51
|
Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, Xie Y. Electric field control of superconductivity at the LaAlO 3/KTaO 3(111) interface. Science 2021; 372:721-724. [PMID: 33986177 DOI: 10.1126/science.abb3848] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/02/2021] [Indexed: 11/02/2022]
Abstract
The oxide interface between LaAlO3 and KTaO3(111) can harbor a superconducting state. We report that by applying a gate voltage (V G) across KTaO3, the interface can be continuously tuned from superconducting into insulating states, yielding a dome-shaped T c-V G dependence, where T c is the transition temperature. The electric gating has only a minor effect on carrier density but a strong one on mobility. We interpret the tuning of mobility in terms of change in the spatial profile of the carriers in the interface and hence, effective disorder. As the temperature is decreased, the resistance saturates at the lowest temperature on both superconducting and insulating sides, suggesting the emergence of a quantum metallic state associated with a failed superconductor and/or fragile insulator.
Collapse
Affiliation(s)
- Zheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yuan Liu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Hui Zhang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhongran Liu
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - He Tian
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanqiu Sun
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Meng Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yi Zhou
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.,Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwu Xie
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
52
|
Yano R, Kudriashov A, Hirose HT, Tsuda T, Kashiwaya H, Sasagawa T, Golubov AA, Stolyarov VS, Kashiwaya S. Magnetic Gap of Fe-Doped BiSbTe 2Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports. J Phys Chem Lett 2021; 12:4180-4186. [PMID: 33900082 DOI: 10.1021/acs.jpclett.1c00869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Topological insulators with broken time-reversal symmetry and the Fermi level within the magnetic gap at the Dirac cone provides exotic topological magneto-electronic phenomena. Here, we introduce an improved magnetically doped topological insulator, Fe-doped BiSbTe2Se (Fe-BSTS) bulk single crystal, with an ideal Fermi level. Scanning tunneling microscopy and spectroscopy (STM/STS) measurements revealed that the surface state possesses a Dirac cone with the Dirac point just below the Fermi level by 12 meV. The normalized dI/dV spectra suggest a gap opening with Δmag ∼55 meV, resulting in the Fermi level within the opened gap. Ionic-liquid gated-transport measurements also support the Dirac point just below the Fermi level and the presence of the magnetic gap. The chemical potential of the surface state can be fully tuned by ionic-liquid gating, and thus the Fe-doped BSTS provides an ideal platform to investigate exotic quantum topological phenomena.
Collapse
Affiliation(s)
- Rikizo Yano
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
- Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Andrei Kudriashov
- TQPSS Lab, Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast 141700, Russia
| | - Hishiro T Hirose
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Taiki Tsuda
- Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Hiromi Kashiwaya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Takao Sasagawa
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Alexander A Golubov
- TQPSS Lab, Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast 141700, Russia
- Faculty of Science and Technology and MESA+ Institute of Nanotechnology, Enschede 7500 AE, The Netherlands
| | - Vasily S Stolyarov
- TQPSS Lab, Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast 141700, Russia
- Dukhov Research Institute of Automatics (VNIIA), Moscow 127055, Russia
| | | |
Collapse
|
53
|
Wang Z, Saadé NK, Ariya PA. Advances in Ultra-Trace Analytical Capability for Micro/Nanoplastics and Water-Soluble Polymers in the Environment: Fresh Falling Urban Snow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116698. [PMID: 33611197 DOI: 10.1016/j.envpol.2021.116698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Discarded micro/nano-plastic inputs into the environment are emerging global concerns. Yet the quantification of micro/nanoplastics in complex environmental matrices is still a major challenge, notably for soluble ones. We herein develop in-laboratory built nanostructures (zinc oxide, titanium oxide and cobalt) coupled to mass spectrometry techniques, for picogram quantification of micro/nanoplastics in water and snow matrices, without sample pre-treatment. In parallel, an ultra-trace quantification method for micro/nanoplastics based on nanostructured laser desorption/ionization time-of-flight mass spectrometry (NALDI-TOF-MS) is developed. The detection limit is ∼5 pg for ambient snow. Soluble polyethylene glycol and insoluble polyethylene fragments were observed and quantified in fresh falling snow in Montreal, Canada. Complementary physicochemical studies of the snow matrices and reference plastics using laser-based particle sizers, inductively coupled plasma tandem mass spectrometry, and high-resolution scanning/transmission electron microscopy, produced consistent results with NALDI, and further provided information on morphology and composition of the micro/nano-plastic particles. This work is promising as it demonstrates that a wide range of recyclable nanostructures, in-laboratory built or commercial, can provide ultra-trace capability for quantification for both soluble polymers and insoluble plastics in air, water and soil. It may thereby produce key missing information to determine the fate of micro/nanoplastics in the environment, and their impacts on human health.
Collapse
Affiliation(s)
- Zi Wang
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Nadim K Saadé
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Parisa A Ariya
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada; Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada.
| |
Collapse
|
54
|
Hsu B, Farid S, Averion-Puttrich J, Sumant AV, Stroscio MA, Dutta M. High performance ionic-liquid-gated air doped diamond field-effect transistors. NANOTECHNOLOGY 2021; 32:135205. [PMID: 33276348 DOI: 10.1088/1361-6528/abd0b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report successful fabrication of high performance ion-gated field-effect transistors (FETs) on hydrogenated diamond surface. Investigations on the hydrogen (H)-terminated diamond by Hall effect measurements shows Hall mobility as high as ∼200 cm2 V-1 s-1. In addition we demonstrate a rapid fabrication scheme for achieving stable high performance devices useful for determining optimal growth and fabrication conditions. We achieved H-termination using hydrogen plasma treatment with a sheet resistivity as low as ∼1.3 kΩ/sq. Conductivity through the FET channel is studied as a function of bias voltage on the liquid ion-gated electrode from -3.0 to 1.5 V. Stability of the H-terminated diamond surface was studied by varying the substrate temperature up to 350 °C. It was demonstrated that the sheet resistance and carrier densities remain stable over 3 weeks in ambient air atmosphere even at substrate temperatures up to 350 °C, whereas increasing temperature beyond this limit has effected hydrogenation. This study opens new avenues for carrying out fundamental research on diamond FET devices with ease of fabrication and high throughput.
Collapse
Affiliation(s)
- Bo Hsu
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Sidra Farid
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Joseph Averion-Puttrich
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Anirudha V Sumant
- Center for Nanoscale Materials, Argonne National Labs, Lemont, IL 60493, United States of America
| | - Michael A Stroscio
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Mitra Dutta
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
55
|
Saranin DS, Mahmoodpoor A, Voroshilov PM, Simovski CR, Zakhidov AA. Ionically Gated Small-Molecule OPV: Interfacial Doping of Charge Collector and Transport Layer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8606-8619. [PMID: 33588526 DOI: 10.1021/acsami.0c17865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate an improvement in the performance of organic photovoltaic (OPV) systems based on small molecules by ionic gating via controlled reversible n-doping of multi-wall carbon nanotubes (MWCNTs) coated on fullerene electron transport layers (ETLs): C60 and C70. Such electric double-layer charging (EDLC) doping, achieved by ionic liquid (IL) charging, allows tuning of the electronic concentration in MWCNTs and the fullerene planar acceptor layers, increasing it by orders of magnitude. This leads to the decrease of the series and increase of the shunt resistances of OPVs and allows use of thick (up to 200 nm) ETLs, increasing the durability of OPVs. Two stages of OPV enhancement are described upon the increase of gating bias Vg: at small (or even zero) Vg, the extended interface of ILs and porous transparent MWCNTs is charged by gating, and the fullerene charge collector is significantly improved, becoming an ohmic contact. This changes the S-shaped J-V curve via improving the electron collection by an n-doped MWCNT cathode with an ohmic interfacial contact. The J-V curves further improve at higher gating bias Vg due to the increase of the Fermi level and decrease of the MWCNT work function. At the next qualitative stage, the acceptor fullerene layer becomes n-doped by electron injection from MWCNTs while ions of ILs penetrate into the fullerene. At this step, the internal built-in field is created within OPV, which helps in exciton dissociation and charge separation/transport, increasing further the Jsc and the fill factor. The ionic gating concept demonstrated here for most simple classical planar small-molecule OPV cells can be potentially applied to more complex highly efficient hybrid devices, such as perovskite photovoltaic with an ETL or a hole transport layer, providing a new way to tune their properties via controllable and reversible interfacial doping of charge collectors and transport layers.
Collapse
Affiliation(s)
- Danila S Saranin
- National University of Science and Technology MISiS, Moscow 119049, Russia
| | | | | | - Constantin R Simovski
- ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101, Russia
- School of Electrical Engineering, Department of Electronics and Nanoengineering, Aalto University, P.O. Box 15500, Aalto 00076, Finland
| | - Anvar A Zakhidov
- ITMO University, Kronverkskiy pr. 49, St. Petersburg 197101, Russia
- Physics Department and The NanoTech Institute, The University of Texas at Dallas, Richardson 75080, United States
| |
Collapse
|
56
|
Oyeka EE, Oka D, Kwon E, Fukumura T. Synthesis of Stoichiometric SrTiO 3 and Its Carrier Doping from Air-Stable Bimetallic Complexes. Inorg Chem 2021; 60:1277-1283. [PMID: 33478216 DOI: 10.1021/acs.inorgchem.0c03457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate the synthesis of perovskite oxide SrTiO3 with ideal cation stoichiometry and homogeneous La doping using air-stable Sr-Ti and La-Ti bimetallic peroxo complexes with a 1:1 cation ratio. Phase-pure SrTiO3, La2Ti2O7, and LaTiO3 were successfully synthesized by thermal decomposition of those complexes. La-doped SrTiO3 was obtained by mixing the Sr-Ti and La-Ti complexes in an acid solution, followed by thermal decomposition. La-doped SrTiO3 showed systematic chemical trends in the lattice constant and electrical conduction. Not only those bulk polycrystals but also cation-stoichiometric SrTiO3 epitaxial thin films were grown with an atomically flat surface from the Sr-Ti complex.
