51
|
Chen Q, Sun X, Li Y, Yang X, Yang X, Xu H, Cai H, Hu J. The potential of organoids in renal cell carcinoma research. BMC Urol 2024; 24:120. [PMID: 38858665 PMCID: PMC11165752 DOI: 10.1186/s12894-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Renal cell carcinoma, a leading cause of death in urological malignancies, arises from the nephron. Its characteristics include diversity in disease biology, varied clinical behaviors, different prognoses, and diverse responses to systemic therapies. The term 'organoids' is used to describe structures resembling tissues created through the three-dimensional cultivation of stem cells in vitro. These organoids, when derived from tumor tissues, can retain the diversity of the primary tumor, mirror its spatial tissue structure, and replicate similar organ-like functions. In contrast to conventional two-dimensional cell cultures and the transplantation of tumor tissues into other organisms, organoids derived from tumors maintain the complexity and microenvironment of the original tumor tissue. This fidelity makes them a more reliable model for the development of cancer drugs, potentially accelerating the translation of these drugs to clinical use and facilitating personalized treatment options for patients. This review aims to summarize the recent advancements in the use of organoids for studying renal cell carcinoma, focusing on their cultivation, potential applications, and inherent limitations.
Collapse
Affiliation(s)
- Qiuyang Chen
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Sun
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yubei Li
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyue Yang
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejian Yang
- Department of Urology, Suqian First Hospital, Suqian, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Jun Hu
- Department of Nursing, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
52
|
Song L, Nguyen V, Xie J, Jia S, Chang CJ, Uchio E, Zi X. ATPase Copper Transporting Beta (ATP7B) Is a Novel Target for Improving the Therapeutic Efficacy of Docetaxel by Disulfiram/Copper in Human Prostate Cancer. Mol Cancer Ther 2024; 23:854-863. [PMID: 38417139 PMCID: PMC11150099 DOI: 10.1158/1535-7163.mct-23-0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Docetaxel has been the standard first-line chemotherapy for lethal metastatic prostate cancer (mPCa) since 2004, but resistance to docetaxel treatment is common. The molecular mechanisms of docetaxel resistance remain largely unknown and could be amenable to interventions that mitigate resistance. We have recently discovered that several docetaxel-resistant mPCa cell lines exhibit lower uptake of cellular copper and uniquely express higher levels of a copper exporter protein ATP7B. Knockdown of ATP7B by silencing RNAs (siRNA) sensitized docetaxel-resistant mPCa cells to the growth-inhibitory and apoptotic effects of docetaxel. Importantly, deletions of ATP7B in human mPCa tissues predict significantly better survival of patients after their first chemotherapy than those with wild-type ATP7B (P = 0.0006). In addition, disulfiram (DSF), an FDA-approved drug for the treatment of alcohol dependence, in combination with copper, significantly enhanced the in vivo antitumor effects of docetaxel in a docetaxel-resistant xenograft tumor model. Our analyses also revealed that DSF and copper engaged with ATP7B to decrease protein levels of COMM domain-containing protein 1 (COMMD1), S-phase kinase-associated protein 2 (Skp2), and clusterin and markedly increase protein expression of cyclin-dependent kinase inhibitor 1 (p21/WAF1). Taken together, our results indicate a copper-dependent nutrient vulnerability through ATP7B exporter in docetaxel-resistant prostate cancer for improving the therapeutic efficacy of docetaxel.
Collapse
Affiliation(s)
- Liankun Song
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Vyvyan Nguyen
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Jun Xie
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | - Shang Jia
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Christopher J. Chang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Edward Uchio
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| |
Collapse
|
53
|
Yu S, Wu H, Kang S, Ma J, Xie M, Dai L. Model-free robust motion control for biological optical microscopy using time-delay estimation with an adaptive RBFNN compensator. ISA TRANSACTIONS 2024; 149:365-372. [PMID: 38724294 DOI: 10.1016/j.isatra.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
The field of large numerical aperture microscopy has witnessed significant advancements in spatial and temporal resolution, as well as improvements in optical microscope imaging quality. However, these advancements have concurrently raised the demand for enhanced precision, extended range, and increased load-bearing capacity in objective motion carrier (OMC). To address this challenge, this study introduces an innovative OMC that employs a ball screw mechanism as its primary driving component. Furthermore, a robust nonlinear motion control strategy has been developed, which integrates fast nonsingular terminal sliding mode, experimental estimation techniques, and adaptive radial basis neural network, to mitigate the impact of nonlinear friction within the ball screw mechanism on motion precision. The stability of the closed-loop control system has been rigorously demonstrated through Lyapunov theory. Compared with other enhanced sliding mode control strategies, the maximum error and root mean square error of this controller are improved by 33% and 34% respectively. The implementation of the novel OMC has enabled the establishment of a high-resolution bio-optical microscope, which has proven its effectiveness in the microscopic imaging of retinal organoids.
Collapse
Affiliation(s)
- Shengdong Yu
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Hongyuan Wu
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325000, China
| | - Shengzheng Kang
- School of Automation in Nanjing University of Information Science and Technology, China
| | - Jinyu Ma
- School of Intelligent Manufacturing, Wenzhou Polytechnic, Wenzhou 325000, China.
| | - Mingyang Xie
- Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Luru Dai
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
54
|
Francis JC, Capper A, Rust AG, Ferro K, Ning J, Yuan W, de Bono J, Pettitt SJ, Swain A. Identification of genes that promote PI3K pathway activation and prostate tumour formation. Oncogene 2024; 43:1824-1835. [PMID: 38654106 PMCID: PMC11164682 DOI: 10.1038/s41388-024-03028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
We have performed a functional in vivo mutagenesis screen to identify genes that, when altered, cooperate with a heterozygous Pten mutation to promote prostate tumour formation. Two genes, Bzw2 and Eif5a2, which have been implicated in the process of protein translation, were selected for further validation. Using prostate organoid models, we show that either Bzw2 downregulation or EIF5A2 overexpression leads to increased organoid size and in vivo prostate growth. We show that both genes impact the PI3K pathway and drive a sustained increase in phospho-AKT expression, with PTEN protein levels reduced in both models. Mechanistic studies reveal that EIF5A2 is directly implicated in PTEN protein translation. Analysis of patient datasets identified EIF5A2 amplifications in many types of human cancer, including the prostate. Human prostate cancer samples in two independent cohorts showed a correlation between increased levels of EIF5A2 and upregulation of a PI3K pathway gene signature. Consistent with this, organoids with high levels of EIF5A2 were sensitive to AKT inhibitors. Our study identified novel genes that promote prostate cancer formation through upregulation of the PI3K pathway, predicting a strategy to treat patients with genetic aberrations in these genes particularly relevant for EIF5A2 amplified tumours.
Collapse
Affiliation(s)
- Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, London, SW3 6JB, UK
| | - Amy Capper
- Division of Cancer Biology, Institute of Cancer Research, London, SW3 6JB, UK
| | - Alistair G Rust
- Genomics Facility, Institute of Cancer Research, London, UK
- Genomic Data Sciences, GlaxoSmithKline, Stevenage, UK
| | - Klea Ferro
- Division of Cancer Biology, Institute of Cancer Research, London, SW3 6JB, UK
| | - Jian Ning
- Tumour Modelling Facility, Institute of Cancer Research, London, SW3 6JB, UK
| | - Wei Yuan
- Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Johann de Bono
- Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
55
|
Jin H, Yang Q, Yang J, Wang F, Feng J, Lei L, Dai M. Exploring tumor organoids for cancer treatment. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0216185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As a life-threatening chronic disease, cancer is characterized by tumor heterogeneity. This heterogeneity is associated with factors that lead to treatment failure and poor prognosis, including drug resistance, relapse, and metastasis. Therefore, precision medicine urgently needs personalized tumor models that accurately reflect the tumor heterogeneity. Currently, tumor organoid technologies are used to generate in vitro 3D tissues, which have been shown to precisely recapitulate structure, tumor microenvironment, expression profiles, functions, molecular signatures, and genomic alterations in primary tumors. Tumor organoid models are important for identifying potential therapeutic targets, characterizing the effects of anticancer drugs, and exploring novel diagnostic and therapeutic options. In this review, we describe how tumor organoids can be cultured and summarize how researchers can use them as an excellent tool for exploring cancer therapies. In addition, we discuss tumor organoids that have been applied in cancer therapy research and highlight the potential of tumor organoids to guide preclinical research.
Collapse
Affiliation(s)
- Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University 4 , Changsha 410011, Hunan, China
| | - Jing Yang
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
56
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00960-8. [PMID: 38806997 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
57
|
Lampis S, Galardi A, Di Paolo V, Di Giannatale A. Organoids as a new approach for improving pediatric cancer research. Front Oncol 2024; 14:1414311. [PMID: 38835365 PMCID: PMC11148379 DOI: 10.3389/fonc.2024.1414311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
A key challenge in cancer research is the meticulous development of models that faithfully emulates the intricacies of the patient scenario, with emphasis on preserving intra-tumoral heterogeneity and the dynamic milieu of the tumor microenvironment (TME). Organoids emerge as promising tool in new drug development, drug screening and precision medicine. Despite advances in the diagnoses and treatment of pediatric cancers, certain tumor subtypes persist in yielding unfavorable prognoses. Moreover, the prognosis for a significant portion of children experiencing disease relapse is dismal. To improve pediatric outcome many groups are focusing on the development of precision medicine approach. In this review, we summarize the current knowledge about using organoid system as model in preclinical and clinical solid-pediatric cancer. Since organoids retain the pivotal characteristics of primary parent tumors, they exert great potential in discovering novel tumor biomarkers, exploring drug-resistance mechanism and predicting tumor responses to chemotherapy, targeted therapy and immunotherapies. We also examine both the potential opportunities and existing challenges inherent organoids, hoping to point out the direction for future organoid development.
