51
|
de Campos RP, Schultz IC, de Andrade Mello P, Davies S, Gasparin MS, Bertoni APS, Buffon A, Wink MR. Cervical cancer stem-like cells: systematic review and identification of reference genes for gene expression. Cell Biol Int 2018; 42:139-152. [PMID: 28949053 DOI: 10.1002/cbin.10878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/24/2017] [Indexed: 12/21/2022]
Abstract
Cervical cancer is the fourth most common cancer affecting women worldwide. Among many factors, the presence of cancer stem cells, a subpopulation of cells inside the tumor, has been associated with a worse prognosis. Considering the importance of gene expression studies to understand the biology of cervical cancer stem cells (CCSC), this work identifies stable reference genes for cervical cancer cell lines SiHa, HeLa, and ME180 as well as their respective cancer stem-like cells. A literature review was performed to identify validated reference genes currently used to normalize RT-qPCR data in cervical cancer cell lines. Then, cell lines were cultured in regular monolayer or in a condition that favors tumor sphere formation. RT-qPCR was performed using five reference genes: ACTB, B2M, GAPDH, HPRT1, and TBP. Stability was assessed to validate the selected genes as suitable reference genes. The evaluation validated B2M, GAPDH, HPRT1, and TBP in these experimental conditions. Among them, GAPDH and TBP presented the lowest variability according to the analysis by Normfinder, Bestkeeper, and ΔCq methods, being therefore the most adequate genes to normalize the combination of all samples. These results suggest that B2M, GAPDH, HPRT1, and TBP are suitable reference genes to normalize RT-qPCR data of established cervical cancer cell lines SiHa, HeLa, and ME180 as well as their derived cancer stem-like cells. Indeed, GAPDH and TBP seem to be the most convenient choices for studying gene expression in these cells in monolayers or spheres.
Collapse
Affiliation(s)
- Rafael P de Campos
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Iago C Schultz
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Paola de Andrade Mello
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Samuel Davies
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Manuela S Gasparin
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Ana P S Bertoni
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Andréia Buffon
- Laboratório de Análises Bioquímicas e Citológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Rio Grande do Sul, Brazil
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| |
Collapse
|
52
|
Necrostatin-1 Improves Long-term Functional Recovery Through Protecting Oligodendrocyte Precursor Cells After Transient Focal Cerebral Ischemia in Mice. Neuroscience 2018; 371:229-241. [DOI: 10.1016/j.neuroscience.2017.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
|
53
|
Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells. Cell Rep 2017; 17:609-623. [PMID: 27705805 DOI: 10.1016/j.celrep.2016.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 01/02/2023] Open
Abstract
High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma.
Collapse
|
54
|
Lozano-Ureña A, Montalbán-Loro R, Ferguson-Smith AC, Ferrón SR. Genomic Imprinting and the Regulation of Postnatal Neurogenesis. Brain Plast 2017; 3:89-98. [PMID: 29765862 PMCID: PMC5928554 DOI: 10.3233/bpl-160041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most genes required for mammalian development are expressed from both maternally and paternally inherited chromosomal homologues. However, there are a small number of genes known as “imprinted genes” that only express a single allele from one parent, which is repressed on the gene from the other parent. Imprinted genes are dependent on epigenetic mechanisms such as DNA methylation and post-translational modifications of the DNA-associated histone proteins to establish and maintain their parental identity. In the brain, multiple transcripts have been identified which show parental origin-specific expression biases. However, the mechanistic relationship with canonical imprinting is unknown. Recent studies on the postnatal neurogenic niches raise many intriguing questions concerning the role of genomic imprinting and gene dosage during postnatal neurogenesis, including how imprinted genes operate in concert with signalling cues to contribute to newborn neurons’ formation during adulthood. Here we have gathered the current knowledge on the imprinting process in the neurogenic niches. We also review the phenotypes associated with genetic mutations at particular imprinted loci in order to consider the impact of imprinted genes in the maintenance and/or differentiation of the neural stem cell pool in vivo and during brain tumour formation.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- ERI BiotecMed Departamento de Biología Celular, Universidad de Valencia, Spain
| | | | | | - Sacri R Ferrón
- ERI BiotecMed Departamento de Biología Celular, Universidad de Valencia, Spain
| |
Collapse
|
55
|
Flores-Téllez TNJ, Villa-Treviño S, Piña-Vázquez C. Road to stemness in hepatocellular carcinoma. World J Gastroenterol 2017; 23:6750-6776. [PMID: 29085221 PMCID: PMC5645611 DOI: 10.3748/wjg.v23.i37.6750] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Carcinogenic process has been proposed to relay on the capacity to induce local tissue damage and proliferative repair. Liver has a great regeneration capacity and currently, most studies point towards the dominant role of hepatocytes in regeneration at all levels of liver damage. The most frequent liver cancer is hepatocellular carcinoma (HCC). Historical findings originally led to the idea that the cell of origin of HCC might be a progenitor cell. However, current linage tracing studies put the progenitor hypothesis of HCC origin into question. In agreement with their dominant role in liver regeneration, mature hepatocytes are emerging as the cell of origin of HCC, although, the specific hepatocyte subpopulation of origin is yet to be determined. The relationship between the cancer cell of origin (CCO) and cancer-propagating cells, known as hepatic cancer stem cell (HCSC) is unknown. It has been challenging to identify the definitive phenotypic marker of HCSC, probably due to the existence of different cancer stem cells (CSC) subpopulations with different functions within HCC. There is a dynamic interconversion among different CSCs, and between CSC and non-CSCs. Because of that, CSC-state is currently defined as a description of a highly adaptable and dynamic intrinsic property of tumor cells, instead of a static subpopulation of a tumor. Altered conditions could trigger the gain of stemness, some of them include: EMT-MET, epigenetics, microenvironment and selective stimulus such as chemotherapy. This CSC heterogeneity and dynamism makes them out reach from therapeutic protocols directed to a single target. A further avenue of research in this line will be to uncover mechanisms that trigger this interconversion of cell populations within tumors and target it.
Collapse
Affiliation(s)
- Teresita NJ Flores-Téllez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508 Col. San Pedro Zacatenco CP 07360, Ciudad de México, México
| |
Collapse
|
56
|
Choi JH, Cho HY, Choi JW. Microdevice Platform for In Vitro Nervous System and Its Disease Model. Bioengineering (Basel) 2017; 4:E77. [PMID: 28952555 PMCID: PMC5615323 DOI: 10.3390/bioengineering4030077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
The development of precise microdevices can be applied to the reconstruction of in vitro human microenvironmental systems with biomimetic physiological conditions that have highly tunable spatial and temporal features. Organ-on-a-chip can emulate human physiological functions, particularly at the organ level, as well as its specific roles in the body. Due to the complexity of the structure of the central nervous system and its intercellular interaction, there remains an urgent need for the development of human brain or nervous system models. Thus, various microdevice models have been proposed to mimic actual human brain physiology, which can be categorized as nervous system-on-a-chip. Nervous system-on-a-chip platforms can prove to be promising technologies, through the application of their biomimetic features to the etiology of neurodegenerative diseases. This article reviews the microdevices for nervous system-on-a-chip platform incorporated with neurobiology and microtechnology, including microfluidic designs that are biomimetic to the entire nervous system. The emulation of both neurodegenerative disorders and neural stem cell behavior patterns in micro-platforms is also provided, which can be used as a basis to construct nervous system-on-a-chip.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| | - Hyeon-Yeol Cho
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| |
Collapse
|
57
|
Human Cytomegalovirus IE2 Protein Disturbs Brain Development by the Dysregulation of Neural Stem Cell Maintenance and the Polarization of Migrating Neurons. J Virol 2017; 91:JVI.00799-17. [PMID: 28615204 DOI: 10.1128/jvi.00799-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022] Open
Abstract
Despite the high incidence of severe defects in the central nervous system caused by human cytomegalovirus (HCMV) congenital infection, the mechanism of HCMV neuropathogenesis and the roles of individual viral genes have not yet been fully determined. In this study, we show that the immediate-early 2 (IE2) protein may play a key role in HCMV-caused neurodevelopmental disorders. IE2-transduced neural progenitor cells gave rise to neurospheres with a lower frequency and produced smaller neurospheres than control cells in vitro, indicating reduction of self-renewal and expansion of neural progenitors by IE2. At 2 days after in utero electroporation into the ventricle of the developing brain, a dramatically lower percentage of IE2-expressing cells was detected in the ventricular zone (VZ) and cortical plate (CP) compared to control cells, suggesting that IE2 concurrently dysregulates neural stem cell maintenance in the VZ and neuronal migration to the CP. In addition, most IE2+ cells in the lower intermediate zone either showed multipolar morphology with short neurites or possessed nonradially oriented processes, whereas control cells had long, radially oriented monopolar or bipolar neurites. IE2+ callosal axons also failed to cross the midline to form the corpus callosum. Furthermore, we provide molecular evidence that the cell cycle arrest and DNA binding activities of IE2 appear to be responsible for the increased neural stem cell exit from the VZ and cortical migrational defects, respectively. Collectively, our results demonstrate that IE2 disrupts the orderly process of brain development in a stepwise manner to further our understanding of neurodevelopmental HCMV pathogenesis.IMPORTANCE HCMV brain pathogenesis has been studied in limited experimental settings, such as in vitro HCMV infection of neural progenitor cells or in vivo murine CMV infection of the mouse brain. Here, we show that IE2 is a pivotal factor that contributes to HCMV-induced abnormalities in the context of the embryonic brain using an in utero gene transfer tool. Surprisingly, IE2, but not HCMV IE1 or murine CMV ie3, interferes pleiotropically with key neurodevelopmental processes, including neural stem cell regulation, proper positioning of migrating neurons, and the callosal axon projections important for communication between the hemispheres. Our data suggest that the wide spectrum of clinical outcomes, ranging from mental retardation to microcephaly, caused by congenital HCMV infection can be sufficiently explained in terms of IE2 action alone.
