51
|
Marín Navas C, Delgado Bermejo JV, McLean AK, León Jurado JM, Camacho Vallejo ME, Navas González FJ. Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations. Animals (Basel) 2024; 14:659. [PMID: 38473046 DOI: 10.3390/ani14050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The historical increase in the occurrence of extreme weather events in Spain during the last thirty years makes it a perfect location for the evaluation of climate change. Modeling the effects of climate change on domestic animals' genetic diversity may help to anticipate challenging situations. However, animal populations' short life cycle and patent lack of historical information during extended periods of time drastically compromise the evaluation of climate change effects. Locally adapted breeds' gene pool is the base for their improved resilience and plasticity in response to climate change's extreme climatic conditions. The preservation of these domestic resources offers selection alternatives to breeders who seek such improved adaptability. The Spanish endangered autochthonous Hispano-Arabian horse breed is perfectly adapted to the conditions of the territory where it was created, developed, and widespread worldwide. The possibility to trace genetic diversity in the Hispano-Arabian breed back around seven decades and its global ubiquity make this breed an idoneous reference subject to act as a model for other international populations. Climate change's shaping effects on the genetic diversity of the Hispano-Arabian horse breed's historical population were monitored from 1950 to 2019 and evaluated. Wind speed, gust speed, or barometric pressure have greater repercussions than extreme temperatures on genetic diversity. Extreme climate conditions, rather than average modifications of climate, may push breeders/owners to implement effective strategies in the short to medium term, but the effect will be plausible in the long term due to breed sustainability and enhanced capacity of response to extreme climate events. When extreme climatic conditions occur, breeders opt for mating highly diverse unrelated individuals, avoiding the production of a large number of offspring. People in charge of domestic population conservation act as catalyzers of the regulatory changes occurring during breeds' climate change adaptive process and may identify genes conferring their animals with greater adaptability but still maintaining enhanced performance. This model assists in determining how owners of endangered domestic populations should plan their breeding strategies, seeking the obtention of animals more resilient and adapted to climate-extreme conditions. This efficient alternative is focused on the obtention of increased profitability from this population and in turn ensuring their sustainability.
Collapse
Affiliation(s)
- Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain
| | | | - Amy Katherine McLean
- Department of Animal Science, University of California Davis, Davis, CA 95617, USA
| | - José Manuel León Jurado
- Centro Agropecuario Provincial de Córdoba, Diputación Provincial de Córdoba, 14071 Córdoba, Spain
| | | | | |
Collapse
|
52
|
Lee G, Sanderson BJ, Ellis TJ, Dilkes BP, McKay JK, Ågren J, Oakley CG. A large-effect fitness trade-off across environments is explained by a single mutation affecting cold acclimation. Proc Natl Acad Sci U S A 2024; 121:e2317461121. [PMID: 38289961 PMCID: PMC10861903 DOI: 10.1073/pnas.2317461121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.
Collapse
Affiliation(s)
- Gwonjin Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Brian J. Sanderson
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Thomas J. Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Brian P. Dilkes
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
| | - John K. McKay
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO80523
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
53
|
Terasaki Hart DE, Wang IJ. Genomic architecture controls multivariate adaptation to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17179. [PMID: 38403891 DOI: 10.1111/gcb.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
As climate change advances, environmental gradients may decouple, generating novel multivariate environments that stress wild populations. A commonly invoked mechanism of evolutionary rescue is adaptive gene flow tracking climate shifts, but gene flow from populations inhabiting similar conditions on one environmental axis could cause maladaptive introgression when populations are adapted to different environmental variables that do not shift together. Genomic architecture can play an important role in determining the effectiveness and relative magnitudes of adaptive gene flow and in situ adaptation. This may have direct consequences for how species respond to climate change but is often overlooked. Here, we simulated microevolutionary responses to environmental change under scenarios defined by variation in the polygenicity, linkage, and genetic redundancy of two independent traits, one of which is adapted to a gradient that shifts under climate change. We used these simulations to examine how genomic architecture influences evolutionary outcomes under climate change. We found that climate-tracking (up-gradient) gene flow, though present in all scenarios, was strongly constrained under scenarios of lower linkage and higher polygenicity and redundancy, suggesting in situ adaptation as the predominant mechanism of evolutionary rescue under these conditions. We also found that high polygenicity caused increased maladaptation and demographic decline, a concerning result given that many climate-adapted traits may be polygenic. Finally, in scenarios with high redundancy, we observed increased adaptive capacity. This finding adds to the growing recognition of the importance of redundancy in mediating in situ adaptive capacity and suggests opportunities for better understanding the climatic vulnerability of real populations.
Collapse
Affiliation(s)
- Drew E Terasaki Hart
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- The Nature Conservancy, Arlington, Virginia, USA
- CSIRO Environment, Brisbane, Queensland, Australia
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
54
|
Booker TR, Yeaman S, Whiting JR, Whitlock MC. The WZA: A window-based method for characterizing genotype-environment associations. Mol Ecol Resour 2024; 24:e13768. [PMID: 36785926 DOI: 10.1111/1755-0998.13768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Genotype-environment association (GEA) studies have the potential to identify the genetic basis of local adaptation in natural populations. Specifically, GEA approaches look for a correlation between allele frequencies and putatively selective features of the environment. Genetic markers with extreme evidence of correlation with the environment are presumed to be tagging the location of alleles that contribute to local adaptation. In this study, we propose a new method for GEA studies called the Weighted-Z Analysis (WZA) that combines information from closely linked sites into analysis windows in a way that was inspired by methods for calculating FST . Performing GEA methods in analysis windows has the advantage that it takes advantage of the increased linkage disequilibrium expected surrounding sites subject to local adaptation. We analyse simulations modelling local adaptation to heterogeneous environments to compare the WZA with existing methods. In the majority of cases we tested, the WZA either outperformed single-SNP (single nucleotide polymorphism)-based approaches or performed similarly. In particular, the WZA outperformed individual SNP approaches when a small number of individuals or demes were sampled. Particularly troubling, we found that some GEA methods exhibit very high false positive rates. We applied the WZA to previously published data from lodgepole pine and identified candidate loci that were identified in the original study alongside numerous loci that were not found in the original study.