Collapse
Affiliation(s)
- Ebube E Oyeka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Daichi Oka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Tomoteru Fukumura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,Advanced Institute for Materials Research and Core Research Cluster, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
57
|
Das S, Debnath K, Chakraborty B, Singh A, Grover S, Muthu DVS, Waghmare UV, Sood AK. Symmetry induced phonon renormalization in few layers of 2H-MoTe 2 transistors: Raman and first-principles studies. NANOTECHNOLOGY 2021; 32:045202. [PMID: 33036010 DOI: 10.1088/1361-6528/abbfd6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding of electron-phonon coupling (EPC) in two-dimensional (2D) materials manifesting as phonon renormalization is essential to their possible applications in nanoelectronics. Here we report in situ Raman measurements of electrochemically top-gated 2, 3 and 7 layered 2H-MoTe2 channel based field-effect transistors. While the [Formula: see text] and B2g phonon modes exhibit frequency softening and linewidth broadening with hole doping concentration (p) up to ∼2.3 × 1013/cm2, A1g shows relatively small frequency hardening and linewidth sharpening. The dependence of frequency renormalization of the [Formula: see text] mode on the number of layers in these 2D crystals confirms that hole doping occurs primarily in the top two layers, in agreement with recent predictions. We present first-principles density functional theory analysis of bilayer MoTe2 that qualitatively captures our observations, and explain that a relatively stronger coupling of holes with [Formula: see text] or B2g modes as compared with the A1g mode originates from the in-plane orbital character and symmetry of the states at valence band maximum. The contrast between the manifestation of EPC in monolayer MoS2 and those observed here in a few-layered MoTe2 demonstrates the role of the symmetry of phonons and electronic states in determining the EPC in these isostructural systems.
Collapse
Affiliation(s)
- Subhadip Das
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Koyendrila Debnath
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India
| | | | - Anjali Singh
- Center for Study of Science, Technology & Policy (CSTEP), Bangalore 560094, India
| | - Shivani Grover
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India
| | - D V S Muthu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - U V Waghmare
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
58
|
Affiliation(s)
- Alex Zunger
- Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Oleksandr I. Malyi
- Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
59
|
Maeda A. Volatile and non-volatile superconductivity in cuprate by ionic liquid gating opens novel roads for superconductivity research. Sci Bull (Beijing) 2021; 66:1-2. [PMID: 36654305 DOI: 10.1016/j.scib.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Atsutaka Maeda
- Department of Basic Sciences, University of Tokyo, Tokyo 153-8902, Japan.
| |
Collapse
|
60
|
Namiki W, Tsuchiya T, Takayanagi M, Higuchi T, Terabe K. Room-Temperature Manipulation of Magnetization Angle, Achieved with an All-Solid-State Redox Device. ACS NANO 2020; 14:16065-16072. [PMID: 33137249 DOI: 10.1021/acsnano.0c07906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An all-solid-state redox device, composed of magnetite (Fe3O4) thin film and Li+ conducting electrolyte thin film, was fabricated for the manipulation of a magnetization angle at room temperature (RT). This is a key technology for the creation of efficient spintronics devices, but has not yet been achieved at RT by other carrier doping methods. Variations in magnetization angle and magnetic stability were precisely tracked through the use of planar Hall measurements at RT. The magnetization angle was reversibly manipulated at 10° by maintaining magnetic stability. Meanwhile, the manipulatable angle reached 56°, although the manipulation became irreversible when the magnetic stability was reduced. This large manipulation of magnetic angle was achieved through tuning of the 3d electron number and modulation of the internal strain in the Fe3O4 due to the insertion of high-density Li+ (approximately 1021 cm-3). This RT manipulation is applicable to highly integrated spintronics devices due to its simple structure and low electric power consumption.
Collapse
Affiliation(s)
- Wataru Namiki
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Applied Physics, Faculty of Science, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Takashi Tsuchiya
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Makoto Takayanagi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Applied Physics, Faculty of Science, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Tohru Higuchi
- Department of Applied Physics, Faculty of Science, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Kazuya Terabe
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
61
|
A selective control of volatile and non-volatile superconductivity in an insulating copper oxide via ionic liquid gating. Sci Bull (Beijing) 2020; 65:1607-1613. [PMID: 36659036 DOI: 10.1016/j.scib.2020.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
Manipulating the superconducting states of high transition temperature (high-Tc) cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics. Here, employing ionic liquid gating, a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr2CuO4±δ (PCO) films, based on two distinct mechanisms. Firstly, with positive electric fields, the film can be reversibly switched between superconducting and non-superconducting states, attributed to the carrier doping effect. Secondly, the film becomes more resistive by applying negative bias voltage up to - 4 V, but strikingly, a non-volatile superconductivity is achieved once the gate voltage is removed. Such phenomenon represents a distinctive route of manipulating superconductivity in PCO, resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unravelled by high-resolution scanning transmission electron microscope and in situ X-ray diffraction experiments. The effective manipulation of volatile/non-volatile superconductivity in the same parent cuprate brings more functionalities to superconducting electronics, as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-Tc superconductors.
Collapse
|
62
|
Spectral weight reduction of two-dimensional electron gases at oxide surfaces across the ferroelectric transition. Sci Rep 2020; 10:16834. [PMID: 33033329 PMCID: PMC7545169 DOI: 10.1038/s41598-020-73657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/02/2020] [Indexed: 11/11/2022] Open
Abstract
The discovery of a two-dimensional electron gas (2DEG) at the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {LaAlO}_3/\hbox {SrTiO}_3$$\end{document}LaAlO3/SrTiO3 interface has set a new platform for all-oxide electronics which could potentially exhibit the interplay among charge, spin, orbital, superconductivity, ferromagnetism and ferroelectricity. In this work, by using angle-resolved photoemission spectroscopy and conductivity measurement, we found the reduction of 2DEGs and the changes of the conductivity nature of some ferroelectric oxides including insulating Nb-lightly-substituted \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {KTaO}_3$$\end{document}KTaO3, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BaTiO}_3$$\end{document}BaTiO3 (BTO) and (Ca,Zr)-doped BTO across paraelectric-ferroelectric transition. We propose that these behaviours could be due to the increase of space-charge screening potential at the 2DEG/ferroelectric regions which is a result of the realignment of ferroelectric polarisation upon light irradiation. This finding suggests an opportunity for controlling the 2DEG at a bare oxide surface (instead of interfacial system) by using both light and ferroelectricity.
Collapse
|
63
|
Superconductivity mediated by polar modes in ferroelectric metals. Nat Commun 2020; 11:4852. [PMID: 32978389 PMCID: PMC7519043 DOI: 10.1038/s41467-020-18438-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
The occurrence of superconductivity in doped SrTiO3 at low carrier densities points to the presence of an unusually strong pairing interaction that has eluded understanding for several decades. We report experimental results showing the pressure dependence of the superconducting transition temperature, Tc, near to optimal doping that sheds light on the nature of this interaction. We find that Tc increases dramatically when the energy gap of the ferroelectric critical modes is suppressed, i.e., as the ferroelectric quantum critical point is approached in a way reminiscent to behaviour observed in magnetic counterparts. However, in contrast to the latter, the coupling of the carriers to the critical modes in ferroelectrics is predicted to be small. We present a quantitative model involving the dynamical screening of the Coulomb interaction and show that an enhancement of Tc near to a ferroelectric quantum critical point can arise due to the virtual exchange of longitudinal hybrid-polar-modes, even in the absence of a strong coupling to the transverse critical modes. Superconductivity in doped SrTiO3 near to a ferroelectric quantum critical point emerges due to a strong interaction driving the formation of Cooper pairs, the nature of which has remained elusive for several decades. Here, the authors reveal that pairing is due to the exchange of longitudinal hybrid polar modes rather than transverse critical modes.
Collapse
|
64
|
Wang Y, Zheng D, Zhang J, Zheng W, Wang P, Liu S, Jin C, Bai H. Ionic Liquid Gating and Phase Transition Induced Semiconducting to Metallic Transition in La 0.67Sr 0.33MnO 3/BaTiO 3 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43257-43265. [PMID: 32845600 DOI: 10.1021/acsami.0c11910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The strongly correlated La0.67Sr0.33MnO3 (LSMO) thin films were deposited on the BaTiO3 (BTO) substrates to study the influence of temperature-dependent phase transition of BTO on the magnetic and electric transport properties of the LSMO films. Because of the large lattice mismatch between the LSMO and BTO substrates, the ultrathin LSMO film exhibits semiconducting transport behavior rather than the normal metal-insulator transition behavior. A Mn2+-O2--Mn3+ dominated double exchange interaction, which leads to a semiconducting to metallic transition behavior, was formed by the joint effect of the ion-liquid gating and phase transition of the BTO substrates. Our work shows a special way to modulate the conduction mechanism, which opens up a new field for further study of the magnetoelectric coupling of the LSMO/BTO heterostructures.
