51
|
GE S, GU R, YANG X, XU C, WANG S, ZHU G. [TRIP13 Enhances Radioresistance of Lung Adenocarcinoma Cells
through the Homologous Recombination Pathway]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:1-12. [PMID: 38296621 PMCID: PMC10895292 DOI: 10.3779/j.issn.1009-3419.2023.106.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Radiation therapy is one of the most common treatments for non-small cell lung cancer (NSCLC). However, the insensitivity of some tumor cells to radiation is one of the major reasons for the poor efficacy of radiotherapy and the poor prognosis of patients, and exploring the underlying mechanisms behind radioresistance is the key to solving this clinical challenge. This study aimed to identify the molecules associated with radioresistance in lung adenocarcinoma (LUAD), identified thyroid hormone receptor interactor 13 (TRIP13) as the main target initially, and explored whether TRIP13 is related to radioresistance in LUAD and the specific mechanism, with the aim of providing theoretical basis and potential targets for the combination therapy of LUAD patients receiving radiotherapy in the clinic. METHODS Three datasets, GSE18842, GSE19188 and GSE33532, were selected from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (|log FC|>1.5, P<0.05) in each of the three datasets using the R 4.1.3 software, and then Venn diagram was used to find out the differentially expressed genes common to the three datasets. The screened differential genes were then subjected to protein-protein interaction (PPI) analysis and module analysis with the help of STRING online tool and Cytoscape software, and survival prognosis analysis was performed for each gene with the help of Kaplan-Meier Plotter database, and the TRIP13 gene was identified as the main molecule for subsequent studies. Subsequently, the human LUAD cell line H292 was irradiated with multiple X-rays using a sub-lethal dose irradiation method to construct a radioresistant cell line, H292DR. The radioresistance of H292DR cells was verified using cell counting kit-8 (CCK-8) assay and clone formation assay. The expression levels of TRIP13 in H292 and H292DR cells were measured by Western blot. Small interfering RNA (siRNA) was used to silence the expression of TRIP13 in H292DR cells and Western blot assay was performed. The clone formation ability and migration ability of H292DR cells were observed after TRIP13 silencing, followed by the detection of changes in the expression levels of proteins closely related to homologous recombination, such as ataxia telangiectasia mutated (ATM) protein. RESULTS Screening of multiple GEO datasets, validation of external datasets and survival analysis revealed that TRIP13 was highly expressed in LUAD and was associated with poor prognosis in LUAD patients who had received radiation therapy. And the results of gene set enrichment analysis (GSEA) of TRIP13 suggested that TRIP13 might be closely associated with LUAD radioresistance by promoting homologous recombination repair after radiation therapy. Experimentally, TRIP13 expression was found to be upregulated in H292DR, and silencing of TRIP13 was able to increase the sensitivity of H292DR cells to radiation. CONCLUSIONS TRIP13 is associated with poor prognosis in LUAD patients treated with radiation, possibly by promoting a homologous recombination repair pathway to mediate resistance of LUAD cells to radiation.
Collapse
|
52
|
Mórocz M, Qorri E, Pekker E, Tick G, Haracska L. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools. J Biotechnol 2024; 380:1-19. [PMID: 38072328 DOI: 10.1016/j.jbiotec.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.
Collapse
Affiliation(s)
- Mónika Mórocz
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Erda Qorri
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged H-6720, Hungary.
| | - Emese Pekker
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary.
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Lajos Haracska
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117 Budapest, Hungary.
| |
Collapse
|
53
|
Guo M, Li X, Li T, Liu R, Pang W, Luo J, Zeng W, Zheng Y. YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia†. Biol Reprod 2024; 110:48-62. [PMID: 37812443 DOI: 10.1093/biolre/ioad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023] Open
Abstract
Genomic integrity is critical for sexual reproduction, ensuring correct transmission of parental genetic information to the descendant. To preserve genomic integrity, germ cells have evolved multiple DNA repair mechanisms, together termed as DNA damage response. The RNA N6-methyladenosine is the most abundant mRNA modification in eukaryotic cells, which plays important roles in DNA damage response, and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) is a well-acknowledged N6-methyladenosine reader protein regulating the mRNA decay and stress response. Despite this, the correlation between YTHDF2 and DNA damage response in germ cells, if any, remains enigmatic. Here, by employing a Ythdf2-conditional knockout mouse model as well as a Ythdf2-null GC-1 mouse spermatogonial cell line, we explored the role and the underlying mechanism for YTHDF2 in spermatogonial DNA damage response. We identified that, despite no evident testicular morphological abnormalities under the normal circumstance, conditional mutation of Ythdf2 in adult male mice sensitized germ cells, including spermatogonia, to etoposide-induced DNA damage. Consistently, Ythdf2-KO GC-1 cells displayed increased sensitivity and apoptosis in response to DNA damage, accompanied by the decreased SET domain bifurcated 1 (SETDB1, a histone methyltransferase) and H3K9me3 levels. The Setdb1 knockdown in GC-1 cells generated a similar phenotype, but its overexpression in Ythdf2-null GC-1 cells alleviated the sensitivity and apoptosis in response to DNA damage. Taken together, these results demonstrate that the N6-methyladenosine reader YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia, which provides novel insights into the mechanisms underlying spermatogonial genome integrity maintenance and therefore contributes to safe reproduction.
Collapse
Affiliation(s)
- Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueliang Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weijun Pang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
54
|
Giang LH, Wu KS, Lee WC, Chu SS, Do AD, Changou CA, Tran HM, Hsieh TH, Chen HH, Hsieh CL, Sung SY, Yu AL, Yen Y, Wong TT, Chang CC. Targeting of RRM2 suppresses DNA damage response and activates apoptosis in atypical teratoid rhabdoid tumor. J Exp Clin Cancer Res 2023; 42:346. [PMID: 38124207 PMCID: PMC10731702 DOI: 10.1186/s13046-023-02911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.
Collapse
Affiliation(s)
- Le Hien Giang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Biology and Genetics, Hai Phong University of Medicine and Pharmacy, Hai Phong, 180000, Vietnam
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wei-Chung Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Shing-Shung Chu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Anh Duy Do
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700000, Vietnam
| | - Chun A Changou
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Huy Minh Tran
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, 700000, Vietnam
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 110, Taiwan
| | - Hsin-Hung Chen
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- Laboratory of Translational Medicine, Development Center for Biotechnology, Taipei, 115, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 333, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yun Yen
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, 110, Taiwan
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
- TMU Research Center for Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Che-Chang Chang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
- TMU Research Center for Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 6F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 23564, Taiwan.
| |
Collapse
|
55
|
Hu P, Lin L, Huang T, Li Z, Xiao M, Guo H, Chen G, Liu D, Ke M, Shan H, Zhang F, Zhang Y. Circular RNA circEYA3 promotes the radiation resistance of hepatocellular carcinoma via the IGF2BP2/DTX3L axis. Cancer Cell Int 2023; 23:308. [PMID: 38042777 PMCID: PMC10693171 DOI: 10.1186/s12935-023-03168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high incidence and mortality rate despite various treatment options, including 125I seed implantation. However, recurrence and radiation resistance remain challenging issues. Hsa_circ_0007895 (circEYA3)-derived from exons 2-6 of EYA3-facilitates the proliferation and progression of pancreatic ductal adenocarcinoma. However, the role of circEYA3 in HCC 125I radiation resistance remains unclear. Thus, we aimed to investigate the functions and underlying molecular mechanisms of circEYA3 in HCC under 125I and X-ray irradiation conditions. METHODS CircEYA3 was identified by RNA-seq in patients with HCC before and after 125I seed implantation treatment, followed by fluorescence in situ hybridization and RNase R assays. The radiosensitivity of HCC cell lines irradiated with 125I seeds or external irradiation were evaluated using the Cell Counting Kit 8, flow cytometry, γH2A.X immunofluorescence and comet assays. RNA pull-down and RNA immunoprecipitation assays were performed to explore the interactions between circEYA3 and IGF2BP2. DTX3L mRNA was identified by RNA-seq in PLC/PRF/5 cells with overexpressed circEYA3. The corresponding in vitro results were verified using a mouse xenograft model. RESULTS CircEYA3 decreased the radiosensitivity of HCC cells both in vitro and in vivo. Notably, using a circRNA pulldown assay and RNA-binding protein immunoprecipitation, we identified IGF2BP2 as a novel and robust interacting protein of circEYA3. Mechanistically, circEYA3 binds to IGF2BP2 and enhances its ability to stabilize DTX3L mRNA, thereby specifically alleviating radiation-induced DNA damage in HCC cells. CONCLUSIONS Our findings demonstrate that circEYA3 increases the radioresistance of HCC to 125I seeds and external irradiation via the IGF2BP2/DTX3L axis. Thus, circEYA3 might be a predictive indicator and intervention option for 125I brachytherapy or external radiotherapy in HCC.
Collapse
Affiliation(s)
- Pan Hu
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Letao Lin
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Tao Huang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Zhenyu Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou,, 510060, People's Republic of China
| | - Meigui Xiao
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Huanqing Guo
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Guanyu Chen
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Dengyao Liu
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Miaola Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou,, 510060, People's Republic of China
| | - Hongbo Shan
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China.
| | - Fujun Zhang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Yanling Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
56
|
Bianco CD, Ourique F, Dos Santos DC, Pedrosa RC, Kviecisnki MR, Zamoner A. Glyphosate-induced glioblastoma cell proliferation: Unraveling the interplay of oxidative, inflammatory, proliferative, and survival signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122695. [PMID: 37802286 DOI: 10.1016/j.envpol.2023.122695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
The aim of the present study was to investigate the impacts of glyphosate herbicide on the survival and proliferation of glioblastoma cells and to explore the molecular mechanisms underlying such effects. For this, cultured human glioblastoma cell line, A172, was exposed to the glyphosate analytical standard, a glyphosate-based herbicide formulation (GBH), or the metabolite aminomethylphosphonic acid (AMPA). The three compounds induced A172 cytotoxicity after 24 h of exposure, with more prominent cytotoxic effects after 48 and 72 h of treatment. Further experiments were performed by treating A172 cells for 6 h with glyphosate, GBH, or AMPA at 0.5 mg/L, which corresponds to the maximum residue limits for glyphosate and AMPA in drinking water in Brazil. Colony forming units (CFU) assay showed that AMPA increased the number of CFU formed, while glyphosate and GBH increased the CFU sizes. The three compounds tested altered the cell cycle and caused DNA damage, as indicated by the increase in γ-H2AX. The mechanisms underlying the pesticide effects involve the activation of Akt and mitogen-activated protein kinases (MAPKs) signaling pathways, oxidative imbalance, and inflammation. Glyphosate led to NLRP3 activation culminating in caspase-1 recruitment, while AMPA decreased NLRP3 immunocontent and GBH did not alter this pathway. Results of the present study suggest that exposure to glyphosate (isolated or in formulation) or to its metabolite AMPA may affect cell signaling pathways resulting in oxidative damage and inflammation, giving glioblastoma cells an advantage by increasing their proliferation and growth.