Collapse
Affiliation(s)
- Tom R Booker
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
55
|
Clancey E, MacPherson A, Cheek RG, Mouton JC, Sillett TS, Ghalambor CK, Funk WC, Hohenlohe PA. Unraveling Adaptive Evolutionary Divergence at Microgeographic Scales. Am Nat 2024; 203:E35-E49. [PMID: 38306284 DOI: 10.1086/727723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractStriking examples of local adaptation at fine geographic scales are increasingly being documented in natural populations. However, the relative contributions made by natural selection, phenotype-dependent dispersal (when individuals disperse with respect to a habitat preference), and mate preference in generating and maintaining microgeographic adaptation and divergence are not well studied. Here, we develop quantitative genetics models and individual-based simulations (IBSs) to uncover the evolutionary forces that possibly drive microgeographic divergence. We also perform Bayesian estimation of the parameters in our IBS using empirical data on habitat-specific variation in bill morphology in the island scrub-jay (Aphelocoma insularis) to apply our models to a natural system. We find that natural selection and phenotype-dependent dispersal can generate the patterns of divergence we observe in the island scrub-jay. However, mate preference for a mate with similar bill morphology, even though observed in the species, does not play a significant role in driving divergence. Our modeling approach provides insights into phenotypic evolution occurring over small spatial scales relative to dispersal ranges, suggesting that adaptive divergence at microgeographic scales may be common across a wider range of taxa than previously thought. Our quantitative genetic models help to inform future theoretical and empirical work to determine how selection, habitat preference, and mate preference contribute to local adaptation and microgeographic divergence.
Collapse
|
56
|
Szabo N, Cutter AD. Experimental evolution of hybrid populations to identify Dobzhansky-Muller incompatibility loci. Ecol Evol 2024; 14:e10972. [PMID: 38333096 PMCID: PMC10851027 DOI: 10.1002/ece3.10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 02/10/2024] Open
Abstract
Epistatic interactions between loci that reduce fitness in interspecies hybrids, Dobzhansky-Muller incompatibilities (DMIs), contribute genetically to the inviability and infertility within hybrid populations. It remains a challenge, however, to identify the loci that contribute to DMIs as causes of reproductive isolation between species. Here, we assess through forward simulation the power of evolve-and-resequence (E&R) experimental evolution of hybrid populations to map DMI loci. We document conditions under which such a mapping strategy may be most feasible and demonstrate how mapping power is sensitive to biologically relevant parameters such as one-way versus two-way incompatibility type, selection strength, recombination rate, and dominance interactions. We also assess the influence of parameters under direct control of an experimenter, including duration of experimental evolution and number of replicate populations. We conclude that an E&R strategy for mapping DMI loci, and other cases of epistasis, can be a viable option under some circumstances for study systems with short generation times like Caenorhabditis nematodes.
Collapse
Affiliation(s)
- Nicole Szabo
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Asher D. Cutter
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
57
|
Merrill RM, Arenas-Castro H, Feller AF, Harenčár J, Rossi M, Streisfeld MA, Kay KM. Genetics and the Evolution of Prezygotic Isolation. Cold Spring Harb Perspect Biol 2024; 16:a041439. [PMID: 37848246 PMCID: PMC10835618 DOI: 10.1101/cshperspect.a041439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The significance of prezygotic isolation for speciation has been recognized at least since the Modern Synthesis. However, fundamental questions remain. For example, how are genetic associations between traits that contribute to prezygotic isolation maintained? What is the source of genetic variation underlying the evolution of these traits? And how do prezygotic barriers affect patterns of gene flow? We address these questions by reviewing genetic features shared across plants and animals that influence prezygotic isolation. Emerging technologies increasingly enable the identification and functional characterization of the genes involved, allowing us to test established theoretical expectations. Embedding these genes in their developmental context will allow further predictions about what constrains the evolution of prezygotic isolation. Ongoing improvements in statistical and computational tools will reveal how pre- and postzygotic isolation may differ in how they influence gene flow across the genome. Finally, we highlight opportunities for progress by combining theory with appropriate data.
Collapse
Affiliation(s)
- Richard M Merrill
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anna F Feller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA
| | - Julia Harenčár
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Matteo Rossi
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
58
|
James ME, Ortiz-Barrientos D. The genomic consequences of selection across development. Mol Ecol 2024; 33:e17280. [PMID: 38247305 DOI: 10.1111/mec.17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Understanding how natural selection drives diversification in nature has been at the forefront of biological research for over a century. The main idea is simple: natural selection favours individuals best suited to pass on their genes. However, the journey from birth to reproduction is complex as organisms experience multiple developmental stages, each influenced by genetic and environmental factors (Orr, 2009). These complexities compound even further as each stage of development might be governed by a unique underlying set of alleles and genes. In this issue of Molecular Ecology, Goebl et al. (2022) examine the role of natural selection in driving ecotypic divergence across different life history stages of the prairie sunflower Helianthus petiolaris. The authors used reciprocal transplant experiments, demographic models, and genomic sequencing to explore fitness variation across developmental stages. They show how natural selection impacts population divergence across multiple life history stages and evaluate the resulting allele frequency changes. Goebl et al. link these results to the role of chromosomal inversions, thus furthering our understanding of how ecological divergence proceeds in the face of gene flow. Below, we explore these results in detail and complement their interpretation by considering the evolution of genetic correlations amongst traits governing fitness.