Collapse
|
58
|
Jiao Q, Li X, An J, Zhang Z, Chen X, Tan J, Zhang P, Lu H, Liu Y. Cell-Cell Connection Enhances Proliferation and Neuronal Differentiation of Rat Embryonic Neural Stem/Progenitor Cells. Front Cell Neurosci 2017; 11:200. [PMID: 28785204 PMCID: PMC5519523 DOI: 10.3389/fncel.2017.00200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/26/2017] [Indexed: 01/22/2023] Open
Abstract
Cell-cell interaction as one of the niche signals plays an important role in the balance of stem cell quiescence and proliferation or differentiation. In order to address the effect and the possible mechanisms of cell-cell connection on neural stem/progenitor cells (NSCs/NPCs) proliferation and differentiation, upon passaging, NSCs/NPCs were either dissociated into single cell as usual (named Group I) or mechanically triturated into a mixture of single cell and small cell clusters containing direct cell-cell connections (named Group II). Then the biological behaviors including proliferation and differentiation of NSCs/NPCs were observed. Moreover, the expression of gap junction channel, neurotrophic factors and the phosphorylation status of MAPK signals were compared to investigate the possible mechanisms. Our results showed that, in comparison to the counterparts in Group I, NSCs/NPCs in Group II survived well with preferable neuronal differentiation. In coincidence with this, the expression of connexin 45 (Cx45), as well as brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) in Group II were significantly higher than those in Group I. Phosphorylation of ERK1/2 and JNK2 were significantly upregulated in Group II too, while no change was found about p38. Furthermore, the differences of NSCs/NPCs biological behaviors between Group I and II completely disappeared when ERK and JNK phosphorylation were inhibited. These results indicated that cell-cell connection in Group II enhanced NSCs/NPCs survival, proliferation and neuronal differentiation through upregulating the expression of gap junction and neurotrophic factors. MAPK signals- ERK and JNK might contribute to the enhancement. Efforts for maintaining the direct cell-cell connection are worth making to provide more favorable niches for NSCs/NPCs survival, proliferation and neuronal differentiation.
Collapse
Affiliation(s)
- Qian Jiao
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China.,Department of Physiology, Medical College of Qingdao UniversityQingdao, China
| | - Xingxing Li
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Jing An
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Zhichao Zhang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Xinlin Chen
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Jing Tan
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Department of Anesthesiology, The First Affiliated Hospital, Xi'an Jiaotong University Health Science CenterXi'an, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong UniversityXi'an, China
| | - Haixia Lu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Yong Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| |
Collapse
|
59
|
Dean M, Lassak A, Wilk A, Zapata A, Marrero L, Molina P, Reiss K. Acute Ethanol Increases IGF-I-Induced Phosphorylation of ERKs by Enhancing Recruitment of p52-Shc to the Grb2/Shc Complex. J Cell Physiol 2017; 232:1275-1286. [PMID: 27607558 PMCID: PMC5381968 DOI: 10.1002/jcp.25586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
Ethanol plays a detrimental role in the development of the brain. Multiple studies have shown that ethanol inhibits insulin-like growth factor I receptor (IGF-IR) function. Because the IGF-IR contributes to brain development by supporting neural growth, survival, and differentiation, we sought to determine the molecular mechanism(s) involved in ethanol's effects on this membrane-associated tyrosine kinase. Using multiple neuronal cell types, we performed Western blot, immunoprecipitation, and GST-pulldowns following acute (1-24 h) or chronic (3 weeks) treatment with ethanol. Surprisingly, exposure of multiple neuronal cell types to acute (up to 24 h) ethanol (50 mM) enhanced IGF-I-induced phosphorylation of extracellular regulated kinases (ERKs), without affecting IGF-IR tyrosine phosphorylation itself, or Akt phosphorylation. This acute increase in ERKs phosphorylation was followed by the expected inhibition of the IGF-IR signaling following 3-week ethanol exposure. We then expressed a GFP-tagged IGF-IR construct in PC12 cells and used them to perform fluorescence recovery after photobleaching (FRAP) analysis. Using these fluorescently labeled cells, we determined that 50 mM ethanol decreased the half-time of the IGF-IR-associated FRAP, which implied that cell membrane-associated signaling events could be affected. Indeed, co-immunoprecipitation and GST-pulldown studies demonstrated that the acute ethanol exposure increased the recruitment of p52-Shc to the Grb2-Shc complex, which is known to engage the Ras-Raf-ERKs pathway following IGF-1 stimulation. These experiments indicate that even a short and low-dose exposure to ethanol may dysregulate function of the receptor, which plays a critical role in brain development. J. Cell. Physiol. 232: 1275-1286, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew Dean
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
- Department of Genetics, LSU Health New Orleans
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Adam Lassak
- Stanley S. Scott Cancer Center, LSU Health New Orleans
| | - Anna Wilk
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, 36604
| | | | - Luis Marrero
- Morphology and Imaging Core, LSU Health New Orleans
| | - Patricia Molina
- Alcohol and Drug Abuse Center of Excellence, Department of Physiology, LSU Health New Orleans, New Orleans, LA, 70112
| | | |
Collapse
|
60
|
Han Y, Ren J, Lee E, Xu X, Yu W, Muegge K. Lsh/HELLS regulates self-renewal/proliferation of neural stem/progenitor cells. Sci Rep 2017; 7:1136. [PMID: 28442710 PMCID: PMC5430779 DOI: 10.1038/s41598-017-00804-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 03/16/2017] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms are known to exert control over gene expression and determine cell fate. Genetic mutations in epigenetic regulators are responsible for several neurologic disorders. Mutations of the chromatin remodeling protein Lsh/HELLS can cause the human Immunodeficiency, Centromere instability and Facial anomalies (ICF) syndrome, which is associated with neurologic deficiencies. We report here a critical role for Lsh in murine neural development. Lsh depleted neural stem/progenitor cells (NSPCs) display reduced growth, increases in apoptosis and impaired ability of self-renewal. RNA-seq analysis demonstrates differential gene expression in Lsh-/- NSPCs and suggests multiple aberrant pathways. Concentrating on specific genomic targets, we show that ablation of Lsh alters epigenetic states at specific enhancer regions of the key cell cycle regulator Cdkn1a and the stem cell regulator Bmp4 in NSPCs and alters their expression. These results suggest that Lsh exerts epigenetic regulation at key regulators of neural stem cell fate ensuring adequate NSPCs self-renewal and maintenance during development.
Collapse
Affiliation(s)
- Yixing Han
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Jianke Ren
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Eunice Lee
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Xiaoping Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Weishi Yu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA.
