC3108921 DOI: 10.1186/1756-9966-30-48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/03/2011] [Indexed: 01/10/2023]
Abstract
Objective To explore the potential role of CpG motif-containing oligonucleotides (CpG-ODN) in modulating the expression of FasL in HepG2 and Fas in Jurkat cells in vitro, and to examine the effect of CpG-ODN treatment on the HepG2 cells-mediated Jurkat cell apoptosis in vitro. Methods The expressions of FasL in HepG2 and Fas in Jurkat cells were examined by real time PCR and flow cytometry (FCM). HepG2 and Jurkat cells were co-cultured, and the frequency of apoptotic Jurkat cells and levels of activated caspase-3 were determined by FCM. Results Treatment with CpG-ODN down-regulated the expression of FasL in HepG2 cells in a dose- and time-dependent manner. In addition, treatment with CpG-ODN down-regulated the Fas mRNA transcription and protein expression in Jurkat cells. Treatment of HepG2 cells or Jurkat cells with FasL-neutralizing antibody NOK-2 remarkably inhibited the HepG2-medaited Jurkat cell apoptosis. Pre-treatment of HepG2 or Jurkat cells with CpG-ODN significantly reduced the frequency of HepG2-mediated apoptotic Jurkat cells and inhibited the activation of caspase-3 in Jurkat cells in vitro. Conclusions Our data indicated that treatment with CpG-ODN inhibited the HepG2 cells-mediated Jurkat cell apoptosis by modulating the Fas/FasL pathway. Apparently, CpG-ODN treatment may be a potential therapeutic reagent for HCC.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Clinical Laboratory, the Second Affiliated hospital of Nanchang University, Nanchang 330006, China
| | | | | | | |
Collapse
|
93
|
Iwata A, Campbell N, Dalesandro J, deFries-Hallstrand R, Sai S, Wijffels F, Koe G, Allen M. Liposome-CAT complexes induce development of a non-inflammatory neointimal lesion in rabbit carotid arteries. Int J Angiol 2011. [DOI: 10.1007/bf01616366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
94
|
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines.
Collapse
Affiliation(s)
- Christian Bode
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Gan Zhao
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Folkert Steinhagen
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Takeshi Kinjo
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Dennis M Klinman
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
95
|
Hepatitis C virus soluble E2 in combination with QuilA and CpG ODN induces neutralizing antibodies in mice. Vaccine 2011; 29:2910-7. [PMID: 21338680 DOI: 10.1016/j.vaccine.2011.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/16/2010] [Accepted: 02/05/2011] [Indexed: 11/22/2022]
Abstract
Several studies have emphasized the importance of an early, highly neutralizing antibody response in the clearance of Hepatitis C virus (HCV) infection. The envelope glycoprotein E2 is a major target for HCV neutralizing antibodies. Here, we compared antibody responses in mice immunized with native soluble E2 (sE2) from the H77 1a isolate coupled with different adjuvants or combinations of adjuvants. Adjuvanting sE2 with Freund's, monophosphoryl lipid A (MPL), cytosine phosphorothioate guanine oligodeoxynucleotide (CpG ODN), or alpha-galactosylceramide (αGalCer) derivatives elicited only moderate antibody responses. In contrast, immunizations with sE2 and QuilA elicited exceptionally high anti-E2 antibody titers. Sera from these mice effectively neutralized HCV pseudoparticles (HCVpp) 1a entry. Moreover, the combination of QuilA and CpG ODN further enhanced neutralizing antibody titers wherein cross-neutralization of HCVpp 4 was observed. We conclude that the combination of QuilA and CpG ODN is a promising adjuvant combination that should be further explored for the development of an HCV subunit vaccine. Our work also emphasizes that the ideal combination of adjuvant and immunogen has to be determined empirically.
Collapse
|
96
|
Sakaguchi M, Hirahara K, Fujimura T, Toda M. Approaches to immunotherapies for Japanese cedar pollinosis. Auris Nasus Larynx 2011; 38:431-8. [PMID: 21227607 DOI: 10.1016/j.anl.2010.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 12/06/2010] [Indexed: 11/30/2022]
Abstract
Japanese cedar (Cryptomeria japonica; CJ) pollinosis is a typical type I allergy induced by CJ pollen and one of the most common allergic diseases in Japan. New immunotherapies have been developed for treatment of CJ pollinosis. We focus here on new immunotherapies for CJ pollinosis including sublingual immunotherapy with crude extract of CJ antigen, oral immunotherapy with transgenic rice expressing CJ allergens, a peptide vaccine using T cell epitopes of CJ allergens, DNA vaccines encoding either the CJ allergen gene or T cell epitope gene, and adjuvant-conjugated vaccines using CJ allergen conjugated with adjuvants such as CpG oligodeoxynucleotide or pullulan.