Collapse
Affiliation(s)
- Maddie E James
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD, Australia
| |
Collapse
|
59
|
Liu S, Chen L, Qiao X, Ren J, Zhou C, Yang Y. Functional Evolution of Pseudofabraea citricarpa as an Adaptation to Temperature Change. J Fungi (Basel) 2024; 10:109. [PMID: 38392781 PMCID: PMC10890082 DOI: 10.3390/jof10020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Citrus target spot, caused by Pseudofabraea citricarpa, was formerly considered a cold-tolerant fungal disease. However, it has now spread from high-latitude regions to warmer low-latitude regions. Here, we conducted physiological observations on two different strains of the fungus collected from distinct regions, and evaluated their pathogenicity. Interestingly, the CQWZ collected from a low-latitude orchard, exhibited higher temperature tolerance and pathogenicity when compared to the SXCG collected from a high-latitude orchard. To further understand the evolution of temperature tolerance and virulence in these pathogens during the spread process, as well as the mechanisms underlying these differences, we performed genomic comparative analysis. The genome size of CQWZ was determined to be 44,004,669 bp, while the genome size of SXCG was determined to be 45,377,339 bp. Through genomic collinearity analysis, we identified two breakpoints and rearrangements during the evolutionary process of these two strains. Moreover, gene annotation results revealed that the CQWZ possessed 376 annotated genes in the "Xenobiotics biodegradation and metabolism" pathway, which is 79 genes more than the SXCG. The main factor contributing to this difference was the presence of salicylate hydroxylase. We also observed variations in the oxidative stress pathways and core pathogenic genes. The CQWZ exhibited the presence of a heat shock protein (HSP SSB), a catalase (CAT2), and 13 core pathogenic genes, including a LysM effector, in comparison to the SXCG. Furthermore, there were significant disparities in the gene clusters responsible for the production of seven metabolites, such as Fumonisin and Brefeldin. Finally, we identified the regulatory relationship, with the HOG pathway at its core, that potentially contributes to the differences in thermotolerance and virulence. As the global climate continues to warm, crop pathogens are increasingly expanding to new territories. Our findings will enhance understanding of the evolution mechanisms of pathogens under climate change.
Collapse
Affiliation(s)
- Saifei Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Beibei, Chongqing 400716, China
| | - Li Chen
- Plant Protection and Fruit Tree Technology Extension Station of Wanzhou District in Chongqing, Chongqing 404199, China
| | - Xinghua Qiao
- Plant Protection and Fruit Tree Technology Extension Station of Wanzhou District in Chongqing, Chongqing 404199, China
| | - Jiequn Ren
- The Chongqing Three Gorges Academy of Agricultural Sciences, Chongqing 404150, China
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yuheng Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
60
|
Syrotchen JM, Ferris KG. Local adaptation to an altitudinal gradient: the interplay between mean phenotypic trait variation and phenotypic plasticity in Mimulus laciniatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551729. [PMID: 37577559 PMCID: PMC10418151 DOI: 10.1101/2023.08.02.551729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Organisms can adapt to environmental heterogeneity through two mechanisms: (1) expression of population genetic variation or (2) phenotypic plasticity. In this study we investigated whether patterns of variation in both trait means and phenotypic plasticity along elevational and latitudinal clines in a North American endemic plant, Mimulus laciniatus, were consistent with local adaptation. We grew inbred lines of M. laciniatus from across the species' range in two common gardens varying in day length to measure mean and plastic trait expression in several traits previously shown to be involved in adaptation to M. laciniatus's rocky outcrop microhabitat: flowering time, size-related traits, and leaf shape. We examined correlations between the mean phenotype and phenotypic plasticity, and tested for a relationship between trait variation and population elevation and latitude. We did not find a strong correlation between mean and plastic trait expression at the individual genotype level suggesting that they operate under independent genetic controls. We identified multiple traits that show patterns consistent with local adaptation to elevation: critical photoperiod, flowering time, flower size, mean leaf lobing, and leaf lobing plasticity. These trends occur along multiple geographically independent altitudinal clines indicating that selection is a more likely cause of this pattern than gene flow among nearby populations with similar trait values. We also found that population variation in mean leaf lobing is associated with latitude. Our results indicate that both having more highly lobed leaves and greater leaf shape plasticity may be adaptive at high elevation within M. laciniatus. Our data strongly suggest that traits known to be under divergent selection between M. laciniatus and close relative Mimulus guttatus are also under locally varying selection within M. laciniatus.
Collapse
Affiliation(s)
- Jill M. Syrotchen
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118
| | - Kathleen G. Ferris
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118
| |
Collapse
|
61
|
Škaloud P, Jadrná I, Dvořák P, Škvorová Z, Pusztai M, Čertnerová D, Bestová H, Rengefors K. Rapid diversification of a free-living protist is driven by adaptation to climate and habitat. Curr Biol 2024; 34:92-105.e6. [PMID: 38103550 DOI: 10.1016/j.cub.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Microbial eukaryotes (protists) have major functional roles in aquatic ecosystems, including the biogeochemical cycling of elements as well as occupying various roles in the food web. Despite their importance for ecosystem function, the factors that drive diversification in protists are not known. Here, we aimed to identify the factors that drive differentiation and, subsequently, speciation in a free-living protist, Synura petersenii (Chrysophyceae). We sampled five different geographic areas and utilized population genomics and quantitative trait analyses. Habitat and climate were the major drivers of diversification on the local geographical scale, while geography played a role over longer distances. In addition to conductivity and temperature, precipitation was one of the most important environmental drivers of differentiation. Our results imply that flushing episodes (floods) drive microalgal adaptation to different niches, highlighting the potential for rapid diversification in protists.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic.
