51
|
Jeon J, Yoon SH, Oh MA, Cho W, Kim JY, Shin CI, Kim EJ, Chung TD. Neuroligin-1-Modified Electrodes for Specific Coupling with a Presynaptic Neuronal Membrane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21944-21953. [PMID: 33909393 DOI: 10.1021/acsami.1c01298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coordination of synapses onto electrodes with high specificity and maintaining a stable and long-lasting interface have importance in the field of neural interfaces. One potential approach is to present ligands on the surface of electrodes that would be bound through a protein-protein interaction to specific areas of neuronal cells. Here, we functionalize electrode surfaces with genetically engineered neuroligin-1 protein and demonstrate the formation of a nascent presynaptic bouton upon binding to neurexin-1 β on the presynaptic membrane of neurons. The resulting synaptically connected electrode shows an assembly of presynaptic proteins and comparable exocytosis kinetics to that of native synapses. Importantly, a neuroligin-1-induced synapse-electrode interface exhibits type specificity and structural robustness. We envision that the use of synaptic adhesion proteins in modified neural electrodes may lead to new approaches in the interfacing of neural circuity and electronics.
Collapse
Affiliation(s)
- Joohee Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Il Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Joong Kim
- Advanced Institute of Convergence Technology, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
52
|
CaMKII activation persistently segregates postsynaptic proteins via liquid phase separation. Nat Neurosci 2021; 24:777-785. [PMID: 33927400 DOI: 10.1038/s41593-021-00843-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid-liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca2+ is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca2+-induced liquid-liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity.
Collapse
|
53
|
Xue K, Hu Y, Gu S, Wang C, Kong R, Xie W, Li J. Using structural analysis to clarify the impact of single nucleotide variants in neurexin/neuroligin revealed in clinical genomic sequencing. J Biomol Struct Dyn 2021; 40:8085-8099. [PMID: 33818307 DOI: 10.1080/07391102.2021.1907225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The synapse is a highly specialized and dynamic structure, which is involved in regulating neurotransmission. Nerve cell adhesion molecule is a kind of transmembrane protein that mediates the interaction between cells and cells, cells and extracellular matrix, and plays a role in cell recognition, metastasis, and transmembrane signal transduction. Among nerve cell adhesion molecules, Neurexins (NRXNs) and Neuroligins (NLGNs) have been focused due to the relation with autism and other neuropsychiatric diseases. The previous research discovered numerous variants in NRXNs and NLGNs reported in neurodevelopmental disorders by genomic sequencing. However, structural variants in synaptic molecules caused by genome variants still prevent us from understanding the molecular mechanism of diseases. Thus, we sought to conduct a comprehensive risk assessment of the known NRXN and NLGN gene variants by protein structure analysis. In this study, we analyzed the structural properties of the NRXN/NLGN complex by calculating free energy in residue scanning, in combination with existing risk evaluation tools to focus on candidate missense mutations. Our calculations show that five candidate missense mutations in NLGNs can reduce the stability of NLGNs and even prevent the formation of NRXN/NLGN complexes, namely R87W, R204H, R437H, R437C and R583W. In addition, we found that the affinity of the amino acid substitution (Leu593Phe) (ΔΔG(affinity)) changes the affinity of the NLGN dimer. Overall, we have identified important potential pathological variants that provide clues to biomarkers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaiyu Xue
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yunyun Hu
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Shuanglin Gu
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Chao Wang
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Wei Xie
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing, China
| |
Collapse
|
54
|
Chiang CW, Shu WC, Wan J, Weaver BA, Jackson MB. Recordings from neuron-HEK cell cocultures reveal the determinants of miniature excitatory postsynaptic currents. J Gen Physiol 2021; 153:211910. [PMID: 33755721 PMCID: PMC7992392 DOI: 10.1085/jgp.202012849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022] Open
Abstract
Spontaneous exocytosis of single synaptic vesicles generates miniature synaptic currents, which provide a window into the dynamic control of synaptic transmission. To resolve the impact of different factors on the dynamics and variability of synaptic transmission, we recorded miniature excitatory postsynaptic currents (mEPSCs) from cocultures of mouse hippocampal neurons with HEK cells expressing the postsynaptic proteins GluA2, neuroligin 1, PSD-95, and stargazin. Synapses between neurons and these heterologous cells have a molecularly defined postsynaptic apparatus, while the compact morphology of HEK cells eliminates the distorting effect of dendritic filtering. HEK cells in coculture produced mEPSCs with a higher frequency, larger amplitude, and more rapid rise and decay than neurons from the same culture. However, mEPSC area indicated that nerve terminals in synapses with both neurons and HEK cells release similar populations of vesicles. Modulation by the glutamate receptor ligand aniracetam revealed receptor contributions to mEPSC shape. Dendritic cable effects account for the slower mEPSC rise in neurons, whereas the slower decay also depends on other factors. Lastly, expression of synaptobrevin transmembrane domain mutants in neurons slowed the rise of HEK cell mEPSCs, thus revealing the impact of synaptic fusion pores. In summary, we show that cocultures of neurons with heterologous cells provide a geometrically simplified and molecularly defined system to investigate the time course of synaptic transmission and to resolve the contribution of vesicles, fusion pores, dendrites, and receptors to this process.
Collapse
Affiliation(s)
- Chung-Wei Chiang
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Wen-Chi Shu
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jun Wan
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Beth A Weaver
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Meyer B Jackson
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
55
|
Xie X, Liang M, Yu C, Wei Z. Liprin-α-Mediated Assemblies and Their Roles in Synapse Formation. Front Cell Dev Biol 2021; 9:653381. [PMID: 33869211 PMCID: PMC8044993 DOI: 10.3389/fcell.2021.653381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 01/20/2023] Open
Abstract
Brain's functions, such as memory and learning, rely on synapses that are highly specialized cellular junctions connecting neurons. Functional synapses orchestrate the assembly of ion channels, receptors, enzymes, and scaffold proteins in both pre- and post-synapse. Liprin-α proteins are master scaffolds in synapses and coordinate various synaptic proteins to assemble large protein complexes. The functions of liprin-αs in synapse formation have been largely uncovered by genetic studies in diverse model systems. Recently, emerging structural and biochemical studies on liprin-α proteins and their binding partners begin to unveil the molecular basis of the synaptic assembly. This review summarizes the recent structural findings on liprin-αs, proposes the assembly mechanism of liprin-α-mediated complexes, and discusses the liprin-α-organized assemblies in the regulation of synapse formation and function.
Collapse
Affiliation(s)
- Xingqiao Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Mingfu Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
56
|
The vesicle cluster as a major organizer of synaptic composition in the short-term and long-term. Curr Opin Cell Biol 2021; 71:63-68. [PMID: 33706235 DOI: 10.1016/j.ceb.2021.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 01/29/2023]
Abstract
For decades, the synaptic vesicle cluster has been thought of as a storage space for synaptic vesicles, whose obvious function is to provide vesicles for the depolarization-induced release of neurotransmitters; however, reports over the last few years indicate that the synaptic vesicle cluster probably plays a much broader and more fundamental role in synaptic biology. Various experiments suggest that the cluster is able to regulate protein distribution and mobility in the synapse; moreover, it probably regulates cytoskeleton architecture, mediates the selective removal of synaptic components from the bouton, and controls the responses of the presynapse to plasticity. Here we discuss these features of the vesicle cluster and conclude that it serves as a key organizer of synaptic composition and dynamics.
Collapse
|
57
|
Ramesh N, Escher MJF, Mampell MM, Böhme MA, Götz TWB, Goel P, Matkovic T, Petzoldt AG, Dickman D, Sigrist SJ. Antagonistic interactions between two Neuroligins coordinate pre- and postsynaptic assembly. Curr Biol 2021; 31:1711-1725.e5. [PMID: 33651992 DOI: 10.1016/j.cub.2021.01.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/18/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
As a result of developmental synapse formation, the presynaptic neurotransmitter release machinery becomes accurately matched with postsynaptic neurotransmitter receptors. Trans-synaptic signaling is executed through cell adhesion proteins such as Neurexin::Neuroligin pairs but also through diffusible and cytoplasmic signals. How exactly pre-post coordination is ensured in vivo remains largely enigmatic. Here, we identified a "molecular choreography" coordinating pre- with postsynaptic assembly during the developmental formation of Drosophila neuromuscular synapses. Two presynaptic Neurexin-binding scaffold proteins, Syd-1 and Spinophilin (Spn), spatio-temporally coordinated pre-post assembly in conjunction with two postsynaptically operating, antagonistic Neuroligin species: Nlg1 and Nlg2. The Spn/Nlg2 module promoted active zone (AZ) maturation by driving the accumulation of AZ scaffold proteins critical for synaptic vesicle release. Simultaneously, these regulators restricted postsynaptic glutamate receptor incorporation. Both functions of the Spn/Nlg2 module were directly antagonized by Syd-1/Nlg1. Nlg1 and Nlg2 also had divergent effects on Nrx-1 in vivo motility. Concerning diffusible signals, Spn and Syd-1 antagonistically controlled the levels of Munc13-family protein Unc13B at nascent AZs, whose release function facilitated glutamate receptor incorporation at assembling postsynaptic specializations. As a result, we here provide direct in vivo evidence illustrating how a highly regulative and interleaved communication between cell adhesion protein signaling complexes and diffusible signals allows for a precise coordination of pre- with postsynaptic assembly. It will be interesting to analyze whether this logic also transfers to plasticity processes.