Collapse
Affiliation(s)
- Claudia Daniele Bianco
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fabiana Ourique
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniela Coelho Dos Santos
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rozangela Curi Pedrosa
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Maicon Roberto Kviecisnki
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ariane Zamoner
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
57
|
Classen S, Petersen C, Borgmann K. Crosstalk between immune checkpoint and DNA damage response inhibitors for radiosensitization of tumors. Strahlenther Onkol 2023; 199:1152-1163. [PMID: 37420037 PMCID: PMC10674014 DOI: 10.1007/s00066-023-02103-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 07/09/2023]
Abstract
PURPOSE This review article is intended to provide a perspective overview of potential strategies to overcome radiation resistance of tumors through the combined use of immune checkpoint and DNA repair inhibitors. METHODS A literature search was conducted in PubMed using the terms ("DNA repair* and DNA damage response* and intracellular immune response* and immune checkpoint inhibition* and radio*") until January 31, 2023. Articles were manually selected based on their relevance to the topics analyzed. RESULTS Modern radiotherapy offers a wide range of options for tumor treatment. Radiation-resistant subpopulations of the tumor pose a particular challenge for complete cure. This is due to the enhanced activation of molecular defense mechanisms that prevent cell death because of DNA damage. Novel approaches to enhance tumor cure are provided by immune checkpoint inhibitors, but their effectiveness, especially in tumors without increased mutational burden, also remains limited. Combining inhibitors of both immune checkpoints and DNA damage response with radiation may be an attractive option to augment existing therapies and is the subject of the data summarized here. CONCLUSION The combination of tested inhibitors of DNA damage and immune responses in preclinical models opens additional attractive options for the radiosensitization of tumors and represents a promising application for future therapeutic approaches.
Collapse
Affiliation(s)
- Sandra Classen
- Laboratory of Radiobiology and Radiation Oncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Radiation Oncology, Department of Radiotherapy and Radiation Oncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
58
|
Zhang B, Li Y, Zhang J, Wang Y, Liang C, Lu T, Zhang C, Liu L, Qin Y, He J, Zhao X, Yu J, Hao J, Yang J, Li MJ, Yao Z, Ma S, Cheng H, Cheng T, Shi L. ADAR1 links R-loop homeostasis to ATR activation in replication stress response. Nucleic Acids Res 2023; 51:11668-11687. [PMID: 37831098 PMCID: PMC10681745 DOI: 10.1093/nar/gkad839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Unscheduled R-loops are a major source of replication stress and DNA damage. R-loop-induced replication defects are sensed and suppressed by ATR kinase, whereas it is not known whether R-loop itself is actively involved in ATR activation and, if so, how this is achieved. Here, we report that the nuclear form of RNA-editing enzyme ADAR1 promotes ATR activation and resolves genome-wide R-loops, a process that requires its double-stranded RNA-binding domains. Mechanistically, ADAR1 interacts with TOPBP1 and facilitates its loading on perturbed replication forks by enhancing the association of TOPBP1 with RAD9 of the 9-1-1 complex. When replication is inhibited, DNA-RNA hybrid competes with TOPBP1 for ADAR1 binding to promote the translocation of ADAR1 from damaged fork to accumulate at R-loop region. There, ADAR1 recruits RNA helicases DHX9 and DDX21 to unwind R-loops, simultaneously allowing TOPBP1 to stimulate ATR more efficiently. Collectively, we propose that the tempo-spatially regulated assembly of ADAR1-nucleated protein complexes link R-loop clearance and ATR activation, while R-loops crosstalk with blocked replication forks by transposing ADAR1 to finetune ATR activity and safeguard the genome.
Collapse
Affiliation(s)
- Biao Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yi Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jieyou Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Can Liang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Chunyong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yan Qin
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jiahuan He
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jia Yu
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Jihui Hao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Ma
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
59
|
Saha S, Huang SYN, Yang X, Saha LK, Sun Y, Khandagale P, Jenkins LM, Pommier Y. The TDRD3-USP9X complex and MIB1 regulate TOP3B homeostasis and prevent deleterious TOP3B cleavage complexes. Nat Commun 2023; 14:7524. [PMID: 37980342 PMCID: PMC10657456 DOI: 10.1038/s41467-023-43151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023] Open
Abstract
TOP3B is stabilized by TDRD3. Hypothesizing that TDRD3 recruits a deubiquitinase, we find that TOP3B interacts with USP9X via TDRD3. Inactivation of USP9X destabilizes TOP3B, and depletion of both TDRD3 and USP9X does not promote further TOP3B ubiquitylation. Additionally, we observe that MIB1 mediates the ubiquitylation and proteasomal degradation of TOP3B by directly interacting with TOP3B independently of TDRD3. Combined depletion of USP9X, TDRD3 and MIB1 causes no additional increase in TOP3B levels compared to MIB1 knockdown alone indicating that the TDRD3-USP9X complex works downstream of MIB1. To comprehend why cells degrade TOP3B in the absence of TDRD3, we measured TOP3Bccs. Lack of TDRD3 increases TOP3Bccs in DNA and RNA, and induced R-loops, γH2AX and growth defect. Biochemical experiments confirm that TDRD3 increases the turnover of TOP3B. Our work provides molecular insights into the mechanisms by which TDRD3 protect cells from deleterious TOP3Bccs which are otherwise removed by TRIM41.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Xi Yang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Prashant Khandagale
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
60
|
Dabrock A, Ernesti N, Will F, Rana M, Leinung N, Ehrich P, Tronnier V, Zechel C. RAR-Dependent and RAR-Independent RXR Signaling in Stem-like Glioma Cells. Int J Mol Sci 2023; 24:16466. [PMID: 38003656 PMCID: PMC10671216 DOI: 10.3390/ijms242216466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Retinoic acid (RA) exerts pleiotropic effects during neural development and regulates homeostasis in the adult human brain. The RA signal may be transduced through RXR (retinoid-X receptor)-non-permissive RA receptor/RXR heterodimers or through RXR-permissive RXR heterodimers. The significance of RA signaling in malignant brain tumors such as glioblastoma multiforme (GBM) and gliosarcoma (GS) is poorly understood. In particular, the impact RA has on the proliferation, survival, differentiation, or metabolism of GBM- or GS-derived cells with features of stem cells (SLGCs) remains elusive. In the present manuscript, six GBM- and two GS-derived SLGC lines were analyzed for their responsiveness to RAR- and RXR-selective agonists. Inhibition of proliferation and initiation of differentiation were achieved with a RAR-selective pan-agonist in a subgroup of SLGC lines, whereas RXR-selective pan-agonists (rexinoids) supported proliferation in most SLGC lines. To decipher the RAR-dependent and RAR-independent effects of RXR, the genes encoding the RAR or RXR isotypes were functionally inactivated by CRISPR/Cas9-mediated editing in an IDH1-/p53-positive SLGC line with good responsiveness to RA. Stemness, differentiation capacity, and growth behavior were preserved after editing. Taken together, this manuscript provides evidence about the positive impact of RAR-independent RXR signaling on proliferation, survival, and tumor metabolism in SLGCs.
Collapse
Affiliation(s)
- Amanda Dabrock
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Natalie Ernesti
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Florian Will
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Manaf Rana
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Nadja Leinung
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Phillip Ehrich
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Christina Zechel
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
61
|
Qin C, Li A, Xiao Y, Liu W, Zhai E, Li Q, Jing H, Zhang Y, Zhang H, Ma X, Tang H, Rong D. Expression of ZNF281 in colorectal cancer correlates with response to radiotherapy and survival. Ann Med 2023; 55:2278619. [PMID: 37939252 PMCID: PMC10653697 DOI: 10.1080/07853890.2023.2278619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The treatment of Colorectal cancer (CRC) is extremely complex and survival rates vary depending on the stage of the disease at the time of diagnosis. Neoadjuvant chemoradiotherapy (NACRT), is the conventional treatment for locally advanced rectal cancer (LARC); however, the resistance to chemoradiotherapy in LARC is difficult to predict. MATERIALS AND METHODS In this study, clinical data of 126 LARC patients were collected and analyzed, and relevant validation was performed using GEO database and in vitro and in vivo experiments, including Western blotting and Real-time quantitative PCR, immunohistochemistry, immunofluorescence, clonogenic cell survival assays, and nude-mouse xenograft models. RESULTS In patients with LARC who were treated with neoadjuvant radiotherapy (NART), higher ZNF281 expression in malignant tissue was associated with a poorer prognosis and lesser degree of tumor regression. Cell and mouse experiments have shown that ZNF281 reduces the damage caused by X-rays to CRC cells and tumors grown in mice. CONCLUSION We found that the expression of ZNF281 predicted the radiation response of CRC cells and suggested the prognosis of patients with LARC who received neoadjuvant radiation therapy.
Collapse
Affiliation(s)
- Changjiang Qin
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ang Li
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yafei Xiao
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Wenjing Liu
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ertao Zhai
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Quanying Li
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hong Jing
- Department of Pathology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yijie Zhang
- Department of Pathology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hui Zhang
- Department of Pathology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xuhui Ma
- Department of Pathology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hongna Tang
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Dan Rong
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
62
|
Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, Ren Y, Li L, Shi C, Wang J, Huang X, Cai X, Qu D, Zhang H, Mao Z, Liu H, Wang P, Sha W, Yang H, Wang L, Ge B. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe 2023; 31:1820-1836.e10. [PMID: 37848028 DOI: 10.1016/j.chom.2023.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Mycobacterium tuberculosis (Mtb) triggers distinct changes in macrophages, resulting in the formation of lipid droplets that serve as a nutrient source. We discover that Mtb promotes lipid droplets by inhibiting DNA repair responses, resulting in the activation of the type-I IFN pathway and scavenger receptor-A1 (SR-A1)-mediated lipid droplet formation. Bacterial urease C (UreC, Rv1850) inhibits host DNA repair by interacting with RuvB-like protein 2 (RUVBL2) and impeding the formation of the RUVBL1-RUVBL2-RAD51 DNA repair complex. The suppression of this repair pathway increases the abundance of micronuclei that trigger the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and subsequent interferon-β (IFN-β) production. UreC-mediated activation of the IFN-β pathway upregulates the expression of SR-A1 to form lipid droplets that facilitate Mtb replication. UreC inhibition via a urease inhibitor impaired Mtb growth within macrophages and in vivo. Thus, our findings identify mechanisms by which Mtb triggers a cascade of cellular events that establish a nutrient-rich replicative niche.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Guan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhe Ji
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Pengfei Cui
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yefei Ren
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Chenyue Shi
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xia Cai
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Di Qu
- Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Haiping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai 200433, P.R. China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China.
| |
Collapse
|
63
|
Caeiro LD, Nakata Y, Borges RL, Garcia-Martinez L, Bañuelos CP, Stransky S, Chan HL, Brabson J, Domínguez D, Zhang Y, Lewis PW, Aznar-Benitah S, Cimmino L, Bilbao D, Sidoli S, Verdun RE, Morey L. Methylation of histone H3 lysine 36 is a barrier for therapeutic interventions of head and neck squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565847. [PMID: 38076924 PMCID: PMC10705544 DOI: 10.1101/2023.11.06.565847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Approximately 20% of head and neck squamous cell carcinomas (HNSCC) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The first group shows decreased proliferation, genome instability, and increased sensitivity to genotoxic agents, such as PARP1/2 inhibitors. In contrast, the H3K36M HNSCC models with steady H3K27me3 levels do not exhibit these characteristics unless H3K27me3 levels are elevated, either by DNA hypomethylating agents or by inhibiting the H3K27me3 demethylases KDM6A/B. Mechanistically, we found that H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, we found that aberrant H3K27me3 levels induced by H3K36M expression is not a bona fide epigenetic mark in HNSCC since it requires continuous expression of H3K36M to be inherited. Moreover, increased sensitivity of H3K36M HNSCC models to PARP1/2 inhibitors solely depends on the increased H3K27me3 levels. Indeed, aberrantly high H3K27me3 levels decrease BRCA1 and FANCD2-dependent DNA repair, resulting in higher sensitivity to DNA breaks and replication stress. Finally, in support of our in vitro findings, a PARP1/2 inhibitor alone reduce tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a H3K36M HNSCC xenograft model with consistent H3K27me3 levels, a combination of PARP1/2 inhibitors and agents that upregulate H3K27me3 proves to be successful. In conclusion, our findings underscore a delicate balance between H3K36 and H3K27 methylation, essential for maintaining genome stability. This equilibrium presents promising therapeutic opportunities for patients with H3K36me-deficient tumors.