Collapse
Affiliation(s)
- Silvia Lampis
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Galardi
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Virginia Di Paolo
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
58
|
Anselmino N, Labanca E, Shepherd PD, Dong J, Yang J, Song X, Nandakumar S, Kundra R, Lee C, Schultz N, Zhang J, Araujo JC, Aparicio AM, Subudhi SK, Corn PG, Pisters LL, Ward JF, Davis JW, Vazquez ES, Gueron G, Logothetis CJ, Futreal A, Troncoso P, Chen Y, Navone NM. Integrative Molecular Analyses of the MD Anderson Prostate Cancer Patient-derived Xenograft (MDA PCa PDX) Series. Clin Cancer Res 2024; 30:2272-2285. [PMID: 38488813 PMCID: PMC11094415 DOI: 10.1158/1078-0432.ccr-23-2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Develop and deploy a robust discovery platform that encompasses heterogeneity, clinical annotation, and molecular characterization and overcomes the limited availability of prostate cancer models. This initiative builds on the rich MD Anderson (MDA) prostate cancer (PCa) patient-derived xenograft (PDX) resource to complement existing publicly available databases by addressing gaps in clinically annotated models reflecting the heterogeneity of potentially lethal and lethal prostate cancer. EXPERIMENTAL DESIGN We performed whole-genome, targeted, and RNA sequencing in representative samples of the same tumor from 44 PDXs derived from 38 patients linked to donor tumor metadata and corresponding organoids. The cohort includes models derived from different morphologic groups, disease states, and involved organ sites (including circulating tumor cells), as well as paired samples representing heterogeneity or stages before and after therapy. RESULTS The cohort recapitulates clinically reported alterations in prostate cancer genes, providing a data resource for clinical and molecular interrogation of suitable experimental models. Paired samples displayed conserved molecular alteration profiles, suggesting the relevance of other regulatory mechanisms (e.g., epigenomic) influenced by the microenvironment and/or treatment. Transcriptomically, models were grouped on the basis of morphologic classification. DNA damage response-associated mechanisms emerged as differentially regulated between adenocarcinoma and neuroendocrine prostate cancer in a cross-interrogation of PDX/patient datasets. CONCLUSIONS We addressed the gap in clinically relevant prostate cancer models through comprehensive molecular characterization of MDA PCa PDXs, providing a discovery platform that integrates with patient data and benchmarked to therapeutically relevant consensus clinical groupings. This unique resource supports robust hypothesis generation and testing from basic, translational, and clinical perspectives.
Collapse
Affiliation(s)
- Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter D.A. Shepherd
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofei Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subhiksha Nandakumar
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John C. Araujo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana M. Aparicio
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F. Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John W. Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elba S. Vazquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Geraldine Gueron
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
59
|
Zheng X, Zhang X, Yu S. Organoids derived from metastatic cancers: Present and future. Heliyon 2024; 10:e30457. [PMID: 38720734 PMCID: PMC11077038 DOI: 10.1016/j.heliyon.2024.e30457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Organoids are three-dimensional structures derived from primary tissue or tumors that closely mimic the architecture, histology, and function of the parental tissue. In recent years, patient-derived organoids (PDOs) have emerged as powerful tools for modeling tumor heterogeneity, drug screening, and personalized medicine. Although most cancer organoids are derived from primary tumors, the ability of organoids from metastatic cancer to serve as a model for studying tumor biology and predicting the therapeutic response is an area of active investigation. Recent studies have shown that organoids derived from metastatic sites can provide valuable insights into tumor biology and may be used to validate predictive models of the drug response. In this comprehensive review, we discuss the feasibility of culturing organoids from multiple metastatic cancers and evaluate their potential for advancing basic cancer research, drug development, and personalized therapy. We also explore the limitations and challenges associated with using metastasis organoids for cancer research. Overall, this review provides a comprehensive overview of the current state and future prospects of metastatic cancer-derived organoids.
Collapse
Affiliation(s)
- Xuejing Zheng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Zhang
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
60
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
61
|
Lange S, Kuntze A, Wüstmann N, Reckers T, Humberg V, Dirks WG, Huss S, Vieler J, Schrader AJ, Bögemann M, Schlack K, Bernemann C. Establishment of primary prostate epithelial and tumorigenic cell lines using a non-viral immortalization approach. Biol Res 2024; 57:21. [PMID: 38704600 PMCID: PMC11069155 DOI: 10.1186/s40659-024-00507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Research on prostate cancer is mostly performed using cell lines derived from metastatic disease, not reflecting stages of tumor initiation or early progression. Establishment of cancer cell lines derived from the primary tumor site has not been described so far. By definition, cancer cells are able to be cultured indefinitely, whereas normal epithelial cells undergo senescence in vitro. Epithelial cells can be immortalized, accomplished by using viral integration of immortalization factors. Viral approaches, however, might be impaired by regulatory and safety issues as well as random integration into regulatory genetic elements, modifying precise gene expression. We intend to use surgical specimen of prostate cancer patients to (i) prove for establishment of cancer cell lines, and (ii) perform non-viral, Sleeping Beauty (SB) transposase-based immortalization of prostate epithelial cells. METHODS Radical prostatectomy samples of prostate cancer patients (n = 4) were dissociated and cultured in vitro. Cells were cultivated either without or after non-viral, Sleeping-Beauty transposase-based stable transfection with immortalization factors SV40LT and hTERT. Established cell lines were analyzed in vitro and in vivo for characteristics of prostate (cancer) cells. RESULTS Initial cell cultures without genetic manipulation underwent senescence within ≤ 15 passages, demonstrating inability to successfully derive primary prostate cancer cell lines. By using SB transposase-based integration of immortalization factors, we were able to establish primary prostate cell lines. Three out of four cell lines displayed epithelial characteristics, however without expression of prostate (cancer) characteristics, e.g., androgen receptor. In vivo, one cell line exhibited tumorigenic potential, yet characteristics of prostate adenocarcinoma were absent. CONCLUSION Whereas no primary prostate cancer cell line could be established, we provide for the first-time immortalization of primary prostate cells using the SB transposase system, thereby preventing regulatory and molecular issues based on viral immortalization approaches. Although, none of the newly derived cell lines demonstrated prostate cancer characteristics, tumor formation was observed in one cell line. Given the non-prostate adenocarcinoma properties of the tumor, cells have presumably undergone oncogenic transformation rather than prostate cancer differentiation. Still, these cell lines might be used as a tool for research on prostate cancer initiation and early cancer progression.
Collapse
Affiliation(s)
- Simon Lange
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | - Anna Kuntze
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Neele Wüstmann
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | - Theresa Reckers
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | - Verena Humberg
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | - Wilhelm G Dirks
- Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures, GmbH), Braun-Schweig, Germany
| | - Sebastian Huss
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Julia Vieler
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | | | - Martin Bögemann
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | - Katrin Schlack
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | | |
Collapse
|
62
|
Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Shrike Zhang Y. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev 2024; 208:115237. [PMID: 38447931 PMCID: PMC11031334 DOI: 10.1016/j.addr.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bibhor Singh
- Winthrop L. Chenery Upper Elementary School, Belmont, MA 02478, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
63
|
Romero R, Chu T, González-Robles TJ, Smith P, Xie Y, Kaur H, Yoder S, Zhao H, Mao C, Kang W, Pulina MV, Lawrence KE, Gopalan A, Zaidi S, Yoo K, Choi J, Fan N, Gerstner O, Karthaus WR, DeStanchina E, Ruggles KV, Westcott PM, Chaligné R, Pe’er D, Sawyers CL. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588557. [PMID: 38645223 PMCID: PMC11030418 DOI: 10.1101/2024.04.09.588557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1+;KRT8- NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.
Collapse
Affiliation(s)
- Rodrigo Romero
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tinyi Chu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tania J. González-Robles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY 10061, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10061, USA
| | - Perianne Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harmanpreet Kaur
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sara Yoder
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenyi Mao
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria V. Pulina
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E. Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Gerstner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kelly V. Ruggles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY 10061, USA
| | | | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe’er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
64
|
McCray TN, Nguyen V, Heins JS, Nguyen E, Stewart K, Ford CT, Neace C, Gupta P, Ortiz DJ. Bronchioalveolar organoids: A preclinical tool to screen toxicity associated with antibody-drug conjugates. Toxicol Appl Pharmacol 2024; 485:116886. [PMID: 38452946 DOI: 10.1016/j.taap.2024.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Despite extensive preclinical testing, cancer therapeutics can result in unanticipated toxicity to non-tumor tissue in patients. These toxicities may pass undetected in preclinical experiments due to modeling limitations involving poor biomimicry of 2-dimensional in vitro cell cultures and due to lack of interspecies translatability in in vivo studies. Instead, primary cells can be grown into miniature 3-dimensional structures that recapitulate morphological and functional aspects of native tissue, termed "organoids." Here, human bronchioalveolar organoids grown from primary alveolar epithelial cells were employed to model lung epithelium and investigate off-target toxicities associated with antibody-drug conjugates (ADCs). ADCs with three different linker-payload combinations (mafodotin, vedotin, and deruxtecan) were tested in bronchioalveolar organoids generated from human, rat, and nonhuman primate lung cells. Organoids demonstrated antibody uptake and changes in viability in response to ADC exposure that model in vivo drug sensitivity. RNA sequencing identified inflammatory activation in bronchioalveolar cells in response to deruxtecan. Future studies will explore specific cell populations involved in interstitial lung disease and incorporate immune cells to the culture.