Collapse
Affiliation(s)
- Niraja Ramesh
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Marc J F Escher
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Malou M Mampell
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Mathias A Böhme
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Torsten W B Götz
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Tanja Matkovic
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Astrid G Petzoldt
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Stephan J Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
58
|
Abstract
The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.
Collapse
|
59
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
60
|
Bahreini Jangjoo S, Lin JM, Etaati F, Fearnley S, Cloutier JF, Khmaladze A, Forni PE. Automated quantification of vomeronasal glomeruli number, size, and color composition after immunofluorescent staining. Chem Senses 2021; 46:6366009. [PMID: 34492099 PMCID: PMC8502234 DOI: 10.1093/chemse/bjab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glomeruli are neuropil-rich regions of the main or accessory olfactory bulbs (AOB) where the axons of olfactory or vomeronasal neurons and dendrites of mitral/tufted cells form synaptic connections. In the main olfactory system, olfactory sensory neurons (OSNs) expressing the same receptor innervate 1 or 2 glomeruli. However, in the accessory olfactory system, vomeronasal sensory neurons (VSNs) expressing the same receptor can innervate up to 30 different glomeruli in the AOB. Genetic mutation disrupting genes with a role in defining the identity/diversity of olfactory and vomeronasal neurons can alter the number and size of glomeruli. Interestingly, 2 cell surface molecules, Kirrel2 and Kirrel3, have been indicated as playing a critical role in the organization of axons into glomeruli in the AOB. Being able to quantify differences in glomeruli features, such as number, size, or immunoreactivity for specific markers, is an important experimental approach to validate the role of specific genes in controlling neuronal connectivity and circuit formation in either control or mutant animals. Since the manual recognition and quantification of glomeruli on digital images is a challenging and time-consuming task, we generated a program in Python able to identify glomeruli in digital images and quantify their properties, such as size, number, and pixel intensity. Validation of our program indicates that our script is a fast and suitable tool for high-throughput quantification of glomerular features of mouse lines with different genetic makeup.
Collapse
Affiliation(s)
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY, USA.,The RNA Institute, University at Albany, Albany, NY, USA
| | - Farhood Etaati
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Sydney Fearnley
- The Neuro, 3801 University, Montréal, QC H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Cloutier
- The Neuro, 3801 University, Montréal, QC H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | | | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY, USA.,The RNA Institute, University at Albany, Albany, NY, USA
| |
Collapse
|
61
|
Glorie D, Verhaeghe J, Miranda A, De Lombaerde S, Stroobants S, Staelens S. Sapap3 deletion causes dynamic synaptic density abnormalities: a longitudinal [ 11C]UCB-J PET study in a model of obsessive-compulsive disorder-like behaviour. EJNMMI Res 2020; 10:140. [PMID: 33185747 PMCID: PMC7666267 DOI: 10.1186/s13550-020-00721-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Currently, the evidence on synaptic abnormalities in neuropsychiatric disorders—including obsessive–compulsive disorder (OCD)—is emerging. The newly established positron emission tomography (PET) ligand ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) ([11C]UCB-J) provides the opportunity to visualize synaptic density changes in vivo, by targeting the synaptic vesicle protein 2A (SV2A). Here, we aim to evaluate such alterations in the brain of the SAP90/PSD-95-associated protein 3 (Sapap3) knockout (ko) mouse model, showing an abnormal corticostriatal neurotransmission resulting in OCD-like behaviour. Methods Longitudinal [11C]UCB-J µPET/CT scans were acquired in Sapap3 ko and wildtype (wt) control mice (n = 9/group) to study SV2A availability. Based on the Logan reference method, we calculated the volume of distribution (VT(IDIF)) for [11C]UCB-J. Both cross-sectional (wt vs. ko) and longitudinal (3 vs. 9 months) volume-of-interest-based statistical analysis and voxel-based statistical parametric mapping were performed. Both [11C]UCB-J ex vivo autoradiography and [3H]UCB-J in vitro autoradiography were used for the validation of the µPET data. Results At the age of 3 months, Sapap3 ko mice are already characterized by a significantly lower SV2A availability compared to wt littermates (i.a. cortex − 12.69%, p < 0.01; striatum − 14.12%, p < 0.001, thalamus − 13.11%, p < 0.001, and hippocampus − 12.99%, p < 0.001). Healthy ageing in control mice was associated with a diffuse and significant (p < 0.001) decline throughout the brain, whereas in Sapap3 ko mice this decline was more confined to the corticostriatal level. A strong linear relationship (p < 0.0001) was established between the outcome parameters of [11C]UCB-J µPET and [11C]UCB-J ex vivo autoradiography, while such relationship was absent for [3H]UCB-J in vitro autoradiography. Conclusions [11C]UCB-J PET is a potential marker for synaptic density deficits in the Sapap3 ko mouse model for OCD, parallel to disease progression. Our data suggest that [11C]UCB-J ex vivo autoradiography is a suitable proxy for [11C]UCB-J PET data in mice.
Collapse
Affiliation(s)
- Dorien Glorie
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Stef De Lombaerde
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| |
Collapse
|
62
|
Pan YE, Tibbe D, Harms FL, Reißner C, Becker K, Dingmann B, Mirzaa G, Kattentidt-Mouravieva AA, Shoukier M, Aggarwal S, Missler M, Kutsche K, Kreienkamp HJ. Missense mutations in CASK, coding for the calcium-/calmodulin-dependent serine protein kinase, interfere with neurexin binding and neurexin-induced oligomerization. J Neurochem 2020; 157:1331-1350. [PMID: 33090494 DOI: 10.1111/jnc.15215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Mutations in the X-linked gene coding for the calcium-/calmodulin-dependent serine protein kinase (CASK) are associated with severe neurological disorders ranging from intellectual disability (in males) to mental retardation and microcephaly with pontine and cerebellar hypoplasia. CASK is involved in transcription control, in the regulation of trafficking of the post-synaptic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and acts as a presynaptic scaffolding protein. For CASK missense mutations, it is mostly unclear which of CASK's molecular interactions and cellular functions are altered and contribute to patient phenotypes. We identified five CASK missense mutations in male patients affected by neurodevelopmental disorders. These and five previously reported mutations were systematically analysed with respect to interaction with CASK interaction partners by co-expression and co-immunoprecipitation. We show that one mutation in the L27 domain interferes with binding to synapse-associated protein of 97 kDa. Two mutations in the guanylate kinase (GK) domain affect binding of CASK to the nuclear factors CASK-interacting nucleosome assembly protein (CINAP) and T-box, brain, 1 (Tbr1). A total of five mutations in GK as well as PSD-95/discs large/ZO-1 (PDZ) domains affect binding of CASK to the pre-synaptic cell adhesion molecule Neurexin. Upon expression in neurons, we observe that binding to Neurexin is not required for pre-synaptic localization of CASK. We show by bimolecular fluorescence complementation assay that Neurexin induces oligomerization of CASK, and that mutations in GK and PDZ domains interfere with the Neurexin-induced oligomerization of CASK. Our data are supported by molecular modelling, where we observe that the cooperative activity of PDZ, SH3 and GK domains is required for Neurexin binding and oligomerization of CASK.
Collapse
Affiliation(s)
- Yingzhou Edward Pan
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Leonie Harms
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Reißner
- Institut für Anatomie und Molekulare Neurobiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Bri Dingmann
- Medical Genetics Department, Seattle Children's Hospital, Seattle, Washington, DC, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, DC, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, DC, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Moneef Shoukier
- Pränatal-Medizin München, Frauenärzte und Humangenetiker MVZ, München, Germany
| | - Shagun Aggarwal
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Markus Missler
- Institut für Anatomie und Molekulare Neurobiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kerstin Kutsche
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
63
|
The soluble neurexin-1β ectodomain causes calcium influx and augments dendritic outgrowth and synaptic transmission. Sci Rep 2020; 10:18041. [PMID: 33093500 PMCID: PMC7582164 DOI: 10.1038/s41598-020-75047-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Classically, neurexins are thought to mediate synaptic connections through trans interactions with a number of different postsynaptic partners. Neurexins are cleaved by metalloproteases in an activity-dependent manner, releasing the soluble extracellular domain. Here, we report that in both immature (before synaptogenesis) and mature (after synaptogenesis) hippocampal neurons, the soluble neurexin-1β ectodomain triggers acute Ca2+-influx at the dendritic/postsynaptic side. In both cases, neuroligin-1 expression was required. In immature neurons, calcium influx required N-type calcium channels and stimulated dendritic outgrowth and neuronal survival. In mature glutamatergic neurons the neurexin-1β ectodomain stimulated calcium influx through NMDA-receptors, which increased presynaptic release probability. In contrast, prolonged exposure to the ectodomain led to inhibition of synaptic transmission. This secondary inhibition was activity- and neuroligin-1 dependent and caused by a reduction in the readily-releasable pool of vesicles. A synthetic peptide modeled after the neurexin-1β:neuroligin-1 interaction site reproduced the cellular effects of the neurexin-1β ectodomain. Collectively, our findings demonstrate that the soluble neurexin ectodomain stimulates growth of neurons and exerts acute and chronic effects on trans-synaptic signaling involved in setting synaptic strength.