Collapse
Affiliation(s)
- Lucas D. Caeiro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yuichiro Nakata
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rodrigo L. Borges
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carolina P. Bañuelos
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John Brabson
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Diana Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Yusheng Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Salvador Aznar-Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ramiro E. Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, Miami, FL, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
64
|
Cheng HC, Huang PH, Lai FJ, Jan MS, Chen YL, Chen SY, Chen WL, Hsu CK, Huang W, Hsu LJ. Loss of fragile WWOX gene leads to senescence escape and genome instability. Cell Mol Life Sci 2023; 80:338. [PMID: 37897534 PMCID: PMC10613160 DOI: 10.1007/s00018-023-04950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023]
Abstract
Induction of DNA damage response (DDR) to ensure accurate duplication of genetic information is crucial for maintaining genome integrity during DNA replication. Cellular senescence is a DDR mechanism that prevents the proliferation of cells with damaged DNA to avoid mitotic anomalies and inheritance of the damage over cell generations. Human WWOX gene resides within a common fragile site FRA16D that is preferentially prone to form breaks on metaphase chromosome upon replication stress. We report here that primary Wwox knockout (Wwox-/-) mouse embryonic fibroblasts (MEFs) and WWOX-knockdown human dermal fibroblasts failed to undergo replication-induced cellular senescence after multiple passages in vitro. Strikingly, by greater than 20 passages, accelerated cell cycle progression and increased apoptosis occurred in these late-passage Wwox-/- MEFs. These cells exhibited γH2AX upregulation and microsatellite instability, indicating massive accumulation of nuclear DNA lesions. Ultraviolet radiation-induced premature senescence was also blocked by WWOX knockdown in human HEK293T cells. Mechanistically, overproduction of cytosolic reactive oxygen species caused p16Ink4a promoter hypermethylation, aberrant p53/p21Cip1/Waf1 signaling axis and accelerated p27Kip1 protein degradation, thereby leading to the failure of senescence induction in Wwox-deficient cells after serial passage in culture. We determined that significantly reduced protein stability or loss-of-function A135P/V213G mutations in the DNA-binding domain of p53 caused defective induction of p21Cip1/Waf1 in late-passage Wwox-/- MEFs. Treatment of N-acetyl-L-cysteine prevented downregulation of cyclin-dependent kinase inhibitors and induced senescence in Wwox-/- MEFs. Our findings support an important role for fragile WWOX gene in inducing cellular senescence for maintaining genome integrity during DDR through alleviating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi Mei Medical Center, Tainan, 71004, Taiwan.
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, 71005, Taiwan.
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Yi-Lin Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Szu-Ying Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
65
|
Desaulniers D, Zhou G, Stalker A, Cummings-Lorbetskie C. Effects of Copper or Zinc Organometallics on Cytotoxicity, DNA Damage and Epigenetic Changes in the HC-04 Human Liver Cell Line. Int J Mol Sci 2023; 24:15580. [PMID: 37958568 PMCID: PMC10650525 DOI: 10.3390/ijms242115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Copper and zinc organometallics have multiple applications and many are considered "data-poor" because the available toxicological information is insufficient for comprehensive health risk assessments. To gain insight into the chemical prioritization and potential structure activity relationship, the current work compares the in vitro toxicity of nine "data-poor" chemicals to five structurally related chemicals and to positive DNA damage inducers (4-nitroquinoline-oxide, aflatoxin-B1). The HC-04 non-cancer human liver cell line was used to investigate the concentration-response effects (24 h and 72 h exposure) on cell proliferation, DNA damage (γH2AX and DNA unwinding assays), and epigenetic effects (global genome changes in DNA methylation and histone modifications using flow cytometry). The 24 h exposure screening data (DNA abundance and damage) suggest a toxicity hierarchy, starting with copper dimethyldithiocarbamate (CDMDC, CAS#137-29-1) > zinc diethyldithiocarbamate (ZDEDC, CAS#14324-55-1) > benzenediazonium, 4-chloro-2-nitro-, and tetrachlorozincate(2-) (2:1) (BDCN4CZ, CAS#14263-89-9); the other chemicals were less toxic and had alternate ranking positions depending on assays. The potency of CDMDC for inducing DNA damage was close to that of the human hepatocarcinogen aflatoxin-B1. Further investigation using sodium-DMDC (SDMDC, CAS#128-04-1), CDMDC and copper demonstrated the role of the interactions between copper and the DMDC organic moiety in generating a high level of CDMDC toxicity. In contrast, additive interactions were not observed with respect to the DNA methylation flow cytometry data in 72 h exposure experiments. They revealed chemical-specific effects, with hypo and hypermethylation induced by copper chloride (CuCl2, CAS#10125-13-0) and zinc-DMDC (ZDMDC, CAS#137-30-4), respectively, but did not show any significant effect of CDMDC or SDMDC. Histone-3 hypoacetylation was a sensitive flow cytometry marker of 24 h exposure to CDMDC. This study can provide insights regarding the prioritization of chemicals for future study, with the aim being to mitigate chemical hazards.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, ON K1A 0K9, Canada; (D.D.)
| | - Gu Zhou
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, ON K1A 0K9, Canada; (D.D.)
| | - Andrew Stalker
- Health Canada, Regulatory Research Division, Biologics and Radiopharmaceutical Drugs Directorate, Ottawa, ON K1A 0K9, Canada
| | | |
Collapse
|
66
|
De Magis A, Limmer M, Mudiyam V, Monchaud D, Juranek S, Paeschke K. UV-induced G4 DNA structures recruit ZRF1 which prevents UV-induced senescence. Nat Commun 2023; 14:6705. [PMID: 37872164 PMCID: PMC10593929 DOI: 10.1038/s41467-023-42494-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Senescence has two roles in oncology: it is known as a potent tumor-suppressive mechanism, which also supports tissue regeneration and repair, it is also known to contribute to reduced patient resilience, which might lead to cancer recurrence and resistance after therapy. Senescence can be activated in a DNA damage-dependent and -independent manner. It is not clear which type of genomic lesions induces senescence, but it is known that UV irradiation can activate cellular senescence in photoaged skin. Proteins that support the repair of DNA damage are linked to senescence but how they contribute to senescence after UV irradiation is still unknown. Here, we unraveled a mechanism showing that upon UV irradiation multiple G-quadruplex (G4) DNA structures accumulate in cell nuclei, which leads to the recruitment of ZRF1 to these G4 sites. ZRF1 binding to G4s ensures genome stability. The absence of ZRF1 triggers an accumulation of G4 structures, improper UV lesion repair, and entry into senescence. On the molecular level loss of ZRF1 as well as high G4 levels lead to the upregulation of DDB2, a protein associated with the UV-damage repair pathway, which drives cells into senescence.