Collapse
Affiliation(s)
| | - Vy Nguyen
- Seagen Inc., Bothell, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Paindelli C, Parietti V, Barrios S, Shepherd P, Pan T, Wang WL, Satcher RL, Logothetis CJ, Navone N, Campbell MT, Mikos AG, Dondossola E. Bone mimetic environments support engineering, propagation, and analysis of therapeutic response of patient-derived cells, ex vivo and in vivo. Acta Biomater 2024; 178:83-92. [PMID: 38387748 DOI: 10.1016/j.actbio.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. STATEMENT OF SIGNIFICANCE: Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.
Collapse
Affiliation(s)
- Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Vanessa Parietti
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Sergio Barrios
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Rice University, Department of Bioengineering, Houston, TX, 77030, United States
| | - Peter Shepherd
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Tianhong Pan
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Robert L Satcher
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Nora Navone
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Antonios G Mikos
- Rice University, Department of Bioengineering, Houston, TX, 77030, United States
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
66
|
Tien JCY, Chang Y, Zhang Y, Chou J, Cheng Y, Wang X, Yang J, Mannan R, Shah P, Wang XM, Todd AJ, Eyunni S, Cheng C, Rebernick RJ, Xiao L, Bao Y, Neiswender J, Brough R, Pettitt SJ, Cao X, Miner SJ, Zhou L, Wu YM, Labanca E, Wang Y, Parolia A, Cieslik M, Robinson DR, Wang Z, Feng FY, Lord CJ, Ding K, Chinnaiyan AM. CDK12 Loss Promotes Prostate Cancer Development While Exposing Vulnerabilities to Paralog-Based Synthetic Lethality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585990. [PMID: 38562774 PMCID: PMC10983964 DOI: 10.1101/2024.03.20.585990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a unique molecular subtype of metastatic castration-resistant prostate cancer (mCRPC). It remains unclear, however, whether CDK12 loss per se is sufficient to drive prostate cancer development-either alone, or in the context of other genetic alterations-and whether CDK12-mutant tumors exhibit sensitivity to specific pharmacotherapies. Here, we demonstrate that tissue-specific Cdk12 ablation is sufficient to induce preneoplastic lesions and robust T cell infiltration in the mouse prostate. Allograft-based CRISPR screening demonstrated that Cdk12 loss is positively associated with Trp53 inactivation but negatively associated with Pten inactivation-akin to what is observed in human mCRPC. Consistent with this, ablation of Cdk12 in prostate organoids with concurrent Trp53 loss promotes their proliferation and ability to form tumors in mice, while Cdk12 knockout in the Pten-null prostate cancer mouse model abrogates tumor growth. Bigenic Cdk12 and Trp53 loss allografts represent a new syngeneic model for the study of androgen receptor (AR)-positive, luminal prostate cancer. Notably, Cdk12/Trp53 loss prostate tumors are sensitive to immune checkpoint blockade. Cdk12-null organoids (either with or without Trp53 co-ablation) and patient-derived xenografts from tumors with CDK12 inactivation are highly sensitive to inhibition or degradation of its paralog kinase, CDK13. Together, these data identify CDK12 as a bona fide tumor suppressor gene with impact on tumor progression and lends support to paralog-based synthetic lethality as a promising strategy for treating CDK12-mutant mCRPC.
Collapse
Affiliation(s)
- Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally to this work
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally to this work
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- These authors contributed equally to this work
| | - Yunhui Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally to this work
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jianzhang Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, Guangzhou 511400, People’s Republic of China
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Palak Shah
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiao-Ming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Abigail J. Todd
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan J. Rebernick
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James Neiswender
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Licheng Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, Guangzhou 511400, People’s Republic of China
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Dan R. Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, Guangzhou 511400, People’s Republic of China
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California, San Francisco, CA, USA
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Lead contact
| |
Collapse
|
67
|
Hu H, Sun C, Chen J, Li Z. Organoids in ovarian cancer: a platform for disease modeling, precision medicine, and drug assessment. J Cancer Res Clin Oncol 2024; 150:146. [PMID: 38509422 PMCID: PMC10955023 DOI: 10.1007/s00432-024-05654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Ovarian cancer (OC) is a major cause of gynecological cancer mortality, necessitating enhanced research. Organoids, cellular clusters grown in 3D model, have emerged as a disruptive paradigm, transcending the limitations inherent to conventional models by faithfully recapitulating key morphological, histological, and genetic attributes. This review undertakes a comprehensive exploration of the potential in organoids derived from murine, healthy population, and patient origins, encompassing a spectrum that spans foundational principles to pioneering applications. Organoids serve as preclinical models, allowing us to predict how patients will respond to treatments and guiding the development of personalized therapies. In the context of evaluating new drugs, organoids act as versatile platforms, enabling thorough testing of innovative combinations and novel agents. Remarkably, organoids mimic the dynamic nature of OC progression, from its initial formation to the spread to other parts of the body, shedding light on intricate details that hold significant importance. By functioning at an individualized level, organoids uncover the complex mechanisms behind drug resistance, revealing strategic opportunities for effective treatments.
Collapse
Affiliation(s)
- Haiyao Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chong'en Sun
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
68
|
Felice DD, Alaimo A, Bressan D, Genovesi S, Marmocchi E, Annesi N, Beccaceci G, Dalfovo D, Cutrupi F, Foletto V, Lorenzoni M, Gandolfi F, Kannan S, Verma CS, Vasciaveo A, Shen MM, Romanel A, Chiacchiera F, Cambuli F, Lunardi A. Rarγ -Foxa1 signaling promotes luminal identity in prostate progenitors and is disrupted in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583256. [PMID: 38496627 PMCID: PMC10942448 DOI: 10.1101/2024.03.06.583256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Retinoic acid (RA) signaling is a master regulator of vertebrate development with crucial roles in directing body axis orientation and tissue differentiation, including in the reproductive system. However, a mechanistic understanding of how RA signaling promotes cell lineage identity in different tissues is often missing. Here, leveraging prostate organoid technology, we demonstrated that RA signaling orchestrates the commitment of adult mouse prostate progenitors to glandular identity, epithelial barrier integrity, and ultimately, proper specification of the prostatic lumen. Mechanistically, RA-dependent RARγ activation promotes the expression of the pioneer factor Foxa1, which synergizes with the androgen pathway for proper luminal expansion, cytoarchitecture and function. FOXA1 nucleotide variants are common in human prostate and breast cancers and considered driver mutations, though their pathogenic mechanism is incompletely understood. Combining functional genetics experiments with structural modeling of FOXA1 folding and chromatin binding analyses, we discovered that FOXA1 F254E255 is a loss-of-function mutation leading to compromised transcriptional function and lack of luminal fate commitment of prostate progenitors. Overall, we define RA as a crucial instructive signal for glandular identity in adult prostate progenitors. We propose deregulation of vitamin A metabolism as a risk factor for benign and malignant prostate disease, and identified cancer associated FOXA1 indels affecting residue F254 as loss-of-function mutations promoting dedifferentiation of adult prostate progenitors. Summary: Retinoic acid signaling orchestrates luminal differentiation of adult prostate progenitors.
Collapse
|
69
|
Awad D, Cao PHA, Pulliam TL, Spradlin M, Subramani E, Tellman TV, Ribeiro CF, Muzzioli R, Jewell BE, Pakula H, Ackroyd JJ, Murray MM, Han JJ, Leng M, Jain A, Piyarathna B, Liu J, Song X, Zhang J, Klekers AR, Drake JM, Ittmann MM, Coarfa C, Piwnica-Worms D, Farach-Carson MC, Loda M, Eberlin LS, Frigo DE. Adipose Triglyceride Lipase Is a Therapeutic Target in Advanced Prostate Cancer That Promotes Metabolic Plasticity. Cancer Res 2024; 84:703-724. [PMID: 38038968 PMCID: PMC10939928 DOI: 10.1158/0008-5472.can-23-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.
Collapse
Affiliation(s)
- Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L. Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meredith Spradlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tristen V. Tellman
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Caroline F. Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Riccardo Muzzioli
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brittany E. Jewell
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey J. Ackroyd
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mollianne M. Murray
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jenny J. Han
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mei Leng
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Badrajee Piyarathna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert R. Klekers
- Department of Abdominal Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin M. Drake
- Departments of Pharmacology and Urology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota-Twin Cities, MN, USA
| | - Michael M. Ittmann
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
- Michael E. DeBakey Department of Surgery, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Livia S. Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel E. Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
70
|
Li S, Wong A, Sun H, Bhatia V, Javier G, Jana S, Wu Q, Montgomery RB, Wright JL, Lam HM, Hsieh AC, Faltas BM, Haffner MC, Lee JK. A combinatorial genetic strategy for exploring complex genotype-phenotype associations in cancer. Nat Genet 2024; 56:371-376. [PMID: 38424461 PMCID: PMC10937382 DOI: 10.1038/s41588-024-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Available genetically defined cancer models are limited in genotypic and phenotypic complexity and underrepresent the heterogeneity of human cancer. Here, we describe a combinatorial genetic strategy applied to an organoid transformation assay to rapidly generate diverse, clinically relevant bladder and prostate cancer models. Importantly, the clonal architecture of the resultant tumors can be resolved using single-cell or spatially resolved next-generation sequencing to uncover polygenic drivers of cancer phenotypes.