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic.
| | - Zuzana Škvorová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic
| | - Dora Čertnerová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
62
|
Cheek RG, McLaughlin JF, Gamboa MP, Marshall CA, Johnson BM, Silver DB, Mauro AA, Ghalambor CK. A lack of genetic diversity and minimal adaptive evolutionary divergence in introduced Mysis shrimp after 50 years. Evol Appl 2024; 17:e13637. [PMID: 38283609 PMCID: PMC10818135 DOI: 10.1111/eva.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
The successes of introduced populations in novel habitats often provide powerful examples of evolution and adaptation. In the 1950s, opossum shrimp (Mysis diluviana) individuals from Clearwater Lake in Minnesota, USA were transported and introduced to Twin Lakes in Colorado, USA by fisheries managers to supplement food sources for trout. Mysis were subsequently introduced from Twin Lakes into numerous lakes throughout Colorado. Because managers kept detailed records of the timing of the introductions, we had the opportunity to test for evolutionary divergence within a known time interval. Here, we used reduced representation genomic data to investigate patterns of genetic diversity, test for genetic divergence between populations, and for evidence of adaptive evolution within the introduced populations in Colorado. We found very low levels of genetic diversity across all populations, with evidence for some genetic divergence between the Minnesota source population and the introduced populations in Colorado. There was little differentiation among the Colorado populations, consistent with the known provenance of a single founding population, with the exception of the population from Gross Reservoir, Colorado. Demographic modeling suggests that at least one undocumented introduction from an unknown source population hybridized with the population in Gross Reservoir. Despite the overall low genetic diversity we observed, F ST outlier and environmental association analyses identified multiple loci exhibiting signatures of selection and adaptive variation related to elevation and lake depth. The success of introduced species is thought to be limited by genetic variation, but our results imply that populations with limited genetic variation can become established in a wide range of novel environments. From an applied perspective, the observed patterns of divergence between populations suggest that genetic analysis can be a useful forensic tool to determine likely sources of invasive species.
Collapse
Affiliation(s)
- Rebecca G. Cheek
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jessica F. McLaughlin
- Department of Environmental Science, Policy, and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Maybellene P. Gamboa
- Department of Organismal Biology and EcologyColorado CollegeColorado SpringsColoradoUSA
| | - Craig A. Marshall
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Council on Science and TechnologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Brett M. Johnson
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Douglas B. Silver
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Alexander A. Mauro
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Cameron K. Ghalambor
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
63
|
Hu LS, Dong YW. Multiple genetic sources facilitate the northward range expansion of an intertidal oyster along China's coast. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2764. [PMID: 36259430 DOI: 10.1002/eap.2764] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Coastal artificial structures on the former mudflats provide available habitats for the rocky intertidal species which can establish new populations in these emerging habitats over their former distribution range limits. As a former southern species, the oyster Crassostrea sikamea has become a pioneer and rapidly invaded the artificial shorelines in northern China. We used a seascape genomics approach to investigate the population structure and genetic sources of C. sikamea on the coastal artificial structures, which is crucial for understanding the genetic mechanisms driving species distribution range expansion and invasion pathway of intertidal species. Five C. sikamea populations, including two artificial substrate populations (WGZ and ZAP), one oyster reef population (LS), and two natural rocky shore populations (ZS and XM), were measured using single nucleotide polymorphism (SNPs) obtained from double digest restriction-site associated DNA sequencing (ddRAD-Seq). Redundancy analyses (RDA) were implemented for investigating the relationship between local temperature variables and the temperature adaptability of C. sikamea. Genetic diversity, direction and strength of gene flow, and population structure all revealed that the LS and ZS populations were the genetic sources for the oyster populations on the emerging northern coastal artificial structures. Results of RDA showed that there were different adaptive potentials for northern and southern populations to local temperature variables and the oyster reef population which frequently suffers from heat stress owned high heat adaptability. The ZS population as a genetic source nearby the Yangtze River estuary provided mass larvae for the northern populations, and the other genetic source, the heat-tolerant LS population, in the oyster reef played an important role in the post-settlement success by providing preadapted genotypes. These results highlight the importance of multiple sources with divergent adaptative capabilities for biological invasion, and also emphasize the importance of the oyster reef in coastal biodiversity and conservation.
Collapse
Affiliation(s)
- Li-Sha Hu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
64
|
Haltiner L, Spaak P, Dennis SR, Feulner PGD. Population genetic insights into establishment, adaptation, and dispersal of the invasive quagga mussel across perialpine lakes. Evol Appl 2024; 17:e13620. [PMID: 38283608 PMCID: PMC10809192 DOI: 10.1111/eva.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024] Open
Abstract
Human activities have facilitated the invasion of freshwater ecosystems by various organisms. Especially, invasive bivalves such as the quagga mussels, Dreissena bugensis, have the potential to alter ecosystem function as they heavily affect the food web. Quagga mussels occur in high abundance, have a high filtration rate, quickly spread within and between waterbodies via pelagic larvae, and colonize various substrates. They have invaded various waterbodies across the Northern Hemisphere. In Central Europe, they have invaded multiple large and deep perialpine lakes with first recordings in Lake Geneva in 2015 and 2016 in Lake Constance. In the deep perialpine lakes, quagga mussels quickly colonized the littoral zone but are also abundant deeper (>80 m), where they are often thinner and brighter shelled. We analysed 675 quagga mussels using ddRAD sequencing to gain in-depth insights into the genetic population structure of quagga mussels across Central European lakes and across various sites and depth habitats in Lake Constance. We revealed substantial genetic differentiation amongst quagga mussel populations from three unconnected lakes, and all populations showed high genetic diversity and effective population size. In Lake Constance, we detected no genetic differentiation amongst quagga mussels sampled across different sites and depth habitats. We also did not identify any convincing candidate loci evidential for adaptation along a depth gradient and a transplant experiment showed no indications of local adaptation to living in the deep based on investigating growth and survival. Hence, the shallow-water and the deep-water morphotypes seem to be a result of phenotypic plasticity rather than local adaptation to depth. In conclusion, our ddRAD approach revealed insight into the establishment of genetically distinct quagga mussel populations in three perialpine lakes and suggests that phenotypic plasticity and life history traits (broadcast spawner with high fecundity and dispersing pelagic larvae) facilitate the fast spread and colonization of various depth habitats by the quagga mussel.