Collapse
Affiliation(s)
- Alessio De Magis
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Michaela Limmer
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Venkat Mudiyam
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), CNRS UMR 6302, Université de Bourgogne, Dijon, France
| | - Stefan Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Katrin Paeschke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
67
|
Wang T, Ji M, Liu W, Sun J. Development and validation of a novel DNA damage repair-related long non-coding RNA signature in predicting prognosis, immunity, and drug sensitivity in uterine corpus endometrial carcinoma. Comput Struct Biotechnol J 2023; 21:4944-4959. [PMID: 37876625 PMCID: PMC10590872 DOI: 10.1016/j.csbj.2023.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Background DNA damage response (DDR) confer resistance to chemoradiotherapy in cancer cells. However, the role of DDR-related lncRNAs (DRLs) in uterine corpus endometrial carcinoma (UCEC) is poorly understood. In this study, we aimed to identify a DRL-related prognostic signature that could guide the clinical treatment of UCEC. Methods We extracted transcriptome and clinical data of patients with UCEC from The Cancer Genome Atlas (TCGA) database and identified DRLs using Spearman correlation analysis. Univariate and multivariate Cox analyses were used to determine candidate prognostic DRLs. The samples were randomly divided into training and test cohorts in a 1:1 ratio. A DRL-related risk signature was constructed from the training cohort data using the least absolute shrinkage and selection operator (LASSO) algorithm, and validated using the test and entire cohorts. Subsequently, a prognostic nomogram was developed using a multivariate Cox regression analysis. The functional annotation, immune microenvironment, tumor mutation burden (TMB), immune checkpoint blockade (ICB) efficacy, and drug sensitivity were also comprehensively analyzed between different risk groups. Finally, the function of AC019069.1 was validated in vitro. Results A novel risk signature was developed based on nine DRLs. The risk score efficiently predicted the prognosis of patients with UCEC. Based on the median risk score, two subgroups were identified. The DDR-related pathways were upregulated in the high-risk group. Additionally, high-risk patients have low immune activity, poor response to ICB, and weak sensitivity to chemotherapeutic agents, possibly because of the proficient DDR system. Finally, we demonstrated AC019069.1 could promote cell proliferation, decrease apoptosis and maintain genome stability of UCEC cells. Conclusions The developed DRL-related signature can predict the prognosis, immune microenvironment, immunotherapy, and chemoradiotherapy responsiveness of UCEC. Our study also revealed the potential value of DDR-targeted therapy in treating high-risk patients with UCEC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mei Ji
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenwen Liu
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Sun
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
68
|
Zhang J, Wu Q, Hu X, Wang Y, Lu J, Chakraborty R, Martin KA, Guo S. Serum Response Factor Reduces Gene Expression Noise and Confers Cell State Stability. Stem Cells 2023; 41:907-915. [PMID: 37386941 PMCID: PMC11009695 DOI: 10.1093/stmcls/sxad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
The role of serum response factor (Srf), a central mediator of actin dynamics and mechanical signaling, in cell identity regulation is debated to be either a stabilizer or a destabilizer. We investigated the role of Srf in cell fate stability using mouse pluripotent stem cells. Despite the fact that serum-containing cultures yield heterogeneous gene expression, deletion of Srf in mouse pluripotent stem cells leads to further exacerbated cell state heterogeneity. The exaggerated heterogeneity is detectible not only as increased lineage priming but also as the developmentally earlier 2C-like cell state. Thus, pluripotent cells explore more variety of cellular states in both directions of development surrounding naïve pluripotency, a behavior that is constrained by Srf. These results support that Srf functions as a cell state stabilizer, providing rationale for its functional modulation in cell fate intervention and engineering.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Qiao Wu
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Xiao Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Yadong Wang
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Jun Lu
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Raja Chakraborty
- Department of Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT, USA
| | - Kathleen A Martin
- Department of Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT, USA
| | - Shangqin Guo
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| |
Collapse
|
69
|
Escarcega RD, Patil AA, Moruno-Manchon JF, Urayama A, Marrelli SP, Kim N, Monchaud D, McCullough LD, Tsvetkov AS. Pirh2-dependent DNA damage in neurons induced by the G-quadruplex ligand pyridostatin. J Biol Chem 2023; 299:105157. [PMID: 37579947 PMCID: PMC10534229 DOI: 10.1016/j.jbc.2023.105157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
Noncanonical base pairing between four guanines (G) within single-stranded G-rich sequences leads to formation of а G-quartet. Self-stacking of G-quartets results in a columnar four-stranded DNA structure known as the G-quadruplex (G4 or G4-DNA). In cancer cells, G4-DNA regulates multiple DNA-dependent processes, including transcription, replication, and telomere function. How G4s function in neurons is poorly understood. Here, we performed a genome-wide gene expression analysis (RNA-Seq) to identify genes modulated by a G4-DNA ligand, pyridostatin (PDS), in primary cultured neurons. PDS promotes stabilization of G4 structures, thus allowing us to define genes directly or indirectly responsive to G4 regulation. We found that 901 genes were differentially expressed in neurons treated with PDS out of a total of 18,745 genes with measured expression. Of these, 505 genes were downregulated and 396 genes were upregulated and included gene networks regulating p53 signaling, the immune response, learning and memory, and cellular senescence. Within the p53 network, the E3 ubiquitin ligase Pirh2 (Rchy1), a modulator of DNA damage responses, was upregulated by PDS. Ectopically overexpressing Pirh2 promoted the formation of DNA double-strand breaks, suggesting a new DNA damage mechanism in neurons that is regulated by G4 stabilization. Pirh2 downregulated DDX21, an RNA helicase that unfolds G4-RNA and R-loops. Finally, we demonstrated that Pirh2 increased G4-DNA levels in the neuronal nucleolus. Our data reveal the genes that are responsive to PDS treatment and suggest similar transcriptional regulation by endogenous G4-DNA ligands. They also connect G4-dependent regulation of transcription and DNA damage mechanisms in neuronal cells.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Abhijeet A Patil
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jose F Moruno-Manchon
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Akihiko Urayama
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sean P Marrelli
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), UBFC Dijon, CNRS UMR6302, Dijon, France
| | - Louise D McCullough
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Andrey S Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
70
|
Gökbuget D, Lenshoek K, Boileau RM, Bayerl J, Huang H, Wiita AP, Laird DJ, Blelloch R. Transcriptional repression upon S phase entry protects genome integrity in pluripotent cells. Nat Struct Mol Biol 2023; 30:1561-1570. [PMID: 37696959 DOI: 10.1038/s41594-023-01092-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Coincident transcription and DNA replication causes replication stress and genome instability. Rapidly dividing mouse pluripotent stem cells are highly transcriptionally active and experience elevated replication stress, yet paradoxically maintain genome integrity. Here, we study FOXD3, a transcriptional repressor enriched in pluripotent stem cells, and show that its repression of transcription upon S phase entry is critical to minimizing replication stress and preserving genome integrity. Acutely deleting Foxd3 leads to immediate replication stress, G2/M phase arrest, genome instability and p53-dependent apoptosis. FOXD3 binds near highly transcribed genes during S phase entry, and its loss increases the expression of these genes. Transient inhibition of RNA polymerase II in S phase reduces observed replication stress and cell cycle defects. Loss of FOXD3-interacting histone deacetylases induces replication stress, while transient inhibition of histone acetylation opposes it. These results show how a transcriptional repressor can play a central role in maintaining genome integrity through the transient inhibition of transcription during S phase, enabling faithful DNA replication.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla Lenshoek
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan M Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Bayerl
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Hector Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
71
|
Michiba A, Gi M, Yokohira M, Sakurai E, Teramoto A, Kiriyama Y, Yamada S, Wanibuchi H, Tsukamoto T. Early detection of genotoxic hepatocarcinogens in rats using γH2AX and Ki-67: prediction by machine learning. Toxicol Sci 2023; 195:202-212. [PMID: 37527026 DOI: 10.1093/toxsci/kfad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Direct DNA double-strand breaks result in phosphorylation of H2AX, a variant of the histone H2 protein. Phosphorylated H2AX (γH2AX) may be a potential indicator in the evaluation of genotoxicity and hepatocarcinogenicity. In this study, γH2AX and Ki-67 were detected in the short-term responses (24 h after chemical administration) to classify genotoxic hepatocarcinogens (GHs) from non-GH chemicals. One hundred and thirty-five 6-week-old Crl: CD(SD) (SPF) male rats were treated with 22 chemicals including 11 GH and 11 non-GH, sacrificed 24 h later, and immunostained with γH2AX and Ki-67. Positivity rates of these markers were measured in the 3 liver ZONEs 1-3; portal, lobular, and central venous regions. These values were input into 3 machine learning models-Naïve Bayes, Random Forest, and k-Nearest Neighbor to classify GH and non-GH using a 10-fold cross-validation method. All 11 and 10 out of 11 GH caused significant increase in γH2AX and Ki-67 levels, respectively (P < .05). Of the 3 machine learning models, Random Forest performed the best. GH were identified with 95.0% sensitivity (76/80 GH-treated rats), 90.9% specificity (50/55 non-GH-treated rats), and 90.0% overall correct response rate using γH2AX staining, and 96.2% sensitivity (77/80), 81.8% specificity (45/55), and 90.4% overall correct response rate using Ki-67 labeling. Random Forest model using γH2AX and Ki-67 could independently predict GH in the early stage with high accuracy.
Collapse
Affiliation(s)
- Ayano Michiba
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka 545-8585, Japan
| | - Masanao Yokohira
- Departments of Medical Education and Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Eiko Sakurai
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teramoto
- Faculty of Information Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Yuka Kiriyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Department of Pathology, Narita Memorial Hospital, Toyohashi, Aichi 441-8029, Japan
| | - Seiji Yamada
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka 545-8585, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
72
|
Besse L, Rumiac T, Reynaud-Angelin A, Messaoudi C, Soler MN, Lambert SAE, Pennaneach V. Protocol for automated multivariate quantitative-image-based cytometry analysis by fluorescence microscopy of asynchronous adherent cells. STAR Protoc 2023; 4:102446. [PMID: 37453067 PMCID: PMC10365954 DOI: 10.1016/j.xpro.2023.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Here, we present a protocol for multivariate quantitative-image-based cytometry (QIBC) analysis by fluorescence microscopy of asynchronous adherent cells. We describe steps for the preparation, treatment, and fixation of cells, sample staining, and imaging for QIBC. We then detail image analysis with our open source Fiji script developed for QIBC and present multiparametric data visualization. Our QIBC Fiji script integrates modern artificial-intelligence-based tools, applying deep learning, for robust automated nuclei segmentation with minimal user adjustments, a major asset for efficient QIBC analysis. For complete details on the use and execution of this protocol, please refer to Besse et al. (2023).1.
Collapse
Affiliation(s)
- Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Typhaine Rumiac
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France; Equipe Labélisée Ligue Nationale Contre Le Cancer, 91400 Orsay, France; Inovarion, 75005 Paris, France
| | - Anne Reynaud-Angelin
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France; Equipe Labélisée Ligue Nationale Contre Le Cancer, 91400 Orsay, France
| | - Cédric Messaoudi
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Marie-Noëlle Soler
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Sarah A E Lambert
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France; Equipe Labélisée Ligue Nationale Contre Le Cancer, 91400 Orsay, France.
| | - Vincent Pennaneach
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France; Equipe Labélisée Ligue Nationale Contre Le Cancer, 91400 Orsay, France.
| |
Collapse
|
73
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
74
|
Detinis Zur T, Deek J, Ebenstein Y. Single-molecule approaches for DNA damage detection and repair: A focus on Repair Assisted Damage Detection (RADD). DNA Repair (Amst) 2023; 129:103533. [PMID: 37467630 PMCID: PMC10496029 DOI: 10.1016/j.dnarep.2023.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
The human genome is continually exposed to various stressors, which can result in DNA damage, mutations, and diseases. Among the different types of DNA damage, single-strand lesions are commonly induced by external stressors and metabolic processes. Accurate detection and quantification of DNA damage are crucial for understanding repair mechanisms, assessing environmental impacts, and evaluating response to therapy. However, traditional techniques have limitations in sensitivity and the ability to detect multiple types of damage. In recent years, single-molecule fluorescence approaches have emerged as powerful tools for precisely localizing and quantifying DNA damage. Repair Assisted Damage Detection (RADD) is a single-molecule technique that employs specific repair enzymes to excise damaged bases and incorporates fluorescently labeled nucleotides to visualize the damage. This technique provides valuable insights into repair efficiency and sequence-specific damage. In this review, we discuss the principles and applications of RADD assays, highlighting their potential for enhancing our understanding of DNA damage and repair processes.
Collapse
Affiliation(s)
- Tahir Detinis Zur
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jasline Deek
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
75
|
Zhang Q, Duan Q, Gao Y, He P, Huang R, Huang H, Li Y, Ma G, Zhang Y, Nie K, Wang L. Cerebral Microvascular Injury Induced by Lag3-Dependent α-Synuclein Fibril Endocytosis Exacerbates Cognitive Impairment in a Mouse Model of α-Synucleinopathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301903. [PMID: 37381656 PMCID: PMC10477873 DOI: 10.1002/advs.202301903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The pathological accumulation of α-synuclein (α-Syn) and the transmission of misfolded α-Syn underlie α-synucleinopathies. Increased plasma α-Syn levels are associated with cognitive impairment in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies, but it is still unknown whether the cognitive deficits in α-synucleinopathies have a common vascular pathological origin. Here, it is reported that combined injection of α-Syn preformed fibrils (PFFs) in the unilateral substantia nigra pars compacta, hippocampus, and cerebral cortex results in impaired spatial learning and memory abilities at 6 months post-injection and that this cognitive decline is related to cerebral microvascular injury. Moreover, insoluble α-Syn inclusions are found to form in primary mouse brain microvascular endothelial cells (BMVECs) through lymphocyte-activation gene 3 (Lag3)-dependent α-Syn PFFs endocytosis, causing poly(ADP-ribose)-driven cell death and reducing the expression of tight junction proteins in BMVECs. Knockout of Lag3 in vitro prevents α-Syn PFFs from entering BMVECs, thereby reducing the abovementioned response induced by α-Syn PFFs. Deletion of endothelial cell-specific Lag3 in vivo reverses the negative effects of α-Syn PFFs on cerebral microvessels and cognitive function. In short, this study reveals the effectiveness of targeting Lag3 to block the spread of α-Syn fibrils to endothelial cells in order to improve cognition.