Collapse
Affiliation(s)
- Shan Li
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alicia Wong
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Huiyun Sun
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Vipul Bhatia
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gerardo Javier
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sujata Jana
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Qian Wu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Robert B Montgomery
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jonathan L Wright
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Hung-Ming Lam
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bishoy M Faltas
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Pathology and Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Pathology and Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
71
|
Mulaudzi PE, Abrahamse H, Crous A. Insights on Three Dimensional Organoid Studies for Stem Cell Therapy in Regenerative Medicine. Stem Cell Rev Rep 2024; 20:509-523. [PMID: 38095787 PMCID: PMC10837234 DOI: 10.1007/s12015-023-10655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Regenerative medicine has developed as a promising discipline that utilizes stem cells to address limitations in traditional therapies, using innovative techniques to restore and repair damaged organs and tissues. One such technique is the generation of three-dimensional (3D) organoids in stem cell therapy. Organoids are 3D constructs that resemble specific organs' structural and functional characteristics and are generated from stem cells or tissue-specific progenitor cells. The use of 3D organoids is advantageous in comparison to traditional two-dimensional (2D) cell culture by bridging the gap between in vivo and in vitro research. This review aims to provide an overview of the advancements made towards regenerative medicine using stem cells to generate organoids, explore the techniques used in generating 3D organoids and their applications and finally elucidate the challenges and future directions in regenerative medicine using 3D organoids.
Collapse
Affiliation(s)
- Precious Earldom Mulaudzi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
72
|
Han H, Zhan T, Guo N, Cui M, Xu Y. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol J 2024; 19:e2300543. [PMID: 38403430 DOI: 10.1002/biot.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
Organoid technology has demonstrated unique advantages in multidisciplinary fields such as disease research, tumor drug sensitivity, clinical immunity, drug toxicology, and regenerative medicine. It will become the most promising research tool in translational research. However, the long preparation time of organoids and the lack of high-quality cryopreservation methods limit the further application of organoids. Although the high-quality cryopreservation of small-volume biological samples such as cells and embryos has been successfully achieved, the existing cryopreservation methods for organoids still face many bottlenecks. In recent years, with the development of materials science, cryobiology, and interdisciplinary research, many new materials and methods have been applied to cryopreservation. Several new cryopreservation methods have emerged, such as cryoprotectants (CPAs) of natural origin, ice-controlled biomaterials, and rapid rewarming methods. The introduction of these technologies has expanded the research scope of cryopreservation of organoids, provided new approaches and methods for cryopreservation of organoids, and is expected to break through the current technical bottleneck of cryopreservation of organoids. This paper reviews the progress of cryopreservation of organoids in recent years from three aspects: damage factors of cryopreservation of organoids, new protective agents and loading methods, and new technologies of cryopreservation and rewarming.
Collapse
Affiliation(s)
- Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Ning Guo
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| |
Collapse
|
73
|
Cortez J, Torres CG, Parraguez VH, De Los Reyes M, Peralta OA. Bovine adipose tissue-derived mesenchymal stem cells self-assemble with testicular cells and integrates and modifies the structure of a testicular organoids. Theriogenology 2024; 215:259-271. [PMID: 38103403 DOI: 10.1016/j.theriogenology.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Mesenchymal stem cells (MSC) display self-renewal and mesodermal differentiation potentials. These characteristics make them potentially useful for in vitro derivation of gametes, which may constitute experimental therapies for human and animal reproduction. Organoids provide a spatial support and may simulate a cellular niche for in vitro studies. In this study, we aimed at evaluating the potential integration of fetal bovine MSCs derived from adipose tissue (AT-MSCs) in testicular organoids (TOs), their spatial distribution with testicular cells during TO formation and their potential for germ cell differentiation. TOs were developed using Leydig, Sertoli, and peritubular myoid cells that were previously isolated from bovine testes (n = 6). Thereafter, TOs were characterized using immunofluorescence and Q-PCR to detect testicular cell-specific markers. AT-MSCs were labeled with PKH26 and then cultured with testicular cells at a concentration of 1 × 106 cells per well in Ultra Low Attachment U-shape bottom (ULA) plates. TOs formed by testicular cells and AT-MSCs (TOs + AT-MSCs) maintained a rounded structure throughout the 28-day culture period and did not show significant differences in their diameters. Conversely, control TOs exhibited a compact structure until day 7 of culture, while on day 28 they displayed cellular extensions around their structure. Control TOs had greater (P < 0.05) diameters compared to TOs + AT-MSCs. AT-MSCs induced an increase in proportion of Leydig and peritubular myoid cells in TOs + AT-MSCs; however, did not induce changes in the overall gene expression of testicular cell-specific markers. STAR immunolabelling detected Leydig cells that migrated from the central area to the periphery and formed brunches in control TOs. However, in TOs + AT-MSCs, Leydig cells formed a compact peripheral layer. Sertoli cells immunodetected using WT1 marker were observed within the central area forming clusters of cells in TOs + AT-MSCs. The expression of COL1A associated to peritubular myoids cells was restricted to the central region in TOs + AT-MSCs. Thus, during a 28-day culture period, fetal bovine AT-MSCs integrated and modified the structure of the TOs, by restricting formation of branches, limiting the overall increase in diameters and increasing the proportions of Leydig and peritubular myoid cells. AT-MSCs also induced a reorganization of testicular cells, changing their distribution and particularly the location of Leydig cells.
Collapse
Affiliation(s)
- Jahaira Cortez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile; Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Santa Rosa 11315, Santiago 8820808 Chile
| | - Cristian G Torres
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Víctor H Parraguez
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Mónica De Los Reyes
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile
| | - Oscar A Peralta
- Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, Santiago 8820808 Chile.
| |
Collapse
|
74
|
Pollack AS, Kunder CA, Brazer N, Shen Z, Varma S, West RB, Cunha GR, Baskin LS, Brooks JD, Pollack JR. Spatial transcriptomics identifies candidate stromal drivers of benign prostatic hyperplasia. JCI Insight 2024; 9:e176479. [PMID: 37971878 PMCID: PMC10906230 DOI: 10.1172/jci.insight.176479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is the nodular proliferation of the prostate transition zone in older men, leading to urinary storage and voiding problems that can be recalcitrant to therapy. Decades ago, John McNeal proposed that BPH originates with the "reawakening" of embryonic inductive activity by adult prostate stroma, which spurs new ductal proliferation and branching morphogenesis. Here, by laser microdissection and transcriptional profiling of the BPH stroma adjacent to hyperplastic branching ducts, we identified secreted factors likely mediating stromal induction of prostate glandular epithelium and coinciding processes. The top stromal factors were insulin-like growth factor 1 (IGF1) and CXC chemokine ligand 13 (CXCL13), which we verified by RNA in situ hybridization to be coexpressed in BPH fibroblasts, along with their cognate receptors (IGF1R and CXCR5) on adjacent epithelium. In contrast, IGF1 but not CXCL13 was expressed in human embryonic prostate stroma. Finally, we demonstrated that IGF1 is necessary for the generation of BPH-1 cell spheroids and patient-derived BPH cell organoids in 3D culture. Our findings partially support historic speculations on the etiology of BPH and provide what we believe to be new molecular targets for rational therapies directed against the underlying processes driving BPH.
Collapse
Affiliation(s)
- Anna S Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Christian A Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Noah Brazer
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Zhewei Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Laurence S Baskin
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan R Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
75
|
Waseem M, Wang BD. Organoids: An Emerging Precision Medicine Model for Prostate Cancer Research. Int J Mol Sci 2024; 25:1093. [PMID: 38256166 PMCID: PMC10816550 DOI: 10.3390/ijms25021093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) has been known as the most prevalent cancer disease and the second leading cause of cancer mortality in men almost all over the globe. There is an urgent need for establishment of PCa models that can recapitulate the progress of genomic landscapes and molecular alterations during development and progression of this disease. Notably, several organoid models have been developed for assessing the complex interaction between PCa and its surrounding microenvironment. In recent years, PCa organoids have been emerged as powerful in vitro 3D model systems that recapitulate the molecular features (such as genomic/epigenomic changes and tumor microenvironment) of PCa metastatic tumors. In addition, application of organoid technology in mechanistic studies (i.e., for understanding cellular/subcellular and molecular alterations) and translational medicine has been recognized as a promising approach for facilitating the development of potential biomarkers and novel therapeutic strategies. In this review, we summarize the application of PCa organoids in the high-throughput screening and establishment of relevant xenografts for developing novel therapeutics for metastatic, castration resistant, and neuroendocrine PCa. These organoid-based studies are expected to expand our knowledge from basic research to clinical applications for PCa diseases. Furthermore, we also highlight the optimization of PCa cultures and establishment of promising 3D organoid models for in vitro and in vivo investigations, ultimately facilitating mechanistic studies and development of novel clinical diagnosis/prognosis and therapies for PCa.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
76
|
Mai S, Inkielewicz-Stepniak I. Graphene Oxide Nanoparticles and Organoids: A Prospective Advanced Model for Pancreatic Cancer Research. Int J Mol Sci 2024; 25:1066. [PMID: 38256139 PMCID: PMC10817028 DOI: 10.3390/ijms25021066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pancreatic cancer, notorious for its grim 10% five-year survival rate, poses significant clinical challenges, largely due to late-stage diagnosis and limited therapeutic options. This review delves into the generation of organoids, including those derived from resected tissues, biopsies, pluripotent stem cells, and adult stem cells, as well as the advancements in 3D printing. It explores the complexities of the tumor microenvironment, emphasizing culture media, the integration of non-neoplastic cells, and angiogenesis. Additionally, the review examines the multifaceted properties of graphene oxide (GO), such as its mechanical, thermal, electrical, chemical, and optical attributes, and their implications in cancer diagnostics and therapeutics. GO's unique properties facilitate its interaction with tumors, allowing targeted drug delivery and enhanced imaging for early detection and treatment. The integration of GO with 3D cultured organoid systems, particularly in pancreatic cancer research, is critically analyzed, highlighting current limitations and future potential. This innovative approach has the promise to transform personalized medicine, improve drug screening efficiency, and aid biomarker discovery in this aggressive disease. Through this review, we offer a balanced perspective on the advancements and future prospects in pancreatic cancer research, harnessing the potential of organoids and GO.