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA.
| |
Collapse
|
61
|
Byun SH, Kim J, Han D, Kwon M, Cho JY, Ng HX, Pleasure SJ, Yoon K. TRBP maintains mammalian embryonic neural stem cell properties by acting as a novel transcriptional coactivator of the Notch signaling pathway. Development 2017; 144:778-783. [PMID: 28174252 DOI: 10.1242/dev.139493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022]
Abstract
Transactivation response element RNA-binding protein (TRBP; TARBP2) is known to play important roles in human immunodeficiency virus (HIV) replication and microRNA biogenesis. However, recent studies implicate TRBP in a variety of biological processes as a mediator of cross-talk between signal transduction pathways. Here, we provide the first evidence that TRBP is required for efficient neurosphere formation and for the expression of neural stem cell markers and Notch target genes in primary neural progenitor cells in vitro Consistent with this, introduction of TRBP into the mouse embryonic brain in utero increased the fraction of cells expressing Sox2 in the ventricular zone. We also show that TRBP physically interacts with the Notch transcriptional coactivation complex through C promoter-binding factor 1 (CBF1; RBPJ) and strengthens the association between the Notch intracellular domain (NICD) and CBF1, resulting in increased NICD recruitment to the promoter region of a Notch target gene. Our data indicate that TRBP is a novel transcriptional coactivator of the Notch signaling pathway, playing an important role in neural stem cell regulation during mammalian brain development.
Collapse
Affiliation(s)
- Sung-Hyun Byun
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Juwan Kim
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Dasol Han
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Mookwang Kwon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hui Xuan Ng
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Samuel J Pleasure
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Keejung Yoon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| |
Collapse
|
62
|
Konrad CV, Murali R, Varghese BA, Nair R. The role of cancer stem cells in tumor heterogeneity and resistance to therapy. Can J Physiol Pharmacol 2017; 95:1-15. [DOI: 10.1139/cjpp-2016-0079] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is a heterogenous disease displaying marked inter- and intra-tumoral diversity. The existence of cancer stem cells (CSCs) has been experimentally demonstrated in a number of cancer types as a subpopulation of tumor cells that drives the tumorigenic and metastatic properties of the entire cancer. Thus, eradication of the CSC population is critical for the complete ablation of a tumor. This is, however, confounded by the inherent resistance of CSCs to standard anticancer therapies, eventually leading to the outgrowth of resistant tumor cells and relapse in patients. The cellular mechanisms of therapy resistance in CSCs are ascribed to several factors including a state of quiescence, an enhanced DNA damage response and active repair mechanisms, up-regulated expression of drug efflux transporters, as well as the activation of pro-survival signaling pathways and inactivation of apoptotic signaling. Understanding the mechanisms underlying the acquisition of resistance to therapy may hold the key to targeting the CSC population.
Collapse
Affiliation(s)
- Christina Valbirk Konrad
- Cancer Research Division & Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Reshma Murali
- Cancer Research Program, Rajiv Gandhi Center for Biotechnology, Kerala, India
| | | | - Radhika Nair
- Cancer Research Program, Rajiv Gandhi Center for Biotechnology, Kerala, India
| |
Collapse
|
63
|
Identification and characterization of cancer stem cells in canine mammary tumors. Acta Vet Scand 2016; 58:86. [PMID: 27993142 PMCID: PMC5168714 DOI: 10.1186/s13028-016-0268-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSC) represent a small subpopulation of cells in malignant tumors that possess the unique ability to self-renew, differentiate and resist chemo- and radiotherapy. These cells have been postulated to be the basis for some of the difficulties in treating cancer, and therefore, numerous approaches have been developed to specifically target and eliminate CSC in diverse types of cancer, including breast cancer. Spontaneously occurring mammary tumors in canines share clinical and molecular similarities with the human counterpart, making the dog a potentially powerful model for the study of human breast cancer and clinical trials. Studies focused on canine mammary CSC might therefore enhance our understanding of the biology and possible treatment of the disease in both dogs and humans. In this review, we discuss various approaches currently in use to isolate and characterize canine mammary CSC.
Collapse
|
64
|
Duncan T, Lowe A, Dalton MA, Valenzuela M. Isolation and Expansion of Adult Canine Hippocampal Neural Precursors. J Vis Exp 2016. [PMID: 27929471 DOI: 10.3791/54953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The rate of neurogenesis within the adult hippocampus has been shown to vary across mammalian species. The canine hippocampus, demonstrating a structural intermediacy between the rodent and human hippocampi, is therefore a valuable model in which to study adult neurogenesis. In vitro culture assays are an essential component of characterizing neurogenesis and adult neural precursor cells, allowing for precise control over the cellular environment. To date however, culture protocols for canine cells remain under-represented in the literature. Detailed here are systematic protocols for the isolation and culture of hippocampal neural precursor cells from the adult canine brain. We demonstrate the expansion of canine neural precursor cells as floating neurospheres and as an adherent monolayer culture, producing stable cell lines that are able to differentiation into mature neural cell types in vitro. Adult canine neural precursors are an underused resource that may provide a more faithful analogue for the study of human neural precursors and the cellular mechanisms of adult neurogenesis.
Collapse
Affiliation(s)
- Thomas Duncan
- Regenerative Neuroscience Group, University of Sydney;
| | - Aileen Lowe
- Regenerative Neuroscience Group, University of Sydney
| | - Marshall A Dalton
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London
| | | |
Collapse
|
65
|
Narayanan G, Yu YH, Tham M, Gan HT, Ramasamy S, Sankaran S, Hariharan S, Ahmed S. Enumeration of Neural Stem Cells Using Clonal Assays. J Vis Exp 2016. [PMID: 27768074 PMCID: PMC5092163 DOI: 10.3791/54456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neural stem cells (NSCs) have the ability to self-renew and generate the three major neural lineages — astrocytes, neurons and oligodendrocytes. NSCs and neural progenitors (NPs) are commonly cultured in vitro as neurospheres. This protocol describes in detail how to determine the NSC frequency in a given cell population under clonal conditions. The protocol begins with the seeding of the cells at a density that allows for the generation of clonal neurospheres. The neurospheres are then transferred to chambered coverslips and differentiated under clonal conditions in conditioned medium, which maximizes the differentiation potential of the neurospheres. Finally, the NSC frequency is calculated based on neurosphere formation and multipotency capabilities. Utilities of this protocol include the evaluation of candidate NSC markers, purification of NSCs, and the ability to distinguish NSCs from NPs. This method takes 13 days to perform, which is much shorter than current methods to enumerate NSC frequency.
Collapse
Affiliation(s)
- Gunaseelan Narayanan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR);
| | - Yuan Hong Yu
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Muly Tham
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Hui Theng Gan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Shvetha Sankaran
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Srivats Hariharan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| | - Sohail Ahmed
- Neural Stem Cell Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR)
| |
Collapse
|
66
|
Kaseb HO, Fohrer-Ting H, Lewis DW, Lagasse E, Gollin SM. Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas. Exp Cell Res 2016; 348:75-86. [PMID: 27619333 DOI: 10.1016/j.yexcr.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumor cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66- is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance.
Collapse
Affiliation(s)
- Hatem O Kaseb
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America.,Department of Clinical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Helene Fohrer-Ting
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, United States of America
| | - Dale W Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America
| | - Eric Lagasse
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, United States of America
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, United States of America.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15232, United States of America
| |
Collapse
|
67
|
Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels. Sci Rep 2016; 6:31915. [PMID: 27549983 PMCID: PMC4994035 DOI: 10.1038/srep31915] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery.
Collapse
|
68
|
Wang Z, Tan J, McConville C, Kannappan V, Tawari PE, Brown J, Ding J, Armesilla AL, Irache JM, Mei QB, Tan Y, Liu Y, Jiang W, Bian XW, Wang W. Poly lactic-co-glycolic acid controlled delivery of disulfiram to target liver cancer stem-like cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:641-657. [PMID: 27521693 PMCID: PMC5364371 DOI: 10.1016/j.nano.2016.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Disulfiram (DS), an anti-alcoholism drug, shows very strong cytotoxicity in many cancer types. However its clinical application in cancer treatment is limited by the very short half-life in the bloodstream. In this study, we developed a poly lactic-co-glycolic acid (PLGA)-encapsulated DS protecting DS from the degradation in the bloodstream. The newly developed DS-PLGA was characterized. The DS-PLGA has very satisfactory encapsulation efficiency, drug-loading content and controlled release rate in vitro. PLGA encapsulation extended the half-life of DS from shorter than 2minutes to 7hours in serum. In combination with copper, DS-PLGA significantly inhibited the liver cancer stem cell population. CI-isobologram showed a remarkable synergistic cytotoxicity between DS-PLGA and 5-FU or sorafenib. It also demonstrated very promising anticancer efficacy and antimetastatic effect in liver cancer mouse model. Both DS and PLGA are FDA approved products for clinical application. Our study may lead to repositioning of DS into liver cancer treatment.