Collapse
|
64
|
SNX27-Mediated Recycling of Neuroligin-2 Regulates Inhibitory Signaling. Cell Rep 2020; 29:2599-2607.e6. [PMID: 31775031 PMCID: PMC6899438 DOI: 10.1016/j.celrep.2019.10.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 01/11/2023] Open
Abstract
GABAA receptors mediate fast inhibitory transmission in the brain, and their number can be rapidly up- or downregulated to alter synaptic strength. Neuroligin-2 plays a critical role in the stabilization of synaptic GABAA receptors and the development and maintenance of inhibitory synapses. To date, little is known about how the amount of neuroligin-2 at the synapse is regulated and whether neuroligin-2 trafficking affects inhibitory signaling. Here, we show that neuroligin-2, when internalized to endosomes, co-localizes with SNX27, a brain-enriched cargo-adaptor protein that facilitates membrane protein recycling. Direct interaction between the PDZ domain of SNX27 and PDZ-binding motif in neuroligin-2 enables membrane retrieval of neuroligin-2, thus enhancing synaptic neuroligin-2 clusters. Furthermore, SNX27 knockdown has the opposite effect. SNX27-mediated up- and downregulation of neuroligin-2 surface levels affects inhibitory synapse composition and signaling strength. Taken together, we show a role for SNX27-mediated recycling of neuroligin-2 in maintenance and signaling of the GABAergic synapse.
Collapse
|
65
|
TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Rep 2020; 29:1130-1146.e8. [PMID: 31665629 PMCID: PMC6899445 DOI: 10.1016/j.celrep.2019.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses. TSPAN5 is expressed in pyramidal neurons and localizes mainly to dendritic spines TSPAN5 interacts with neuroligin-1 and promotes its clustering TSPAN5-neuroligin-1 complex is fundamental for dendritic spine maturation
Collapse
|
66
|
Taylor SC, Ferri SL, Grewal M, Smernoff Z, Bucan M, Weiner JA, Abel T, Brodkin ES. The Role of Synaptic Cell Adhesion Molecules and Associated Scaffolding Proteins in Social Affiliative Behaviors. Biol Psychiatry 2020; 88:442-451. [PMID: 32305215 PMCID: PMC7442706 DOI: 10.1016/j.biopsych.2020.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Social affiliative behaviors-engagement in positive (i.e., nonaggressive) social approach and reciprocal social interactions with a conspecific-comprise a construct within the National Institute of Mental Health Research Domain Criteria Social Processes Domain. These behaviors are disrupted in multiple human neurodevelopmental and neuropsychiatric disorders, such as autism, schizophrenia, social phobia, and others. Human genetic studies have strongly implicated synaptic cell adhesion molecules (sCAMs) in several such disorders that involve marked reductions, or other dysregulations, of social affiliative behaviors. Here, we review the literature on the role of sCAMs in social affiliative behaviors. We integrate findings pertaining to synapse structure and morphology, neurotransmission, postsynaptic signaling pathways, and neural circuitry to propose a multilevel model that addresses the impact of a diverse group of sCAMs, including neurexins, neuroligins, protocadherins, immunoglobulin superfamily proteins, and leucine-rich repeat proteins, as well as their associated scaffolding proteins, including SHANKs and others, on social affiliative behaviors. This review finds that the disruption of sCAMs often manifests in changes in social affiliative behaviors, likely through alterations in synaptic maturity, pruning, and specificity, leading to excitation/inhibition imbalance in several key regions, namely the medial prefrontal cortex, basolateral amygdala, hippocampus, anterior cingulate cortex, and ventral tegmental area. Unraveling the complex network of interacting sCAMs in glutamatergic synapses will be an important strategy for elucidating the mechanisms of social affiliative behaviors and the alteration of these behaviors in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara C Taylor
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah L Ferri
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Mahip Grewal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zoe Smernoff
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maja Bucan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua A Weiner
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Biology, University of Iowa, Iowa City, Iowa
| | - Ted Abel
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
67
|
Xu J, Du YL, Xu JW, Hu XG, Gu LF, Li XM, Hu PH, Liao TL, Xia QQ, Sun Q, Shi L, Luo JH, Xia J, Wang Z, Xu J. Neuroligin 3 Regulates Dendritic Outgrowth by Modulating Akt/mTOR Signaling. Front Cell Neurosci 2019; 13:518. [PMID: 31849609 PMCID: PMC6896717 DOI: 10.3389/fncel.2019.00518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
Neuroligins (NLs) are a group of postsynaptic cell adhesion molecules that function in synaptogenesis and synaptic transmission. Genetic defects in neuroligin 3 (NL3), a member of the NL protein family, are associated with autism. Studies in rodents have revealed that mutations of NL3 gene lead to increased growth and complexity in dendrites in the central nervous system. However, the detailed mechanism is still unclear. In our study, we found that deficiency of NL3 led to morphological changes of the pyramidal neurons in layer II/III somatosensory cortex in mice, including enlarged somata, elongated dendritic length, and increased dendritic complexity. Knockdown of NL3 in cultured rat neurons upregulated Akt/mTOR signaling, resulting in both increased protein synthesis and dendritic growth. Treating neurons with either rapamycin to inhibit the mTOR or LY294002 to inhibit the PI3K/Akt activity rescued the morphological abnormalities resulting from either NL3 knockdown or knockout (KO). In addition, we found that the hyperactivated Akt/mTOR signaling associated with NL3 defects was mediated by a reduction in phosphatase and tensin (PTEN) expression, and that MAGI-2, a scaffold protein, interacted with both NL3 and PTEN and could be a linker between NL3 and Akt/mTOR signaling pathway. In conclusion, our results suggest that NL3 regulates neuronal morphology, especially dendritic outgrowth, by modulating the PTEN/Akt/mTOR signaling pathway, probably via MAGI-2. Thereby, this study provides a new link between NL3 and neuronal morphology.
Collapse
Affiliation(s)
- Jing Xu
- Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Lan Du
- Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Wei Xu
- Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lin-Fan Gu
- Zhejiang University-University of Edinburgh Institute, Jiaxing, China
| | - Xiu-Mao Li
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ping-Hong Hu
- Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tai-Lin Liao
- Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang-Qiang Xia
- Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Sun
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China
| | - Jian-Hong Luo
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Xia
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.,Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Ziyi Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Junyu Xu
- Department of Rehabilitation of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
68
|
Dagar S, Gottmann K. Differential Properties of the Synaptogenic Activities of the Neurexin Ligands Neuroligin1 and LRRTM2. Front Mol Neurosci 2019; 12:269. [PMID: 31780894 PMCID: PMC6856695 DOI: 10.3389/fnmol.2019.00269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/22/2019] [Indexed: 12/03/2022] Open
Abstract
Synaptic cell adhesion molecules are well established to exhibit synaptogenic activity when overexpressed in target cells, indicating that they are involved in formation and functional maturation of synapses. The postsynaptic adhesion proteins Neuroligin1 and LRRTM2 both induce synaptic vesicle clusters in presynaptic axons in vitro by transsynaptically interacting with neurexins. In neurons, this is accompanied by the induction of glutamatergic, but not GABAergic synapses. Although the synaptogenic activity of Neuroligin1 has been well characterized, the properties of the synaptogenic activities of other synaptic adhesion molecules are largely unknown. In this paper, we now compared characteristics of the synaptogenic activities of Neuroligin1 and LRRTM2 upon overexpression in cultured mouse cortical neurons. Individual cortical neurons were transfected with Neuroligin1 and LRRTM2 expression plasmids, respectively, and synaptic vesicle clustering in contacting axons was examined by immunostaining for the vesicle membrane protein VAMP2. In immature neurons at 6–7 days in vitro (DIV) both Neuroligin1 and LRRTM2 exhibited strong synaptogenic activity. However, upon further neuronal differentiation only LRRTM2 retained significant synaptogenic activity at 12–13 DIV. A similar differential developmental maturation of the synaptogenic activities of Neuroligin1 and LRRTM2 was observed for the induction of glutamatergic synapses, which were detected by co-immunostaining for VGLUT1 and Homer1. Most interestingly, the synaptogenic activity of Neuroligin1 was strongly dependent on the expression and function of the synaptic adhesion molecule N-cadherin in immature neurons. In contrast, the synaptogenic activity of LRRTM2 was independent of N-cadherin expression and function in both immature (6–7 DIV) and more mature neurons (14–15 DIV). Taken together, our results with overexpression in cultured cortical neurons revealed striking differences in the properties of the synaptogenic activities of Neuroligin1 and LRRTM2, although both transsynaptically interact with presynaptic neurexins.