Collapse
Affiliation(s)
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
77
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Socciarelli F, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Dinalankara W, Jere M, Valencia I, Saladino C, Stone J, Unkenholz C, Garner R, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. Nat Commun 2024; 15:363. [PMID: 38191471 PMCID: PMC10774315 DOI: 10.1038/s41467-023-44210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Itzel Valencia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher Saladino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jason Stone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richard Garner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohammad K Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francisca Nunes de Almeida
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, UK.
| |
Collapse
|
78
|
Duan X, Zhang T, Feng L, de Silva N, Greenspun B, Wang X, Moyer J, Martin ML, Chandwani R, Elemento O, Leach SD, Evans T, Chen S, Pan FC. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell 2024; 31:71-88.e8. [PMID: 38151022 PMCID: PMC11022279 DOI: 10.1016/j.stem.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
KRAS mutations, mainly G12D and G12V, are found in more than 90% of pancreatic ductal adenocarcinoma (PDAC) cases. The success of drugs targeting KRASG12C suggests the potential for drugs specifically targeting these alternative PDAC-associated KRAS mutations. Here, we report a high-throughput drug-screening platform using a series of isogenic murine pancreatic organoids that are wild type (WT) or contain common PDAC driver mutations, representing both classical and basal PDAC phenotypes. We screened over 6,000 compounds and identified perhexiline maleate, which can inhibit the growth and induce cell death of pancreatic organoids carrying the KrasG12D mutation both in vitro and in vivo and primary human PDAC organoids. scRNA-seq analysis suggests that the cholesterol synthesis pathway is upregulated specifically in the KRAS mutant organoids, including the key cholesterol synthesis regulator SREBP2. Perhexiline maleate decreases SREBP2 expression levels and reverses the KRAS mutant-induced upregulation of the cholesterol synthesis pathway.
Collapse
Affiliation(s)
- Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lingling Feng
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Benjamin Greenspun
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA
| | - Xing Wang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jenna Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Steven D Leach
- Dartmouth Cancer Center, Dartmouth College, Hanover, NH 03755, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA.
| | - Fong Cheng Pan
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| |
Collapse
|
79
|
Dos Santos L, Carbone F, Pacreau E, Diarra S, Luka M, Pigat N, Baures M, Navarro E, Anract J, Barry Delongchamps N, Cagnard N, Bost F, Nemazanyy I, Petitjean O, Hamaï A, Ménager M, Palea S, Guidotti JE, Goffin V. Cell Plasticity in a Mouse Model of Benign Prostate Hyperplasia Drives Amplification of Androgen-Independent Epithelial Cell Populations Sensitive to Antioxidant Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:30-51. [PMID: 37827216 DOI: 10.1016/j.ajpath.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Benign prostate hyperplasia (BPH) is caused by the nonmalignant enlargement of the transition zone of the prostate gland, leading to lower urinary tract symptoms. Although current medical treatments are unsatisfactory in many patients, the limited understanding of the mechanisms driving disease progression prevents the development of alternative therapeutic strategies. The probasin-prolactin (Pb-PRL) transgenic mouse recapitulates many histopathological features of human BPH. Herein, these alterations parallel urodynamic disturbance reminiscent of lower urinary tract symptoms. Single-cell RNA-sequencing analysis of Pb-PRL mouse prostates revealed that their epithelium mainly includes low-androgen signaling cell populations analogous to Club/Hillock cells enriched in the aged human prostate. These intermediate cells are predicted to result from the reprogramming of androgen-dependent luminal cells. Pb-PRL mouse prostates exhibited increased vulnerability to oxidative stress due to reduction of antioxidant enzyme expression. One-month treatment of Pb-PRL mice with anethole trithione (ATT), a specific inhibitor of mitochondrial ROS production, reduced prostate weight and voiding frequency. In human BPH-1 epithelial cells, ATT decreased mitochondrial metabolism, cell proliferation, and stemness features. ATT prevented the growth of organoids generated by sorted Pb-PRL basal and LSCmed cells, the two major BPH-associated, androgen-independent epithelial cell compartments. Taken together, these results support cell plasticity as a driver of BPH progression and therapeutic resistance to androgen signaling inhibition, and identify antioxidant therapy as a promising treatment of BPH.
Collapse
Affiliation(s)
- Leïla Dos Santos
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Francesco Carbone
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Emeline Pacreau
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Sekou Diarra
- Humana Biosciences SAS, Prologue Biotech, Labège, France
| | - Marine Luka
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Natascha Pigat
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Manon Baures
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Emilie Navarro
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Julien Anract
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Barry Delongchamps
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Cagnard
- Bioinformatics Core Platform, Université Paris Cité, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Frédéric Bost
- C3M, INSERM U1065, Université Côte d'Azur, Equipe Labélisée Ligue Nationale contre le Cancer, Nice, France
| | - Ivan Nemazanyy
- Metabolomics Core Facility, Université de Paris-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | | | - Ahmed Hamaï
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Mickaël Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Stefano Palea
- Humana Biosciences SAS, Prologue Biotech, Labège, France
| | - Jacques-Emmanuel Guidotti
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Vincent Goffin
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France.
| |
Collapse
|
80
|
Guo X, Liu B, Zhang Y, Cheong S, Xu T, Lu F, He Y. Decellularized extracellular matrix for organoid and engineered organ culture. J Tissue Eng 2024; 15:20417314241300386. [PMID: 39611117 PMCID: PMC11603474 DOI: 10.1177/20417314241300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
The repair and regeneration of tissues and organs using engineered biomaterials has attracted great interest in tissue engineering and regenerative medicine. Recent advances in organoids and engineered organs technologies have enabled scientists to generate 3D tissue that recapitulate the structural and functional characteristics of native organs, opening up new avenues in regenerative medicine. The matrix is one of the most important aspects for improving organoids and engineered organs construction. However, the clinical application of these techniques remained a big challenge because current commercial matrix does not represent the complexity of native microenvironment, thereby limiting the optimal regenerative capacity. Decellularized extracellular matrix (dECM) is expected to maintain key native matrix biomolecules and is believed to hold enormous potential for regenerative medicine applications. Thus, it is worth investigating whether the dECM can be used as matrix for improving organoid and engineered organs construction. In this review, the characteristics of dECM and its preparation method were summarized. In addition, the present review highlights the applications of dECM in the fabrication of organoids and engineered organs.
Collapse
Affiliation(s)
- Xiaoxu Guo
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Boxun Liu
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Yi Zhang
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, People’s Republic of China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
81
|
Song T, Kong B, Liu R, Luo Y, Wang Y, Zhao Y. Bioengineering Approaches for the Pancreatic Tumor Organoids Research and Application. Adv Healthc Mater 2024; 13:e2300984. [PMID: 37694339 DOI: 10.1002/adhm.202300984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Pancreatic cancer is a highly lethal form of digestive malignancy that poses significant health risks to individuals worldwide. Chemotherapy-based comprehensive treatment is the primary therapeutic approach for midlife and late-life patients. Nevertheless, the heterogeneity of the tumor and individual genetic backgrounds result in substantial variations in drug sensitivity among patients, rendering a single treatment regimen unsuitable for all patients. Conventional pancreatic cancer tumor organoid models are capable of emulating the biological traits of pancreatic cancer and are utilized in drug development and screening. However, these tumor organoids can still not mimic the tumor microenvironment (TME) in vivo, and the poor controllability in the preparation process hinders translation from essential drug screening to clinical pharmacological therapy. In recent years, many engineering methods with remarkable results have been used to develop pancreatic cancer organoid models, including bio-hydrogel, co-culture, microfluidic, and gene editing. Here, this work summarizes and analyzes the recent developments in engineering pancreatic tumor organoid models. In addition, the future direction of improving engineered pancreatic cancer organoids is discussed for their application prospects in clinical treatment.
Collapse
Affiliation(s)
- Taiyu Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Bin Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
82
|
Fernandes S, Oliver-De La Cruz J, Morazzo S, Niro F, Cassani M, Ďuríková H, Caravella A, Fiore P, Azzato G, De Marco G, Lauria A, Izzi V, Bosáková V, Fric J, Filipensky P, Forte G. TGF-β induces matrisome pathological alterations and EMT in patient-derived prostate cancer tumoroids. Matrix Biol 2024; 125:12-30. [PMID: 37944712 DOI: 10.1016/j.matbio.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Extracellular matrix (ECM) tumorigenic alterations resulting in high matrix deposition and stiffening are hallmarks of adenocarcinomas and are collectively defined as desmoplasia. Here, we thoroughly analysed primary prostate cancer tissues obtained from numerous patients undergoing radical prostatectomy to highlight reproducible structural changes in the ECM leading to the loss of the glandular architecture. Starting from patient cells, we established prostate cancer tumoroids (PCTs) and demonstrated they require TGF-β signalling pathway activity to preserve phenotypical and structural similarities with the tissue of origin. By modulating TGF-β signalling pathway in PCTs, we unveiled its role in ECM accumulation and remodelling in prostate cancer. We also found that TGF-β-induced ECM remodelling is responsible for the initiation of prostate cell epithelial-to-mesenchymal transition (EMT) and the acquisition of a migratory, invasive phenotype. Our findings highlight the cooperative role of TGF-β signalling and ECM desmoplasia in prompting prostate cell EMT and promoting tumour progression and dissemination.
Collapse
Affiliation(s)
- Soraia Fernandes
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic.