Collapse
Affiliation(s)
- Zhipeng Wang
- Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Jiao Tan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, China
| | | | - Vinodh Kannappan
- Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, UK
| | | | - James Brown
- School of Life and Health Sciences and ARCHA, Aston University, UK
| | - Jin Ding
- Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Angel L Armesilla
- Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Juan M Irache
- School of Pharmacy, University of Navarra, Pamplona, Spain
| | - Qi-Bing Mei
- School of Pharmacy, Fourth Military Medical University, China
| | - Yuhuan Tan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, China
| | - Ying Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Weiguang Wang
- Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, UK.
| |
Collapse
|
69
|
Ching J, Amiridis S, Stylli SS, Bjorksten AR, Kountouri N, Zheng T, Paradiso L, Luwor RB, Morokoff AP, O'Brien TJ, Kaye AH. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells. Oncotarget 2016; 6:21301-14. [PMID: 26046374 PMCID: PMC4673266 DOI: 10.18632/oncotarget.4019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/21/2015] [Indexed: 11/25/2022] Open
Abstract
Glioma cells release glutamate through expression of system xc-, which exchanges intracellular glutamate for extracellular cysteine. Lack of the excitatory amino acid transporter 2 (EAAT2) expression maintains high extracellular glutamate levels in the glioma microenvironment, causing excitotoxicity to surrounding parenchyma. Not only does this contribute to the survival and proliferation of glioma cells, but is involved in the pathophysiology of tumour-associated epilepsy (TAE). We investigated the role of the peroxisome proliferator activated receptor gamma (PPARγ) agonist pioglitazone in modulating EAAT2 expression in glioma cells. We found that EAAT2 expression was increased in a dose dependent manner in both U87MG and U251MG glioma cells. Extracellular glutamate levels were reduced with the addition of pioglitazone, where statistical significance was reached in both U87MG and U251MG cells at a concentration of ≥ 30 μM pioglitazone (p < 0.05). The PPARγ antagonist GW9662 inhibited the effect of pioglitazone on extracellular glutamate levels, indicating PPARγ dependence. In addition, pioglitazone significantly reduced cell viability of U87MG and U251MG cells at ≥ 30 μM and 100 μM (p < 0.05) respectively. GW9662 also significantly reduced viability of U87MG and U251MG cells with 10 μM and 30 μM (p < 0.05) respectively. The effect on viability was partially dependent on PPARγ activation in U87MG cells but not U251MG cells, whereby PPARγ blockade with GW9662 had a synergistic effect. We conclude that PPARγ agonists may be therapeutically beneficial in the treatment of gliomas and furthermore suggest a novel role for these agents in the treatment of tumour associated seizures through the reduction in extracellular glutamate.
Collapse
Affiliation(s)
- Jared Ching
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia.,Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia
| | - Stephanie Amiridis
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia.,Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia
| | - Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Victoria, Australia
| | - Andrew R Bjorksten
- Department of Anaesthesia and Pain Management, The Royal Melbourne Hospital, Victoria, Australia
| | - Nicole Kountouri
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia
| | - Thomas Zheng
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia
| | - Lucy Paradiso
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia
| | - Andrew P Morokoff
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia.,Department of Neurosurgery, The Royal Melbourne Hospital, Victoria, Australia
| |
Collapse
|
70
|
Onzi GR, Ledur PF, Hainzenreder LD, Bertoni APS, Silva AO, Lenz G, Wink MR. Analysis of the safety of mesenchymal stromal cells secretome for glioblastoma treatment. Cytotherapy 2016; 18:828-37. [PMID: 27210718 DOI: 10.1016/j.jcyt.2016.03.299] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/05/2016] [Accepted: 03/31/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AIMS The purpose of this study was to investigate whether the secretome of human adipose-derived stem cells (hADSC) affects human glioblastoma (GBM) cancer stem cell (CSC) subpopulation or has any influence on drug resistance and cell migration, evaluating the safety of hADSCs for novel cancer therapies. METHODS hADSCs were maintained in contact with fresh culture medium to produce hADSCs conditioned medium (CM). GBM U87 cells were cultured with CM and sphere formation, expression of genes related to resistance and CSCs-MGMT, OCT4, SOX2, NOTCH1, MSI1-and protein expression of OCT4 and Nanog were analyzed. The influence of hADSC CM on GBM resistance to temozolomide (TMZ) was evaluated by measuring cumulative population doubling and hADSC CM influence on tumor cell migration was analyzed using transwell assay. RESULTS hADSC CM did not alter CSC-related features such as sphere-forming capacity and expression of genes related to CSC. hADSC CM treatment alone did not change proliferation rate of U87 cells and, most important, did not alter the response of tumor cells to TMZ. However, hADSC CM secretome increased the migration capacity of glioblastoma cells. DISCUSSION hADSC CM neither induced an enrichment of CSCs in U87 cells population nor interfered in the response to TMZ in culture. Nevertheless, paracrine factors released by hADSCs were able to modulate glioblastoma cells migration. These findings provide novel information regarding the safety of using hADSCs against cancer and highlight the importance of considering hADSC-tumor cells interactions in tumor microenvironment in the design of novel cell therapies.
Collapse
Affiliation(s)
- Giovana Ravizzoni Onzi
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pítia Flores Ledur
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luana Dimer Hainzenreder
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Ana Paula Santin Bertoni
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Andrew Oliveira Silva
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
71
|
Belenguer G, Domingo-Muelas A, Ferrón SR, Morante-Redolat JM, Fariñas I. Isolation, culture and analysis of adult subependymal neural stem cells. Differentiation 2016; 91:28-41. [PMID: 27016251 DOI: 10.1016/j.diff.2016.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/16/2023]
Abstract
Individual cells dissected from the subependymal neurogenic niche of the adult mouse brain proliferate in medium containing basic fibroblast growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens, to produce multipotent clonal aggregates called neurospheres. These cultures constitute a powerful tool for the study of neural stem cells (NSCs) provided that they allow the analysis of their features and potential capacity in a controlled environment that can be modulated and monitored more accurately than in vivo. Clonogenic and population analyses under mitogen addition or withdrawal allow the quantification of the self-renewing and multilineage potency of these cells and the identification of the mechanisms involved in these properties. Here, we describe a set of procedures developed and/or modified by our group including several experimental options that can be used either independently or in combination for the ex vivo assessment of cell properties of NSCs obtained from the adult subependymal niche.
Collapse
Affiliation(s)
- Germán Belenguer
- Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Departamento de Biología Celular and ERI BiotecMed, Universidad de Valencia, 46100, Spain
| | - Ana Domingo-Muelas
- Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Departamento de Biología Celular and ERI BiotecMed, Universidad de Valencia, 46100, Spain
| | - Sacri R Ferrón
- Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Departamento de Biología Celular and ERI BiotecMed, Universidad de Valencia, 46100, Spain
| | - José Manuel Morante-Redolat
- Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Departamento de Biología Celular and ERI BiotecMed, Universidad de Valencia, 46100, Spain.
| | - Isabel Fariñas
- Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; Departamento de Biología Celular and ERI BiotecMed, Universidad de Valencia, 46100, Spain.
| |
Collapse
|
72
|
Ortega F, Costa MR. Live Imaging of Adult Neural Stem Cells in Rodents. Front Neurosci 2016; 10:78. [PMID: 27013941 PMCID: PMC4779908 DOI: 10.3389/fnins.2016.00078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/18/2016] [Indexed: 11/13/2022] Open
Abstract
The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions.