Collapse
Affiliation(s)
- Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
69
|
Hu Z, Xiao X, Zhang Z, Li M. Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Mol Psychiatry 2019; 24:1400-1414. [PMID: 31138894 DOI: 10.1038/s41380-019-0438-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/31/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023]
Abstract
Many neuropsychiatric and neurodevelopmental disorders commonly share genetic risk factors. To date, the mechanisms driving the pathogenesis of these disorders, particularly how genetic variations affect the function of risk genes and contribute to disease symptoms, remain largely unknown. Neurexins are a family of synaptic adhesion molecules, which play important roles in the formation and establishment of synaptic structure, as well as maintenance of synaptic function. Accumulating genomic findings reveal that genetic variations within genes encoding neurexins are associated with a variety of psychiatric conditions such as schizophrenia, autism spectrum disorder, and some developmental abnormalities. In this review, we focus on NRXN1, one of the most compelling psychiatric risk genes of the neurexin family. We performed a comprehensive survey and analysis of current genetic and molecular data including both common and rare alleles within NRXN1 associated with psychiatric illnesses, thus providing insights into the genetic risk conferred by NRXN1. We also summarized the neurobiological evidences, supporting the function of NRXN1 and its protein products in synaptic formation, organization, transmission and plasticity, as well as disease-relevant behaviors, and assessed the mechanistic link between the mutations of NRXN1 and synaptic and behavioral pathology in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
70
|
Emerging Roles of Synapse Organizers in the Regulation of Critical Periods. Neural Plast 2019; 2019:1538137. [PMID: 31565044 PMCID: PMC6745111 DOI: 10.1155/2019/1538137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023] Open
Abstract
Experience remodels cortical connectivity during developmental windows called critical periods. Experience-dependent regulation of synaptic strength during these periods establishes circuit functions that are stabilized as critical period plasticity wanes. These processes have been extensively studied in the developing visual cortex, where critical period opening and closure are orchestrated by the assembly, maturation, and strengthening of distinct synapse types. The synaptic specificity of these processes points towards the involvement of distinct molecular pathways. Attractive candidates are pre- and postsynaptic transmembrane proteins that form adhesive complexes across the synaptic cleft. These synapse-organizing proteins control synapse development and maintenance and modulate structural and functional properties of synapses. Recent evidence suggests that they have pivotal roles in the onset and closure of the critical period for vision. In this review, we describe roles of synapse-organizing adhesion molecules in the regulation of visual critical period plasticity and we discuss the potential they offer to restore circuit functions in amblyopia and other neurodevelopmental disorders.
Collapse
|
71
|
Wang A, Xiang YY, Yang BB, Lu WY. Neurexin-1α regulates neurite growth of rat hippocampal neurons. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:115-125. [PMID: 31523359 PMCID: PMC6737430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The growth of neurites underlies the axonal pathfinding and synaptic formation during neuronal development and regeneration. Neurite growth is regulated by specific interactions between growth cone receptors and their ligands that function as molecular cues existing in microenvironments. Neurexins (NRXNs) are concentrated on growth cones and they may function to constrain axonal branches of invertebrate neurons. The present study explored the role of NRXN-1α in regulating neurite growth of mammalian neurons. Results showed that transfecting an effective NRXN-1α siRNA to cultured rat hippocampal neurons significantly increased neurite length. Adding NRXN-1α ligands including neuroligin (NLGN) peptide and/or α-latrotoxin (α-LTX) to the culture media largely decreased neurite growth of naïve neurons in a Ca2+-dependent manner, but had no effect on neurite growth of neurons transfected with NRXN-1α siRNA. Our results suggest that NRXN-1α regulates neurite development of mammalian neurons.
Collapse
Affiliation(s)
- Adam Wang
- Department of Physiology and Pharmacology, The University of Western OntarioLondon, Ontario N6A 5B7, Canada
| | - Yun-Yan Xiang
- Robarts Research Institute, The University of Western OntarioLondon, Ontario N6A 5B7, Canada
| | - Burton B Yang
- Department of Laboratory Medicine and Pathobiology, University of TorontoCanada
- Sunnybrook Research Institute, University of TorontoCanada
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, The University of Western OntarioLondon, Ontario N6A 5B7, Canada
- Robarts Research Institute, The University of Western OntarioLondon, Ontario N6A 5B7, Canada
| |
Collapse
|
72
|
Brouwer M, Farzana F, Koopmans F, Chen N, Brunner JW, Oldani S, Li KW, van Weering JR, Smit AB, Toonen RF, Verhage M. SALM1 controls synapse development by promoting F-actin/PIP2-dependent Neurexin clustering. EMBO J 2019; 38:e101289. [PMID: 31368584 PMCID: PMC6717895 DOI: 10.15252/embj.2018101289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022] Open
Abstract
Synapse development requires spatiotemporally regulated recruitment of synaptic proteins. In this study, we describe a novel presynaptic mechanism of cis‐regulated oligomerization of adhesion molecules that controls synaptogenesis. We identified synaptic adhesion‐like molecule 1 (SALM1) as a constituent of the proposed presynaptic Munc18/CASK/Mint1/Lin7b organizer complex. SALM1 preferentially localized to presynaptic compartments of excitatory hippocampal neurons. SALM1 depletion in excitatory hippocampal primary neurons impaired Neurexin1β‐ and Neuroligin1‐mediated excitatory synaptogenesis and reduced synaptic vesicle clustering, synaptic transmission, and synaptic vesicle release. SALM1 promoted Neurexin1β clustering in an F‐actin‐ and PIP2‐dependent manner. Two basic residues in SALM1's juxtamembrane polybasic domain are essential for this clustering. Together, these data show that SALM1 is a presynaptic organizer of synapse development by promoting F‐actin/PIP2‐dependent clustering of Neurexin.
Collapse
Affiliation(s)
- Marinka Brouwer
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Fatima Farzana
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ning Chen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jessie W Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Silvia Oldani
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jan Rt van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
73
|
Hendi A, Kurashina M, Mizumoto K. Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans. Cell Mol Life Sci 2019; 76:2719-2738. [PMID: 31037336 PMCID: PMC11105629 DOI: 10.1007/s00018-019-03109-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Precise neuronal wiring is critical for the function of the nervous system and is ultimately determined at the level of individual synapses. Neurons integrate various intrinsic and extrinsic cues to form synapses onto their correct targets in a stereotyped manner. In the past decades, the nervous system of nematode (Caenorhabditis elegans) has provided the genetic platform to reveal the genetic and molecular mechanisms of synapse formation and specificity. In this review, we will summarize the recent discoveries in synapse formation and specificity in C. elegans.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
74
|
Haghparast E, Sheibani V, Abbasnejad M, Esmaeili-Mahani S. Apelin-13 attenuates motor impairments and prevents the changes in synaptic plasticity-related molecules in the striatum of Parkinsonism rats. Peptides 2019; 117:170091. [PMID: 31121196 DOI: 10.1016/j.peptides.2019.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022]
Abstract
The striatum plays a critical role in motor control and also learning and memory of motor skills. It has been reported that striatal synaptic components are significantly decreased in dopaminergic-denervated striatum. In this study the effects of apelin-13 were investigated on motor disorders and striatal synaptosomal expression of PSD-95, neurexin1, neuroligin, metabotropic glutamate receptor (mGlu R1) and dopaminergic receptors (DR1 and DR2) in rat parkinsonism experimental model. 6-hydroxydopamine (6-OHDA) was injected into the substantia nigra. Apelin-13 (1, 2 and 3 μg/rat) was administered into the substantia nigra one week after the 6-OHDA injection. Accelerating rotarod, beam-balance, beam-walking and bar tests were performed one month after the apelin injection. Immunohistochemistry staining of dopaminergic neurons was performed. The levels of synaptic proteins were determined by immunoblotting. 6-OHDA-treated animals showed a significant impairment in motor-skill tasks and a dramatically change in the expression levels of mentioned proteins. Apelin-13 (3 μg/rat) significantly attenuates the motor impairments and prevents the changes in striatal synaptic elements in 6-OHDA-treated animals. In addition, it could rescue the dopaminergic neurons of the substantia nigra. The data will potentially extend the possible benefic aspect of apelin in neurodegenerative disorders.