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Sofia Morazzo
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Francesco Niro
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Marco Cassani
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Helena Ďuríková
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Alessio Caravella
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Piergiuseppe Fiore
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Giulia Azzato
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Giuseppe De Marco
- Information Technology Center (ICT), University of Calabria (UNICAL), Via P. Bucci, Cubo 22B, Rende (CS) 87036, Italy
| | - Agostino Lauria
- Department of Engineering for Innovation, University of Salento (UNISALENTO), Corpo Z, Campus Ecotekne, SP.6 per Monteroni, Lecce (LE), Italy
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; Faculty of Medicine, BioIM Research Unit, University of Oulu, Oulu FI-90014, Finland; Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Jan Fric
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Filipensky
- Department of Urology, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE5 9NU, UK.
| |
Collapse
|
83
|
Samaranayake SG, Gamble LA, Bowden C, Green BL, Gallanis AF, Akbulut D, Shah N, Hernandez JM, Davis JL. Protocol for isolation of signet ring cells from human gastric mucosa. STAR Protoc 2023; 4:102695. [PMID: 37925632 PMCID: PMC10652202 DOI: 10.1016/j.xpro.2023.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
More than 90% of individuals with germline pathogenic CDH1 variants will harbor occult, microscopic foci of signet ring cell carcinomas capable of progressing to advanced diffuse-type gastric cancer. Here, we present a protocol for high viability suspension of signet ring cells from human gastric tissue. We describe the steps for gastric mucosa isolation and tissue dissociation. We then detail procedures for embedding cells into HistoGel for immunohistochemistry staining and additional applications such as flow cytometry and single-cell sequencing.
Collapse
Affiliation(s)
- Sarah G Samaranayake
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lauren A Gamble
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cassidy Bowden
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin L Green
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amber F Gallanis
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dilara Akbulut
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niharika Shah
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan M Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeremy L Davis
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
84
|
Chen CC, Tran W, Song K, Sugimoto T, Obusan MB, Wang L, Sheu KM, Cheng D, Ta L, Varuzhanyan G, Huang A, Xu R, Zeng Y, Borujerdpur A, Bayley NA, Noguchi M, Mao Z, Morrissey C, Corey E, Nelson PS, Zhao Y, Huang J, Park JW, Witte ON, Graeber TG. Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation. Cancer Cell 2023; 41:2066-2082.e9. [PMID: 37995683 PMCID: PMC10878415 DOI: 10.1016/j.ccell.2023.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.
Collapse
Affiliation(s)
- Chia-Chun Chen
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Kai Song
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Tyler Sugimoto
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Matthew B Obusan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Donghui Cheng
- Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Grigor Varuzhanyan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Arthur Huang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Runzhe Xu
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Yuanhong Zeng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Amirreza Borujerdpur
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yue Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, College of Basic Medical Sciences and the First Hospital, China Medical University, Shenyang, China
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jung Wook Park
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Owen N Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA; California NanoSystems Institute, UCLA, Los Angeles, CA, USA; Metabolomics Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
85
|
Qin J, Zhang C, Zhao Y, Tan D, Wu P, Shui X, Qin W, Ge X, Shi C. Small Mitochondria-Targeting Fluorophore with Multifunctional Therapeutic Activities against Prostate Cancer via the HIF1α/OATPs Pathway. Mol Pharm 2023; 20:6226-6236. [PMID: 37955533 PMCID: PMC10699304 DOI: 10.1021/acs.molpharmaceut.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Prostate cancer (PCa) is considered to be the most prevalent malignancy in males worldwide. Abiraterone is a 17α-hydroxylase/C17, 20-lyase (CYP17) inhibitor that has been approved for use in patients with prostate cancer. However, several negative aspects, such as drug resistance, toxicity, and lack of real-time monitoring of treatment responses, could appear with long-term use. Therefore, the development of anticancer agents with specific targeting to avoid side effects is imperative. Here, we used MHI-148, a type of heptamethine cyanine (HC) near-infrared fluorescence dye (NIRF), as a prototype structure to synthesize two theranostic agents, Abi-DZ-1 and Abi-783. The new compound Abi-DZ-1 retained the excellent photophysical characteristics and NIRF imaging property of MHI-148, and it could preferentially accumulate in prostate cancer cells but not in normal prostate epithelial cells via the HIF1α/organic anion-transporting polypeptides axis. NIRF imaging using Abi-DZ-1 selectively identified tumors in mice bearing PCa xenografts. Moreover, Abi-DZ-1 treatment significantly retarded the tumor growth in both a cell-derived xenograft model and a patient-derived tumor xenograft model. This finding demonstrated that Abi-DZ-1 may hold promise as a potential multifunctional theranostic agent for future tumor-targeted imaging and precision therapy. Constructing theranostic agents using the NIRF dye platform holds great promise in accurate therapy and intraoperative navigation.
Collapse
Affiliation(s)
- Jing Qin
- Division
of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Caiqin Zhang
- Division
of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yong Zhao
- Division
of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Dengxu Tan
- Department
of Urology, Xijing Hospital, Fourth Military
Medical University, Xi’an, Shaanxi 710069, China
| | - Pengpeng Wu
- Division
of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xue Shui
- Division
of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Weijun Qin
- Department
of Urology, Xijing Hospital, Fourth Military
Medical University, Xi’an, Shaanxi 710069, China
| | - Xu Ge
- Division
of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Changhong Shi
- Division
of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
86
|
Giafaglione JM, Crowell PD, Delcourt AML, Hashimoto T, Ha SM, Atmakuri A, Nunley NM, Dang RMA, Tian M, Diaz JA, Tika E, Payne MC, Burkhart DL, Li D, Navone NM, Corey E, Nelson PS, Lin NYC, Blanpain C, Ellis L, Boutros PC, Goldstein AS. Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment. Nat Cell Biol 2023; 25:1821-1832. [PMID: 38049604 PMCID: PMC10709144 DOI: 10.1038/s41556-023-01274-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 12/06/2023]
Abstract
Lineage transitions are a central feature of prostate development, tumourigenesis and treatment resistance. While epigenetic changes are well known to drive prostate lineage transitions, it remains unclear how upstream metabolic signalling contributes to the regulation of prostate epithelial identity. To fill this gap, we developed an approach to perform metabolomics on primary prostate epithelial cells. Using this approach, we discovered that the basal and luminal cells of the prostate exhibit distinct metabolomes and nutrient utilization patterns. Furthermore, basal-to-luminal differentiation is accompanied by increased pyruvate oxidation. We establish the mitochondrial pyruvate carrier and subsequent lactate accumulation as regulators of prostate luminal identity. Inhibition of the mitochondrial pyruvate carrier or supplementation with exogenous lactate results in large-scale chromatin remodelling, influencing both lineage-specific transcription factors and response to antiandrogen treatment. These results establish reciprocal regulation of metabolism and prostate epithelial lineage identity.
Collapse
Affiliation(s)
- Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amelie M L Delcourt
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aishwarya Atmakuri
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas M Nunley
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel M A Dang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mao Tian
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johnny A Diaz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elisavet Tika
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie C Payne
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Deborah L Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dapei Li
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nora M Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Eva Corey
- University of Washington, Seattle, WA, USA
| | | | - Neil Y C Lin
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cedric Blanpain
- Laboratory of Stem Cells and Cancer, WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Leigh Ellis
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
87
|
Nikmahzar A, Koruji M, Jahanshahi M, Khadivi F, Shabani M, Dehghani S, Forouzesh M, Jabari A, Feizollahi N, Salem M, Ghanami Gashti N, Abbasi Y, Abbasi M. Differentiation of human primary testicular cells in the presence of SCF using the organoid culture system. Artif Organs 2023; 47:1818-1830. [PMID: 37698035 DOI: 10.1111/aor.14643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Development of organoids using human primary testicular cells has remained a challenge due to the complexity of the mammalian testicular cytoarchitecture and culture methods. In this study, we generated testicular organoids derived from human primary testicular cells. Then, we evaluated the effect of stem cell factor (SCF) on cell differentiation and apoptosis in the testicular organoid model. METHODS The testicular cells were harvested from the three brain-dead donors. Human spermatogonial stem cells (SSCs) were characterized using immunocytochemistry (ICC), RT-PCR and flow cytometry. Testicular organoids were generated from primary testicular cells by hanging drop culture method and were cultured in three groups: control group, experimental group 1 (treated FSH and retinoic acid (RA)), and experimental group 2 (treated FSH, RA and SCF), for five weeks. We assessed the expression of SCP3 (Synaptonemal Complex Protein 3) as a meiotic gene, PRM2 (Protamine 2) as a post-meiotic marker and apoptotic genes of Bax (BCL2-Associated X Protein) and Bcl-2 (B-cell lymphoma 2), respectively by using RT-qPCR. In addition, we identified the expression of PRM2 by immunohistochemistry (IHC). RESULTS Relative expression of SCP3, PRM2 and Bcl-2 were highest in group 2 after five weeks of culture. In contrast, BAX expression level was lower in experimental group 2 in comparison with other groups. IHC analyses indicated the highest expression of PRM2 as a postmeiotic marker in group 2 in comparison to 2D culture and control groups but not find significant differences between experimental group 1 and experimental group 2 groups. Morphological evaluations revealed that organoids are compact spherical structures and in the peripheral region composed of uncharacterized elongated fibroblast-like cells. CONCLUSION Our findings revealed that the testicular organoid culture system promote the spermatogonial stem cell (SSC) differentiation, especially in presence of SCF. Developed organoids are capable of recapitulating many important properties of a stem cell niche.