Collapse
Affiliation(s)
- Yuchen Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Dongxing Zheng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Junwei Zhang
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wanchao Zheng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ping Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Shasha Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Chao Jin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Haili Bai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
65
|
Woeppel A, Xu K, Kozhakhmetov A, Awate S, Robinson JA, Fullerton-Shirey SK. Single- versus Dual-Ion Conductors for Electric Double Layer Gating: Finite Element Modeling and Hall-Effect Measurements. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40850-40858. [PMID: 32805846 DOI: 10.1021/acsami.0c08653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electric double layer (EDL) gating using a single-ion conductor is compared to a dual-ion conductor using both finite element modeling and Hall-effect measurements. Modified Nernst-Planck Poisson (mNPP) equations are used to calculate the ion density per unit area in a parallel plate capacitor geometry with a bulk ion concentration of 215 ≤ cbulk ≤ 1782 mol/m3. With electrodes of equal size at a 2 V potential difference, the EDL ion density of the single-ion conductor is ∼7 × 1013 ions/cm2, which is approximately 50% of the ion density induced in the dual-ion conductor. However, this difference is reduced to 8% when the electrode at which the cationic EDL forms is 10 times smaller than the counter electrode. Thus, for a field-effect transistor gated by a single-ion conductor, it is especially important to have a large gate-to-channel size ratio to achieve strong ion doping. The modeled ion densities are validated by Hall-effect measurements on graphene Hall bars gated by a polyethylene oxide (PEO)-based single-ion conductor. The sheet carrier density, nS, is ∼2 × 1013 cm-2 at Vg = 2 V, which is 3.5 times smaller than the predicted value and has the same order of magnitude as the ns measured for a PEO-based, dual-ion conductor on the same graphene. The numerical modeling results can be approximated by a simple analysis of capacitors in series, where the EDLs are modeled as capacitors with thickness estimated by the sum of the Debye screening length and the Stern layer. The series of capacitor estimate agrees with the numerical modeling of the dual-ion conductor to within 10% and the single-ion conductor to within 30% from 0.25 to 2 V (cbulk = 925 mol/m3); similar agreement is observed in the concentration range of 353-1650 mol/m3 for both single- and dual-ion conductors.
Collapse
Affiliation(s)
- Aaron Woeppel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ke Xu
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Azimkhan Kozhakhmetov
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shubham Awate
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2D and Layered Materials, Center for Atomically Thin Multifunctional Materials, and the Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Susan K Fullerton-Shirey
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
66
|
Takahashi C, Kanai M, Maruyama S, Matsumoto Y. Vacuum Electrochemistry Approach to Investigate Electrical Double‐Layer Capacitances of Ionic Liquid for Epitaxial Thin‐Film Electrodes of TiO
2
and SrO on Niobium‐Doped (001)SrTiO
3. ChemElectroChem 2020. [DOI: 10.1002/celc.202000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chika Takahashi
- Department of Applied Chemistry, School of EngineeringTohoku University 6-6-07, Aramaki-Aza-Aoba, Aoba-ku Sendai-city, Miyagi 980-8579 Japan
| | - Mariko Kanai
- Department of Applied Chemistry, School of EngineeringTohoku University 6-6-07, Aramaki-Aza-Aoba, Aoba-ku Sendai-city, Miyagi 980-8579 Japan
| | - Shingo Maruyama
- Department of Applied Chemistry, School of EngineeringTohoku University 6-6-07, Aramaki-Aza-Aoba, Aoba-ku Sendai-city, Miyagi 980-8579 Japan
| | - Yuji Matsumoto
- Department of Applied Chemistry, School of EngineeringTohoku University 6-6-07, Aramaki-Aza-Aoba, Aoba-ku Sendai-city, Miyagi 980-8579 Japan
| |
Collapse
|
67
|
Song D, Xue D, Zeng S, Li C, Venkatesan T, Ariando A, Pennycook SJ. Atomic Origin of Interface-Dependent Oxygen Migration by Electrochemical Gating at the LaAlO 3-SrTiO 3 Heterointerface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000729. [PMID: 32775157 PMCID: PMC7404156 DOI: 10.1002/advs.202000729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Electrical control of material properties based on ionic liquids (IL) has seen great development and emerging applications in the field of functional oxides, mainly understood by the electrostatic and electrochemical gating mechanisms. Compared to the fast, flexible, and reproducible electrostatic gating, electrochemical gating is less controllable owing to the complex behaviors of ion migration. Here, the interface-dependent oxygen migration by electrochemical gating is resolved at the atomic scale in the LaAlO3-SrTiO3 system through ex situ IL gating experiments and on-site atomic-resolution characterization. The difference between interface structures leads to the controllable electrochemical oxygen migration by filling oxygen vacancies. The findings not only provide an atomic-scale insight into the origin of interface-dependent electrochemical gating but also demonstrate an effective way of engineering interface structure to control the electrochemical gating.
Collapse
Affiliation(s)
- Dongsheng Song
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- NUSNNI‐NanocoreNational University of SingaporeSingapore117411Singapore
| | - Deqing Xue
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Shengwei Zeng
- NUSNNI‐NanocoreNational University of SingaporeSingapore117411Singapore
- Department of PhysicsNational University of SingaporeSingapore117542Singapore
| | - Changjian Li
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- NUSNNI‐NanocoreNational University of SingaporeSingapore117411Singapore
| | - Thirumalai Venkatesan
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- NUSNNI‐NanocoreNational University of SingaporeSingapore117411Singapore
- Department of PhysicsNational University of SingaporeSingapore117542Singapore
| | - Ariando Ariando
- NUSNNI‐NanocoreNational University of SingaporeSingapore117411Singapore
- Department of PhysicsNational University of SingaporeSingapore117542Singapore
| | - Stephen J. Pennycook
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- NUSNNI‐NanocoreNational University of SingaporeSingapore117411Singapore
| |
Collapse
|
68
|
Yang X, Han J, Yu J, Chen Y, Zhang H, Ding M, Jia C, Sun J, Sun Q, Wang ZL. Versatile Triboiontronic Transistor via Proton Conductor. ACS NANO 2020; 14:8668-8677. [PMID: 32568513 DOI: 10.1021/acsnano.0c03030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iontronics are effective in modulating electrical properties through the electric double layers (EDLs) assisted with ionic migration/arrangement, which are highly promising for unconventional electronics, ionic sensory devices, and flexible interactive interface. Proton conductors with the smallest and most abundant protons (H+) can realize a faster migration/polarization under electric field to form the EDL with higher capacitance. Here, a versatile triboiontronic MoS2 transistor via proton conductor by sophisticated combination of triboelectric modulation and protons migration has been demonstrated. This device utilizes triboelectric potential originated from mechanical displacement to modulate the electrical properties of transistors via protons migration/accumulation. It shows superior electrical properties, including high current on/off ratio over 106, low cutoff current (∼0.04 pA), and steep switching properties (89 μm/dec). Pioneering noise tests are conducted to the tribotronic devices to exclude the possible noise interference introduced by mechanical displacement. The versatile triboiontronic MoS2 transistor via proton conductor has been utilized for mechanical behavior derived logic devices and an artificial sensory neuron system. This work represents the reliable and effective triboelectric potential modulation on electronic transportation through protonic dielectrics, which is highly desired for theoretical study of tribotronic gating, active mechanosensation, self-powered electronic skin, artificial intelligence, etc.
Collapse
Affiliation(s)
- Xixi Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Jing Han
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youhui Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huai Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ding
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jia Sun
- School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
69
|
Ning S, Zhang Q, Occhialini C, Comin R, Zhong X, Ross CA. Voltage Control of Magnetism above Room Temperature in Epitaxial SrCo 1-xFe xO 3-δ. ACS NANO 2020; 14:8949-8957. [PMID: 32568512 DOI: 10.1021/acsnano.0c03750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Searching for new materials and phenomena to enable voltage control of magnetism and magnetic properties holds compelling interest for the development of low-power nonvolatile memory devices. In particular, reversible and nonvolatile ON/OFF controls of magnetism above room temperature are highly desirable yet still elusive. Here, we report on a nonvolatile voltage control of magnetism in epitaxial SrCo1-xFexO3-δ (SCFO). The substitution of Co with Fe significantly changes the magnetic properties of SCFO. In particular, for the Co/Fe ratio of ∼1:1, a switch between nonmagnetic (OFF) and ferromagnetic (ON) states with a Curie temperature above room temperature is accomplished by ionic liquid gating at ambient conditions with voltages as low as ±2 V, even for films with thickness up to 150 nm. Tuning the oxygen stoichiometry via the polarity and duration of gating enables reversible and continuous control of the magnetization between 0 and 100 emu/cm3 (0.61 μB/f.u.) at room temperature. In addition, SCFO was successfully incorporated into self-assembled two-phase vertically aligned nanocomposites, in which the reversible voltage control of magnetism above room temperature is also attained. The notable structural response of SCFO to ionic liquid gating allows large strain couplings between the two oxides in these nanocomposites, with potential for voltage-controlled and strain-mediated functionality based on couplings between structure, composition, and physical properties.
Collapse
Affiliation(s)
- Shuai Ning
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qiqi Zhang
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), the State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Connor Occhialini
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyan Zhong
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), the State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
- Shenzhen Research Institute, City University of Hong Kong,, Shenzhen 518057, People's Republic of China
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
70
|
Yin R, Ma L, Wang Z, Ma C, Chen X, Wang B. Reversible Superconductor-Insulator Transition in (Li, Fe)OHFeSe Flakes Visualized by Gate-Tunable Scanning Tunneling Spectroscopy. ACS NANO 2020; 14:7513-7519. [PMID: 32510920 DOI: 10.1021/acsnano.0c03289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electric field control of charge carrier density provides a key in situ technology to continuously tune the ground states and map out the phase diagram of correlated electron systems in one device. This technique is highly expected to be combined with the modern state-of-the art spectroscopic probes, such as angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy (STM/S), to efficiently address these states and the underlying physics. However, it is extremely difficult and not successful so far, mainly because the fabrication process of such devices makes them prohibitive for surface probes. Here, by using a solid Li-ion conductor (SIC) as gate dielectric, we have successfully developed gate-tunable STM/S and visualized the superconductor-insulator transition (SIT) in a thin flake of single crystal (Li, Fe)OHFeSe at the nanoscale. The gate-controlled Li-ion injection first enhances the superconductivity and then drives the flake into an inhomogeneous insulating state, where superconductivity is totally suppressed. This process can be reversed by applying an opposite gate voltage. Importantly, the atomically resolved images allow us to identify the critical role that the injected Li ions play in the tuning process. Our results not only provide clear evidence of the microscopic mechanism of the tunable superconductivity and SIT in the SIC-based (Li, Fe)OHFeSe devices, but also establish SIC-gating STM as a powerful tool for investigating the complicated phase diagram of correlated electron system spectroscopically in a single sample with the field-effect approach.