Collapse
Affiliation(s)
- Elham Haghparast
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran.
| |
Collapse
|
75
|
Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol 2019; 9:180265. [PMID: 31185809 PMCID: PMC6597757 DOI: 10.1098/rsob.180265] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Anjali Amrapali Vishwanath
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Bhupesh Vaidya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| |
Collapse
|
76
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
77
|
Kurshan PT, Shen K. Synaptogenic pathways. Curr Opin Neurobiol 2019; 57:156-162. [PMID: 30986749 DOI: 10.1016/j.conb.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 11/30/2022]
Abstract
During synaptogenesis, presynaptic and postsynaptic assembly are driven by diverse molecular mechanisms, mediated by intrinsic as well as extrinsic factors. How these processes are initiated and coordinated are open questions. Synapse specificity, or synaptic partner selection, is widely understood to be determined by the trans-synaptic binding of cell adhesion molecules. However, in vivo evidence that cell adhesion molecules subsequently function to initiate synapse assembly, as initially proposed, is lacking. Here, we present a summary of our current understanding of synaptogenic pathways that mediate presynaptic and postsynaptic assembly and the coordination of these processes.
Collapse
Affiliation(s)
| | - Kang Shen
- Stanford University, Department of Biology, United States; Howard Hughes Medical Institute, United States
| |
Collapse
|
78
|
Chamma I, Sainlos M, Thoumine O. Biophysical mechanisms underlying the membrane trafficking of synaptic adhesion molecules. Neuropharmacology 2019; 169:107555. [PMID: 30831159 DOI: 10.1016/j.neuropharm.2019.02.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023]
Abstract
Adhesion proteins play crucial roles at synapses, not only by providing a physical trans-synaptic linkage between axonal and dendritic membranes, but also by connecting to functional elements including the pre-synaptic neurotransmitter release machinery and post-synaptic receptors. To mediate these functions, adhesion proteins must be organized on the neuronal surface in a precise and controlled manner. Recent studies have started to describe the mobility, nanoscale organization, and turnover rate of key synaptic adhesion molecules including cadherins, neurexins, neuroligins, SynCAMs, and LRRTMs, and show that some of these proteins are highly mobile in the plasma membrane while others are confined at sub-synaptic compartments, providing evidence for different regulatory pathways. In this review article, we provide a biophysical view of the diffusional trapping of adhesion molecules at synapses, involving both extracellular and intracellular protein interactions. We review the methodology underlying these measurements, including biomimetic systems with purified adhesion proteins, means to perturb protein expression or function, single molecule imaging in cultured neurons, and analytical models to interpret the data. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Ingrid Chamma
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France
| | - Matthieu Sainlos
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France
| | - Olivier Thoumine
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
79
|
Jeon J, Oh MA, Cho W, Yoon SH, Kim JY, Chung TD. Robust Induced Presynapse on Artificial Substrates as a Neural Interfacing Method. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7764-7773. [PMID: 30707832 DOI: 10.1021/acsami.8b20405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the recent years, the development of neural interface systems has stuck to using electrical cues to stimulate neurons and read out neural signals, although neurons relay signals via chemical release and recognition at synapses. In addition, conventional neural interfaces are vulnerable to cell migration and glial encapsulation due to the absence of connection anchoring the neuron into the device unlike synapses, which are firmly sustained by protein bonding. To close this discrepancy, we conducted an intensive investigation into the induced synapse interface by employing engineered synaptic proteins from a neural interface perspective. The strong potential of induced synaptic differentiation as an emerging neural interfacing technique is demonstrated by exploring its structural features, chemical release kinetics, robustness, and scalability to the brain tissue. We show that the exocytosis kinetics of induced synapses is similar to that of endogenous synapses. Moreover, induced synapses show remarkable stability, despite cell migration and growth. The synapse-inducing technique has broad applications to cultured hippocampal and cortex tissues and suggests a promising method to integrate neural circuits with digital elements.
Collapse
Affiliation(s)
- Joohee Jeon
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Wonkyung Cho
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
- Advanced Institutes of Convergence Technology , Suwon-Si , Gyeonggi-do 16229 , Republic of Korea
| |
Collapse
|
80
|
Han KA, Um JW, Ko J. Intracellular protein complexes involved in synapse assembly in presynaptic neurons. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:347-373. [PMID: 31036296 DOI: 10.1016/bs.apcsb.2018.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The presynaptic active zone, composed of evolutionarily conserved protein complexes, is a specialized area that serves to orchestrate precise and efficient neurotransmitter release by organizing various presynaptic proteins involved in mediating docking and priming of synaptic vesicles, recruiting voltage-gated calcium channels, and modulating presynaptic nerve terminals with aligned postsynaptic structures. Among membrane proteins localized to active zone, presynaptic neurexins and LAR-RPTPs (leukocyte common antigen-related receptor tyrosine phosphatase) have emerged as hubs that orchestrate both shared and distinct extracellular synaptic adhesion pathways. In this chapter, we discuss intracellular signaling cascades involved in recruiting various intracellular proteins at both excitatory and inhibitory synaptic sites. In particular, we highlight recent studies on key active zone proteins that physically and functionally link these cascades with neurexins and LAR-RPTPs in both vertebrate and invertebrate model systems. These studies allow us to build a general, universal view of how presynaptic active zones operate together with postsynaptic structures in neural circuits.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
81
|
Ghelani T, Sigrist SJ. Coupling the Structural and Functional Assembly of Synaptic Release Sites. Front Neuroanat 2018; 12:81. [PMID: 30386217 PMCID: PMC6198076 DOI: 10.3389/fnana.2018.00081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
Information processing in our brains depends on the exact timing of calcium (Ca2+)-activated exocytosis of synaptic vesicles (SVs) from unique release sites embedded within the presynaptic active zones (AZs). While AZ scaffolding proteins obviously provide an efficient environment for release site function, the molecular design creating such release sites had remained unknown for a long time. Recent advances in visualizing the ultrastructure and topology of presynaptic protein architectures have started to elucidate how scaffold proteins establish “nanodomains” that connect voltage-gated Ca2+ channels (VGCCs) physically and functionally with release-ready SVs. Scaffold proteins here seem to operate as “molecular rulers or spacers,” regulating SV-VGCC physical distances within tens of nanometers and, thus, influence the probability and plasticity of SV release. A number of recent studies at Drosophila and mammalian synapses show that the stable positioning of discrete clusters of obligate release factor (M)Unc13 defines the position of SV release sites, and the differential expression of (M)Unc13 isoforms at synapses can regulate SV-VGCC coupling. We here review the organization of matured AZ scaffolds concerning their intrinsic organization and role for release site formation. Moreover, we also discuss insights into the developmental sequence of AZ assembly, which often entails a tightening between VGCCs and SV release sites. The findings discussed here are retrieved from vertebrate and invertebrate preparations and include a spectrum of methods ranging from cell biology, super-resolution light and electron microscopy to biophysical and electrophysiological analysis. Our understanding of how the structural and functional organization of presynaptic AZs are coupled has matured, as these processes are crucial for the understanding of synapse maturation and plasticity, and, thus, accurate information transfer and storage at chemical synapses.
Collapse
Affiliation(s)
- Tina Ghelani
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
82
|
Kurshan PT, Merrill SA, Dong Y, Ding C, Hammarlund M, Bai J, Jorgensen EM, Shen K. γ-Neurexin and Frizzled Mediate Parallel Synapse Assembly Pathways Antagonized by Receptor Endocytosis. Neuron 2018; 100:150-166.e4. [PMID: 30269993 PMCID: PMC6181781 DOI: 10.1016/j.neuron.2018.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/30/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Synapse formation defines neuronal connectivity and is thus essential for neuronal circuit assembly. Trans-synaptic interactions of cell adhesion molecules are thought to induce synapse assembly. Here we demonstrate that a recently discovered and conserved short form of neurexin, γ-neurexin, which lacks canonical extracellular domains, is nonetheless sufficient to promote presynaptic assembly in the nematode C. elegans. γ- but not α-neurexin is required for assembling active zone components, recruiting synaptic vesicles, and clustering calcium channels at release sites to promote evoked synaptic transmission. Furthermore, we find that neurexin functions in parallel with the transmembrane receptor Frizzled, as the absence of both proteins leads to an enhanced phenotype-the loss of most synapses. Frizzled's pro-synaptogenic function is independent of its ligand, Wnt. Wnt binding instead eliminates synapses by inducing Frizzled's endocytosis and the downregulation of neurexin. These results reveal how pro- and anti-synaptogenic factors converge to precisely sculpt circuit formation in vivo.