Collapse
Affiliation(s)
- Linda Haltiner
- Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Environmental Systems SciencesETH ZürichZürichSwitzerland
| | - Piet Spaak
- Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Environmental Systems SciencesETH ZürichZürichSwitzerland
| | - Stuart R. Dennis
- Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Present address:
Department IT servicesSwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Philine G. D. Feulner
- Fish Ecology and Evolution, Center for Ecology, Evolution and BiogeochemistrySwiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
- Aquatic Ecology, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
65
|
Hoste A, Capblancq T, Broquet T, Denoyelle L, Perrier C, Buzan E, Šprem N, Corlatti L, Crestanello B, Hauffe HC, Pellissier L, Yannic G. Projection of current and future distribution of adaptive genetic units in an alpine ungulate. Heredity (Edinb) 2024; 132:54-66. [PMID: 38082151 PMCID: PMC10798982 DOI: 10.1038/s41437-023-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 01/21/2024] Open
Abstract
Climate projections predict major changes in alpine environments by the end of the 21st century. To avoid climate-induced maladaptation and extinction, many animal populations will either need to move to more suitable habitats or adapt in situ to novel conditions. Since populations of a species exhibit genetic variation related to local adaptation, it is important to incorporate this variation into predictive models to help assess the ability of the species to survive climate change. Here, we evaluate how the adaptive genetic variation of a mountain ungulate-the Northern chamois (Rupicapra rupicapra)-could be impacted by future global warming. Based on genotype-environment association analyses of 429 chamois using a ddRAD sequencing approach, we identified genetic variation associated with climatic gradients across the European Alps. We then delineated adaptive genetic units and projected the optimal distribution of these adaptive groups in the future. Our results suggest the presence of local adaptation to climate in Northern chamois with similar genetic adaptive responses in geographically distant but climatically similar populations. Furthermore, our results predict that future climatic changes will modify the Northern chamois adaptive landscape considerably, with various degrees of maladaptation risk.
Collapse
Affiliation(s)
- Amélie Hoste
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Thibaut Capblancq
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Thomas Broquet
- CNRS, Sorbonne Université, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Laure Denoyelle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Charles Perrier
- UMR CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, Montpellier, France
| | - Elena Buzan
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, 3320, Velenje, Slovenia
| | - Nikica Šprem
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000, Zagreb, Croatia
| | - Luca Corlatti
- Stelvio National Park - ERSAF Lombardia, Via De Simoni 42, 23032, Bormio, Italy
- Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Barbara Crestanello
- Conservation Genomics Unit, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 S, Michele all'Adige, TN, Italy
| | - Heidi Christine Hauffe
- Conservation Genomics Unit, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 S, Michele all'Adige, TN, Italy
| | - Loïc Pellissier
- Landscape Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zrich, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Glenn Yannic
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
66
|
Lo T, Coombe L, Gagalova KK, Marr A, Warren RL, Kirk H, Pandoh P, Zhao Y, Moore RA, Mungall AJ, Ritland C, Pavy N, Jones SJM, Bohlmann J, Bousquet J, Birol I, Thomson A. Assembly and annotation of the black spruce genome provide insights on spruce phylogeny and evolution of stress response. G3 (BETHESDA, MD.) 2023; 14:jkad247. [PMID: 37875130 PMCID: PMC10755193 DOI: 10.1093/g3journal/jkad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation.
Collapse
Affiliation(s)
- Theodora Lo
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Kristina K Gagalova
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Alex Marr
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - René L Warren
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Heather Kirk
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Pawan Pandoh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Yongjun Zhao
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Richard A Moore
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Andrew J Mungall
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Carol Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Joerg Bohlmann
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Inanç Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Ashley Thomson
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
67
|
Lipińska MM, Olędrzyńska N, Dudek M, Naczk AM, Łuszczek D, Szabó P, Speckmaier M, Szlachetko DL. Characters evolution of Encyclia (Laeliinae-Orchidaceae) reveals a complex pattern not phylogenetically determined: insights from macro- and micromorphology. BMC PLANT BIOLOGY 2023; 23:661. [PMID: 38124025 PMCID: PMC10731901 DOI: 10.1186/s12870-023-04664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Encyclia is the second-largest genus in the neotropical subtribe Laeliinae (Orchidaceae) and has more than 150 species, which are characterized by fairly consistent flower morphology. Its taxonomy and species boundaries, however, seem to be still under debate. In the present study, we first examined the lip micromorphology of 61 species of Encyclia sensu stricto. We correlated our results with external flower morphology and phylogenetic analyses performed on a combined dataset that included both nuclear (ITS, Xdh, PhyC) and plastid markers (ycf1, rpl32, and trnL-trnF). Phylogenetic reconstruction showed that Encyclia sensu stricto species form a coherent, monophyletic group. However, it is difficult to determine the relationships between the different groups within one larger clade. The groups all form distinct lineages that evolved from a common ancestor. The UPGMA cluster analysis for the seven qualitative micromorphological features clearly divides the genus into two main groups, the larger of which is further subdivided into two subgroups. None of these, however, overlap with any of the phylogeographic units distinguished in previously published papers or in presented article. It is worth noting that the groups resulting from the UPGMA analysis cannot be defined by macromorphological features. The pattern of similarities between species, taking into account both macro- and micromorphological features, is eminently mosaic in nature, and only a multifaceted approach can explain this enigmatic group.