Collapse
Affiliation(s)
- Ruoting Yin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Likuan Ma
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhenyu Wang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chuanxu Ma
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xianhui Chen
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Department of Physics, and CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, Anhui 230026, China
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, Anhui 230026, China
| |
Collapse
|
71
|
Nanjo C, Yokogawa D, Matsushita MM, Awaga K. Chemical potentials of electric double layers at metal-electrolyte interfaces: dependence on electrolyte concentration and electrode materials, and application to field-effect transistors. Phys Chem Chem Phys 2020; 22:12395-12402. [PMID: 32347251 DOI: 10.1039/d0cp00423e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
When a metal is soaked in an electrolyte solution, the metal and solution affect each other through the formation of electric double layers (EDLs) at their interfaces. The EDLs at metal-electrolyte interfaces can realize high-density charge-carrier injections and accumulations, and thus have recently attracted attention for their potential application to energy storage, and electronic and electrochemical devices. In such EDL-based devices, including field-effect transistors (FETs), the potential energy of surface electrons in the metal electrodes (EM) governs the transistor device performance. This is in clear contrast to redox-driven electrochemical devices such as dye-sensitized solar cells and electrochromic devices, whose performance is primarily governed by the potentials of the redox-active species. However, there has been no systematic research to bridge the distance between metal electrons and electrolyte ions. In the present study, we carefully examined the dependence of EM of ITO, Au and Pt electrodes on the concentration of the PEG solutions of LiCl and MgCl2, because it has been well established that the chemical potential of electrolyte solutions is dependent on the solution concentrations. Our results showed that, at the same electrolyte concentration, the values of EM increased in the order of ITO, Au and Pt; moreover, on the same electrode, EM showed linear decreases as a function of the logarithm of the electrolyte concentrations. To understand these behaviors, we developed a theoretical treatment of the EDLs based on the simple Gouy-Chapman model, and obtained the theoretical expressions of EM in terms of the concentration of electrolyte and the work function of the metal electrode (ΦM), which were found to successfully explain the dependences of EM on the electrolyte concentration and the electrode materials. We also examined the EDL-FETs of platinum phthalocyanine (PtPc), with various LiCl-PEG solutions of different concentrations as gate electrolytes. The threshold voltage eVT and EM exhibited a linear relation, which was well explained by the relation between EM and the valence band energy EVB of PtPc. The transfer characteristics at various gate voltage VG were found to be well normalized by a function of eVG + EM.
Collapse
Affiliation(s)
- Chihiro Nanjo
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Michio M Matsushita
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Kunio Awaga
- Department of Chemistry & Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
72
|
Quantum critical phenomena in a compressible displacive ferroelectric. Proc Natl Acad Sci U S A 2020; 117:12707-12712. [PMID: 32457161 DOI: 10.1073/pnas.1922151117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dielectric and magnetic polarizations of quantum paraelectrics and paramagnetic materials have in many cases been found to initially increase with increasing thermal disorder and hence, exhibit peaks as a function of temperature. A quantitative description of these examples of "order-by-disorder" phenomena has remained elusive in nearly ferromagnetic metals and in dielectrics on the border of displacive ferroelectric transitions. Here, we present an experimental study of the evolution of the dielectric susceptibility peak as a function of pressure in the nearly ferroelectric material, strontium titanate, which reveals that the peak position collapses toward absolute zero as the ferroelectric quantum critical point is approached. We show that this behavior can be described in detail without the use of adjustable parameters in terms of the Larkin-Khmelnitskii-Shneerson-Rechester (LKSR) theory, first introduced nearly 50 y ago, of the hybridization of polar and acoustic modes in quantum paraelectrics, in contrast to alternative models that have been proposed. Our study allows us to construct a detailed temperature-pressure phase diagram of a material on the border of a ferroelectric quantum critical point comprising ferroelectric, quantum critical paraelectric, and hybridized polar-acoustic regimes. Furthermore, at the lowest temperatures, below the susceptibility maximum, we observe a regime characterized by a linear temperature dependence of the inverse susceptibility that differs sharply from the quartic temperature dependence predicted by the LKSR theory. We find that this non-LKSR low-temperature regime cannot be accounted for in terms of any detailed model reported in the literature, and its interpretation poses an empirical and conceptual challenge.
Collapse
|
73
|
Fan Q, Wang L, Xu D, Duo Y, Gao J, Zhang L, Wang X, Chen X, Li J, Zhang H. Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. NANOSCALE 2020; 12:11364-11394. [PMID: 32428057 DOI: 10.1039/d0nr01125h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) materials have been the focus of materials research for many years due to their unique fascinating properties and large specific surface area (SSA). They are very sensitive to the analytes (ions, glucose, DNA, protein, etc.), resulting in their wide-spread development in the field of sensing. New 2D materials, as the basis of applications, are constantly being fabricated and comprehensively studied. In a variety of sensing applications, the solution-gated transistor (SGT) is a promising biochemical sensing platform because it can work at low voltage in different electrolytes, which is ideal for monitoring body fluids in wearable electronics, e-skin, or implantable devices. However, there are still some key challenges, such as device stability and reproducibility, that must be faced in order to pave the way for the development of cost-effective, flexible, and transparent SGTs with 2D materials. In this review, the device preparation, device physics, and the latest application prospects of 2D materials-based SGTs are systematically presented. Besides, a bold perspective is also provided for the future development of these devices.
Collapse
Affiliation(s)
- Qin Fan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lude Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P. R. China.
| | - Duo Xu
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Yanhong Duo
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P. R. China.
| | - Jie Gao
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Lei Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Xiang Chen
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P. R. China.
| |
Collapse
|
74
|
Anh LD, Kaneta S, Tokunaga M, Seki M, Tabata H, Tanaka M, Ohya S. High-Mobility 2D Hole Gas at a SrTiO 3 Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906003. [PMID: 32103572 DOI: 10.1002/adma.201906003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Strontium titanate (SrTiO3 or STO) is important for oxide-based electronics as it serves as a standard substrate for a wide range of high-temperature superconducting cuprates, colossal magnetoresistive manganites, and multiferroics. Moreover, in its heterostructures with different materials, STO exhibits a broad spectrum of important physics such as superconductivity, magnetism, the quantum Hall effect, giant thermoelectric effect, and colossal ionic conductivity, most of which emerge in a two-dimensional (2D) electron gas (2DEG) formed at an STO interface. However, little is known about its counterpart system, a 2D hole gas (2DHG) at the STO interface. Here, a simple way of realizing a 2DHG with an ultrahigh mobility of 24 000 cm2 V-1 s-1 is demonstrated using an interface between STO and a thin amorphous FeOy layer, made by depositing a sub-nanometer-thick Fe layer on an STO substrate at room temperature. This mobility is the highest among those reported for holes in oxides. The carrier type can be switched from p-type (2DHG) to n-type (2DEG) by controlling the Fe thickness. This unprecedented method of forming a 2DHG at an STO interface provides a pathway to unexplored hole-related physics in this system and enables extremely low-cost and high-speed oxide electronics.
Collapse
Affiliation(s)
- Le Duc Anh
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shingo Kaneta
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masashi Tokunaga
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8581, Japan
| | - Munetoshi Seki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hitoshi Tabata
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masaaki Tanaka
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinobu Ohya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
75
|
Narayan A. Effect of strain and doping on the polar metal phase in LiOsO 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:125501. [PMID: 31751959 DOI: 10.1088/1361-648x/ab5a10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We systematically investigate the effect of strain and doping on the polar metal phase in lithium osmate, LiOsO3, using first-principles calculations. We demonstrate that the polar metal phase in LiOsO3 can be controlled by biaxial strain. Based on density functional calculations, we show that a compressive biaxial strain enhances the stability of the polar R3c phase. On the other hand, a tensile biaxial strain favors the centrosymmetric [Formula: see text] structure. Thus, strain emerges as a promising control parameter over polar metallicity in this material. We uncover a strain-driven quantum phase transition under tensile strain, and highlight intriguing properties that could emerge in the vicinity of this polar to non-polar metal transition. We examine the effect of charge doping on the polar metal phase. By means of electrostatic doping as well as supercell calculations, we find that screening from additional charge carriers, expected to suppress the polar distortions, have only a small effect on them. Rather remarkably, and in contrast to conventional ferroelectrics, the polar metal phase in LiOsO3 remains robust against charge doping up to large doping values.
Collapse
Affiliation(s)
- Awadhesh Narayan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India. Materials Theory, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH 8093 Zurich, Switzerland
| |
Collapse
|
76
|
Telford EJ, Russell JC, Swann JR, Fowler B, Wang X, Lee K, Zangiabadi A, Watanabe K, Taniguchi T, Nuckolls C, Batail P, Zhu X, Malen JA, Dean CR, Roy X. Doping-Induced Superconductivity in the van der Waals Superatomic Crystal Re 6Se 8Cl 2. NANO LETTERS 2020; 20:1718-1724. [PMID: 32065756 DOI: 10.1021/acs.nanolett.9b04891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Superatomic crystals are composed of discrete modular clusters that emulate the role of atoms in traditional atomic solids. Owing to their unique hierarchical structures, these materials are promising candidates to host exotic phenomena, such as doping-induced superconductivity and magnetism. Low-dimensional superatomic crystals in particular hold great potential as electronic components in nanocircuits, but the impact of doping in such compounds remains unexplored. Here we report the electrical transport properties of Re6Se8Cl2, a two-dimensional superatomic semiconductor. We find that this compound can be n-doped in situ through Cl dissociation, drastically altering the transport behavior from semiconducting to metallic and giving rise to superconductivity with a critical temperature of ∼8 K and upper critical field exceeding 30 T. This work is the first example of superconductivity in a van der Waals superatomic crystal; more broadly, it establishes a new chemical strategy to manipulate the electronic properties of van der Waals materials with labile ligands.