Collapse
Affiliation(s)
- Peri T Kurshan
- Biology Department, Stanford University, Stanford, CA 94305, USA.
| | - Sean A Merrill
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Yongming Dong
- Division of Basic Sciences, Fred Hutchinson Cancer Institute, Seattle, WA 98109, USA
| | - Chen Ding
- Department of Genetics and Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Marc Hammarlund
- Department of Genetics and Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Institute, Seattle, WA 98109, USA
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute
| | - Kang Shen
- Biology Department, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute
| |
Collapse
|
83
|
Dynamics, nanoscale organization, and function of synaptic adhesion molecules. Mol Cell Neurosci 2018; 91:95-107. [DOI: 10.1016/j.mcn.2018.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
|
84
|
α-Neurexins Together with α2δ-1 Auxiliary Subunits Regulate Ca 2+ Influx through Ca v2.1 Channels. J Neurosci 2018; 38:8277-8294. [PMID: 30104341 DOI: 10.1523/jneurosci.0511-18.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
Action potential-evoked neurotransmitter release is impaired in knock-out neurons lacking synaptic cell-adhesion molecules α-neurexins (αNrxns), the extracellularly longer variants of the three vertebrate Nrxn genes. Ca2+ influx through presynaptic high-voltage gated calcium channels like the ubiquitous P/Q-type (CaV2.1) triggers release of fusion-ready vesicles at many boutons. α2δ Auxiliary subunits regulate trafficking and kinetic properties of CaV2.1 pore-forming subunits but it has remained unclear if this involves αNrxns. Using live cell imaging with Ca2+ indicators, we report here that the total presynaptic Ca2+ influx in primary hippocampal neurons of αNrxn triple knock-out mice of both sexes is reduced and involved lower CaV2.1-mediated transients. This defect is accompanied by lower vesicle release, reduced synaptic abundance of CaV2.1 pore-forming subunits, and elevated surface mobility of α2δ-1 on axons. Overexpression of Nrxn1α in αNrxn triple knock-out neurons is sufficient to restore normal presynaptic Ca2+ influx and synaptic vesicle release. Moreover, coexpression of Nrxn1α together with α2δ-1 subunits facilitates Ca2+ influx further but causes little augmentation together with a different subunit, α2δ-3, suggesting remarkable specificity. Expression of defined recombinant CaV2.1 channels in heterologous cells validates and extends the findings from neurons. Whole-cell patch-clamp recordings show that Nrxn1α in combination with α2δ-1, but not with α2δ-3, facilitates Ca2+ currents of recombinant CaV2.1 without altering channel kinetics. These results suggest that presynaptic Nrxn1α acts as a positive regulator of Ca2+ influx through CaV2.1 channels containing α2δ-1 subunits. We propose that this regulation represents an important way for neurons to adjust synaptic strength.SIGNIFICANCE STATEMENT Synaptic transmission between neurons depends on the fusion of neurotransmitter-filled vesicles with the presynaptic membrane, which subsequently activates postsynaptic receptors. Influx of calcium ions into the presynaptic terminal is the key step to trigger vesicle release and involves different subtypes of voltage-gated calcium channels. We study the regulation of calcium channels by neurexins, a family of synaptic cell-adhesion molecules that are essential for many synapse properties. Using optical measurements of calcium influx in cultured neurons and electrophysiological recordings of calcium currents from recombinant channels, we show that a major neurexin variant facilitates calcium influx through P/Q-type channels by interacting with their α2δ-1 auxiliary subunits. These results propose a novel way how neurons can modulate the strength of distinct synapses.
Collapse
|
85
|
Jabeen S, Thirumalai V. The interplay between electrical and chemical synaptogenesis. J Neurophysiol 2018; 120:1914-1922. [PMID: 30067121 PMCID: PMC6230774 DOI: 10.1152/jn.00398.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurons communicate with each other via electrical or chemical synaptic connections. The pattern and strength of connections between neurons are critical for generating appropriate output. What mechanisms govern the formation of electrical and/or chemical synapses between two neurons? Recent studies indicate that common molecular players could regulate the formation of both of these classes of synapses. In addition, electrical and chemical synapses can mutually coregulate each other’s formation. Electrical activity, generated spontaneously by the nervous system or initiated from sensory experience, plays an important role in this process, leading to the selection of appropriate connections and the elimination of inappropriate ones. In this review, we discuss recent studies that shed light on the formation and developmental interactions of chemical and electrical synapses.
Collapse
Affiliation(s)
- Shaista Jabeen
- National Centre for Biological Sciences, Tata Institute for Fundamental Research , Bangalore , India.,Manipal Academy of Higher Education, Madhav Nagar, Manipal , India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute for Fundamental Research , Bangalore , India
| |
Collapse
|
86
|
Won SY, Kim HM. Structural Basis for LAR-RPTP-Mediated Synaptogenesis. Mol Cells 2018; 41:622-630. [PMID: 30008201 PMCID: PMC6078854 DOI: 10.14348/molcells.2018.0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/10/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Leukocyte common antigen-related protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that regulate neurite outgrowth and neuronal regeneration. LAR-RPTPs have also received particular attention as the major presynaptic hubs for synapse organization through selective binding to numerous postsynaptic adhesion partners. Recent structural studies on LAR-RPTP-mediated trans-synaptic adhesion complexes have provided significant insight into the molecular basis of their specific interactions, the key codes for their selective binding, as well as the higher-order clustering of LAR-RPTPs necessary for synaptogenic activity. In this review, we summarize the structures of LAR-RPTPs in complex with various postsynaptic adhesion partners and discuss the molecular mechanisms underlying LAR-RPTP-mediated synaptogenesis.
Collapse
Affiliation(s)
- Seoung Youn Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141,
Korea
| |
Collapse
|
87
|
Haas KT, Compans B, Letellier M, Bartol TM, Grillo-Bosch D, Sejnowski TJ, Sainlos M, Choquet D, Thoumine O, Hosy E. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 2018; 7:e31755. [PMID: 30044218 PMCID: PMC6070337 DOI: 10.7554/elife.31755] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
Abstract
The nanoscale organization of neurotransmitter receptors regarding pre-synaptic release sites is a fundamental determinant of the synaptic transmission amplitude and reliability. How modifications in the pre- and post-synaptic machinery alignments affects synaptic currents, has only been addressed with computer modelling. Using single molecule super-resolution microscopy, we found a strong spatial correlation between AMPA receptor (AMPAR) nanodomains and the post-synaptic adhesion protein neuroligin-1 (NLG1). Expression of a truncated form of NLG1 disrupted this correlation without affecting the intrinsic AMPAR organization, shifting the pre-synaptic release machinery away from AMPAR nanodomains. Electrophysiology in dissociated and organotypic hippocampal rodent cultures shows these treatments significantly decrease AMPAR-mediated miniature and EPSC amplitudes. Computer modelling predicts that ~100 nm lateral shift between AMPAR nanoclusters and glutamate release sites induces a significant reduction in AMPAR-mediated currents. Thus, our results suggest the synapses necessity to release glutamate precisely in front of AMPAR nanodomains, to maintain a high synaptic responses efficiency.
Collapse
Affiliation(s)
- Kalina T Haas
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Benjamin Compans
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Mathieu Letellier
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Thomas M Bartol
- Howard Hughes Medical InstituteSalk Institute for Biological StudiesLa JollaUnited States
| | - Dolors Grillo-Bosch
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Terrence J Sejnowski
- Howard Hughes Medical InstituteSalk Institute for Biological StudiesLa JollaUnited States
| | - Matthieu Sainlos
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Daniel Choquet
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
- Bordeaux Imaging CenterUMS 3420 CNRS, Université de Bordeaux, US4 INSERM, F-33000BordeauxFrance
| | - Olivier Thoumine
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Eric Hosy
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| |
Collapse
|
88
|
Philbrook A, Ramachandran S, Lambert CM, Oliver D, Florman J, Alkema MJ, Lemons M, Francis MM. Neurexin directs partner-specific synaptic connectivity in C. elegans. eLife 2018; 7:35692. [PMID: 30039797 PMCID: PMC6057746 DOI: 10.7554/elife.35692] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/21/2018] [Indexed: 01/14/2023] Open
Abstract
In neural circuits, individual neurons often make projections onto multiple postsynaptic partners. Here, we investigate molecular mechanisms by which these divergent connections are generated, using dyadic synapses in C. elegans as a model. We report that C. elegans nrx-1/neurexin directs divergent connectivity through differential actions at synapses with partnering neurons and muscles. We show that cholinergic outputs onto neurons are, unexpectedly, located at previously undefined spine-like protrusions from GABAergic dendrites. Both these spine-like features and cholinergic receptor clustering are strikingly disrupted in the absence of nrx-1. Excitatory transmission onto GABAergic neurons, but not neuromuscular transmission, is also disrupted. Our data indicate that NRX-1 located at presynaptic sites specifically directs postsynaptic development in GABAergic neurons. Our findings provide evidence that individual neurons can direct differential patterns of connectivity with their post-synaptic partners through partner-specific utilization of synaptic organizers, offering a novel view into molecular control of divergent connectivity. Nervous systems are complex networks of interconnected cells called neurons. These networks vary in size from a few hundred cells in worms, to tens of billions in the human brain. Within these networks, each individual neuron forms connections – called synapses – with many others. But these partner neurons are not necessarily alike. In fact, they may be different cell types. How neurons form distinct connections with different partner cells remains unclear. Part of the answer may lie in specialized proteins called cell adhesion molecules. These proteins occur on the cell surface and enable neurons to recognize one another. This helps ensure that the cells form appropriate connections via synapses. Cell adhesion molecules are therefore also known as synaptic organizers. Philbrook et al. have now examined the role of synaptic organizers in wiring up the nervous system of the nematode worm and model organism Caenorhabditis elegans. Motor neurons form connections with two types of partner cell: muscle cells and neurons. Philbrook et al. screened C. elegans that have mutations in genes encoding various synaptic organizers. This revealed that a protein called neurexin must be present for motor neurons to form synapses with other neurons. By contrast, neurexin is not required for the same neurons to establish synapses with muscles. Philbrook et al. found that neuron-to-neuron synapses arise at specialized finger-like projections. These resemble the dendritic spines at which synapses form in the brains of mammals, and had not been previously identified in C. elegans. In worms that lack neurexin, these spine-like structures do not form correctly, disrupting the formation of neuron-to-neuron connections. Previous work has implicated neurexin in synapse formation in the mammalian brain. But this is the first study to reveal a role for neurexin in establishing partner-specific synaptic connections. Mutations in synaptic organizers, including neurexin, contribute to disorders of brain development. These include schizophrenia and autism spectrum disorders. Learning more about how neurexin helps establish specific synaptic connections may help us understand how these disorders arise.