Collapse
Affiliation(s)
- Monika M Lipińska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80308, Poland
- Foundation Polish Orchid Association, Sopot, 81825, Poland
| | - Natalia Olędrzyńska
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80308, Poland
| | - Magdalena Dudek
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80308, Poland
| | - Aleksandra M Naczk
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80308, Poland.
| | - Dorota Łuszczek
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80308, Poland
| | - Peter Szabó
- Individual Researcher, Vasvár, 9800, Hungary
| | - Manfred Speckmaier
- Botanischer Garten, Universität Wien, Rennweg 14/2, Raum G-10, Vienna, 1030, Austria
| | - Dariusz L Szlachetko
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80308, Poland
| |
Collapse
|
68
|
Zhang CL, Zhang J, Tuersuntuoheti M, Zhou W, Han Z, Li X, Yang R, Zhang L, Zheng L, Liu S. Landscape genomics reveals adaptive divergence of indigenous sheep in different ecological environments of Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166698. [PMID: 37683864 DOI: 10.1016/j.scitotenv.2023.166698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Sheep are important livestock animals that have evolved under various ecological pressures. Xinjiang is a region with diverse and harsh environments that have shaped many local sheep breeds with unique characteristics and environmental adaptability. However, these breeds are losing ecological flexibility due to the promotion of intensive farming practices. Here we sequenced 14 local sheep breeds from Xinjiang and analyzed their genetic structure and gene flow with other sheep breeds from neighboring regions. The Tibetan Plateau was the geographic origin of Xinjiang native sheep evolution. We performed genome-environment association analysis and identified Bio9: Mean Temperature of Driest Quarter and Bio15: Precipitation Seasonality as the key environmental factors affecting Xinjiang local sheep and the key genes involved in their survival and adaptation. We classified Xinjiang native sheep breeds into six groups based on their differential genes by pairwise selective sweep analysis and Community Network Analysis. We analyzed transcriptome expression data of 832 sheep tissues and detected tissue-specific enrichment of six group-specific genes in different biological systems. Our results revealed the genetic basis of year-round estrus, drought tolerance, hypoxia resistance, and cold tolerance traits of Xinjiang sheep breeds. Moreover, we proposed conservation strategies for Xinjiang local sheep breeds and provided theoretical guidance for breeding new sheep breeds under global extreme environments.
Collapse
Affiliation(s)
- Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Jihu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Mirenisa Tuersuntuoheti
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Ruizhi Yang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Langman Zheng
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xingfu Road, Alar 843300, Xinjiang, China.
| |
Collapse
|
69
|
Desbiez-Piat A, Ressayre A, Marchadier E, Noly A, Remoué C, Vitte C, Belcram H, Bourgais A, Galic N, Le Guilloux M, Tenaillon MI, Dillmann C. Pervasive G × E interactions shape adaptive trajectories and the exploration of the phenotypic space in artificial selection experiments. Genetics 2023; 225:iyad186. [PMID: 37824828 DOI: 10.1093/genetics/iyad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Quantitative genetics models have shown that long-term selection responses depend on initial variance and mutational influx. Understanding limits of selection requires quantifying the role of mutational variance. However, correlative responses to selection on nonfocal traits can perturb the selection response on the focal trait; and generations are often confounded with selection environments so that genotype by environment (G×E) interactions are ignored. The Saclay divergent selection experiments (DSEs) on maize flowering time were used to track the fate of individual mutations combining genotyping data and phenotyping data from yearly measurements (DSEYM) and common garden experiments (DSECG) with four objectives: (1) to quantify the relative contribution of standing and mutational variance to the selection response, (2) to estimate genotypic mutation effects, (3) to study the impact of G×E interactions in the selection response, and (4) to analyze how trait correlations modulate the exploration of the phenotypic space. We validated experimentally the expected enrichment of fixed beneficial mutations with an average effect of +0.278 and +0.299 days to flowering, depending on the genetic background. Fixation of unfavorable mutations reached up to 25% of incoming mutations, a genetic load possibly due to antagonistic pleiotropy, whereby mutations fixed in the selection environment (DSEYM) turned to be unfavorable in the evaluation environment (DSECG). Global patterns of trait correlations were conserved across genetic backgrounds but exhibited temporal patterns. Traits weakly or uncorrelated with flowering time triggered stochastic exploration of the phenotypic space, owing to microenvironment-specific fixation of standing variants and pleiotropic mutational input.
Collapse
Affiliation(s)
- Arnaud Desbiez-Piat
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
- Université Montpellier, INRAE, Institut Agro Montpellier, LEPSE, Montpellier 34000, France
| | - Adrienne Ressayre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Elodie Marchadier
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Alicia Noly
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institut of Plants Sciences Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Carine Remoué
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Clémentine Vitte
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Harry Belcram
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Aurélie Bourgais
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Nathalie Galic
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Martine Le Guilloux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Maud I Tenaillon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| | - Christine Dillmann
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| |
Collapse
|
70
|
Scucchia F, Wong K, Zaslansky P, Putnam HM, Goodbody-Gringley G, Mass T. Morphological and genetic mechanisms underlying the plasticity of the coral Porites astreoides across depths in Bermuda. J Struct Biol 2023; 215:108036. [PMID: 37832837 DOI: 10.1016/j.jsb.2023.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The widespread decline of shallow-water coral reefs has fueled interest in assessing whether mesophotic reefs can act as refugia replenishing deteriorated shallower reefs through larval exchange. Here we explore the morphological and molecular basis facilitating survival of planulae and adults of the coral Porites astreoides (Lamarck, 1816; Hexacorallia: Poritidae) along the vertical depth gradient in Bermuda. We found differences in micro-skeletal features such as bigger calyxes and coarser surface of the skeletal spines in shallow corals. Yet, tomographic reconstructions reveal an analogous mineral distribution between shallow and mesophotic adults, pointing to similar skeleton growth dynamics. Our study reveals patterns of host genetic connectivity and minimal symbiont depth-zonation across a broader depth range than previously known for this species in Bermuda. Transcriptional variations across life stages showed different regulation of metabolism and stress response functions, unraveling molecular responses to environmental conditions at different depths. Overall, these findings increase our understanding of coral acclimatory capability across broad vertical gradients, ultimately allowing better evaluation of the refugia potential of mesophotic reefs.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel; The Interuniversity Institute of Marine Sciences, Eilat, Israel.
| | - Kevin Wong
- Department of Biological Sciences, University of Rhode Island, Kingston, United States
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité-Universitätsmedizin, Berlin, Germany
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, United States
| | - Gretchen Goodbody-Gringley
- Central Caribbean Marine Institute, Little Cayman, Cayman Islands; Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel.