Collapse
Affiliation(s)
- Evan J Telford
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Jake C Russell
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Joshua R Swann
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Brandon Fowler
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xiaoman Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kihong Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Amirali Zangiabadi
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044 Japan
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Patrick Batail
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Laboratoire MOLTECH, CNRS UMR 6200, Université d'Angers, 49045 Angers, France
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jonathan A Malen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
77
|
Itahashi YM, Ideue T, Saito Y, Shimizu S, Ouchi T, Nojima T, Iwasa Y. Nonreciprocal transport in gate-induced polar superconductor SrTiO 3. SCIENCE ADVANCES 2020; 6:eaay9120. [PMID: 32258403 PMCID: PMC7101218 DOI: 10.1126/sciadv.aay9120] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/03/2020] [Indexed: 05/05/2023]
Abstract
Polar conductors/superconductors with Rashba-type spin-orbit interaction are potential material platforms for quantum transport and spintronic functionalities. One of their inherent properties is the nonreciprocal transport, where the rightward and leftward currents become inequivalent, reflecting spatial inversion/time-reversal symmetry breaking. Such a rectification effect originating from the polar symmetry has been recently observed at interfaces or bulk Rashba semiconductors, while its mechanism in a polar superconductor remains elusive. Here, we report the nonreciprocal transport in gate-induced two-dimensional superconductor SrTiO3, which is a Rashba superconductor candidate. In addition to the gigantic enhancement of nonreciprocal signals in the superconducting fluctuation region, we found kink and sharp peak structures around critical temperatures, which reflect the crossover behavior from the paraconductivity origin to the vortex origin, based on a microscopic theory. The present result proves that the nonreciprocal transport is a powerful tool for investigating the interfacial/polar superconductors without inversion symmetry, where rich exotic features are theoretically prognosticated.
Collapse
Affiliation(s)
- Yuki M. Itahashi
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Toshiya Ideue
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- Corresponding author. (T.I.); (Y.I.)
| | - Yu Saito
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- California NanoSystems Institute, University of California at Santa Barbara, Santa Barbara CA 93106, USA
| | - Sunao Shimizu
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa 240-0196, Japan
| | - Takumi Ouchi
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Tsutomu Nojima
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Yoshihiro Iwasa
- Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
- Corresponding author. (T.I.); (Y.I.)
| |
Collapse
|
78
|
Film-thickness-driven superconductor to insulator transition in cuprate superconductors. Sci Rep 2020; 10:3236. [PMID: 32094455 PMCID: PMC7039923 DOI: 10.1038/s41598-020-60037-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/05/2020] [Indexed: 12/04/2022] Open
Abstract
The superconductor-insulator transition induced by film thickness control is investigated for the optimally doped cuprate superconductor La1.85Sr0.15CuO4. Epitaxial thin films are grown on an almost exactly matched substrate LaAlO3 (001). Despite the wide thickness range of 6 nm to 300 nm, all films are grown coherently without significant relaxation of the misfit strain. Electronic transport measurement exhibits systematic suppression of the superconducting phase by reducing the film thickness, thereby inducing a superconductor-insulator transition at a critical thickness of ~10 nm. The emergence of a resistance peak preceding the superconducting transition is discussed based on the weak localization. X-ray photoelectron spectroscopy results show the possibility that oxygen vacancies are present near the interface.
Collapse
|
79
|
Chen H, Zhang W, Li M, He G, Guo X. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem Rev 2020; 120:2879-2949. [PMID: 32078296 DOI: 10.1021/acs.chemrev.9b00532] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneous interfaces that are ubiquitous in optoelectronic devices play a key role in the device performance and have led to the prosperity of today's microelectronics. Interface engineering provides an effective and promising approach to enhancing the device performance of organic field-effect transistors (OFETs) and even developing new functions. In fact, researchers from different disciplines have devoted considerable attention to this concept, which has started to evolve from simple improvement of the device performance to sophisticated construction of novel functionalities, indicating great potential for further applications in broad areas ranging from integrated circuits and energy conversion to catalysis and chemical/biological sensors. In this review article, we provide a timely and comprehensive overview of current efficient approaches developed for building various delicate functional interfaces in OFETs, including interfaces within the semiconductor layers, semiconductor/electrode interfaces, semiconductor/dielectric interfaces, and semiconductor/environment interfaces. We also highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits, which have been neglected in most previous reviews. This review will provide a fundamental understanding of the interplay between the molecular structure, assembly, and emergent functions at the molecular level and consequently offer novel insights into designing a new generation of multifunctional integrated circuits and sensors toward practical applications.
Collapse
Affiliation(s)
- Hongliang Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Weining Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Mingliang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Gen He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China.,Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
80
|
Yi D, Wang Y, van ʼt Erve OMJ, Xu L, Yuan H, Veit MJ, Balakrishnan PP, Choi Y, N'Diaye AT, Shafer P, Arenholz E, Grutter A, Xu H, Yu P, Jonker BT, Suzuki Y. Emergent electric field control of phase transformation in oxide superlattices. Nat Commun 2020; 11:902. [PMID: 32060300 PMCID: PMC7021769 DOI: 10.1038/s41467-020-14631-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality.
Collapse
Affiliation(s)
- Di Yi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA.
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Olaf M J van ʼt Erve
- Materials Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Liubin Xu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hongtao Yuan
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Michael J Veit
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Purnima P Balakrishnan
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Haixuan Xu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China.
- Frontier Science Center for Quantum Information, Beijing, 100084, China.
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan.
| | - Berend T Jonker
- Materials Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Yuri Suzuki
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
81
|
Li J, Chen X, Xiao Y, Li S, Zhang G, Diao X, Yan H, Zhang Y. A tunable floating-base bipolar transistor based on a 2D material homojunction realized using a solid ionic dielectric material. NANOSCALE 2019; 11:22531-22538. [PMID: 31746898 DOI: 10.1039/c9nr07597f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Floating-base bipolar transistors are widely used semiconductor devices because they could both amplify signal current and suppress noise. Employing two-dimensional (2D) materials of ultrahigh photoelectric properties could further improve the device performance. Due to the difficulty in doping, homojunctions are usually not realizable for many 2D materials. Instead, a heterojunction of various 2D materials of different Fermi levels is usually needed. However, the material interface of a heterojunction deteriorates device performance and makes the fabrication process difficult. Here, the doping difficulties have been solved by utilizing a solid ionic dielectric material (LiTaO3) and a floating-base bipolar transistor based on a 2D material (monolayer MoS2 here) homojunction is realized. The transistor shows tunable ambipolar transport characteristics. Particularly, under illumination, the amplification coefficient of a phototransistor can be optimized by changing the gate voltage. The optimized photoresponsivity of the device could reach up to 7.9 A W-1 with an ultrahigh detectivity of 3.39 × 1011 Jones. The overall fabrication processing is compatible to conventional processing. This design can effectively extend the application of 2D materials.
Collapse
Affiliation(s)
- Jingfeng Li
- College of Materials Science and Engineering and Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Taniguchi T, Li S, Nurdiwijayanto L, Kobayashi Y, Saito T, Miyata Y, Obata S, Saiki K, Yokoi H, Watanabe K, Taniguchi T, Tsukagoshi K, Ebina Y, Sasaki T, Osada M. Tunable Chemical Coupling in Two-Dimensional van der Waals Electrostatic Heterostructures. ACS NANO 2019; 13:11214-11223. [PMID: 31580052 DOI: 10.1021/acsnano.9b04256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heterostructures of two-dimensional (2D) atomic crystals provide fascinating molecular-scale design elements for emergent physical phenomena and functional materials, as integrating distinct monolayers into vertical heterostructures can afford coupling between disparate properties. However, the available examples have been limited to either van der Waals (vdW) or electrostatic (ES) heterostructures that are solely composed of noncharged and charged monolayers, respectively. Here, we propose a "vdW-ES heterostructure" chemical design in which charge-neutral and charged monolayer-building blocks with highly disparate chemical and physical properties are conjugated vertically through asymmetrically charged interfaces. We demonstrate vdW-ES heteroassembly of semiconducting MoS2 and dielectric Ca2Nb3O10- (CNO) monolayers using an amphipathic molecular starch, resulting in the emergence of trion luminescence observed at the lowest energy among MoS2-related materials, probably due to interfacial confinement effects given by vdW-ES dual interactions. In addition, interface engineering leads to tailored exciton of the vdW/ES heterostructures owing to the pronounced dielectric proximity effects, bringing an intriguing interlayer chemistry to modify 2D materials. Furthermore, the current approach was successfully extended to create a graphene/CNO heterostructure, which verifies the versatility of the preparative method.