Collapse
Affiliation(s)
- Felipe Ortega
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Complutense University Madrid, Spain
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
73
|
Boo L, Ho WY, Ali NM, Yeap SK, Ky H, Chan KG, Yin WF, Satharasinghe DA, Liew WC, Tan SW, Ong HK, Cheong SK. MiRNA Transcriptome Profiling of Spheroid-Enriched Cells with Cancer Stem Cell Properties in Human Breast MCF-7 Cell Line. Int J Biol Sci 2016; 12:427-45. [PMID: 27019627 PMCID: PMC4807162 DOI: 10.7150/ijbs.12777] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 12/13/2015] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related mortality worldwide as most patients often suffer cancer relapse. The reason is often attributed to the presence of cancer stem cells (CSCs). Recent studies revealed that dysregulation of microRNA (miRNA) are closely linked to breast cancer recurrence and metastasis. However, no specific study has comprehensively characterised the CSC characteristic and miRNA transcriptome in spheroid-enriched breast cells. This study described the generation of spheroid MCF-7 cell in serum-free condition and the comprehensive characterisation for their CSC properties. Subsequently, miRNA expression differences between the spheroid-enriched CSC cells and their parental cells were evaluated using next generation sequencing (NGS). Our results showed that the MCF-7 spheroid cells were enriched with CSCs properties, indicated by the ability to self-renew, increased expression of CSCs markers, and increased resistance to chemotherapeutic drugs. Additionally, spheroid-enriched CSCs possessed greater cell proliferation, migration, invasion, and wound healing ability. A total of 134 significantly (p<0.05) differentially expressed miRNAs were identified between spheroids and parental cells using miRNA-NGS. MiRNA-NGS analysis revealed 25 up-regulated and 109 down-regulated miRNAs which includes some miRNAs previously reported in the regulation of breast CSCs. A number of miRNAs (miR-4492, miR-4532, miR-381, miR-4508, miR-4448, miR-1296, and miR-365a) which have not been previously reported in breast cancer were found to show potential association with breast cancer chemoresistance and self-renewal capability. The gene ontology (GO) analysis showed that the predicted genes were enriched in the regulation of metabolic processes, gene expression, DNA binding, and hormone receptor binding. The corresponding pathway analyses inferred from the GO results were closely related to the function of signalling pathway, self-renewability, chemoresistance, tumorigenesis, cytoskeletal proteins, and metastasis in breast cancer. Based on these results, we proposed that certain miRNAs identified in this study could be used as new potential biomarkers for breast cancer stem cell diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Lily Boo
- 1. Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Cheras, Malaysia
| | - Wan Yong Ho
- 2. Faculty of Medicine and Health Sciences, University of Nottingham (Malaysia Campus), 43500 Semenyih, Malaysia
| | - Norlaily Mohd Ali
- 1. Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Cheras, Malaysia
| | - Swee Keong Yeap
- 3. Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Huynh Ky
- 4. Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, 84071, Vietnam
| | - Kok Gan Chan
- 5. Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai Fong Yin
- 5. Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Dilan Amila Satharasinghe
- 3. Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia.; 6. Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, 20400, Sri Lanka
| | - Woan Charn Liew
- 3. Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Sheau Wei Tan
- 3. Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Han Kiat Ong
- 1. Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Cheras, Malaysia
| | - Soon Keng Cheong
- 1. Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Cheras, Malaysia;; 7. Cryocord Sdn Bhd, Persiaran Cyberpoint Selatan, 63000 Cyberjaya, Malaysia
| |
Collapse
|
74
|
The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Stem Cells Int 2016; 2016:8140168. [PMID: 26880991 PMCID: PMC4736575 DOI: 10.1155/2016/8140168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/26/2022] Open
Abstract
Genetic manipulation is a powerful tool to establish the causal relationship between a genetic lesion and a particular pathological phenotype. The rise of CRISPR/Cas9 genome-engineering tools overcame the traditional technical bottleneck for routine site-specific genetic manipulation in cells. To create the perfect in vitro cell model, there is significant interest from the stem cell research community to adopt this fast evolving technology. This review addresses this need directly by providing both the up-to-date biochemical rationale of CRISPR-mediated genome engineering and detailed practical guidelines for the design and execution of CRISPR experiments in cell models. Ultimately, this review will serve as a timely and comprehensive guide for this fast developing technology.
Collapse
|
75
|
Nathamgari SSP, Dong B, Zhou F, Kang W, Giraldo-Vela JP, McGuire T, McNaughton RL, Sun C, Kessler JA, Espinosa HD. Isolating single cells in a neurosphere assay using inertial microfluidics. LAB ON A CHIP 2015; 15:4591-7. [PMID: 26511875 PMCID: PMC4665643 DOI: 10.1039/c5lc00805k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sphere forming assays are routinely used for in vitro propagation and differentiation of stem cells. Because the stem cell clusters can become heterogeneous and polyclonal, they must first be dissociated into a single cell suspension for further clonal analysis or differentiation studies. The dissociated population is marred by the presence of doublets, triplets and semi-cleaved/intact clusters which makes identification and further analysis of differentiation pathways difficult. In this work, we use inertial microfluidics to separate the single cells and clusters in a population of chemically dissociated neurospheres. In contrast to previous microfluidic sorting technologies which operated at high flow rates, we implement the spiral microfluidic channel in a novel focusing regime that occurs at lower flow rates. In this regime, the curvature-induced Dean's force focuses the smaller, single cells towards the inner wall and the larger clusters towards the center. We further demonstrate that sorting in this low flow rate (and hence low shear stress) regime yields a high percentage (>90%) of viable cells and preserves multipotency by differentiating the sorted neural stem cell population into neurons and astrocytes. The modularity of the device allows easy integration with other lab-on-a-chip devices for upstream mechanical dissociation and downstream high-throughput clonal analysis, localized electroporation and sampling. Although demonstrated in the case of the neurosphere assay, the method is equally applicable to other sphere forming assays.
Collapse
Affiliation(s)
- S Shiva P Nathamgari
- Department of Theoretical and Applied Mechanics, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Cao L, Pu J, Scott RH, Ching J, McCaig CD. Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion. Stem Cell Rev Rep 2015; 11:75-86. [PMID: 25096637 PMCID: PMC4333314 DOI: 10.1007/s12015-014-9524-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuroblasts migrate as directed chains of cells during development and following brain damage. A fuller understanding of the mechanisms driving this will help define its developmental significance and in the refinement of strategies for brain repair using transplanted stem cells. Recently, we reported that in adult mouse there are ionic gradients within the extracellular spaces that create an electrical field (EF) within the rostral migratory stream (RMS), and that this acts as a guidance cue for neuroblast migration. Here, we demonstrate an endogenous EF in brain slices and show that mimicking this by applying an EF of physiological strength, switches on chain migration in mouse neurospheres and in the SH-SY5Y neuroblastoma cell line. Firstly, we detected a substantial endogenous EF of 31.8 ± 4.5 mV/mm using microelectrode recordings from explants of the subventricular zone (SVZ). Pharmacological inhibition of this EF, effectively blocked chain migration in 3D cultures of SVZ explants. To mimic this EF, we applied a physiological EF and found that this increased the expression of N-cadherin and β-catenin, both of which promote cell-cell adhesion. Intriguingly, we found that the EF up-regulated P2Y purinoceptor 1 (P2Y1) to contribute to chain migration of neuroblasts through regulating the expression of N-cadherin, β-catenin and the activation of PKC. Our results indicate that the naturally occurring EF in brain serves as a novel stimulant and directional guidance cue for neuronal chain migration, via up-regulation of P2Y1.
Collapse
Affiliation(s)
- Lin Cao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Jin Pu
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Roderick H. Scott
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Jared Ching
- Department of Neurosurgery, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZD UK
| | - Colin D. McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| |
Collapse
|
77
|
Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015; 17:1-15. [PMID: 25622895 PMCID: PMC4309685 DOI: 10.1016/j.neo.2014.12.004] [Citation(s) in RCA: 779] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
Collapse
Affiliation(s)
- Louis-Bastien Weiswald
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France.
| | - Dominique Bellet
- Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, UMR 8151 CNRS-U1022 Inserm, Sorbonne Paris Cité, Paris, France
| | - Virginie Dangles-Marie
- Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France; Département de Recherche Translationnelle, Research Center, Institut Curie, Paris, France.