| |
Collapse
|
71
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
72
|
Chen T, Xu J, Wang L, Wang H, You E, Deng C, Bian H, Shen Y. Landscape genomics reveals adaptive genetic differentiation driven by multiple environmental variables in naked barley on the Qinghai-Tibetan Plateau. Heredity (Edinb) 2023; 131:316-326. [PMID: 37935814 PMCID: PMC10673939 DOI: 10.1038/s41437-023-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 11/09/2023] Open
Abstract
Understanding the local adaptation of crops has long been a concern of evolutionary biologists and molecular ecologists. Identifying the adaptive genetic variability in the genome is crucial not only to provide insights into the genetic mechanism of local adaptation but also to explore the adaptation potential of crops. This study aimed to identify the climatic drivers of naked barley landraces and putative adaptive loci driving local adaptation on the Qinghai-Tibetan Plateau (QTP). To this end, a total of 157 diverse naked barley accessions were genotyped using the genotyping-by-sequencing approach, which yielded 3123 high-quality SNPs for population structure analysis and partial redundancy analysis, and 37,636 SNPs for outlier analysis. The population structure analysis indicated that naked barley landraces could be divided into four groups. We found that the genomic diversity of naked barley landraces could be partly traced back to the geographical and environmental diversity of the landscape. In total, 136 signatures associated with temperature, precipitation, and ultraviolet radiation were identified, of which 13 had pleiotropic effects. We mapped 447 genes, including a known gene HvSs1. Some genes involved in cold stress and regulation of flowering time were detected near eight signatures. Taken together, these results highlight the existence of putative adaptive loci in naked barley on QTP and thus improve our current understanding of the genetic basis of local adaptation.
Collapse
Affiliation(s)
- Tongrui Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinqing Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, 810000, China
| | - Lei Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, 810000, China
| | - Handong Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, 810000, China
| | - En You
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Deng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Bian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, 810000, China.
| |
Collapse
|
73
|
Piatkowski B, Weston DJ, Aguero B, Duffy A, Imwattana K, Healey AL, Schmutz J, Shaw AJ. Divergent selection and climate adaptation fuel genomic differentiation between sister species of Sphagnum (peat moss). ANNALS OF BOTANY 2023; 132:499-512. [PMID: 37478307 PMCID: PMC10666999 DOI: 10.1093/aob/mcad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND AND AIMS New plant species can evolve through the reinforcement of reproductive isolation via local adaptation along habitat gradients. Peat mosses (Sphagnaceae) are an emerging model system for the study of evolutionary genomics and have well-documented niche differentiation among species. Recent molecular studies have demonstrated that the globally distributed species Sphagnum magellanicum is a complex of morphologically cryptic lineages that are phylogenetically and ecologically distinct. Here, we describe the architecture of genomic differentiation between two sister species in this complex known from eastern North America: the northern S. diabolicum and the largely southern S. magniae. METHODS We sampled plant populations from across a latitudinal gradient in eastern North America and performed whole genome and restriction-site associated DNA sequencing. These sequencing data were then analyzed computationally. KEY RESULTS Using sliding-window population genetic analyses we find that differentiation is concentrated within 'islands' of the genome spanning up to 400 kb that are characterized by elevated genetic divergence, suppressed recombination, reduced nucleotide diversity and increased rates of non-synonymous substitution. Sequence variants that are significantly associated with genetic structure and bioclimatic variables occur within genes that have functional enrichment for biological processes including abiotic stress response, photoperiodism and hormone-mediated signalling. Demographic modelling demonstrates that these two species diverged no more than 225 000 generations ago with secondary contact occurring where their ranges overlap. CONCLUSIONS We suggest that this heterogeneity of genomic differentiation is a result of linked selection and reflects the role of local adaptation to contrasting climatic zones in driving speciation. This research provides insight into the process of speciation in a group of ecologically important plants and strengthens our predictive understanding of how plant populations will respond as Earth's climate rapidly changes.
Collapse
Affiliation(s)
- Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Aaron Duffy
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Karn Imwattana
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Adam L Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
74
|
Nimbs MJ, Champion C, Lobos SE, Malcolm HA, Miller AD, Seinor K, Smith SD, Knott N, Wheeler D, Coleman MA. Genomic analyses indicate resilience of a commercially and culturally important marine gastropod snail to climate change. PeerJ 2023; 11:e16498. [PMID: 38025735 PMCID: PMC10676721 DOI: 10.7717/peerj.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Genomic vulnerability analyses are being increasingly used to assess the adaptability of species to climate change and provide an opportunity for proactive management of harvested marine species in changing oceans. Southeastern Australia is a climate change hotspot where many marine species are shifting poleward. The turban snail, Turbo militaris is a commercially and culturally harvested marine gastropod snail from eastern Australia. The species has exhibited a climate-driven poleward range shift over the last two decades presenting an ongoing challenge for sustainable fisheries management. We investigate the impact of future climate change on T. militaris using genotype-by-sequencing to project patterns of gene flow and local adaptation across its range under climate change scenarios. A single admixed, and potentially panmictic, demographic unit was revealed with no evidence of genetic subdivision across the species range. Significant genotype associations with heterogeneous habitat features were observed, including associations with sea surface temperature, ocean currents, and nutrients, indicating possible adaptive genetic differentiation. These findings suggest that standing genetic variation may be available for selection to counter future environmental change, assisted by widespread gene flow, high fecundity and short generation time in this species. We discuss the findings of this study in the content of future fisheries management and conservation.