Collapse
Affiliation(s)
- Takaaki Taniguchi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Shisheng Li
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Leanddas Nurdiwijayanto
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Yu Kobayashi
- Department of Physics , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| | - Tetsuki Saito
- Department of Physics , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| | - Yasumitsu Miyata
- Department of Physics , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| | - Seiji Obata
- Department of Complexity Science and Engineering , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa , Chiba 277-8561 , Japan
| | - Koichiro Saiki
- Department of Complexity Science and Engineering , Graduate School of Frontier Sciences, The University of Tokyo , Kashiwa , Chiba 277-8561 , Japan
| | - Hiroyuki Yokoi
- Faculty of Advanced Science and Technology , Kumamoto University , Kumamoto 860-8555 , Japan
| | - Kenji Watanabe
- Research Center for Functional Materials , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Takashi Taniguchi
- Research Center for Functional Materials , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Kazuhito Tsukagoshi
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Yasuo Ebina
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Takayoshi Sasaki
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Minoru Osada
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science(NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
- Institute of Materials and Systems for Sustainability , Nagoya University , Furocho, Chikusa-ku, Nagoya 464-8603 , Japan
| |
Collapse
|
83
|
Li H, Lou F, Wang Y, Zhang Y, Zhang Q, Wu D, Li Z, Wang M, Huang T, Lyu Y, Guo J, Chen T, Wu Y, Arenholz E, Lu N, Wang N, He Q, Gu L, Zhu J, Nan C, Zhong X, Xiang H, Yu P. Electric Field-Controlled Multistep Proton Evolution in H x SrCoO 2.5 with Formation of H-H Dimer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901432. [PMID: 31637170 PMCID: PMC6794722 DOI: 10.1002/advs.201901432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Indexed: 05/30/2023]
Abstract
Ionic evolution-induced phase transformation can lead to wide ranges of novel material functionalities with promising applications. Here, using the gating voltage during ionic liquid gating as a tuning knob, the brownmillerite SrCoO2.5 is transformed into a series of protonated H x SrCoO2.5 phases with distinct hydrogen contents. The unexpected electron to charge-neutral doping crossover along with the increase of proton concentration from x = 1 to 2 suggests the formation of exotic charge neutral H-H dimers for higher proton concentration, which is directly visualized at the vacant tetrahedron by scanning transmission electron microscopy and then further supported by first principles calculations. Although the H-H dimers cause no change of the valency of Co2+ ions, they result in clear enhancement of electronic bandgap and suppression of magnetization through lattice expansion. These results not only reveal a hydrogen chemical state beyond anion and cation within the complex oxides, but also suggest an effective pathway to design functional materials through tunable ionic evolution.
Collapse
Affiliation(s)
- Hao‐Bo Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Feng Lou
- Key Laboratory of Computational Physical Sciences (Ministry of Education)State Key Laboratory of Surface Physics, and Department of PhysicsFudan UniversityShanghai200433China
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Yang Zhang
- National Center for Electron Microscopy in BeijingKey Laboratory of Advanced Materials (MOE)Beijing100084China
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Collaborative Innovation Center of Quantum MatterBeijing100084China
| | - Dong Wu
- Collaborative Innovation Center of Quantum MatterBeijing100084China
- International Center for Quantum MaterialsSchool of PhysicsPeking UniversityBeijing100871China
| | - Zhuolu Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Meng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
- Collaborative Innovation Center of Quantum MatterBeijing100084China
| | - Tongtong Huang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Yingjie Lyu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Jingwen Guo
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Tianzhe Chen
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Yang Wu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
- Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
| | - Elke Arenholz
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeley94720CAUSA
| | - Nianpeng Lu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Nanlin Wang
- International Center for Quantum MaterialsSchool of PhysicsPeking UniversityBeijing100871China
| | - Qing He
- Department of PhysicsDurham UniversityDurhamDH13LEUK
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Collaborative Innovation Center of Quantum MatterBeijing100084China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jing Zhu
- National Center for Electron Microscopy in BeijingKey Laboratory of Advanced Materials (MOE)Beijing100084China
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Ce‐Wen Nan
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Xiaoyan Zhong
- National Center for Electron Microscopy in BeijingKey Laboratory of Advanced Materials (MOE)Beijing100084China
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education)State Key Laboratory of Surface Physics, and Department of PhysicsFudan UniversityShanghai200433China
- Collaborative Innovation Center of Advanced MicrostructuresNanjing210093China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
- Collaborative Innovation Center of Quantum MatterBeijing100084China
- RIKEN Center for Emergent Matter Science (CEMS)Saitama351‐0198Japan
| |
Collapse
|
84
|
Matsuzaki K, Katase T, Kamiya T, Hosono H. Symmetric Ambipolar Thin-Film Transistors and High-Gain CMOS-like Inverters Using Environmentally Friendly Copper Nitride. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35132-35137. [PMID: 31456393 DOI: 10.1021/acsami.9b12068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxide semiconductor thin-film transistors (TFTs) are currently used as the fundamental building blocks in commercial flat-panel displays because of the excellent performance of n-channel TFTs. However, except for a few materials, their p-channel performances have not been acceptable. Although some p-type oxide semiconductors exhibit superior hole transport properties, their TFT performances are greatly deteriorated, which is a major obstacle in the development of complementary metal-oxide-semiconductor (CMOS) circuits. Herein, an ionic nitride semiconductor, copper nitride (Cu3N), composed of environmentally benign elements is shown to exhibit highly symmetric hole and electron transport, indicating its suitability for application in CMOS circuits. We performed a two-step investigation. The first step was to examine the ultimate potential of Cu3N using an electric-double-layer transistor structure with epitaxial Cu3N channels measured at 220 K, which exhibited ambipolar operation with hole and electron mobilities of ∼5 and ∼10 cm2 V-1 s-1, respectively, and a high on/off ratio of ∼105. The second step is to demonstrate the feasibility of TFT circuits with a polycrystalline channel on non-single-crystal (SiO2/Si) substrates. CMOS-like inverters composed of two polycrystalline Cu3N ambipolar TFTs on a SiO2/Si substrate exhibited a high voltage gain of ∼100.
Collapse
Affiliation(s)
| | - Takayoshi Katase
- PRESTO, Japan Science and Technology Agency , 7 Goban-cho , Chiyoda, Tokyo 102-0076 , Japan
| | | | | |
Collapse
|
85
|
Xian L, Kennes DM, Tancogne-Dejean N, Altarelli M, Rubio A. Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor. NANO LETTERS 2019; 19:4934-4940. [PMID: 31260633 PMCID: PMC6699729 DOI: 10.1021/acs.nanolett.9b00986] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/22/2019] [Indexed: 05/27/2023]
Abstract
Two-dimensional materials, obtained by van der Waals stacking of layers, are fascinating objects of contemporary condensed matter research, exhibiting a variety of new physics. Inspired by the breakthroughs of twisted bilayer graphene (TBG), we demonstrate that twisted bilayer boron nitride (TBBN) is an even more exciting novel system that turns out to be an excellent platform to realize new correlated phases and phenomena; exploration of its electronic properties shows that in contrast to TBG in TBBN multiple families of 2,4, and 6-fold degenerate flat bands emerge without the need to fine tune close to a "magic angle", resulting in dramatic and tunable changes in optical properties and exciton physics, and providing an additional platform to study strong correlations. Upon doping, unforeseen new correlated phases of matter (insulating and superconducting) emerge. TBBN could thus provide a promising experimental platform, insensitive to small deviations in the twist angle, to study novel exciton condensate and spatial confinement physics, and correlations in two dimensions.
Collapse
Affiliation(s)
- Lede Xian
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dante M. Kennes
- Dahlem
Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Nicolas Tancogne-Dejean
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Massimo Altarelli
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Nano-Bio
Spectroscopy Group and ETSF, Universidad
del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia, Spain
- Center
for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United
States
| |
Collapse
|
86
|
Liu N, Chen R, Wan Q. Recent Advances in Electric-Double-Layer Transistors for Bio-Chemical Sensing Applications. SENSORS 2019; 19:s19153425. [PMID: 31387221 PMCID: PMC6696065 DOI: 10.3390/s19153425] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
As promising biochemical sensors, ion-sensitive field-effect transistors (ISFETs) are used widely in the growing field of biochemical sensing applications. Recently, a new type of field-effect transistor gated by ionic electrolytes has attracted intense attention due to the extremely strong electric-double-layer (EDL) gating effect. In such devices, the carrier density of the semiconductor channel can be effectively modulated by an ion-induced EDL capacitance at the semiconductor/electrolyte interface. With advantages of large specific capacitance, low operating voltage and sensitive interfacial properties, various EDL-based transistor (EDLT) devices have been developed for ultrasensitive portable sensing applications. In this article, we will review the recent progress of EDLT-based biochemical sensors. Starting with a brief introduction of the concepts of EDL capacitance and EDLT, we describe the material compositions and the working principle of EDLT devices. Moreover, the biochemical sensing performances of several important EDLTs are discussed in detail, including organic-based EDLTs, oxide-based EDLTs, nanomaterial-based EDLTs and neuromorphic EDLTs. Finally, the main challenges and development prospects of EDLT-based biochemical sensors are listed.
Collapse
Affiliation(s)
- Ning Liu
- Nanchang Institute of Technology, Nanchang 330099, China
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China
| | - Ru Chen
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Qing Wan
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
87
|
Ren X, Wang Y, Xie Z, Xue F, Leighton C, Frisbie CD. Gate-Tuned Insulator-Metal Transition in Electrolyte-Gated Transistors Based on Tellurene. NANO LETTERS 2019; 19:4738-4744. [PMID: 31181883 DOI: 10.1021/acs.nanolett.9b01827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tellurene is a recently discovered 2D material with high hole mobility and air stability, rendering it a good candidate for future applications in electronics, optoelectronics, and energy devices. However, the physical properties of tellurene remain poorly understood. In this paper, we report on the fabrication and characterization of high-performance electrolyte-gated transistors (EGTs) based on solution-grown tellurene flakes <30 nm in thickness. Both Hall measurements and resistance-temperature behavior down to 2 K are recorded at multiple gate voltages, and an electronic phase diagram is generated. The results show that it is possible to cross the insulator-metal transition in tellurene EGTs by tuning gate voltage, achieving mobility up to ∼500 cm2 V-1 s-1. In particular, a truly metallic 2D state is observed at gate-induced hole densities >1 × 1013 cm-2, as confirmed by the temperature dependence of resistance and magnetoresistance measurements. Wide-range tuning of the electronic ground state of tellurene is thus achievable in EGTs, opening up new opportunities to realize electrical control of its physical properties.