| |
Collapse
|
78
|
Xie Y, Bergström T, Jiang Y, Johansson P, Marinescu VD, Lindberg N, Segerman A, Wicher G, Niklasson M, Baskaran S, Sreedharan S, Everlien I, Kastemar M, Hermansson A, Elfineh L, Libard S, Holland EC, Hesselager G, Alafuzoff I, Westermark B, Nelander S, Forsberg-Nilsson K, Uhrbom L. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes. EBioMedicine 2015; 2:1351-63. [PMID: 26629530 PMCID: PMC4634360 DOI: 10.1016/j.ebiom.2015.08.026] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research. The HGCC resource contains 48 annotated human GBM cell lines and an interactive database The GBM cell lines are propagated in stem cell conditions and display GSC characteristics The HGCC resource provides cell lines of all molecular (TCGA) subtypes All data connected with the HGCC cell lines can be accessed at hgcc.se
Collapse
Affiliation(s)
- Yuan Xie
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Tobias Bergström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Yiwen Jiang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Patrik Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Voichita Dana Marinescu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Nanna Lindberg
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, WA 98109, United States
| | - Anna Segerman
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Grzegorz Wicher
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Mia Niklasson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Sathishkumar Baskaran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Smitha Sreedharan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Isabelle Everlien
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Marianne Kastemar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Annika Hermansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Lioudmila Elfineh
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Eric Charles Holland
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, WA 98109, United States
| | - Göran Hesselager
- Department of Neuroscience, Uppsala University, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
79
|
Zhang S, Burda JE, Anderson MA, Zhao Z, Ao Y, Cheng Y, Sun Y, Deming TJ, Sofroniew MV. Thermoresponsive Copolypeptide Hydrogel Vehicles for Central Nervous System Cell Delivery. ACS Biomater Sci Eng 2015; 1:705-717. [PMID: 27547820 PMCID: PMC4991036 DOI: 10.1021/acsbiomaterials.5b00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterial vehicles have the potential to facilitate cell transplantation in the central nervous system (CNS). We have previously shown that highly tunable ionic diblock copolypeptide hydrogels (DCH) can provide sustained release of hydrophilic and hydrophobic molecules in the CNS. Here, we show that recently developed non-ionic and thermoresponsive DCH called DCHT exhibit excellent cytocompatibility. Neural stem cell (NSC) suspensions in DCHT were easily injected as liquids at room temperature. DCHT with a viscosity tuned to prevent cell sedimentation and clumping significantly increased the survival of NSC passed through injection cannulae. At body temperature, DCHT self-assembled into hydrogels with a stiffness tuned to that of CNS tissue. After injection in vivo, DCHT significantly increased by three-fold the survival of NSC grafted into healthy CNS. In injured CNS, NSC injected as suspensions in DCHT distributed well in non-neural lesion cores, integrated with healthy neural cells at lesion perimeters and supported regrowing host nerve fibers. Our findings show that non-ionic DCHT have numerous advantageous properties that make them useful tools for in vivo delivery of cells and molecules in the CNS for experimental investigations and potential therapeutic strategies.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles CA 90095-1569, USA
| | - Joshua E. Burda
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA 90095-1763, USA
| | - Mark A. Anderson
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA 90095-1763, USA
| | - Ziru Zhao
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA 90095-1763, USA
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA 90095-1763, USA
| | - Yin Cheng
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA 90095-1763, USA
| | - Yi Sun
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA 90095-1763, USA
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles CA 90095-1569, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles CA 90095-1600, USA
| | - Michael V. Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA 90095-1763, USA
| |
Collapse
|
80
|
Liu P, Wang Z, Brown S, Kannappan V, Tawari PE, Jiang W, Irache JM, Tang JZ, Armesilla AL, Darling JL, Tang X, Wang W. Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo. Oncotarget 2015; 5:7471-85. [PMID: 25277186 PMCID: PMC4202137 DOI: 10.18632/oncotarget.2166] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are pan-resistant to different anticancer agents and responsible for cancer relapse. Disulfiram (DS), an antialcoholism drug, targets CSCs and reverses pan-chemoresistance. The anticancer application of DS is limited by its very short half-life in the bloodstream. This prompted us to develop a liposome-encapsulated DS (Lipo-DS) and examine its anticancer effect and mechanisms in vitro and in vivo. The relationship between hypoxia and CSCs was examined by in vitro comparison of BC cells cultured in spheroid and hypoxic conditions. To determine the importance of NFκB activation in bridging hypoxia and CSC-related pan-resistance, the CSC characters and drug sensitivity in BC cell lines were observed in NFκB p65 transfected cell lines. The effect of Lipo-DS on the NFκB pathway, CSCs and chemosensitivity was investigated in vitro and in vivo. The spheroid cultured BC cells manifested CSC characteristics and pan-resistance to anticancer drugs. This was related to the hypoxic condition in the spheres. Hypoxia induced activation of NFκB and chemoresistance. Transfection of BC cells with NFκB p65 also induced CSC characters and pan-resistance. Lipo-DS blocked NFκB activation and specifically targeted CSCs in vitro. Lipo-DS also targeted the CSC population in vivo and showed very strong anticancer efficacy. Mice tolerated the treatment very well and no significant in vivo nonspecific toxicity was observed. Hypoxia induced NFκB activation is responsible for stemness and chemoresistance in BCSCs. Lipo-DS targets NFκB pathway and CSCs. Further study may translate DS into cancer therapeutics.
Collapse
Affiliation(s)
- Peng Liu
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Zhipeng Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Sarah Brown
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Vinodh Kannappan
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Patricia Erebi Tawari
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Wenguo Jiang
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, UK
| | - Juan M Irache
- School of Pharmacy, University of Navarra, Pamplona, Spain
| | - James Z Tang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Angel L Armesilla
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - John L Darling
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
81
|
Oleanolic Acid Induces Differentiation of Neural Stem Cells to Neurons: An Involvement of Transcription Factor Nkx-2.5. Stem Cells Int 2015; 2015:672312. [PMID: 26240574 PMCID: PMC4512619 DOI: 10.1155/2015/672312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/16/2015] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells (NSCs) harbor the potential to differentiate into neurons, astrocytes, and oligodendrocytes under normal conditions and/or in response to tissue damage. NSCs open a new way of treatment of the injured central nervous system and neurodegenerative disorders. Thus far, few drugs have been developed for controlling NSC functions. Here, the effect as well as mechanism of oleanolic acid (OA), a pentacyclic triterpenoid, on NSC function was investigated. We found OA significantly inhibited neurosphere formation in a dose-dependent manner and achieved a maximum effect at 10 nM. OA also reduced 5-ethynyl-2'-deoxyuridine (EdU) incorporation into NSCs, which was indicative of inhibited NSC proliferation. Western blotting analysis revealed the protein levels of neuron-specific marker tubulin-βIII (TuJ1) and Mash1 were increased whilst the astrocyte-specific marker glial fibrillary acidic protein (GFAP) decreased. Immunofluorescence analysis showed OA significantly elevated the percentage of TuJ1-positive cells and reduced GFAP-positive cells. Using DNA microarray analysis, 183 genes were differentially regulated by OA. Through transcription factor binding site analyses of the upstream regulatory sequences of these genes, 87 genes were predicted to share a common motif for Nkx-2.5 binding. Finally, small interfering RNA (siRNA) methodology was used to silence Nkx-2.5 expression and found silence of Nkx-2.5 alone did not change the expression of TuJ-1 and the percentage of TuJ-1-positive cells. But in combination of OA treatment and silence of Nkx-2.5, most effects of OA on NSCs were abolished. These results indicated that OA is an effective inducer for NSCs differentiation into neurons at least partially by Nkx-2.5-dependent mechanism.
Collapse
|
82
|
Lonardo E, Cioffi M, Sancho P, Crusz S, Heeschen C. Studying Pancreatic Cancer Stem Cell Characteristics for Developing New Treatment Strategies. J Vis Exp 2015:e52801. [PMID: 26132091 PMCID: PMC4544916 DOI: 10.3791/52801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) contains a subset of exclusively tumorigenic cancer stem cells (CSCs) which have been shown to drive tumor initiation, metastasis and resistance to radio- and chemotherapy. Here we describe a specific methodology for culturing primary human pancreatic CSCs as tumor spheres in anchorage-independent conditions. Cells are grown in serum-free, non-adherent conditions in order to enrich for CSCs while their more differentiated progenies do not survive and proliferate during the initial phase following seeding of single cells. This assay can be used to estimate the percentage of CSCs present in a population of tumor cells. Both size (which can range from 35 to 250 micrometers) and number of tumor spheres formed represents CSC activity harbored in either bulk populations of cultured cancer cells or freshly harvested and digested tumors. Using this assay, we recently found that metformin selectively ablates pancreatic CSCs; a finding that was subsequently further corroborated by demonstrating diminished expression of pluripotency-associated genes/surface markers and reduced in vivo tumorigenicity of metformin-treated cells. As the final step for preclinical development we treated mice bearing established tumors with metformin and found significantly prolonged survival. Clinical studies testing the use of metformin in patients with PDAC are currently underway (e.g., NCT01210911, NCT01167738, and NCT01488552). Mechanistically, we found that metformin induces a fatal energy crisis in CSCs by enhancing reactive oxygen species (ROS) production and reducing mitochondrial transmembrane potential. In contrast, non-CSCs were not eliminated by metformin treatment, but rather underwent reversible cell cycle arrest. Therefore, our study serves as a successful example for the potential of in vitro sphere formation as a screening tool to identify compounds that potentially target CSCs, but this technique will require further in vitro and in vivo validation to eliminate false discoveries.