Collapse
Affiliation(s)
- Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Center & Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Shabani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Dehghani
- Organ Procurement Unit, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Ayob Jabari
- Department of Anatomy, Zahedan Medical University of Science, Zahedan, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Abbasi
- Program in Neuroscience, Center to Advance Chronic Pain Research, Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
88
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
89
|
Gómez-Álvarez M, Agustina-Hernández M, Francés-Herrero E, Rodríguez-Eguren A, Bueno-Fernandez C, Cervelló I. Addressing Key Questions in Organoid Models: Who, Where, How, and Why? Int J Mol Sci 2023; 24:16014. [PMID: 37958996 PMCID: PMC10650475 DOI: 10.3390/ijms242116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Organoids are three-dimensional cellular structures designed to recreate the biological characteristics of the body's native tissues and organs in vitro. There has been a recent surge in studies utilizing organoids due to their distinct advantages over traditional two-dimensional in vitro approaches. However, there is no consensus on how to define organoids. This literature review aims to clarify the concept of organoids and address the four fundamental questions pertaining to organoid models: (i) What constitutes organoids?-The cellular material. (ii) Where do organoids grow?-The extracellular scaffold. (iii) How are organoids maintained in vitro?-Via the culture media. (iv) Why are organoids suitable in vitro models?-They represent reproducible, stable, and scalable models for biological applications. Finally, this review provides an update on the organoid models employed within the female reproductive tract, underscoring their relevance in both basic biology and clinical applications.
Collapse
Affiliation(s)
- María Gómez-Álvarez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Marcos Agustina-Hernández
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Emilio Francés-Herrero
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Clara Bueno-Fernandez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Irene Cervelló
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| |
Collapse
|
90
|
Crowell PD, Giafaglione JM, Jones AE, Nunley NM, Hashimoto T, Delcourt AML, Petcherski A, Agrawal R, Bernard MJ, Diaz JA, Heering KY, Huang RR, Low JY, Matulionis N, Navone NM, Ye H, Zoubeidi A, Christofk HR, Rettig MB, Reiter RE, Haffner MC, Boutros PC, Shirihai OS, Divakaruni AS, Goldstein AS. MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate cancer. Cell Rep 2023; 42:113221. [PMID: 37815914 DOI: 10.1016/j.celrep.2023.113221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Advanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effects of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR-blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.
Collapse
Affiliation(s)
- Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas M Nunley
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amelie M L Delcourt
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anton Petcherski
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Raag Agrawal
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew J Bernard
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Johnny A Diaz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kylie Y Heering
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rong Rong Huang
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nora M Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huihui Ye
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Heather R Christofk
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew B Rettig
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Paul C Boutros
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Orian S Shirihai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva, Israel
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
91
|
Wang H, Liu J, Zhu X, Yang B, He Z, Yao X. AZGP1P2/UBA1/RBM15 Cascade Mediates the Fate Determinations of Prostate Cancer Stem Cells and Promotes Therapeutic Effect of Docetaxel in Castration-Resistant Prostate Cancer via TPM1 m6A Modification. RESEARCH (WASHINGTON, D.C.) 2023; 6:0252. [PMID: 37854295 PMCID: PMC10581371 DOI: 10.34133/research.0252] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Prostate cancer (PCa) is a common malignant tumor with high morbidity and mortality worldwide. The prostate cancer stem cell (PCSC) model provides novel insights into the pathogenesis of PCa and its therapeutic response. However, the roles and molecular mechanisms of specific genes in mediating fate decisions of PCSCs and carcinogenesis of PCa remain to be elusive. In this study, we have explored the expression, function, and mechanism of AZGP1P2, a pseudogene of AZGP1, in regulating the stemness and apoptosis of PCSCs and treatment resistance of docetaxel in castration-resistant prostate cancer (CRPC). We revealed that AZGP1P2 was downregulated in CRPC cell lines and PCSCs, while it was positively associated with progression-free interval. Upregulation of the AZGP1P2 enhanced the sensitivity of docetaxel treatment in CRPCs via inhibiting their stemness. RNA pull-down associated with mass spectrometry analysis, co-immunoprecipitation assay, and RNA immunoprecipitation assay demonstrated that AZGP1P2 could bind to UBA1 and RBM15 as a "writer" of methyltransferase to form a compound. UBA1, an E1 ubiquitin-activating enzyme, contributed to RBM15 protein degradation via ubiquitination modification. Methylated RNA immunoprecipitation assay displayed that RBM15 controlled the mRNA decay of TPM1 in m6A methylation. Furthermore, a xenograft mouse model and patient-derived organoids showed that the therapeutic effect of docetaxel in CRPC was increased by AZGP1P2 in vivo. Collectively, these results imply that AZGP1P2 mediates the stemness and apoptosis of PCSCs and promotes docetaxel therapeutic effect by suppressing tumor growth and metastasis via UBA1/RBM15-mediated TPM1 mRNA decay in CRPC.
Collapse
Affiliation(s)
- Hong Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| | - Xiaojun Zhu
- Department of Urology Surgery,
The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine,
Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
- Shanghai Key Laboratory of Reproductive Medicine,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| |
Collapse
|
92
|
Wang H, Canasto-Chibuque C, Kim JH, Hohl M, Leslie C, Reis-Filho JS, Petrini JH. Chronic Interferon Stimulated Gene Transcription Promotes Oncogene Induced Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562529. [PMID: 37905095 PMCID: PMC10614814 DOI: 10.1101/2023.10.16.562529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The Mre11 complex (comprising Mre11, Rad50, Nbs1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic Mre11 mutant mouse strain ( Mre11 ATLD1/ATLD1 ) was highly susceptible to oncogene induced breast cancer. Here we used a mammary organoid system to examine which Mre11 dependent responses are tumor suppressive. We found that Mre11 ATLD1/ATLD1 organoids exhibited an elevated interferon stimulated gene (ISG) signature and sustained changes in chromatin accessibility. This Mre11 ATLD1/ATLD1 phenotype depended on DNA binding of a nuclear innate immune sensor, IFI205. Ablation of Ifi205 in Mre11 ATLD1/ATLD1 organoids restored baseline and oncogene-induced chromatin accessibility patterns to those observed in WT . Implantation of Mre11 ATLD1/ATLD1 organoids and activation of oncogene led to aggressive metastatic breast cancer. This outcome was reversed in implanted Ifi205 -/- Mre11 ATLD1/ATLD1 organoids. These data reveal a connection between innate immune signaling and tumor suppression in mammary epithelium. Given the abundance of aberrant DNA structures that arise in the context of genome instability syndromes, the data further suggest that cancer predisposition in those contexts may be partially attributable to tonic innate immune transcriptional programs.
Collapse
|
93
|
Rago V, Perri A, Di Agostino S. New Therapeutic Perspectives in Prostate Cancer: Patient-Derived Organoids and Patient-Derived Xenograft Models in Precision Medicine. Biomedicines 2023; 11:2743. [PMID: 37893116 PMCID: PMC10604340 DOI: 10.3390/biomedicines11102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
One of the major goals in the advancement of basic cancer research focuses on the development of new anticancer therapies. To understand the molecular mechanisms of cancer progression, acquired drug resistance, and the metastatic process, the use of preclinical in vitro models that faithfully summarize the properties of the tumor in patients is still a necessity. The tumor is represented by a diverse group of cell clones, and in recent years, to reproduce in vitro preclinical tumor models, monolayer cell cultures have been supplanted by patient-derived xenograft (PDX) models and cultured organoids derived from the patient (PDO). These models have proved indispensable for the study of the tumor microenvironment (TME) and its interaction with tumor cells. Prostate cancer (PCa) is the most common neoplasia in men in the world. It is characterized by genomic instability and resistance to conventional therapies. Despite recent advances in diagnosis and treatment, PCa remains a leading cause of cancer death. Here, we review the studies of the last 10 years as the number of papers is growing very fast in the field. We also discuss the discovered limitations and the new challenges in using the organoid culture system and in using PDXs in studying the prostate cancer phenotype, performing drug testing, and developing anticancer molecular therapies.
Collapse
Affiliation(s)
- Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
94
|
Habault J, Schneider JA, Ha S, Ruoff R, Pereira LD, Puccini J, Ranieri M, Ayasun R, Deng J, Kasper AC, Bar-Sagi D, Wong KK, Zoubeidi A, Claessens F, Wise DR, Logan SK, Kirshenbaum K, Garabedian MJ. A Multivalent Peptoid Conjugate Modulates Androgen Receptor Transcriptional Activity to Inhibit Therapy-resistant Prostate Cancer. Mol Cancer Ther 2023; 22:1166-1181. [PMID: 37486978 PMCID: PMC10592247 DOI: 10.1158/1535-7163.mct-23-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Prostate cancers adapt to androgen receptor (AR) pathway inhibitors and progress to castration resistance due to ongoing AR expression and function. To counter this, we developed a new approach to modulate the AR and inhibit castration-resistant prostate cancer (CRPC) using multivalent peptoid conjugates (MPC) that contain multiple copies of the AR-targeting ligand ethisterone attached to a peptidomimetic scaffold. Here, we investigated the antitumor effects of compound MPC309, a trivalent display of ethisterone conjugated to a peptoid oligomer backbone that binds to the AR with nanomolar affinity. MPC309 exhibited potent antiproliferative effects on various enzalutamide-resistant prostate cancer models, including those with AR splice variants, ligand-binding mutations, and noncanonical AR gene expression programs, as well as mouse prostate organoids harboring defined genetic alterations that mimic lethal human prostate cancer subtypes. MPC309 is taken up by cells through macropinocytosis, an endocytic process more prevalent in cancer cells than in normal ones, thus providing an opportunity to target tumors selectively. MPC309 triggers a distinct AR transcriptome compared with DHT and enzalutamide, a clinically used antiandrogen. Specifically, MPC309 enhances the expression of differentiation genes while reducing the expression of genes needed for cell division and metabolism. Mechanistically, MPC309 increases AR chromatin occupancy and alters AR interactions with coregulatory proteins in a pattern distinct from DHT. In xenograft studies, MPC309 produced significantly greater tumor suppression than enzalutamide. Altogether, MPC309 represents a promising new AR modulator that can combat resistant disease by promoting an AR antiproliferative gene expression program.