Collapse
Affiliation(s)
- Qingxi Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510100China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Qingrui Duan
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuyuan Gao
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Peikun He
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Rui Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Haifeng Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yanyi Li
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Guixian Ma
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuhu Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Kun Nie
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Lijuan Wang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| |
Collapse
|
76
|
Malina J, Kostrhunova H, Scott P, Brabec V. Metallohelices stabilize DNA three-way junctions and induce DNA damage in cancer cells. Nucleic Acids Res 2023; 51:7174-7183. [PMID: 37351627 PMCID: PMC10415117 DOI: 10.1093/nar/gkad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
DNA three-way junctions (3WJ) represent one of the simplest supramolecular DNA structures arising as intermediates in homologous recombination in the absence of replication. They are also formed transiently during DNA replication. Here we examine the ability of Fe(II)-based metallohelices to act as DNA 3WJ binders and induce DNA damage in cells. We investigated the interaction of eight pairs of enantiomerically pure Fe(II) metallohelices with four different DNA junctions using biophysical and molecular biology methods. The results show that the metallohelices stabilize all types of tested DNA junctions, with the highest selectivity for the Y-shaped 3WJ and minimal selectivity for the 4WJ. The potential of the best stabilizer of DNA junctions and, at the same time, the most selective 3WJ binder investigated in this work to induce DNA damage was determined in human colon cancer HCT116 cells. These metallohelices proved to be efficient in killing cancer cells and triggering DNA damage that could yield therapeutic benefits.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Peter Scott
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| |
Collapse
|
77
|
Alamino VA, Onofrio LI, Acosta CDV, Ferrero PV, Zacca ER, Cadile II, Mussano ED, Onetti LB, Montes CL, Gruppi A, Acosta Rodriguez EV. Tofacitinib treatment of rheumatoid arthritis increases senescent T cell frequency in patients and limits T cell function in vitro. Eur J Immunol 2023; 53:e2250353. [PMID: 37179252 PMCID: PMC10524217 DOI: 10.1002/eji.202250353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Unraveling the immune signatures in rheumatoid arthritis (RA) patients receiving various treatment regimens can aid in comprehending the immune mechanisms' role in treatment efficacy and side effects. Given the critical role of cellular immunity in RA pathogenesis, we sought to identify T-cell profiles characterizing RA patients under specific treatments. We compared 75 immunophenotypic and biochemical variables in healthy donors (HD) and RA patients, including those receiving different treatments as well as treatment-free patients. Additionally, we conducted in vitro experiments to evaluate the direct effect of tofacitinib on purified naïve and memory CD4+ and CD8+ T cells. Multivariate analysis revealed that tofacitinib-treated patients segregated from HD at the expense of T-cell activation, differentiation, and effector function-related variables. Additionally, tofacitinib led to an accumulation of peripheral senescent memory CD4+ and CD8+ T cells. In vitro, tofacitinib impaired the activation, proliferation, and effector molecules expression and triggered senescence pathways in T-cell subsets upon TCR-engagement, with the most significant impact on memory CD8+ T cells. Our findings suggest that tofacitinib may activate immunosenescence pathways while simultaneously inhibiting effector functions in T cells, both effects likely contributing to the high clinical success and reported side effects of this JAK inhibitor in RA.
Collapse
Affiliation(s)
- Vanina A Alamino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Luisina I Onofrio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | | | - Paola V Ferrero
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Estefanía R Zacca
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Laboratorio de Inmunología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Isaac I Cadile
- Servicio de Reumatología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Eduardo D Mussano
- Servicio de Reumatología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Laura B Onetti
- Servicio de Reumatología, Hospital Nacional de Clínicas, UNC, Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
78
|
He X, Cai L, Tang H, Chen W, Hu W. Epigenetic modifications in radiation-induced non-targeted effects and their clinical significance. Biochim Biophys Acta Gen Subj 2023; 1867:130386. [PMID: 37230420 DOI: 10.1016/j.bbagen.2023.130386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Ionizing radiation (IR) plays an important role in the diagnosis and treatment of cancer. Besides the targeted effects, the non-targeted effects, which cause damage to non-irradiated cells and genomic instability in normal tissues, also play a role in the side effects of radiotherapy and have been shown to involve both alterations in DNA sequence and regulation of epigenetic modifications. SCOPE OF REVIEW We summarize the recent findings regarding epigenetic modifications that are involved in radiation-induced non-targeted effects as well as their clinical significance in radiotherapy and radioprotection. MAJOR CONCLUSIONS Epigenetic modifications play an important role in both the realization and modulation of radiobiological effects. However, the molecular mechanisms underlying non-targeted effects still need to be clarified. GENERAL SIGNIFICANCE A better understanding of the epigenetic mechanisms related to radiation-induced non-targeted effects will guide both individualized clinical radiotherapy and individualized precise radioprotection.
Collapse
Affiliation(s)
- Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Luwei Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haoyi Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Weibo Chen
- Nuclear and Radiation Incident Medical Emergency Office, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
79
|
Du N, Zhang B, Zhang Y. Downregulation of VRK1 Inhibits Progression of Lung Squamous Cell Carcinoma through DNA Damage. Can Respir J 2023; 2023:4533504. [PMID: 37547297 PMCID: PMC10403328 DOI: 10.1155/2023/4533504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) is a common malignancy. And the antitumor effect of bovine pox virus-associated kinase 1 (VRK1) is becoming a hot research topic. Methods VRK1 expression and prognosis in LUSC were analyzed using the GEPIA database. The expression of VRK1 mRNA was detected in 25 LUSC clinical tissue samples by RT-PCR. VRK1 shRNA was transfected into LUSC NCI-H520 and SK-MES-1 cell lines to interfere with VRK1 expression, and the efficiency of VRK1 shRNA interference was detected by the western blot. The effects of VRK1 downregulation on LUSC cell viability, migration, cell cycle, and apoptosis were analyzed by the CCK8 assay, scratch assay, transwell assay, and flow cytometry. The effect of VRK1 downregulation on DNA damage response (DDR) was examined by immunofluorescence staining and western blot assays and further validated by in vivo experiments. Results VRK1 was highly expressed in both LUSC tissues and cells. Survival analysis showed that the overall survival of LUSC patients with high VRK1 expression was significantly lower than that of LUSC patients with low VRK1 expression (P=0.0026). The expression level of the VRK1 gene was significantly higher in cancer tissues of LUSC patients than in paracancerous tissues. After transfection of VRK1 shRNA in both LUSC cells, cell activity decreased (P < 0.001), migration ability started to be inhibited (P < 0.001), the ratio of G0/G1 phase cells increased (P < 0.001), and apoptosis rate increased (P < 0.001). Immunofluorescence and western blot results showed that shVRK1 increased the level of γ-H2A.X (P < 0.001) and promoted apoptosis of tumor cells (P < 0.001). In addition, the results of animal experiments showed that shVRK1 had antitumor effects (P < 0.001) and a combined effect with DOX (P < 0.001). Conclusion The downregulation of VRK1 significantly affected the proliferation, apoptosis, migration, and cell cycle progression of LUSC cells via DDR, suggesting that VRK1 is a suitable target for potential LUSC therapy.
Collapse
Affiliation(s)
- Ning Du
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Boxiang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi, China
| |
Collapse
|
80
|
Wu T, Hou H, Dey A, Bachu M, Chen X, Wisniewski J, Kudoh F, Chen C, Chauhan S, Xiao H, Pan R, Ozato K. BRD4 directs mitotic cell division by inhibiting DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547436. [PMID: 37546888 PMCID: PMC10401944 DOI: 10.1101/2023.07.02.547436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BRD4 binds to acetylated histones to regulate transcription and drive cancer cell proliferation. However, the role of BRD4 in normal cell growth remains to be elucidated. Here we investigated the question by using mouse embryonic fibroblasts with conditional Brd4 knockout (KO). We found that Brd4KO cells grow more slowly than wild type cells: they do not complete replication, fail to achieve mitosis, and exhibit extensive DNA damage throughout all cell cycle stages. BRD4 was required for expression of more than 450 cell cycle genes including genes encoding core histones and centromere/kinetochore proteins that are critical for genome replication and chromosomal segregation. Moreover, we show that many genes controlling R-loop formation and DNA damage response (DDR) require BRD4 for expression. Finally, BRD4 constitutively occupied genes controlling R-loop, DDR and cell cycle progression. We suggest that BRD4 epigenetically marks those genes and serves as a master regulator of normal cell growth.
Collapse
|
81
|
Lin WH, Feathers RW, Cooper LM, Lewis-Tuffin LJ, Chen J, Sarkaria JN, Anastasiadis PZ. A Syx-RhoA-Dia1 signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in glioblastoma. JCI Insight 2023; 8:e157491. [PMID: 37427593 PMCID: PMC10371349 DOI: 10.1172/jci.insight.157491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastomas (GBM) are aggressive tumors that lack effective treatments. Here, we show that the Rho family guanine nucleotide exchange factor Syx promotes GBM cell growth both in vitro and in orthotopic xenografts derived from patients with GBM. Growth defects upon Syx depletion are attributed to prolonged mitosis, increased DNA damage, G2/M cell cycle arrest, and cell apoptosis, mediated by altered mRNA and protein expression of various cell cycle regulators. These effects are phenocopied by depletion of the Rho downstream effector Dia1 and are due, at least in part, to increased phosphorylation, cytoplasmic retention, and reduced activity of the YAP/TAZ transcriptional coactivators. Furthermore, targeting Syx signaling cooperates with radiation treatment and temozolomide (TMZ) to decrease viability in GBM cells, irrespective of their inherent response to TMZ. The data indicate that a Syx-RhoA-Dia1-YAP/TAZ signaling axis regulates cell cycle progression, DNA damage, and therapy resistance in GBM and argue for its targeting for cancer treatment.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ryan W. Feathers
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Lisa M. Cooper
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
82
|
Gao K, Zhu S, Shao Q, Qi Y, Zhang C, Li X, Guo J, Wu G, Jiang H. DNA repair pathways-targeted cyclovirobuxine inhibits castration-resistant prostate cancer growth by promoting cell apoptosis and cycle arrest. Transl Oncol 2023; 35:101708. [PMID: 37406549 PMCID: PMC10366641 DOI: 10.1016/j.tranon.2023.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is a deadly malignancy without effective therapeutics. Cyclovirobuxine (CVB) can play an anticancer role by inhibiting mitochondrial function, regulating tumor cell apoptosis, dysregulating autophagy, and other mechanisms. This study aimed to examine the function and mechanism of CVB in CRPC to provide new insights into CRPC treatment. METHODS The effect of CVB on PC3 and C4-2 cell viability was determined using a CCK8 assay. Core therapeutic targets of CVB in CRPC cells were identified using RNA sequencing, online database, and PPI network analyses. Western blotting, RT-qPCR and molecular docking were performed to evaluate the regulation of core targets by CVB. Utilizing GO and KEGG enrichment analyses, the probable anti-CRPC mechanism of CVB was investigated. Immunofluorescence, flow cytometry and colony formation assays were used to verify the potential phenotypic regulatory role of CVB in CRPC. RESULTS CVB inhibited CRPC cell activity in a concentration-dependent manner. Mechanistically, it primarily regulated BRCA1-, POLD1-, BLM-, MSH2-, MSH6- and PCNA-mediated mismatch repair, homologous recombination repair, base excision repair, Fanconi anemia repair, and nucleotide excision repair pathways. Immunofluorescence, Western blot, flow cytometry and colony formation experiments showed that CVB induced DNA damage accumulation, cell apoptosis, and cell cycle arrest and inhibited CRPC cell proliferation. CONCLUSION CVB can induce DNA damage accumulation in CRPC cells by targeting DNA repair pathways and then induce cell apoptosis and cell cycle arrest, eventually leading to inhibition of the long-term proliferation of CRPC cells.