Collapse
|
88
|
Dong S, Xiang H, Dagotto E. Magnetoelectricity in multiferroics: a theoretical perspective. Natl Sci Rev 2019; 6:629-641. [PMID: 34691919 PMCID: PMC8291640 DOI: 10.1093/nsr/nwz023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/24/2022] Open
Abstract
The key physical property of multiferroic materials is the existence of coupling between magnetism and polarization, i.e. magnetoelectricity. The origin and manifestations of magnetoelectricity can be very different in the available plethora of multiferroic systems, with multiple possible mechanisms hidden behind the phenomena. In this review, we describe the fundamental physics that causes magnetoelectricity from a theoretical viewpoint. The present review will focus on mainstream physical mechanisms in both single-phase multiferroics and magnetoelectric heterostructures. The most recent tendencies addressing possible new magnetoelectric mechanisms will also be briefly outlined.
Collapse
Affiliation(s)
- Shuai Dong
- School of Physics, Southeast University, Nanjing 211189, China
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Elbio Dagotto
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
89
|
Stark MS, Kuntz KL, Martens SJ, Warren SC. Intercalation of Layered Materials from Bulk to 2D. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808213. [PMID: 31069852 DOI: 10.1002/adma.201808213] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Indexed: 05/23/2023]
Abstract
Intercalation in few-layer (2D) materials is a rapidly growing area of research to develop next-generation energy-storage and optoelectronic devices, including batteries, sensors, transistors, and electrically tunable displays. Identifying fundamental differences between intercalation in bulk and 2D materials will play a key role in developing functional devices. Herein, advances in few-layer intercalation are addressed in the historical context of bulk intercalation. First, synthesis methods and structural properties are discussed, emphasizing electrochemical techniques, the mechanism of intercalation, and the formation of a solid-electrolyte interphase. To address fundamental differences between bulk and 2D materials, scaling relationships describe how intercalation kinetics, structure, and electronic and optical properties depend on material thickness and lateral dimension. Here, diffusion rates, pseudocapacity, limits of staging, and electronic structure are compared for bulk and 2D materials. Next, the optoelectronic properties are summarized, focusing on charge transfer, conductivity, and electronic structure. For energy devices, opportunities also emerge to design van der Waals heterostructures with high capacities and excellent cycling performance. Initial studies of heterostructured electrodes are compared to state-of-the-art battery materials. Finally, challenges and opportunities are presented for 2D materials in energy and optoelectronic applications, along with promising research directions in synthesis and characterization to engineer 2D materials for superior devices.
Collapse
Affiliation(s)
- Madeline S Stark
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaci L Kuntz
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sean J Martens
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Scott C Warren
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
90
|
Geremew AK, Rumyantsev S, Kargar F, Debnath B, Nosek A, Bloodgood MA, Bockrath M, Salguero TT, Lake RK, Balandin AA. Bias-Voltage Driven Switching of the Charge-Density-Wave and Normal Metallic Phases in 1T-TaS 2 Thin-Film Devices. ACS NANO 2019; 13:7231-7240. [PMID: 31173685 DOI: 10.1021/acsnano.9b02870] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on switching among three charge-density-wave phases, commensurate, nearly commensurate, incommensurate, and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane bias voltage. The switching among all phases has been achieved over a wide temperature range, from 77 to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 to 600 K. Analysis of the experimental data and calculations of heat dissipation indicate that Joule heating plays a dominant role in the voltage induced transitions in the 1T-TaS2 devices on Si/SiO2 substrates, contrary to some recent claims. The possibility of the bias-voltage switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in the materials.
Collapse
Affiliation(s)
| | - Sergey Rumyantsev
- Center for Terahertz Research and Applications (CENTERA), Institute of High-Pressure Physics , Polish Academy of Sciences , Warsaw 01-142 , Poland
| | | | | | | | - Matthew A Bloodgood
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | | | - Tina T Salguero
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | | | | |
Collapse
|
91
|
Li L, Chen C, Watanabe K, Taniguchi T, Zheng Y, Xu Z, Pereira VM, Loh KP, Castro Neto AH. Anomalous Quantum Metal in a 2D Crystalline Superconductor with Electronic Phase Nonuniformity. NANO LETTERS 2019; 19:4126-4133. [PMID: 31082262 DOI: 10.1021/acs.nanolett.9b01574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The details of the superconducting to quantum metal transition (SQMT) at T = 0 are an open problem that invokes great interest in the nature of this exotic and unexpected ground state (Ephron et al., 1996; Mason and Kapitulnik, 1999; Chervenak and Valles, 2000). However, the SQMT was not yet investigated in a crystalline 2D superconductor with coexisting and fluctuating quantum orders. Here, we report the observation of a SQMT in 2D ion-gel-gated 1T-TiSe2 (Li et al., 2016) driven by a magnetic field. A field-induced crossover between Bose quantum metal and vortex quantum creeping with an increasing field is observed. We discuss the interplay between superconducting and CDW fluctuations (discommensurations) and their relation to the anomalous quantum metal (AQM) phase. From our findings, gate-tunable 1T-TiSe2 emerges as a privileged platform to scrutinize, in a controlled way, the details of the SQMT, the role of coexisting fluctuating orders and, ultimately, to obtain a deeper understanding of the fate of superconductivity in strictly two-dimensional crystals near zero temperature.
Collapse
Affiliation(s)
- Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Chuan Chen
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , Singapore 117546
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117551
| | - Kenji Watanabe
- National Institute for Materials Science , Namiki 1-1, Tsukuba , Ibaraki 305-0044 , Japan
| | - Takashi Taniguchi
- National Institute for Materials Science , Namiki 1-1, Tsukuba , Ibaraki 305-0044 , Japan
| | - Yi Zheng
- Department of Physics , Zhejiang University , Hangzhou 310027 , China
| | - Zhuan Xu
- Department of Physics , Zhejiang University , Hangzhou 310027 , China
| | - Vitor M Pereira
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , Singapore 117546
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117551
| | - Kian Ping Loh
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , Singapore 117546
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543
| | - Antonio H Castro Neto
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , Singapore 117546
- Department of Physics , National University of Singapore , 2 Science Drive 3 , Singapore 117551
| |
Collapse
|
92
|
Molinari A, Hahn H, Kruk R. Voltage-Control of Magnetism in All-Solid-State and Solid/Liquid Magnetoelectric Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806662. [PMID: 30785649 DOI: 10.1002/adma.201806662] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The control of magnetism by means of low-power electric fields, rather than dissipative flowing currents, has the potential to revolutionize conventional methods of data storage and processing, sensing, and actuation. A promising strategy relies on the utilization of magnetoelectric composites to finely tune the interplay between electric and magnetic degrees of freedom at the interface of two functional materials. Albeit early works predominantly focused on the magnetoelectric coupling at solid/solid interfaces; however, recently there has been an increased interest related to the opportunities offered by liquid-gating techniques. Here, a comparative overview on voltage control of magnetism in all-solid-state and solid/liquid composites is presented within the context of the principal coupling mediators, i.e., strain, charge carrier doping, and ionic intercalation. Further, an exhaustive and critical discussion is carried out, concerning the suitability of using the common definition of coupling coefficient α C = Δ M Δ E to compare the strength of the interaction between electricity and magnetism among different magnetoelectric systems.