Collapse
Affiliation(s)
- Alison Philbrook
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Christopher M Lambert
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Devyn Oliver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Michele Lemons
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States.,Department of Natural Sciences, Assumption College, Worcester, United States
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
89
|
Zhao JY, Duan XL, Yang L, Liu JP, He YT, Guo Z, Hu XD, Suo ZW. Activity-dependent Synaptic Recruitment of Neuroligin 1 in Spinal Dorsal Horn Contributed to Inflammatory Pain. Neuroscience 2018; 388:1-10. [PMID: 30049666 DOI: 10.1016/j.neuroscience.2018.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/11/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022]
Abstract
Neuroligin 1 (NLGN1), a cell adhesion molecule present at excitatory glutamatergic synapses, has been shown to be critical for synaptic specialization and N-methyl-d-aspartate (NMDA)-subtype glutamate receptor-dependent synaptic plasticity. Whether and how NLGN1 is engaged in nociceptive behavioral sensitization remains largely unknown. In this study, we found an activity-dependent regulation of NLGN1 synaptic expression in pain-related spinal cord dorsal horns of mice. The enhancement of neuronal activity by pharmacological activation of NMDA receptor (NMDAR) or removal of GABAergic inhibition in intact mice significantly increased NLGN1 concentration at synaptosomal membrane fraction. Intraplantar injection of complete Freund's adjuvant (CFA) also increased the NLGN1 expression at synapses. NMDAR might act through Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Src-family protein tyrosine kinase member Fyn to induce the synaptic redistribution of NLGN1. We also found that one of the important roles of NLGN1 was to facilitate the clustering of NMDAR at synapses. The NLGN1-targeting siRNA suppressed the synaptic expression of GluN2B-containing NMDAR in CFA-injected mice and meanwhile, attenuated the inflammatory mechanical allodynia and thermal hypersensitivity. These data suggested that tissue injury-induced synaptic redistribution of NLGN1 was involved in the development of pain hypersensitivity through facilitating the synaptic incorporation of NMDARs.
Collapse
Affiliation(s)
- Ji-Yuan Zhao
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xing-Lian Duan
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Li Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jiang-Ping Liu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yong-Tao He
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
90
|
Georgiev DD, Glazebrook JF. The quantum physics of synaptic communication via the SNARE protein complex. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 135:16-29. [DOI: 10.1016/j.pbiomolbio.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/01/2017] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
|
91
|
Narcís JO, Tapia O, Tarabal O, Piedrafita L, Calderó J, Berciano MT, Lafarga M. Accumulation of poly(A) RNA in nuclear granules enriched in Sam68 in motor neurons from the SMNΔ7 mouse model of SMA. Sci Rep 2018; 8:9646. [PMID: 29941967 PMCID: PMC6018117 DOI: 10.1038/s41598-018-27821-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe motor neuron (MN) disease caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene, which results in reduced levels of the SMN protein and the selective degeneration of lower MNs. The best-known function of SMN is the biogenesis of spliceosomal snRNPs, the major components of the pre-mRNA splicing machinery. Therefore, SMN deficiency in SMA leads to widespread splicing abnormalities. We used the SMN∆7 mouse model of SMA to investigate the cellular reorganization of polyadenylated mRNAs associated with the splicing dysfunction in MNs. We demonstrate that SMN deficiency induced the abnormal nuclear accumulation in euchromatin domains of poly(A) RNA granules (PARGs) enriched in the splicing regulator Sam68. However, these granules lacked other RNA-binding proteins, such as TDP43, PABPN1, hnRNPA12B, REF and Y14, which are essential for mRNA processing and nuclear export. These effects were accompanied by changes in the alternative splicing of the Sam68-dependent Bcl-x and Nrnx1 genes, as well as changes in the relative accumulation of the intron-containing Chat, Chodl, Myh9 and Myh14 mRNAs, which are all important for MN functions. PARG-containing MNs were observed at presymptomatic SMA stage, increasing their number during the symptomatic stage. Moreover, the massive accumulations of poly(A) RNA granules in MNs was accompanied by the cytoplasmic depletion of polyadenylated mRNAs for their translation. We suggest that the SMN-dependent abnormal accumulation of polyadenylated mRNAs and Sam68 in PARGs reflects a severe dysfunction of both mRNA processing and translation, which could contribute to SMA pathogenesis.
Collapse
Affiliation(s)
- J Oriol Narcís
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Olga Tapia
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain
| | - Olga Tarabal
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Lídia Piedrafita
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Jordi Calderó
- Department of Experimental Medicine, School of Medicine, University of Lleida and "Institut de Recerca Biomèdica de Lleida" (IRBLLEIDA), Lleida, Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain.,Department of Molecular Biology and CIBERNED, University of Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", University of Cantabria-IDIVAL, Santander, Spain.
| |
Collapse
|
92
|
Yamagata M, Duan X, Sanes JR. Cadherins Interact With Synaptic Organizers to Promote Synaptic Differentiation. Front Mol Neurosci 2018; 11:142. [PMID: 29760652 PMCID: PMC5936767 DOI: 10.3389/fnmol.2018.00142] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 01/17/2023] Open
Abstract
Classical cadherins, a set of ~20 related recognition and signaling molecules, have been implicated in many aspects of neural development, including the formation and remodeling of synapses. Mechanisms underlying some of these steps have been studied by expressing N-cadherin (cdh2), a Type 1 cadherin, in heterologous cells, but analysis is complicated because widely used lines express cdh2 endogenously. We used CRISPR-mediated gene editing to generate a Human embryonic kidney (HEK)293 variant lacking Cdh2, then compared the behavior of rodent cortical and hippocampal neurons co-cultured with parental, cdh2 mutant and cdh2-rescued 293 lines. The comparison demonstrated that Cdh2 promotes neurite branching and that it is required for three synaptic organizers, neurologin1 (NLGL1), leucine-rich repeat transmembrane protein 2 (LRRtm2), and Cell Adhesion Molecule 1 (Cadm1/SynCAM) to stimulate presynaptic differentiation, assayed by clustering of synaptic vesicles at sites of neurite-293 cell contact. Similarly, Cdh2 is required for a presynaptic organizing molecule, Neurexin1β, to promote postsynaptic differentiation in dendrites. We also show that another Type I cadherin, Cdh4, and a Type II cadherin, Cdh6, can substitute for Cdh2 in these assays. Finally, we provide evidence that the effects of cadherins require homophilic interactions between neurites and the heterologous cells. Together, these results indicate that classical cadherins act together with synaptic organizers to promote synaptic differentiation, perhaps in part by strengthening the intracellular adhesion required for the organizers to act efficiently. We propose that cadherins promote high affinity contacts between appropriate partners, which then enable synaptic differentiation.
Collapse
Affiliation(s)
- Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Xin Duan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
93
|
Ribeiro LF, Verpoort B, de Wit J. Trafficking mechanisms of synaptogenic cell adhesion molecules. Mol Cell Neurosci 2018; 91:34-47. [PMID: 29631018 DOI: 10.1016/j.mcn.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023] Open
Abstract
Nearly every aspect of neuronal function, from wiring to information processing, critically depends on the highly polarized architecture of neurons. Establishing and maintaining the distinct molecular composition of axonal and dendritic compartments requires precise control over the trafficking of the proteins that make up these cellular domains. Synaptic cell adhesion molecules (CAMs), membrane proteins with a critical role in the formation, differentiation and plasticity of synapses, require targeting to the correct pre- or postsynaptic compartment for proper functioning of neural circuits. However, the mechanisms that control the polarized trafficking, synaptic targeting, and synaptic abundance of CAMs are poorly understood. Here, we summarize current knowledge about the sequential trafficking events along the secretory pathway that control the polarized surface distribution of synaptic CAMs, and discuss how their synaptic targeting and abundance is additionally influenced by post-secretory determinants. The identification of trafficking-impairing mutations in CAMs associated with various neurodevelopmental disorders underscores the importance of correct protein trafficking for normal brain function.