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Siying Zhu
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Qiuju Shao
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Yuhong Qi
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Chao Zhang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Xiaoshun Li
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Jiaheng Guo
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Hanbing Jiang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
83
|
Krieger KL, Mann EK, Lee KJ, Bolterstein E, Jebakumar D, Ittmann MM, Dal Zotto VL, Shaban M, Sreekumar A, Gassman NR. Spatial mapping of the DNA adducts in cancer. DNA Repair (Amst) 2023; 128:103529. [PMID: 37390674 PMCID: PMC10330576 DOI: 10.1016/j.dnarep.2023.103529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
DNA adducts and strand breaks are induced by various exogenous and endogenous agents. Accumulation of DNA damage is implicated in many disease processes, including cancer, aging, and neurodegeneration. The continuous acquisition of DNA damage from exogenous and endogenous stressors coupled with defects in DNA repair pathways contribute to the accumulation of DNA damage within the genome and genomic instability. While mutational burden offers some insight into the level of DNA damage a cell may have experienced and subsequently repaired, it does not quantify DNA adducts and strand breaks. Mutational burden also infers the identity of the DNA damage. With advances in DNA adduct detection and quantification methods, there is an opportunity to identify DNA adducts driving mutagenesis and correlate with a known exposome. However, most DNA adduct detection methods require isolation or separation of the DNA and its adducts from the context of the nuclei. Mass spectrometry, comet assays, and other techniques precisely quantify lesion types but lose the nuclear context and even tissue context of the DNA damage. The growth in spatial analysis technologies offers a novel opportunity to leverage DNA damage detection with nuclear and tissue context. However, we lack a wealth of techniques capable of detecting DNA damage in situ. Here, we review the limited existing in situ DNA damage detection methods and examine their potential to offer spatial analysis of DNA adducts in tumors or other tissues. We also offer a perspective on the need for spatial analysis of DNA damage in situ and highlight Repair Assisted Damage Detection (RADD) as an in situ DNA adduct technique with the potential to integrate with spatial analysis and the challenges to be addressed.
Collapse
Affiliation(s)
- Kimiko L Krieger
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Elise K Mann
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kevin J Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Elyse Bolterstein
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Deborah Jebakumar
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, Temple, TX 76508, USA; Texas A&M College of Medicine, Temple, TX 76508, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Human Tissue Acquisition & Pathology Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valeria L Dal Zotto
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Mohamed Shaban
- Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
84
|
Wang W, Yuan X, Mu J, Zou Y, Xu L, Chen J, Zhu X, Li B, Zeng Z, Wu X, Yin Z, Wang Q. Quercetin induces MGMT + glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154933. [PMID: 37451151 DOI: 10.1016/j.phymed.2023.154933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Surgical resection combined with radiotherapy and chemotherapy remains a common clinical treatment for glioblastoma multiforme (GBM). However, the therapeutic outcomes have not been satisfying due to drug resistance and other factors. Quercetin, a phytoingredient capable of crossing the blood-brain barrier, has shown effectiveness in the treatment of various solid tumors. Nevertheless, the potential of quercetin in GBM treatment has not been adequately explored. PURPOSE This study aims to investigate the effects and mechanisms of quercetin on MGMT+GBM cells. METHODS The potential targets and mechanisms of quercetin in glioma treatment were predicted based on network pharmacology and molecular docking. The effects of quercetin on cell inhibition rate, cell migration ability, cell cycle arrest, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), Mitochondrial superoxide formation and apoptosis were measured by the CCK8 assay, wound healing assay, PI/RNase staining, JC-1 assay, DCFH-DA assay, MitoSOX staining and Annexin V-FITC/PI double staining, respectively. The methylation status of the MGMT promoter was assessed through methylation-specific polymerase chain reaction (MS-PCR). DNA damage was quantified by alkaline/neutral comet assay and TUNEL assay. The intracellular localization and expression of NF-κB and MGMT were revealed by immunofluorescence. The expression of migration-related proteins, matrix metalloproteinases, apoptosis-related proteins, cyclins, DNA damage/repair enzymes and related pathway proteins was detected by Western blot. RESULTS Network pharmacology identified 96 targets and potential molecular mechanisms of quercetin in glioma treatment. Subsequent experiments confirmed the synergistic effect of quercetin in combination with temozolomide (TMZ) on T98G cells. Quercetin significantly suppressed the growth and migration of human GBM T98G cells, induced apoptosis, and arrested cells in the S-phase cell cycle. The collapse of mitochondrial membrane potential, ROS generation, enhanced Bax/Bcl-2 ratio, and strengthened cleaved-Caspase 9 and cleaved-Caspase 3 suggested the involvement of ROS-mediated mitochondria-dependent apoptosis in the process of quercetin-induced apoptosis. In addition, quercetin-induced apoptosis was accompanied by intense DNA double-strand breaks (DSBs), γH2AX foci formation, methylation of MGMT promoter, increased cleaved-PARP, and reduced MGMT expression. Quercetin may influence the expression of the key DNA repair enzyme, MGMT, by dual suppression of the Wnt3a/β-Catenin and the Akt/NF-κB signaling pathways, thereby promoting apoptosis. Inhibition of Wnt3a and Akt using specific inhibitors hindered MGMT expression. CONCLUSION Our study provides the first evidence that quercetin may induce apoptosis in MGMT+GBM cells via dual inhibition of the Wnt3a/β-Catenin pathway and the Akt/NF-κB signaling pathway. These findings suggest that quercetin could be a novel agent for improving GBM treatment, especially in TMZ-resistant GBM with high MGMT expression.
Collapse
Affiliation(s)
- Wanyu Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaopeng Yuan
- Department of Clinical Laboratory, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuheng Zou
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lanyang Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Chen
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Zhu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Biaoping Li
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhiyun Zeng
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xianghui Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhixin Yin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qirui Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
85
|
Bernard JN, Chinnaiyan V, Almeda J, Catala-Valentin A, Andl CD. Lactobacillus sp. Facilitate the Repair of DNA Damage Caused by Bile-Induced Reactive Oxygen Species in Experimental Models of Gastroesophageal Reflux Disease. Antioxidants (Basel) 2023; 12:1314. [PMID: 37507854 PMCID: PMC10376144 DOI: 10.3390/antiox12071314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) leads to the accumulation of bile-induced reactive oxygen species and oxidative stress in esophageal tissues, causing inflammation and DNA damage. The progression sequence from healthy esophagus to GERD and eventually cancer is associated with a microbiome shift. Lactobacillus species are commensal organisms known for their probiotic and antioxidant characteristics in the healthy esophagus. This prompted us to investigate how Lactobacilli survive in a bile-rich environment during GERD, and to identify their interaction with the bile-injured esophageal cells. To model human reflux conditions, we exposed three Lactobacillus species (L. acidophilus, L. plantarum, and L. fermentum) to bile. All species were tolerant to bile possibly enabling them to colonize the esophageal epithelium under GERD conditions. Next, we assessed the antioxidant potential of Lactobacilli and role in bile injury repair: we measured bile-induced DNA damage using the ROS marker 8-oxo guanine and COMET assay. Lactobacillus addition after bile injury accelerated repair of bile-induced DNA damage through recruitment of pH2AX/RAD51 and reduced NFκB-associated inflammation in esophageal cells. This study demonstrated anti-genotoxic and anti-inflammatory effects of Lactobacilli, making them of significant interest in the prevention of Barrett's esophagus and esophageal adenocarcinoma in patients with GERD.
Collapse
Affiliation(s)
- Joshua N Bernard
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vikram Chinnaiyan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jasmine Almeda
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Alma Catala-Valentin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
86
|
Bychkov I, Deneka A, Topchu I, Pangeni RP, Lengner C, Karanicolas J, Golemis EA, Makhov P, Boumber Y. Musashi-2 (MSI2) regulation of DNA damage response in lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544756. [PMID: 37398283 PMCID: PMC10312672 DOI: 10.1101/2023.06.13.544756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lung cancer is one of the most common types of cancers worldwide. Non-small cell lung cancer (NSCLC), typically caused by KRAS and TP53 driver mutations, represents the majority of all new lung cancer diagnoses. Overexpression of the RNA-binding protein (RBP) Musashi-2 (MSI2) has been associated with NSCLC progression. To investigate the role of MSI2 in NSCLC development, we compared the tumorigenesis in mice with lung-specific Kras -activating mutation and Trp53 deletion, with and without Msi2 deletion (KP versus KPM2 mice). KPM2 mice showed decreased lung tumorigenesis in comparison with KP mice what supports published data. In addition, using cell lines from KP and KPM2 tumors, and human NSCLC cell lines, we found that MSI2 directly binds ATM/Atm mRNA and regulates its translation. MSI2 depletion impaired DNA damage response (DDR) signaling and sensitized human and murine NSCLC cells to treatment with PARP inhibitors in vitro and in vivo . Taken together, we conclude that MSI2 supports lung tumorigenesis, in part, by direct positive regulation of ATM protein expression and DDR. This adds the knowledge of MSI2 function in lung cancer development. Targeting MSI2 may be a promising strategy to treat lung cancer. Significance This study shows the novel role of Musashi-2 as regulator of ATM expression and DDR in lung cancer.