Collapse
MESH Headings
- Administration, Oral
- Administration, Sublingual
- Allergens/genetics
- Allergens/metabolism
- Animals
- Cryptomeria/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunotherapy/methods
- Immunotherapy/trends
- Mice
- Mice, Transgenic
- Rhinitis, Allergic, Seasonal/therapy
- Vaccines, Conjugate/therapeutic use
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Masahiro Sakaguchi
- Department of Veterinary Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan.
| | | | | | | |
Collapse
|
97
|
Hedayat M, Takeda K, Rezaei N. Prophylactic and therapeutic implications of toll-like receptor ligands. Med Res Rev 2010; 32:294-325. [DOI: 10.1002/med.20214] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mona Hedayat
- Molecular Immunology Research Center; Department of Immunology; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | | | | |
Collapse
|
98
|
Fang Y, Rowe T, Leon AJ, Banner D, Danesh A, Xu L, Ran L, Bosinger SE, Guan Y, Chen H, Cameron CC, Cameron MJ, Kelvin DJ. Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus. J Virol 2010; 84:8369-88. [PMID: 20534862 PMCID: PMC2919000 DOI: 10.1128/jvi.02305-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 05/30/2010] [Indexed: 02/05/2023] Open
Abstract
The 2009 H1N1 influenza pandemic has prompted a significant need for the development of efficient, single-dose, adjuvanted vaccines. Here we investigated the adjuvant potential of CpG oligodeoxynucleotide (ODN) when used with a human seasonal influenza virus vaccine in ferrets. We found that the CpG ODN-adjuvanted vaccine effectively increased antibody production and activated type I interferon (IFN) responses compared to vaccine alone. Based on these findings, pegylated IFN-alpha2b (PEG-IFN) was also evaluated as an adjuvant in comparison to CpG ODN and complete Freund's adjuvant (CFA). Our results showed that all three vaccines with adjuvant added prevented seasonal human A/Brisbane/59/2007 (H1N1) virus replication more effectively than did vaccine alone. Gene expression profiles indicated that, as well as upregulating IFN-stimulated genes (ISGs), CpG ODN enhanced B-cell activation and increased Toll-like receptor 4 (TLR4) and IFN regulatory factor 4 (IRF4) expression, whereas PEG-IFN augmented adaptive immunity by inducing major histocompatibility complex (MHC) transcription and Ras signaling. In contrast, the use of CFA as an adjuvant induced limited ISG expression but increased the transcription of MHC, cell adhesion molecules, and B-cell activation markers. Taken together, our results better characterize the specific molecular pathways leading to adjuvant activity in different adjuvant-mediated influenza virus vaccinations.
Collapse
Affiliation(s)
- Yuan Fang
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas Rowe
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alberto J. Leon
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Banner
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Danesh
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luoling Xu
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Longsi Ran
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven E. Bosinger
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yi Guan
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Honglin Chen
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cheryl C. Cameron
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark J. Cameron
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada, Department of Immunology, University of Toronto, Toronto, Ontario, Canada, University di Sassari, Dipartimento di Scienze Biomediche, Sassari, Italy, Division of Virology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corresponding author. Mailing address: Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People's Republic of China. Phone and fax: (86)-754-88573991. E-mail:
| |
Collapse
|
99
|
Abstract
IMPORTANCE OF THE FIELD Toll-like receptors (TLRs) are innate immune receptors critical in the innate immune defense against invading pathogens. Recent advances also reveal a crucial role for TLRs in shaping adaptive immune responses, conferring a potential therapeutic value to their modulation in the treatment of diseases. AREAS COVERED IN THIS REVIEW The aim of this review is to discuss TLR9, the TLR9-MyD88 signaling pathway and its role in regulation of adaptive immune responses, as well as potential therapeutic implications by targeting this pathway. WHAT THE READER WILL GAIN This review shows that the TLR9-MyD88 signaling pathway plays a critical role in promoting adaptive immune responses and that modulation of this pathway may have enormous therapeutic potential in enhancing vaccine potency, controlling autoimmunity, as well as improving the outcome of viral-vector-mediated gene therapy. TAKE HOME MESSAGE Although TLR9 agonists have been used as adjuvants for enhancing vaccine potency, further exploitation of the TLR9-MyD88 pathway and its dynamic interaction with the immune system in vivo is needed to provide more effective therapeutic inventions in the design of vaccines for infectious diseases, allergies and cancer, in the control of autoimmunity, as well as in the improvement of viral-vector-mediated gene therapy.
Collapse
Affiliation(s)
- Xiaopei Huang
- Duke University Medical Center, Department of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
100
|
Kaburaki Y, Fujimura T, Kurata K, Masuda K, Toda M, Yasueda H, Chida K, Kawarai S, Sakaguchi M. Induction of Th1 immune responses to Japanese cedar pollen allergen (Cry j 1) in mice immunized with Cry j 1 conjugated with CpG oligodeoxynucleotide. Comp Immunol Microbiol Infect Dis 2010; 34:157-61. [PMID: 20638725 DOI: 10.1016/j.cimid.2010.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/22/2010] [Indexed: 11/18/2022]
Abstract
We determined whether a major Japanese cedar pollen allergen (Cry j 1) conjugated with CpG oligodeoxynucleotide would enhance allergen-specific Th1 responses in mice. Cry j 1 conjugated with CpG (Cry j 1-CpG) induced IL-12 in the spleen cells of naïve mice. Cry j 1-CpG immunization of BALB/c mice suppressed anti-Cry j 1 IgE response and enhanced anti-Cry j 1 IgG(2a) to subsequent Cry j 1 and alum adjuvant injection. CD4(+)T cells isolated from the spleens in mice immunized with Cry j 1-CpG produced higher IFN-γ levels than did CD4(+)T cells obtained from mice as negative controls. Our results suggested that Cry j 1-CpG immunization can induce Cry j 1-specific Th1 immune responses, thereby inhibiting IgE response to the pollen allergen.
Collapse
Affiliation(s)
- Y Kaburaki
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|