Collapse
Affiliation(s)
- Enza Lonardo
- Stem Cells & Cancer Group, Molecular Pathology Program, Spanish National Cancer Research Center; Institute for Research in Biomedicine (IRB Barcelona);
| | - Michele Cioffi
- Stem Cells & Cancer Group, Molecular Pathology Program, Spanish National Cancer Research Center
| | - Patricia Sancho
- Stem Cells & Cancer Group, Molecular Pathology Program, Spanish National Cancer Research Center; Center for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London
| | - Shanthini Crusz
- Center for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London
| | - Christopher Heeschen
- Stem Cells & Cancer Group, Molecular Pathology Program, Spanish National Cancer Research Center; Center for Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London;
| |
Collapse
|
83
|
Mothe A, Tator CH. Isolation of Neural Stem/Progenitor Cells from the Periventricular Region of the Adult Rat and Human Spinal Cord. J Vis Exp 2015:e52732. [PMID: 26067928 DOI: 10.3791/52732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Adult rat and human spinal cord neural stem/progenitor cells (NSPCs) cultured in growth factor-enriched medium allows for the proliferation of multipotent, self-renewing, and expandable neural stem cells. In serum conditions, these multipotent NSPCs will differentiate, generating neurons, astrocytes, and oligodendrocytes. The harvested tissue is enzymatically dissociated in a papain-EDTA solution and then mechanically dissociated and separated through a discontinuous density gradient to yield a single cell suspension which is plated in neurobasal medium supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and heparin. Adult rat spinal cord NSPCs are cultured as free-floating neurospheres and adult human spinal cord NSPCs are grown as adherent cultures. Under these conditions, adult spinal cord NSPCs proliferate, express markers of precursor cells, and can be continuously expanded upon passage. These cells can be studied in vitro in response to various stimuli, and exogenous factors may be used to promote lineage restriction to examine neural stem cell differentiation. Multipotent NSPCs or their progeny can also be transplanted into various animal models to assess regenerative repair.
Collapse
Affiliation(s)
- Andrea Mothe
- Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Center;
| | - Charles H Tator
- Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Center; Department of Surgery, Division of Neurosurgery, Toronto Western Hospital and University of Toronto
| |
Collapse
|
84
|
Khan IS, Ehtesham M. Laboratory models for central nervous system tumor stem cell research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:69-83. [PMID: 25895708 DOI: 10.1007/978-3-319-16537-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Central nervous system (CNS) tumors are complex organ systems comprising of a neoplastic component with associated vasculature, inflammatory cells, and reactive cellular and extracellular components. Research has identified a subset of cells in CNS tumors that portray defining properties of neural stem cells, namely, that of self-renewal and multi-potency. Growing evidence suggests that these tumor stem cells (TSC) play an important role in the maintenance and growth of the tumor. Furthermore, these cells have also been shown to be refractory to conventional therapy and may be crucial for tumor recurrence and metastasis. Current investigations are focusing on isolating these TSC from CNS tumors to investigate their unique biological processes. This understanding will help identify and develop more effective and comprehensive treatment strategies. This chapter provides an overview of some of the most commonly used laboratory models for CNSTSC research.
Collapse
Affiliation(s)
- Imad Saeed Khan
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
85
|
Franco PG, Pasquini JM, Silvestroff L. Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres. PLoS One 2015; 10:e0121774. [PMID: 25837625 PMCID: PMC4383518 DOI: 10.1371/journal.pone.0121774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/11/2015] [Indexed: 12/20/2022] Open
Abstract
Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.
Collapse
Affiliation(s)
- Paula G. Franco
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, and Instituto de Química y Fisicoquímica Biológicas “Profesor Alejandro C. Paladini” (IQUIFIB), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juana M. Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, and Instituto de Química y Fisicoquímica Biológicas “Profesor Alejandro C. Paladini” (IQUIFIB), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas Silvestroff
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, and Instituto de Química y Fisicoquímica Biológicas “Profesor Alejandro C. Paladini” (IQUIFIB), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
86
|
Rahman M, Reyner K, Deleyrolle L, Millette S, Azari H, Day BW, Stringer BW, Boyd AW, Johns TG, Blot V, Duggal R, Reynolds BA. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anat Cell Biol 2015; 48:25-35. [PMID: 25806119 PMCID: PMC4371178 DOI: 10.5115/acb.2015.48.1.25] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.
Collapse
Affiliation(s)
- Maryam Rahman
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Karina Reyner
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Loic Deleyrolle
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | | | - Hassan Azari
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA. ; Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bryan W Day
- Brain Cancer Research Unit, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Brett W Stringer
- Brain Cancer Research Unit, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Andrew W Boyd
- Brain Cancer Research Unit, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Terrance G Johns
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Vincent Blot
- CovX Research, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | | | - Brent A Reynolds
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
87
|
YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner. Biochem Biophys Res Commun 2015; 458:110-6. [DOI: 10.1016/j.bbrc.2015.01.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/17/2015] [Indexed: 11/17/2022]
|
88
|
Khan IS, Ehtesham M. Isolation and characterization of stem cells from human central nervous system malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:33-47. [PMID: 25895706 DOI: 10.1007/978-3-319-16537-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Central Nervous System (CNS) tumors include some of the most invasive and lethal tumors in humans. The poor prognosis in patients with CNS tumors is ascribed to their invasive nature. After the description of a stem cell-like cohort in hematopoietic cancers, tumor stem cells (TSCs) have been isolated from a variety of solid tumors, including brain tumors. Further research has uncovered the crucial role these cells play in the initiation and propagation of brain tumors. More importantly, TSCs have also been shown to be relatively resistant to conventional cytotoxic therapeutics, which may also account for the alarmingly high rate of CNS tumor recurrence. In order to elucidate prospective therapeutic targets it is imperative to study these cells in detail and to accomplish this, we need to be able to reliably isolate and characterize these cells. This chapter will therefore, provide an overview of the methods used to isolate and characterize stem cells from human CNS malignancies.
Collapse
Affiliation(s)
- Imad Saeed Khan
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
89
|
Bizy A, Ferrón SR. Isolation, long-term expansion, and differentiation of murine neural stem cells. Methods Mol Biol 2015; 1212:103-112. [PMID: 25063500 DOI: 10.1007/7651_2014_91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Stem cells are capable of extensive self-renewal while preserving the ability to generate cell progeny that can differentiate into different cell types. Here, we describe some methods for the isolation of neural stem cells (NSCs) from the adult murine subependymal zone (SEZ), their extensive culturing and the assessment of their full developmental potential, particularly with respect to their differentiation capacity. The procedure includes chemically defined conditions such as absence of serum and addition of specific growth factors, in which differentiated cells die and are rapidly eliminated from the culture. In contrast, undifferentiated precursors become hypertrophic and proliferate, forming clonal spherical clusters called "neurospheres." Experimental manipulation of NSCs identifies populations of cells with differential restriction in their self-renewal potential and introduces a great interest in defining the conditions that guide their differentiation into a variety of neuronal and glial subtypes, aspects that have important implications for their use in future clinical purposes.
Collapse
Affiliation(s)
- Alexandra Bizy
- Departamento de Biología Celular, Universidad de Valencia, 46100, Burjassot, Spain
| | | |
Collapse
|
90
|
Diensthuber M, Zecha V, Wagenblast J, Arnhold S, Stöver T. Clonal colony formation from spiral ganglion stem cells. Neuroreport 2014; 25:1129-35. [PMID: 25089801 DOI: 10.1097/wnr.0000000000000240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neural stem cells from the central nervous system have the distinct capacity to give rise to clonal neurospheres. These clonal spheres are derived from a single clone-forming cell and represent homogenous, pure cell colonies. Recently, stem/progenitor cells have been isolated from the spiral ganglion of the inner ear using sphere-forming assays. However, the clonality of spiral ganglion-derived spheres has not yet been addressed in detail. Here, we report the isolation of clonal colonies from the spiral ganglion of early postnatal mice. We analyze sphere clonality using coculture experiments with transgenic cells, a semisolid assay, and culture of single cells in isolation. Our data show that sphere clonality differs in primary and secondary cultures and indicate that clonal sphere formation is dependent on specific culture parameters. We also show that the initiation of clonal colony formation does not require cell-to-cell interactions or paracrine signaling from surrounding cells. Generation of clonal colonies from spiral ganglion stem/progenitor cells might be crucial for future clinical applications because pure cell populations are considered to be more efficient and safe for therapeutic use than chimeric, heterogeneous spheres.