Collapse
|
87
|
Kwon J, Lee D, Lee SA. BAP1 as a guardian of genome stability: implications in human cancer. Exp Mol Med 2023; 55:745-754. [PMID: 37009801 PMCID: PMC10167335 DOI: 10.1038/s12276-023-00979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
BAP1 is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase with a wide array of biological activities. Studies in which advanced sequencing technologies were used have uncovered a link between BAP1 and human cancer. Somatic and germline mutations of the BAP1 gene have been identified in multiple human cancers, with a particularly high frequency in mesothelioma, uveal melanoma and clear cell renal cell carcinoma. BAP1 cancer syndrome highlights that all carriers of inherited BAP1-inactivating mutations develop at least one and often multiple cancers with high penetrance during their lifetime. These findings, together with substantial evidence indicating the involvement of BAP1 in many cancer-related biological activities, strongly suggest that BAP1 functions as a tumor suppressor. Nonetheless, the mechanisms that account for the tumor suppressor function of BAP1 have only begun to be elucidated. Recently, the roles of BAP1 in genome stability and apoptosis have drawn considerable attention, and they are compelling candidates for key mechanistic factors. In this review, we focus on genome stability and summarize the details of the cellular and molecular functions of BAP1 in DNA repair and replication, which are crucial for genome integrity, and discuss the implications for BAP1-associated cancer and relevant therapeutic strategies. We also highlight some unresolved issues and potential future research directions.
Collapse
Affiliation(s)
- Jongbum Kwon
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Daye Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, Bethesda, MD, 20892-4263, USA
| |
Collapse
|
88
|
Liu W, Wang M, Guo Z, He Y, Jia H, He J, Miao S, Ding Y, Wang S. Inspired by bis-β-carboline alkaloids: Construction and antitumor evaluation of a novel bis-β-carboline scaffold as potent antitumor agents. Bioorg Chem 2023; 133:106401. [PMID: 36746025 DOI: 10.1016/j.bioorg.2023.106401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Bis-β-carboline alkaloids are widely distributed in natural products and represent a promising drug-like scaffold for discovering drugs and bioactive molecules. In this study, we utilized the structural simplification strategy to construct a novel bis-β-carboline scaffold via "one-pot" condensation-Mannich reaction. The simplified bis-β-carboline derivatives were obtained in good yield. Antitumor evaluation revealed most compounds, especially 3m, displayed potent antitumor activity (IC50 values for 3m: 0.96 μM ∼ 1.52 μM). More importantly, 3m displayed valuable antitumor properties including anti-migration and anti-invasion activity against cancer cells, antiangiogenic and vascular-disrupting properties. Mechanistic studies revealed 3m potently inhibited both Top1 and Top2 activity, thus interfering with DNA synthesis in cancer cells. Taken together, this study developed a new synthetic methodology to construct a novel bis-β-carboline scaffold, which represents a promising lead structure for antitumor drug discovery.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China; Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Miaomiao Wang
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Hairui Jia
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shanshan Miao
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
89
|
Banjarnahor CTU, Hardiany NS, Wahjoepramono EJ, Hariyanto AD, Sadikin M. High concentration of γ‑H2AX correlates with a marker of apoptotic suppression and PI3K/Akt pathway upregulation in glioblastoma multiforme. Oncol Lett 2023; 25:149. [PMID: 36936016 PMCID: PMC10018643 DOI: 10.3892/ol.2023.13735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/13/2023] [Indexed: 03/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a very aggressive type of primary brain tumor in adults with a poor prognosis. DNA double-strand breaks are known to be associated with the development of numerous cancer types due to their ability to generate genomic instabilities. In GBM, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a common pathway that can be activated by exogenous and endogenous factors. Genomic instability may be an endogenous stimulating factor for activation of the PI3K/Akt pathway, which may inhibit the apoptosis of GBM cells. Spontaneous DNA double-strand breaks play an essential role in the survival of GBM cells, and apoptosis levels may reflect survival ability. However, no study has yet been conducted to analyse the association between spontaneous DNA double-strand breaks and apoptosis in patients with GBM prior to treatment. Therefore, the present study examined the concentrations of γ-histone 2AX (γ-H2AX), a sensitive marker of spontaneous DNA double-strand breaks, and cleaved caspase-3, a marker of apoptosis, in patients with GBM. The correlation of γ-H2AX with cleaved caspase-3, PI3K and Akt was also investigated. A total of 26 pre-treatment tumor tissue specimens from patient with GBM were analyzed to determine the concentrations of γ-H2AX, PI3K, Akt and cleaved caspase-3 using sandwich enzyme-linked immunosorbent assays. The results showed a moderate positive correlation between γ-H2AX and PI3K (r=0.52; P=0.007), a moderate positive correlation between γ-H2AX and Akt (r=0.4; P=0.041) and a strong negative correlation between γ-H2AX and cleaved caspase-3 (r=-0.61; P=0.0009). These analyses were also performed in seven tumor tissue specimens from patients with grade I glioma as controls, but no significant correlations were detected. The findings of the present study suggest that a high level of γ-H2AX may affect GBM cell apoptosis via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Christine Tiarma Ully Banjarnahor
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Department of Radiology, Division of Radiation Oncology, Faculty of Medicine, Universitas Pelita Harapan, Tangerang-Banten 15810, Indonesia
- Dr Christine Tiarma Ully Banjarnahor, Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, 6 Salemba Raya, Jakarta 10430, Indonesia, E-mail:
| | - Novi Silvia Hardiany
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Correspondence to: Dr Novi Silvia Hardiany, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, 6 Salemba Raya, Jakarta 10430, Indonesia, E-mail:
| | - Eka Julianta Wahjoepramono
- Department of Neurosurgery, Faculty of Medicine, Universitas Pelita Harapan-Siloam Hospitals Lippo Village, Tangerang, Banten 15810, Indonesia
- Department of Neurosurgery, Mochtar Riady Comprehensive Cancer Center Siloam Hospitals, Jakarta 12930, Indonesia
| | | | - Mohamad Sadikin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
90
|
Huang Y, Wei D, Wang B, Tang D, Cheng A, Xiao S, Yu Y, Huang W. NIR-II light evokes DNA cross-linking for chemotherapy and immunogenic cell death. Acta Biomater 2023; 160:198-210. [PMID: 36792048 DOI: 10.1016/j.actbio.2023.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
As a DNA damaging agent, oxaliplatin (OXA) can induce immunogenic cell death (ICD) in tumors to activate the immune system. However, the DNA damage induced by OXA is limited and the ICD effect is not strong enough to enhance anti-tumor efficacy. Here, we propose a strategy to maximize the ICD effect of OXA through the mild hyperthermia generated by nanoparticles with a platinum (IV) prodrug of OXA (Pt(IV)-C16) and a near-infrared-II (NIR-II) photothermal agent IR1061 upon the irradiation of NIR-II light. The mild hyperthermia (43 °C) holds advantages in two aspects: 1) increase the Pt-DNA cross-linking, leading to enhanced DNA damage and apoptosis; 2) induce stronger ICD effects for cancer immunotherapy. We demonstrated that, compared with OXA and photothermal therapy of IR1061 alone, these nanoparticles under NIR-II light irradiation can significantly improve the anti-cancer efficacy against triple-negative breast cancer 4T1 tumor. This new strategy provides an effective way to improve the therapeutic outcome of OXA. STATEMENT OF SIGNIFICANCE: OXA could induce immunogenic cell death (ICD) via stimulating immune responses by increasing tumor cell stress and death, which triggers tumor-specific immune responses to achieve immunotherapy. However, due to the insufficient Pt-DNA crosslinks, the ICD effect triggered by OXA cannot induce robust immune response. Mild hyperthermia has great potential to maximize the therapeutic outcome of oxaliplatin by increasing the Pt-DNA cross-linking to augment the immunoresponse for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yun Huang
- Guangxi Key Laboratory of Tumor Immunity and Microenvironment Regulation, Guilin Medical University, Guilin 541199, China; Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, China
| | - Shengjun Xiao
- Guangxi Key Laboratory of Tumor Immunity and Microenvironment Regulation, Guilin Medical University, Guilin 541199, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, China.
| | - Weiguo Huang
- Guangxi Key Laboratory of Tumor Immunity and Microenvironment Regulation, Guilin Medical University, Guilin 541199, China; Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, China.
| |
Collapse
|
91
|
Han L, Zhou Y, Tan Z, Zhu H, Hu Y, Ma X, Zheng F, Feng F, Wang C, Liu W. Confined Target-Triggered Hot Spots for In Situ SERS Analysis of Intranuclear Genotoxic Markers. Anal Chem 2023; 95:6312-6322. [PMID: 37000898 DOI: 10.1021/acs.analchem.2c05147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The γH2AX is a type of confined target in nuclei which is highly expressed around the damaged DNA during genotoxicity and has therefore been identified as a marker of genotoxicity. Convenient and intuitive in situ real-time detection of γH2AX is crucial for an accurate assessment of genotoxicity. Selective and nondestructive surface-enhanced Raman spectroscopy (SERS) is suitable to achieve this goal. However, the detection of substances in the nucleus by SERS is still limited due to the contradiction of probes between the nuclei entry efficiency and signal enhancement. This study utilized the characteristics of γH2AX as a confined target and constructed a γH2AX immunosensor based on gold nanoprobes with a small size (15 nm), which was modified with the TAT nuclear targeting peptide to ensure high nuclei entry efficiency. Once DNA damage was induced, the local overexpression of γH2AX further recruited the probe through immune recognition, so that hot spots could be assembled in situ to generate strong Raman signals, which were applied to evaluate the genotoxicity of drug impurities. This study proposed a novel SERS detection strategy, characterized by confined target-induced size conversion and hot spot formation, for in situ real-time analysis of intranuclear targets at the single-living-cell level, which intelligently simplified the structure of SERS probes and the operation process.
Collapse
|
92
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
93
|
Zhang B, Li F, Shen L, Chen L, Xia Z, Ding J, Li M, Guo LH. A cathodic photoelectrochemical immunoassay with dual signal amplification for the ultrasensitive detection of DNA damage biomarkers. Biosens Bioelectron 2023; 224:115052. [PMID: 36603285 DOI: 10.1016/j.bios.2022.115052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Toxicity screening and risk assessment of an overwhelmingly large and ever-increasing number of chemicals are vitally essential for ecological safety and human health. Genotoxicity is particularly important because of its association with mutagenicity, carcinogenicity and cancer. Phosphorylated histone H2AX (γH2AX) is an early sensitive genotoxic biomarker. It is therefore highly desirable to develop analytical methods for the detection of trace γH2AX to enable screening and assessment of genotoxicity. Here, we developed a novel cathodic photoelectrochemical (PEC) immunoassay with dual signal amplification for the rapid and ultrasensitive detection of γH2AX in cell lysates. A sandwich immuno-reaction targeting γH2AX was first carried out on a 96-well plate, using a secondary antibody/gold nanoparticle/glucose oxidase conjugate as the labeled detection antibody. The conjugate increased the production of H2O2 and thus provided the first mechanism of signal amplification. The immuno-reaction product containing H2O2 was then detected on a photocathode prepared from Bi2+xWO6 rich in oxygen vacancies, with H2O2 acting as electron acceptor. The oxygen vacancies acted as both adsorption and activation sites of H2O2 and thus enhanced the photocurrent, which provided another mechanism of signal amplification. As a result, an ultrasensitive immunoassay for γH2AX determination was established with a limit of detection of 6.87 pg/mL (S/N = 3) and a wide linear range from 0.01 to 500 ng/mL. The practicability of this assay was verified by detecting γH2AX in cell lysates exposed to known genotoxic chemicals. Our work offers a promising tool for the screening of genotoxic chemicals and opening a new avenue toward environmental risk assessment.