Collapse
Affiliation(s)
- Luís F Ribeiro
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Ben Verpoort
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
94
|
Li Y, Liu H, Dong Y. Significance of neurexin and neuroligin polymorphisms in regulating risk of Hirschsprung's disease. J Investig Med 2018; 66:1-8. [PMID: 29622757 PMCID: PMC5992363 DOI: 10.1136/jim-2017-000623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/27/2022]
Abstract
By performing a basic case-control study among a Chinese population, the aims of this study were to explore if single nucleotide polymorphisms (SNPs) within neurexin and neuroligin were associated with susceptibility to Hirschsprung's disease (HD). Eleven SNPs within neurexin and neuroligin were selected in this basic case-control study, and this study recruited 210 children with HD and 187 healthy children. The t-test and Χ2 test were used to find the difference between case and control in their clinical variables. OR and 95% CI were used to assess the association between HD susceptibility and neurexin/neuroligin polymorphisms/haplotypes. Several SNPs were significantly associated with altered risk of HD in the Chinese Han population, including rs1421589 within NRXN1, rs11795613 and rs4844285 within NLGN3, as well as rs5961397, rs7157669 and rs724373 within NLGX4X (all P<0.05). Further studies presented that the effects of rs1421589 within NRXN1, rs4844285 and rs11795613 within NLGN3, as well as rs5961397 within NLGX4X on HD phenotypes were also statistically significant (all P<0.05). Conclusively, the polymorphisms and haplotypes situated within neurexin and neuroligin were markedly associated with the onset of HD, implying that mutations of neurexin and neuroligin might serve as the treatment target for HD for the Chinese children.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Hui Liu
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Yubin Dong
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| |
Collapse
|
95
|
Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 2018; 551:192-197. [PMID: 29120426 PMCID: PMC5796651 DOI: 10.1038/nature24638] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes are highly complex glial cells with numerous fine cellular processes which infiltrate the neuropil to interact with synapses. The mechanisms controlling the establishment of astrocytes’ remarkable morphology and how impairing astrocytic infiltration of the neuropil alters synaptic connectivity are largely unknown. Here we find that cortical astrocyte morphogenesis depends on direct contact with neuronal processes and occurs in tune with the growth and activity of synaptic circuits. Neuroligin (NL) family cell adhesion proteins, NL1, NL2, and NL3, which are expressed by cortical astrocytes, control astrocyte morphogenesis through interactions with neuronal neurexins. Furthermore, in the absence of astrocytic NL2, cortical excitatory synapse formation and function is diminished, whereas inhibitory synaptic function is enhanced. Our findings highlight a novel mechanism of action for NLs and link astrocyte morphogenesis to synaptogenesis. Because NL mutations are implicated in various neurological disorders, these findings also offer an astrocyte-based mechanism of neural pathology.
Collapse
|
96
|
Constance WD, Mukherjee A, Fisher YE, Pop S, Blanc E, Toyama Y, Williams DW. Neurexin and Neuroligin-based adhesion complexes drive axonal arborisation growth independent of synaptic activity. eLife 2018; 7:31659. [PMID: 29504935 PMCID: PMC5869020 DOI: 10.7554/elife.31659] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/04/2018] [Indexed: 11/25/2022] Open
Abstract
Building arborisations of the right size and shape is fundamental for neural network function. Live imaging in vertebrate brains strongly suggests that nascent synapses are critical for branch growth during development. The molecular mechanisms underlying this are largely unknown. Here we present a novel system in Drosophila for studying the development of complex arborisations live, in vivo during metamorphosis. In growing arborisations we see branch dynamics and localisations of presynaptic proteins very similar to the ‘synaptotropic growth’ described in fish/frogs. These accumulations of presynaptic proteins do not appear to be presynaptic release sites and are not paired with neurotransmitter receptors. Knockdowns of either evoked or spontaneous neurotransmission do not impact arbor growth. Instead, we find that axonal branch growth is regulated by dynamic, focal localisations of Neurexin and Neuroligin. These adhesion complexes provide stability for filopodia by a ‘stick-and-grow’ based mechanism wholly independent of synaptic activity.
Collapse
Affiliation(s)
- William D Constance
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom.,King's-NUS Joint Studentship Program, King's College London, London, United Kingdom
| | - Amrita Mukherjee
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Yvette E Fisher
- Department of Neurobiology, Stanford University, Stanford, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sinziana Pop
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Eric Blanc
- Berlin Institute of Health, Berlin, Germany
| | - Yusuke Toyama
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Temasek Life Sciences Laboratory, Singapore, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
97
|
Hornix BE, Havekes R, Kas MJH. Multisensory cortical processing and dysfunction across the neuropsychiatric spectrum. Neurosci Biobehav Rev 2018; 97:138-151. [PMID: 29496479 DOI: 10.1016/j.neubiorev.2018.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/25/2022]
Abstract
Sensory processing is affected in multiple neuropsychiatric disorders like schizophrenia and autism spectrum disorders. Genetic and environmental factors guide the formation and fine-tuning of brain circuitry necessary to receive, organize, and respond to sensory input in order to behave in a meaningful and consistent manner. During certain developmental stages the brain is sensitive to intrinsic and external factors. For example, disturbed expression levels of certain risk genes during critical neurodevelopmental periods may lead to exaggerated brain plasticity processes within the sensory circuits, and sensory stimulation immediately after birth contributes to fine-tuning of these circuits. Here, the neurodevelopmental trajectory of sensory circuit development will be described and related to some example risk gene mutations that are found in neuropsychiatric disorders. Subsequently, the flow of sensory information through these circuits and the relationship to synaptic plasticity will be described. Research focusing on the combined analyses of neural circuit development and functioning are necessary to expand our understanding of sensory processing and behavioral deficits that are relevant across the neuropsychiatric spectrum.
Collapse
Affiliation(s)
- Betty E Hornix
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
98
|
Schiel KA. A new etiologic model for Alzheimers Disease. Med Hypotheses 2018; 111:27-35. [DOI: 10.1016/j.mehy.2017.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/19/2017] [Accepted: 12/12/2017] [Indexed: 01/26/2023]
|
99
|
Proteolytic Processing of Neurexins by Presenilins Sustains Synaptic Vesicle Release. J Neurosci 2017; 38:901-917. [PMID: 29229705 DOI: 10.1523/jneurosci.1357-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/03/2017] [Accepted: 11/26/2017] [Indexed: 11/21/2022] Open
Abstract
Proteolytic processing of synaptic adhesion components can accommodate the function of synapses to activity-dependent changes. The adhesion system formed by neurexins (Nrxns) and neuroligins (Nlgns) bidirectionally orchestrate the function of presynaptic and postsynaptic terminals. Previous studies have shown that presenilins (PS), components of the gamma-secretase complex frequently mutated in familial Alzheimer's disease, clear from glutamatergic terminals the accumulation of Nrxn C-terminal fragments (Nrxn-CTF) generated by ectodomain shedding. Here, we characterized the synaptic consequences of the proteolytic processing of Nrxns in cultured hippocampal neurons from mice and rats of both sexes. We show that activation of presynaptic Nrxns with postsynaptic Nlgn1 or inhibition of ectodomain shedding in axonal Nrxn1-β increases presynaptic release at individual terminals, likely reflecting an increase in the number of functional release sites. Importantly, inactivation of PS inhibits presynaptic release downstream of Nrxn activation, leaving synaptic vesicle recruitment unaltered. Glutamate-receptor signaling initiates the activity-dependent generation of Nrxn-CTF, which accumulate at presynaptic terminals lacking PS function. The sole expression of Nrxn-CTF decreases presynaptic release and calcium flux, recapitulating the deficits due to loss of PS function. Our data indicate that inhibition of Nrxn processing by PS is deleterious to glutamatergic function.SIGNIFICANCE STATEMENT To gain insight into the role of presenilins (PS) in excitatory synaptic function, we address the relevance of the proteolytic processing of presynaptic neurexins (Nrxns) in glutamatergic differentiation. Using synaptic fluorescence probes in cultured hippocampal neurons, we report that trans-synaptic activation of Nrxns produces a robust increase in presynaptic calcium levels and neurotransmitter release at individual glutamatergic terminals by a mechanism that depends on normal PS activity. Abnormal accumulation of Nrxn C-terminal fragments resulting from impaired PS activity inhibits presynaptic calcium signal and neurotransmitter release, assigning synaptic defects to Nrxns as a specific PS substrate. These data may provide links into how loss of PS activity inhibits glutamatergic synaptic function in Alzheimer's disease patients.
Collapse
|
100
|
Culture of Mouse Giant Central Nervous System Synapses and Application for Imaging and Electrophysiological Analyses. Methods Mol Biol 2017. [PMID: 29222783 DOI: 10.1007/978-1-4939-7571-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Primary neuronal cell culture preparations are widely used to investigate synaptic functions. This chapter describes a detailed protocol for the preparation of a neuronal cell culture in which giant calyx-type synaptic terminals are formed. This chapter also presents detailed protocols for utilizing the main technical advantages provided by such a preparation, namely, labeling and imaging of synaptic organelles and electrophysiological recordings directly from presynaptic terminals.
Collapse
|