Collapse
Affiliation(s)
- Marc Diensthuber
- aDepartment of Otorhinolaryngology, Head and Neck Surgery, University Hospital Frankfurt am Main, Goethe University, Frankfurt/M., bInstitute of Veterinary Anatomy, Histology, and Embryology, Justus-Liebig University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
91
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2014. [PMID: 25027500 DOI: 10.14573/altex1406111] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
|
92
|
Spina R, Filocamo G, Iaccino E, Scicchitano S, Lupia M, Chiarella E, Mega T, Bernaudo F, Pelaggi D, Mesuraca M, Pazzaglia S, Semenkow S, Bar EE, Kool M, Pfister S, Bond HM, Eberhart CG, Steinkühler C, Morrone G. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget 2014; 4:1280-92. [PMID: 23907569 PMCID: PMC3787157 DOI: 10.18632/oncotarget.1176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The stem cell-associated transcription co-factor ZNF521 has been implicated in the control of hematopoietic, osteo-adipogenic and neural progenitor cells. ZNF521 is highly expressed in cerebellum and in particular in the neonatal external granule layer that contains candidate medulloblastoma cells-of-origin, and in the majority of human medulloblastomas. Here we have explored its involvement in the control of human and murine medulloblastoma cells. The effect of ZNF521 on growth and tumorigenic potential of human medulloblastoma cell lines as well as primary Ptc1−/+ mouse medulloblastoma cells was investigated in a variety of in vitro and in vivo assays, by modulating its expression using lentiviral vectors carrying the ZNF521 cDNA, or shRNAs that silence its expression. Enforced overexpression of ZNF521 in DAOY medulloblastoma cells significantly increased their proliferation, growth as spheroids and ability to generate clones in single-cell cultures and semisolid media, and enhanced their migratory ability in wound-healing assays. Importantly, ZNF521-expressing cells displayed a greatly enhanced tumorigenic potential in nude mice. All these activities required the ZNF521 N-terminal motif that recruits the nucleosome remodeling and histone deacetylase complex, which might therefore represent an appealing therapeutic target. Conversely, silencing of ZNF521 in human UW228 medulloblastoma cells that display high baseline expression decreased their proliferation, clonogenicity, sphere formation and wound-healing ability. Similarly, Zfp521 silencing in mouse Ptc1−/+ medulloblastoma cells drastically reduced their growth and tumorigenic potential. Our data strongly support the notion that ZNF521, through the recruitment of the NuRD complex, contributes to the clonogenic growth, migration and tumorigenicity of medulloblastoma cells.
Collapse
Affiliation(s)
- Raffaella Spina
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Targeting self-renewal in high-grade brain tumors leads to loss of brain tumor stem cells and prolonged survival. Cell Stem Cell 2014; 15:185-98. [PMID: 24835569 DOI: 10.1016/j.stem.2014.04.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 12/03/2013] [Accepted: 04/10/2014] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) have been suggested as potential therapeutic targets for treating malignant tumors, but the in vivo supporting evidence is still missing. Using a GFP reporter driven by the promoter of the nuclear receptor tailless (Tlx), we demonstrate that Tlx(+) cells in primary brain tumors are mostly quiescent. Lineage tracing demonstrates that single Tlx(+) cells can self-renew and generate Tlx(-) tumor cells in primary tumors, suggesting that they are brain tumor stem cells (BTSCs). After introducing a BTSC-specific knock-out of the Tlx gene in primary mouse tumors, we observed a loss of self-renewal of BTSCs and prolongation of animal survival, accompanied by induction of essential signaling pathways mediating cell-cycle arrest, cell death, and neural differentiation. Our study demonstrates the feasibility of targeting glioblastomas and indicates the suitability of BTSCs as therapeutic targets, thereby supporting the CSC hypothesis.
Collapse
|
94
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 4846=3354-- srqx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
95
|
Mich JK, Signer RA, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014; 3:e02669. [PMID: 24843006 PMCID: PMC4038845 DOI: 10.7554/elife.02669] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo. DOI:http://dx.doi.org/10.7554/eLife.02669.001 Neurons that arise in the adult nervous system originate from neural stem cells and neural progenitor cells. Neural stem cells have long lives, much of which they spend in a quiescent state. Neural stem cells can also give rise to neural progenitor cells, which proliferate rapidly during their short lives and then ‘differentiate’ into neurons or glia. Unlike some other tissues, it has not been possible to identify or purify neural stem cells directly from the tissue. Consequently, neural stem and progenitor cells have usually been studied retrospectively, based on their ability to form colonies in laboratory cell cultures. A region of the brain called the subventricular zone contains both neural stem cells and neural progenitor cells, and is one of only two regions of the brain where neural stem cells are found in adult mammals. When cells from the subventricular zone are cultured in a way that allows the cells to freely float around (rather than growing on a surface), a few percent form spherical colonies called neurospheres. Since neurosphere-forming cells can self-renew and differentiate into neurons and glia, the ability of cells to form neurospheres has generally been taken as evidence that they are stem cells. However, the exact relationship between neural stem cells and neurosphere-forming cells has been uncertain. Now, Mich, Signer et al. have used a technique called flow cytometry to identify and isolate neural stem cells and neurosphere-forming cells directly from the subventricular zone. The neural stem cells, which Mich, Signer et al. term pre-GEPCOT cells (based on an acronym of the markers used to isolate the cells), were long-lived and quiescent, but they lacked the ability to form colonies in culture. The neurosphere-forming cells, named GEPCOT cells, were short-lived and highly proliferative in the brain. These results demonstrate that the cells that form neurospheres in culture are not stem cells at all, and that real stem cells are not able to form colonies under existing culture conditions. The identification of undifferentiated pre-GEPCOT and GEPCOT cells will make it possible to directly study the properties of these cells inside the mouse brain, and to isolate live cells to test how they function. The results also highlight the need for new tests to study neural stem cell function, given that current tests using neurospheres do not detect stem cells as commonly assumed. DOI:http://dx.doi.org/10.7554/eLife.02669.002
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert Aj Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
96
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 6145=cast((chr(113)||chr(107)||chr(106)||chr(118)||chr(113))||(select (case when (6145=6145) then 1 else 0 end))::text||(chr(113)||chr(113)||chr(120)||chr(113)||chr(113)) as numeric)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
97
|
Mich JK, Signer RA, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [PMID: 24843006 DOI: 10.7554/elife.02669;select dbms_pipe.receive_message(chr(77)||chr(67)||chr(121)||chr(65),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as Glast(mid)EGFR(high)PlexinB2(high)CD24(-/low)O4/PSA-NCAM(-/low)Ter119/CD45(-) (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1(CreERT2) and Dlx1(CreERT2). In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreER(T), GFAP-CreER(T2), Sox2(CreERT2), and Gli1(CreERT2) and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16(Ink4a)) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.DOI: http://dx.doi.org/10.7554/eLife.02669.001.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert Aj Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
98
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 6145=cast((chr(113)||chr(107)||chr(106)||chr(118)||chr(113))||(select (case when (6145=6145) then 1 else 0 end))::text||(chr(113)||chr(113)||chr(120)||chr(113)||chr(113)) as numeric)-- shpv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
99
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 3797=dbms_pipe.receive_message(chr(74)||chr(81)||chr(113)||chr(120),5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
100
|
Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife 2014. [DOI: 10.7554/elife.02669 and 5827=5827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurosphere formation is commonly used as a surrogate for neural stem cell (NSC) function but the relationship between neurosphere-initiating cells (NICs) and NSCs remains unclear. We prospectively identified, and isolated by flow cytometry, adult mouse lateral ventricle subventricular zone (SVZ) NICs as GlastmidEGFRhighPlexinB2highCD24−/lowO4/PSA-NCAM−/lowTer119/CD45− (GEPCOT) cells. They were highly mitotic and short-lived in vivo based on fate-mapping with Ascl1CreERT2 and Dlx1CreERT2. In contrast, pre-GEPCOT cells were quiescent, expressed higher Glast, and lower EGFR and PlexinB2. Pre-GEPCOT cells could not form neurospheres but expressed the stem cell markers Slc1a3-CreERT, GFAP-CreERT2, Sox2CreERT2, and Gli1CreERT2 and were long-lived in vivo. While GEPCOT NICs were ablated by temozolomide, pre-GEPCOT cells survived and repopulated the SVZ. Conditional deletion of the Bmi-1 polycomb protein depleted pre-GEPCOT and GEPCOT cells, though pre-GEPCOT cells were more dependent upon Bmi-1 for Cdkn2a (p16Ink4a) repression. Our data distinguish quiescent NSCs from NICs and make it possible to study their properties in vivo.
Collapse
Affiliation(s)
- John K Mich
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Robert AJ Signer
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - André Pineda
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rebecca J Burgess
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|