Collapse
Affiliation(s)
- Bihong Zhang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Fangfang Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Linyu Shen
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Lu Chen
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Zhiqiang Xia
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Jinjian Ding
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China.
| | - Liang-Hong Guo
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China.
| |
Collapse
|
94
|
Garribba L, De Feudis G, Martis V, Galli M, Dumont M, Eliezer Y, Wardenaar R, Ippolito MR, Iyer DR, Tijhuis AE, Spierings DCJ, Schubert M, Taglietti S, Soriani C, Gemble S, Basto R, Rhind N, Foijer F, Ben-David U, Fachinetti D, Doksani Y, Santaguida S. Short-term molecular consequences of chromosome mis-segregation for genome stability. Nat Commun 2023; 14:1353. [PMID: 36906648 PMCID: PMC10008630 DOI: 10.1038/s41467-023-37095-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
Chromosome instability (CIN) is the most common form of genome instability and is a hallmark of cancer. CIN invariably leads to aneuploidy, a state of karyotype imbalance. Here, we show that aneuploidy can also trigger CIN. We found that aneuploid cells experience DNA replication stress in their first S-phase and precipitate in a state of continuous CIN. This generates a repertoire of genetically diverse cells with structural chromosomal abnormalities that can either continue proliferating or stop dividing. Cycling aneuploid cells display lower karyotype complexity compared to the arrested ones and increased expression of DNA repair signatures. Interestingly, the same signatures are upregulated in highly-proliferative cancer cells, which might enable them to proliferate despite the disadvantage conferred by aneuploidy-induced CIN. Altogether, our study reveals the short-term origins of CIN following aneuploidy and indicates the aneuploid state of cancer cells as a point mutation-independent source of genome instability, providing an explanation for aneuploidy occurrence in tumors.
Collapse
Affiliation(s)
- Lorenza Garribba
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Giuseppina De Feudis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Valentino Martis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Martina Galli
- IFOM ETS - The AIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
| | - Marie Dumont
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Divya Ramalingam Iyer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Andréa E Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Michael Schubert
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Silvia Taglietti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Chiara Soriani
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Simon Gemble
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Nick Rhind
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ylli Doksani
- IFOM ETS - The AIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9/1, 20122, Milan, Italy.
| |
Collapse
|
95
|
He L, Liang J, Chen C, Chen J, Shen Y, Sun S, Li L. C9orf72 functions in the nucleus to regulate DNA damage repair. Cell Death Differ 2023; 30:716-730. [PMID: 36220889 PMCID: PMC9984389 DOI: 10.1038/s41418-022-01074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 03/05/2023] Open
Abstract
The hexanucleotide GGGGCC repeat expansion in the intronic region of C9orf72 is the most common cause of Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeat expansion-generated toxic RNAs and dipeptide repeats (DPRs) including poly-GR, have been extensively studied in neurodegeneration. Moreover, haploinsufficiency has been implicated as a disease mechanism but how C9orf72 deficiency contributes to neurodegeneration remains unclear. Here, we show that C9orf72 deficiency exacerbates poly-GR-induced neurodegeneration by attenuating non-homologous end joining (NHEJ) repair. We demonstrate that C9orf72 localizes to the nucleus and is rapidly recruited to sites of DNA damage. C9orf72 deficiency resulted in impaired NHEJ repair through attenuated DNA-PK complex assembly and DNA damage response (DDR) signaling. In mouse models, we found that C9orf72 deficiency exacerbated poly-GR-induced neuronal loss, glial activation, and neuromuscular deficits. Furthermore, DNA damage accumulated in C9orf72-deficient neurons that expressed poly-GR, resulting in excessive activation of PARP-1. PARP-1 inhibition rescued neuronal death in cultured neurons treated with poly-GR peptides. Together, our results support a pathological mechanism where C9orf72 haploinsufficiency synergizes with poly-GR-induced DNA double-strand breaks to exacerbate the accumulation of DNA damage and PARP-1 overactivation in C9orf72 ALS/FTD patients.
Collapse
Affiliation(s)
- Liying He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Liang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaonan Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jijun Chen
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, China
| | - Yihui Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuangshuang Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
96
|
Du G, Yang R, Qiu J, Xia J. Multifaceted Influence of Histone Deacetylases on DNA Damage Repair: Implications for Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:231-243. [PMID: 36406320 PMCID: PMC9647118 DOI: 10.14218/jcth.2022.00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related mortality worldwide, but its pathogenesis remains largely unknown. Nevertheless, genomic instability has been recognized as one of the facilitating characteristics of cancer hallmarks that expedites the acquisition of genetic diversity. Genomic instability is associated with a greater tendency to accumulate DNA damage and tumor-specific DNA repair defects, which gives rise to gene mutations and chromosomal damage and causes oncogenic transformation and tumor progression. Histone deacetylases (HDACs) have been shown to impair a variety of cellular processes of genome stability, including the regulation of DNA damage and repair, reactive oxygen species generation and elimination, and progression to mitosis. In this review, we provide an overview of the role of HDAC in the different aspects of DNA repair and genome instability in HCC as well as the current progress on the development of HDAC-specific inhibitors as new cancer therapies.
Collapse
Affiliation(s)
- Gan Du
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Ruizhe Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| | - Jie Xia
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| |
Collapse
|
97
|
Garufi A, Pettinari R, Marchetti F, Cirone M, D’Orazi G. NRF2 and Bip Interconnection Mediates Resistance to the Organometallic Ruthenium-Cymene Bisdemethoxycurcumin Complex Cytotoxicity in Colon Cancer Cells. Biomedicines 2023; 11:biomedicines11020593. [PMID: 36831129 PMCID: PMC9953010 DOI: 10.3390/biomedicines11020593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Organometallic ruthenium (Ru)(II)-cymene complexes display promising pharmacological properties and might represent alternative therapeutic agents in medical applications. Polyphenols, such as curcumin and curcuminoids, display beneficial properties in medicine, including chemoprevention. Here we analyzed the anticancer effect of a cationic Ruthenium (Ru)(II)-cymene Bisdemethoxycurcumin (Ru-bdcurc) complex. The experimental data show that Ru-bdcurc induced cell death of colon cancer cells in vitro. In response to treatment, cancer cells activated the endoplasmic reticulum (ER)-resident chaperone GRP78/BiP and NRF2, the master regulators of the unfolded protein response (UPR) and the antioxidant response, respectively. Pharmacologic targeting of either NRF2 or BiP potentiated the cytotoxic effect of Ru-bdcurc. We also found that NRF2 and UPR pathways were interconnected as the inhibition of NRF2 reduced BiP protein levels. Mechanistically, the increased Ru-bdcurc-induced cell death, following NRF2 or BiP inhibition, correlated with the upregulation of the UPR apoptotic marker CHOP and with increased H2AX phosphorylation, a marker of DNA damage. The findings reveal that BiP and NRF2 interconnection was a key regulator of colon cancer cells resistance to Ru-bdcurc cytotoxic effect. Targeting that interconnection overcame the protective mechanism and enhanced the antitumor effect of the Ru-bdcurc compound.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Riccardo Pettinari
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Fabio Marchetti
- Chemistry Interdisciplinary Project (CHIP), School of Science and Technology, University of Camerino, 62032 Camerino, Italy
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gabriella D’Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
- School of Medicine, UniCamillus International University of Health Sciences, 00100 Rome, Italy
- Correspondence:
| |
Collapse
|
98
|
Oberdoerffer P, Miller KM. Histone H2A variants: Diversifying chromatin to ensure genome integrity. Semin Cell Dev Biol 2023; 135:59-72. [PMID: 35331626 PMCID: PMC9489817 DOI: 10.1016/j.semcdb.2022.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.
Collapse
Affiliation(s)
- Philipp Oberdoerffer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
99
|
Priya B, Dubey G, Kirubakaran S. Exploring SPK98 for the Selective Sensitization of ATM- or P53-Deficient Cancer Cells. ACS OMEGA 2023; 8:4954-4962. [PMID: 36777575 PMCID: PMC9909806 DOI: 10.1021/acsomega.2c07356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Frequent mutation in the ATM/P53 signaling pathway has been documented in many human cancers. Reportedly, cancer cells with deficient P53/ATM pathways depend on functional Ataxia-telangiectasia and Rad3-related (ATR) protein for survival. This has prompted research in developing ATR inhibitors for the selective sensitization of cancer cells that are P53/ATM-deficient, but no clinical success has been attained thus far. This study explores the therapeutic potential of SPK98, an analogue of Torin2 in P53- and ATM-deficient cancer cells. Furthermore, the prospect of improving the therapeutic outcome of the genotoxic agent was also explored. SPK98 was shown to inhibit full-length human ATR protein purified from HEK293T cells. Cellular investigation using SPK98 demonstrated that it selectively sensitizes P53- and ATM-deficient cells at low concentrations compared to P53-/ATM-proficient cells. Furthermore, SPK98 drives the cancer cells toward cell death by promoting the formation of DNA double-strand breaks. Taken together, our findings suggest that SPK98 is a promising therapeutic molecule for P53- or ATM-deficient malignancy that merits additional preclinical investigation.
Collapse
Affiliation(s)
- Bhanu Priya
- Discipline
of Biological Engineering, Indian Institute
of Technology Gandhinagar, Gandhinagar 382355, Gujarat, India
| | - Gurudutt Dubey
- Discipline
of Chemistry, Indian Institute of Technology
Gandhinagar, Gandhinagar 382355, Gujarat, India
| | - Sivapriya Kirubakaran
- Discipline
of Chemistry, Indian Institute of Technology
Gandhinagar, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
100
|
CRISPR metabolic screen identifies ATM and KEAP1 as targetable genetic vulnerabilities in solid tumors. Proc Natl Acad Sci U S A 2023; 120:e2212072120. [PMID: 36724254 PMCID: PMC9963842 DOI: 10.1073/pnas.2212072120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cancer treatments targeting DNA repair deficiencies often encounter drug resistance, possibly due to alternative metabolic pathways that counteract the most damaging effects. To identify such alternative pathways, we screened for metabolic pathways exhibiting synthetic lethality with inhibition of the DNA damage response kinase Ataxia-telangiectasia-mutated (ATM) using a metabolism-centered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 library. Our data revealed Kelch-like ECH-associated protein 1 (KEAP1) as a key factor involved in desensitizing cancer cells to ATM inhibition both in vitro and in vivo. Cells depleted of KEAP1 exhibited an aberrant overexpression of the cystine transporter SLC7A11, robustly accumulated cystine inducing disulfide stress, and became hypersensitive to ATM inhibition. These hallmarks were reversed in a reducing cellular environment indicating that disulfide stress was a crucial factor. In The Cancer Genome Atlas (TCGA) pan-cancer datasets, we found that ATM levels negatively correlated with KEAP1 levels across multiple solid malignancies. Together, our results unveil ATM and KEAP1 as new targetable vulnerabilities in solid tumors.
Collapse
|