Collapse
Affiliation(s)
- Justine Habault
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey A. Schneider
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan Ha
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | - Rachel Ruoff
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luiza D. Pereira
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Joseph Puccini
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Michela Ranieri
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Ruveyda Ayasun
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Jiehui Deng
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Kwok-Kin Wong
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David R. Wise
- Department of Medicine, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan K. Logan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Michael J. Garabedian
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
95
|
Ji Y, Liu B, Chen L, Li A, Shen K, Su R, Zhang W, Zhu Y, Wang Q, Xue W. Repurposing ketotifen as a therapeutic strategy for neuroendocrine prostate cancer by targeting the IL-6/STAT3 pathway. Cell Oncol (Dordr) 2023; 46:1445-1456. [PMID: 37120492 DOI: 10.1007/s13402-023-00822-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/01/2023] Open
Abstract
PURPOSE Neuroendocrine prostate cancer (NEPC), a highly aggressive subtype of prostate cancer displaying resistance to hormone therapy, presents a poor prognosis and limited therapeutic options. Here, we aimed to find novel medication therapies for NEPC and explore the underlying mechanism. METHODS A high-throughput drug screening utilizing an FDA-approved drug library was performed and ketotifen, an antihistamine agent, was identified as a potential therapeutic candidate for NEPC. The whole-transcriptome sequencing analysis was conducted to explore mechanism of ketotifen inhibitory in NEPC. Multiple cell biology and biochemistry experiments were performed to confirm the inhibitory effect of ketotifen in vitro. A spontaneous NEPC mice model (PBCre4:Ptenf/f;Trp53f/f;Rb1f/f) was used to reveal the inhibitory effect of ketotifen in vivo. RESULTS Our in vitro experiments demonstrated that ketotifen effectively suppressed neuroendocrine differentiation, reduced cell viability, and reversed the lineage switch via targeting the IL-6/STAT3 pathway. Our in vivo results showed that ketotifen significantly prolonged overall survival and reduced the risk of distant metastases in NEPC mice model. CONCLUSION Our findings repurpose ketotifen for antitumor applications and endorse its clinical development for NEPC therapy, offering a novel and promising therapeutic strategy for this formidable cancer subtype.
Collapse
Affiliation(s)
- Yiyi Ji
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Bo Liu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Lei Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Ang Li
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Kai Shen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Ruopeng Su
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Weiwei Zhang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Yinjie Zhu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
| | - Qi Wang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, China.
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
96
|
Chan WS, Mo X, Ip PPC, Tse KY. Patient-derived organoid culture in epithelial ovarian cancers-Techniques, applications, and future perspectives. Cancer Med 2023; 12:19714-19731. [PMID: 37776168 PMCID: PMC10587945 DOI: 10.1002/cam4.6521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous disease composed of different cell types with different molecular aberrations. Traditional cell lines and mice models cannot recapitulate the human tumor biology and tumor microenvironment (TME). Patient-derived organoids (PDOs) are freshly derived from patients' tissues and are then cultured with extracellular matrix and conditioned medium. The high concordance of epigenetic, genomic, and proteomic landscapes between the parental tumors and PDOs suggests that PDOs can provide more reliable results in studying cancer biology, allowing high throughput drug screening, and identifying their associated signaling pathways and resistance mechanisms. However, despite having a heterogeneity of cells in PDOs, some cells in TME will be lost during the culture process. Next-generation organoids have been developed to circumvent some of the limitations. Genetically engineered organoids involving targeted gene editing can facilitate the understanding of tumorigenesis and drug response. Co-culture systems where PDOs are cultured with different cell components like immune cells can allow research using immunotherapy which is otherwise impossible in conventional cell lines. In this review, the limitations of the traditional in vitro and in vivo assays, the use of PDOs, the challenges including some tips and tricks of PDO generation in EOC, and the future perspectives, will be discussed.
Collapse
Affiliation(s)
- Wai Sun Chan
- Department of Obstetrics and GynaecologyThe University of Hong KongPokfulamHong Kong SAR
| | - Xuetang Mo
- Department of Obstetrics and GynaecologyThe University of Hong KongPokfulamHong Kong SAR
| | | | - Ka Yu Tse
- Department of Obstetrics and GynaecologyThe University of Hong KongPokfulamHong Kong SAR
| |
Collapse
|
97
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
98
|
Trillsch F, Czogalla B, Kraus F, Burges A, Mahner S, Kessler M. Protocol to optimize the biobanking of ovarian cancer organoids by accommodating patient-specific differences in stemness potential. STAR Protoc 2023; 4:102484. [PMID: 37585293 PMCID: PMC10436238 DOI: 10.1016/j.xpro.2023.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
We present a protocol for effective biobanking of epithelial ovarian cancer organoids, considering the heterogeneous clinical presentation and high recurrence rates. Our protocol involves parallel testing of three media to identify patient-specific optimal conditions. We describe steps for tissue dissociation, differential seeding, organoid cultivation, and biobanking. We outline procedures for fixation, embedding, and staining for confocal imaging. Furthermore, we demonstrate that brief cultivation of isolates in 2D on plastic enhances organoid-forming potential in selected lines, expanding their application scope. For complete details on the use and execution of this protocol, please refer to Hoffmann et al.1.
Collapse
Affiliation(s)
- Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner site Munich (LMU), 69120 Heidelberg, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Fabian Kraus
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner site Munich (LMU), 69120 Heidelberg, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), Partner site Munich (LMU), 69120 Heidelberg, Germany.
| |
Collapse
|
99
|
Tiroille V, Krug A, Bokobza E, Kahi M, Bulcaen M, Ensinck MM, Geurts MH, Hendriks D, Vermeulen F, Larbret F, Gutierrez-Guerrero A, Chen Y, Van Zundert I, Rocha S, Rios AC, Medaer L, Gijsbers R, Mangeot PE, Clevers H, Carlon MS, Bost F, Verhoeyen E. Nanoblades allow high-level genome editing in murine and human organoids. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:57-74. [PMID: 37435135 PMCID: PMC10331042 DOI: 10.1016/j.omtn.2023.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/04/2023] [Indexed: 07/13/2023]
Abstract
Genome engineering has become more accessible thanks to the CRISPR-Cas9 gene-editing system. However, using this technology in synthetic organs called "organoids" is still very inefficient. This is due to the delivery methods for the CRISPR-Cas9 machinery, which include electroporation of CRISPR-Cas9 DNA, mRNA, or ribonucleoproteins containing the Cas9-gRNA complex. However, these procedures are quite toxic for the organoids. Here, we describe the use of the "nanoblade (NB)" technology, which outperformed by far gene-editing levels achieved to date for murine- and human tissue-derived organoids. We reached up to 75% of reporter gene knockout in organoids after treatment with NBs. Indeed, high-level NB-mediated knockout for the androgen receptor encoding gene and the cystic fibrosis transmembrane conductance regulator gene was achieved with single gRNA or dual gRNA containing NBs in murine prostate and colon organoids. Likewise, NBs achieved 20%-50% gene editing in human organoids. Most importantly, in contrast to other gene-editing methods, this was obtained without toxicity for the organoids. Only 4 weeks are required to obtain stable gene knockout in organoids and NBs simplify and allow rapid genome editing in organoids with little to no side effects including unwanted insertion/deletions in off-target sites thanks to transient Cas9/RNP expression.
Collapse
Affiliation(s)
- Victor Tiroille
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| | - Emma Bokobza
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Michel Kahi
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Mattijs Bulcaen
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marjolein M. Ensinck
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Maarten H. Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | | | | | - Alejandra Gutierrez-Guerrero
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Indra Van Zundert
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Anne C. Rios
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Louise Medaer
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Philippe E. Mangeot
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Marianne S. Carlon
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Frédéric Bost
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- Equipe labélisée Ligue National Contre le Cancer, Basel, Switzerland
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
| |
Collapse
|
100
|
Guo J, Wang F, Huang Y, He H, Tan W, Yi M, Egelman EH, Xu B. Cell spheroid creation by transcytotic intercellular gelation. NATURE NANOTECHNOLOGY 2023; 18:1094-1104. [PMID: 37217766 PMCID: PMC10525029 DOI: 10.1038/s41565-023-01401-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Cell spheroids bridge the discontinuity between in vitro systems and in vivo animal models. However, inducing cell spheroids by nanomaterials remains an inefficient and poorly understood process. Here we use cryogenic electron microscopy to determine the atomic structure of helical nanofibres self-assembled from enzyme-responsive D-peptides and fluorescent imaging to show that the transcytosis of D-peptides induces intercellular nanofibres/gels that potentially interact with fibronectin to enable cell spheroid formation. Specifically, D-phosphopeptides, being protease resistant, undergo endocytosis and endosomal dephosphorylation to generate helical nanofibres. On secretion to the cell surface, these nanofibres form intercellular gels that act as artificial matrices and facilitate the fibrillogenesis of fibronectins to induce cell spheroids. No spheroid formation occurs without endo- or exocytosis, phosphate triggers or shape switching of the peptide assemblies. This study-coupling transcytosis and morphological transformation of peptide assemblies-demonstrates a potential approach for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yimeng Huang
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA.
| |
Collapse
|