Collapse
Affiliation(s)
- Alan Molinari
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Horst Hahn
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- KIT-TUD-Joint Research Laboratory Nanomaterials, Technical University Darmstadt, Jovanka-Bontschits-Strasse 2, 64287, Darmstadt, Germany
| | - Robert Kruk
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
93
|
Zhang C, Zhao W, Bi S, Rouleau CM, Fowlkes JD, Boldman WL, Gu G, Li Q, Feng G, Rack PD. Low-Temperature Charging Dynamics of the Ionic Liquid and Its Gating Effect on FeSe 0.5Te 0.5 Superconducting Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17979-17986. [PMID: 31021595 DOI: 10.1021/acsami.9b02373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ionic liquids (ILs) have been investigated extensively because of their unique ability to form the electric double layer (EDL), which induces high electrical field. For certain materials, low-temperature IL charging is needed to limit the electrochemical etching. Here, we report our investigation of the low-temperature charging dynamics in two widely used ILs-DEME-TF2N and C4mim-TF2N. Results show that the formation of the EDL at ∼220 K requires several hours relative to milliseconds at room temperature, and an equivalent voltage Ve is introduced as a measure of the EDL formation during the biasing process. The experimental observation is supported by molecular dynamics simulation, which shows that the dynamics are logically a function of gate voltage, time, and temperature. To demonstrate the importance of understanding the charging dynamics, a 140 nm thick FeSe0.5Te0.5 film was biased using the DEME IL, showing a tunable Tc between 18 and 35 K. Notably, this is the first observation of the tunability of the Tc in thick film FeSe0.5Te0.5 superconductors.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Materials Science and Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Wei Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Christopher M Rouleau
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Jason D Fowlkes
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Walker L Boldman
- Department of Materials Science and Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Genda Gu
- Department of Condensed Matter Physics and Materials Science , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Qiang Li
- Department of Condensed Matter Physics and Materials Science , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
- Shenzhen Research Institute of Huazhong University of Science and Technology , Shenzhen 518057 , China
| | - Philip D Rack
- Department of Materials Science and Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
94
|
Zhao W, Bi S, Zhang C, Rack PD, Feng G. Adding Solvent into Ionic Liquid-Gated Transistor: The Anatomy of Enhanced Gating Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13822-13830. [PMID: 30875194 DOI: 10.1021/acsami.9b03433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Most studies of ionic liquid (IL)-gated field effect transistors (FETs) focus on the extremely large electric field and capacitance induced in liquid/solid interfaces and correspondingly the significantly enhanced carrier density in semiconductors, which can appreciably improve the gating performance. However, how to boost the switching speed, another key property of gating performance of FETs, has been rarely explored. In this work, the gating performance of molybdenum disulfide (MoS2) FETs, gated by the mixtures of IL/organic solvent (1-butyl-3-methylimidazolium tetrafluoroborate/acetonitrile, [Bmim][BF4]/ACN) at different ion concentrations, is investigated for both dynamic and static properties by a combination of molecular dynamics simulation and resistance network analysis. Results reveal that organic solvent can speed up the IL response time by a factor of about 40 times at the optimal ion concentration of 1.94 M, which is mainly attributed to the increased ionic conductivity of IL via the addition of organic solvent. Meanwhile, the surface charge distribution of MoS2 becomes more homogenous after the addition of organic solvent, which increases the conductivity of MoS2 by up to 2.4 times. Surprisingly, the optimal ion concentration for increased switching speed is nearly the same as that for achieving the highest MoS2 conductivity. Thus, our findings provide a strategy to simultaneously improve the dynamic and static gating performance of IL-gated FETs as well as a modeling technique to screen out the ideal ion concentration.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Cheng Zhang
- Department of Materials Science and Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Philip D Rack
- Department of Materials Science and Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
- Shenzhen Research Institute of Huazhong University of Science and Technology , Shenzhen 518057 , China
| |
Collapse
|
95
|
Wang M, Sui X, Wang Y, Juan YH, Lyu Y, Peng H, Huang T, Shen S, Guo C, Zhang J, Li Z, Li HB, Lu N, N'Diaye AT, Arenholz E, Zhou S, He Q, Chu YH, Duan W, Yu P. Manipulate the Electronic and Magnetic States in NiCo 2 O 4 Films through Electric-Field-Induced Protonation at Elevated Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900458. [PMID: 30811706 DOI: 10.1002/adma.201900458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 05/25/2023]
Abstract
Ionic-liquid-gating- (ILG-) induced proton evolution has emerged as a novel strategy to realize electron doping and manipulate the electronic and magnetic ground states in complex oxides. While the study of a wide range of systems (e.g., SrCoO2.5 , VO2 , WO3 , etc.) has demonstrated important opportunities to incorporate protons through ILG, protonation remains a big challenge for many others. Furthermore, the mechanism of proton intercalation from the ionic liquid/solid interface to whole film has not yet been revealed. Here, with a model system of inverse spinel NiCo2 O4 , an increase in system temperature during ILG forms a single but effective method to efficiently achieve protonation. Moreover, the ILG induces a novel phase transformation in NiCo2 O4 from ferrimagnetic metallic into antiferromagnetic insulating with protonation at elevated temperatures. This study shows that environmental temperature is an efficient tuning knob to manipulate ILG-induced ionic evolution.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Xuelei Sui
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yung-Hsiang Juan
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yingjie Lyu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Huining Peng
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Tongtong Huang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Shengchun Shen
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Chenguang Guo
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Jianbing Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Zhuolu Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Hao-Bo Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Nianpeng Lu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shuyun Zhou
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Qing He
- Department of Physics, Durham University, Durham, DH13LE, UK
| | - Ying-Hao Chu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wenhui Duan
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-198, Japan
| |
Collapse
|
96
|
Ummarino GA, Romanin D. Proximity two bands Eliashberg theory of electrostatic field-effect doping in a superconducting film of MgB 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:024001. [PMID: 30511649 DOI: 10.1088/1361-648x/aaef6b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A key aspect of field effect experiments is the possibility to induce charges on the first layers of a sample as a function of an applied gate voltage. It is therefore possible to study correlated phases of matter as a function of the induced charge density and the applied electric field. Moreover, resulting charge modulation along the direction of the applied electric field gives rise to junctions between perturbed and uneffected regions of the sample. In the framework of proximity effect Eliashberg theory, we investigate the consequence of an applied static electric field on the transition temperature of a two-band s-wave superconductor magnesium diboride. In most cases the only free parameter in the theory is the penetration depth of the applied electric field, whereas there is no freedom when the static perturbation is sufficiently weak. We come to the conclusion that the optimal way to enhance the critical temperature is to have a very thin film of magnesium diboride, otherwise the external electric field would not have substantial effect on superconductivity in this material.
Collapse
Affiliation(s)
- G A Ummarino
- Istituto di Ingegneria e Fisica dei Materiali, Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashira Hwy 31, Moskva 115409, Russia
| | | |
Collapse
|
97
|
McCaughan AN, Verma VB, Buckley S, Allmaras JP, Kozorezov AG, Tait AN, Nam SW, Shainline JM. A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semiconductors. NATURE ELECTRONICS 2019; 2:10.1038/s41928-019-0300-8. [PMID: 32118196 PMCID: PMC7047719 DOI: 10.1038/s41928-019-0300-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 05/31/2023]
Abstract
A number of current approaches to quantum and neuromorphic computing use superconductors as the basis of their platform or as a measurement component, and will need to operate at cryogenic temperatures. Semiconductor systems are typically proposed as a top-level control in these architectures, with low-temperature passive components and intermediary superconducting electronics acting as the direct interface to the lowest-temperature stages. The architectures, therefore, require a low-power superconductor-semiconductor interface, which is not currently available. Here we report a superconducting switch that is capable of translating low-voltage superconducting inputs directly into semiconductor-compatible (above 1,000 mV) outputs at kelvin-scale temperatures (1K or 4 K). To illustrate the capabilities in interfacing superconductors and semiconductors, we use it to drive a light-emitting diode (LED) in a photonic integrated circuit, generating photons at 1K from a low-voltage input and detecting them with an on-chip superconducting single-photon detector. We also characterize our device's timing response (less than 300 ps turn-on, 15 ns turn-off), output impedance (greater than 1MΩ), and energy requirements (0.18fJ/μm2,3.24mV/nW).
Collapse
Affiliation(s)
- A N McCaughan
- National Institute of Standards and Technology, Boulder, CO 80305
| | - V B Verma
- National Institute of Standards and Technology, Boulder, CO 80305
| | - S Buckley
- National Institute of Standards and Technology, Boulder, CO 80305
| | - J P Allmaras
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | - A G Kozorezov
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - A N Tait
- National Institute of Standards and Technology, Boulder, CO 80305
| | - S W Nam
- National Institute of Standards and Technology, Boulder, CO 80305
| | - J M Shainline
- National Institute of Standards and Technology, Boulder, CO 80305
| |
Collapse
|
98
|
Leighton C. Electrolyte-based ionic control of functional oxides. NATURE MATERIALS 2019; 18:13-18. [PMID: 30542099 DOI: 10.1038/s41563-018-0246-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/12/2018] [Indexed: 05/23/2023]
Abstract
The use of electrolyte gating to electrically control electronic, magnetic and optical properties of materials has seen strong recent growth, driven by the potential of the many devices and applications that such control may enable. Contrary to initial expectations of a purely electrostatic response based on electron or hole doping, electrochemical mechanisms based on the motion of ions are now understood to be common, suggesting promising new electrical control concepts.
Collapse
Affiliation(s)
- Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
99
|
Yan L, Bo T, Zhang W, Liu PF, Lu Z, Xiao YG, Tang MH, Wang BT. Novel structures of two-dimensional tungsten boride and their superconductivity. Phys Chem Chem Phys 2019; 21:15327-15338. [DOI: 10.1039/c9cp02727k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We predict four new tungsten boride monolayers and demonstrate that two of them are phonon-mediated superconductors with superconducting transition temperatures of 7.8 and 1.5 K.
Collapse
Affiliation(s)
- Luo Yan
- Key Laboratory of Key Film Materials & Application for Equipments (Hunan Province)
- School of Material Sciences and Engineering
- Xiangtan University
- Xiangtan
- China
| | - Tao Bo
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
- China
- Dongguan Institute of Neutron Science (DINS)
| | - Wenxue Zhang
- Collaborative Innovation Center of Extreme Optics
- Shanxi University
- Taiyuan
- China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices
| | - Peng-Fei Liu
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
- China
- Dongguan Institute of Neutron Science (DINS)
| | - Zhansheng Lu
- College of Physics and Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Yong-Guang Xiao
- Key Laboratory of Key Film Materials & Application for Equipments (Hunan Province)
- School of Material Sciences and Engineering
- Xiangtan University
- Xiangtan
- China
| | - Ming-Hua Tang
- Key Laboratory of Key Film Materials & Application for Equipments (Hunan Province)
- School of Material Sciences and Engineering
- Xiangtan University
- Xiangtan
- China
| | - Bao-Tian Wang
- Institute of High Energy Physics
- Chinese Academy of Sciences (CAS)
- Beijing 100049
- China
- Dongguan Institute of Neutron Science (DINS)
| |
Collapse
|
100
|
Gariglio S, Caviglia AD, Triscone JM, Gabay M. A spin-orbit playground: surfaces and interfaces of transition metal oxides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:012501. [PMID: 30058557 DOI: 10.1088/1361-6633/aad6ab] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Within the last twenty years, the status of the spin-orbit interaction has evolved from that of a simple atomic contribution to a key effect that modifies the electronic band structure of materials. It is regarded as one of the basic ingredients for spintronics, locking together charge and spin degrees of freedom and recently it is instrumental in promoting a new class of compounds, the topological insulators. In this review, we present the current status of the research on the spin-orbit coupling in transition metal oxides, discussing the case of two semiconducting compounds, [Formula: see text] and [Formula: see text], and the properties of surface and interfaces based on these. We conclude with the investigation of topological effects predicted to occur in different complex oxides.
Collapse
Affiliation(s)
- S Gariglio
- DQMP, University of Geneva, 24 Quai E.-Ansermet 1211, Geneva, Switzerland
| | | | | | | |
Collapse
|