Collapse
Affiliation(s)
- Matt J. Nimbs
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Simon E. Lobos
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Hamish A. Malcolm
- NSW Department of Primary Industries, Fisheries Research, Coffs Harbour, NSW, Australia
| | - Adam D. Miller
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Kate Seinor
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Stephen D.A. Smith
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Aquamarine Australia, Mullaway, NSW, Australia
| | - Nathan Knott
- NSW Department of Primary Industries, Fisheries Research, Huskisson, NSW, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange, NSW, Australia
| | - Melinda A. Coleman
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| |
Collapse
|
75
|
Ramírez-Sánchez D, Gibelin-Viala C, Roux F, Vailleau F. Genetic architecture of the response of Arabidopsis thaliana to a native plant-growth-promoting bacterial strain. FRONTIERS IN PLANT SCIENCE 2023; 14:1266032. [PMID: 38023938 PMCID: PMC10665851 DOI: 10.3389/fpls.2023.1266032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
By improving plant nutrition and alleviating abiotic and biotic stresses, plant growth-promoting bacteria (PGPB) can help to develop eco-friendly and sustainable agricultural practices. Besides climatic conditions, soil conditions, and microbe-microbe interactions, the host genotype influences the effectiveness of PGPB. Yet, most GWAS conducted to characterize the genetic architecture of response to PGPB are based on non-native interactions between a host plant and PGPB strains isolated from the belowground compartment of other plants. In this study, a GWAS was set up under in vitro conditions to describe the genetic architecture of the response of Arabidopsis thaliana to the PGPB Pseudomonas siliginis, by inoculating seeds of 162 natural accessions from the southwest of France with one strain isolated from the leaf compartment in the same geographical region. Strong genetic variation of plant growth response to this native PGPB was observed at a regional scale, with the strain having a positive effect on the vegetative growth of small plants and a negative effect on the vegetative growth of large plants. The polygenic genetic architecture underlying this negative trade-off showed suggestive signatures of local adaptation. The main eco-evolutionary relevant candidate genes are involved in seed and root development.
Collapse
|
76
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
77
|
Feng S, Xi E, Wan W, Ru D. Genomic signals of local adaptation in Picea crassifolia. BMC PLANT BIOLOGY 2023; 23:534. [PMID: 37919677 PMCID: PMC10623705 DOI: 10.1186/s12870-023-04539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Global climate change poses a grave threat to biodiversity and underscores the importance of identifying the genes and corresponding environmental factors involved in the adaptation of tree species for the purposes of conservation and forestry. This holds particularly true for spruce species, given their pivotal role as key constituents of the montane, boreal, and sub-alpine forests in the Northern Hemisphere. RESULTS Here, we used transcriptomes, species occurrence records, and environmental data to investigate the spatial genetic distribution of and the climate-associated genetic variation in Picea crassifolia. Our comprehensive analysis employing ADMIXTURE, principal component analysis (PCA) and phylogenetic methodologies showed that the species has a complex population structure with obvious differentiation among populations in different regions. Concurrently, our investigations into isolation by distance (IBD), isolation by environment (IBE), and niche differentiation among populations collectively suggests that local adaptations are driven by environmental heterogeneity. By integrating population genomics and environmental data using redundancy analysis (RDA), we identified a set of climate-associated single-nucleotide polymorphisms (SNPs) and showed that environmental isolation had a more significant impact than geographic isolation in promoting genetic differentiation. We also found that the candidate genes associated with altitude, temperature seasonality (Bio4) and precipitation in the wettest month (Bio13) may be useful for forest tree breeding. CONCLUSIONS Our findings deepen our understanding of how species respond to climate change and highlight the importance of integrating genomic and environmental data in untangling local adaptations.
Collapse
Affiliation(s)
- Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, People's Republic of China.
| | - Erning Xi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, People's Republic of China
| | - Wei Wan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, People's Republic of China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
78
|
Zhang K, Yang Q, Du M, Zhang Z, Wang W, Zhang G, Li A, Li L. Genome-wide mapping of regulatory variants for temperature- and salinity-adaptive genes reveals genetic basis of genotype-by-environment interaction in Crassostrea ariakensis. ENVIRONMENTAL RESEARCH 2023; 236:116614. [PMID: 37442261 DOI: 10.1016/j.envres.2023.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Regulatory variants in gene expression serve as bridges linking genetic variation and phenotypic plasticity. Environmental conditions typically influence the effects of regulatory variants on phenotypic plasticity; however, such genotype-by-environment interactions (G × E) are poorly understood. This study aimed to investigate the genetic basis of G × E in estuarine oyster (Crassostrea ariakensis), which is an important model animal for studying environmental adaption owing to its high plasticity and large intraspecific divergence. Genome-wide mapping of expression quantitative trait loci (eQTLs) for 23 environmental adaptive genes was performed for 256 estuarine oysters. We identified 1194 eQTL single nucleotide polymorphisms (eSNPs), including 433 cis-eSNPs in four genes and 722 trans-eSNPs in eight genes. The expression variation explanation of cis-eSNPs (9.95%) was significantly higher than that of trans-eSNPs (9.15%). We specifically showed cis- and trans-eSNPs with high linkage disequilibrium (LD) for Traf7, Slc6a5, Ggt, and Dap3. For example, we identified a cis-regulatory LD block containing 68 cis-eSNP and a trans-regulatory LD block, including 20 trans-eSNPs in Traf7. A high proportion (85%) of 40 vital eSNPs exhibited significant G × E effects. We identified crossing and nonparallel interactions of G × E, with the tag cis-eSNPs of Baat and Slc6a5 as representatives. Our results indicated that cis-eQTLs are highly conserved. This study provides insights into the understanding of adaptive evolutionary mechanisms and phenotypic response prediction to variable environments, as well as the genetic improvement for superior adaptive traits for genetic resource conservation and aquaculture.
Collapse
Affiliation(s)
- Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266000, China.
| |
Collapse
|
79
|
Karunarathne P, Zhou Q, Schliep K, Milesi P. A comprehensive framework for detecting copy number variants from single nucleotide polymorphism data: 'rCNV', a versatile r package for paralogue and CNV detection. Mol Ecol Resour 2023; 23:1772-1789. [PMID: 37515483 DOI: 10.1111/1755-0998.13843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Recent studies have highlighted the significant role of copy number variants (CNVs) in phenotypic diversity, environmental adaptation and species divergence across eukaryotes. The presence of CNVs also has the potential to introduce genotyping biases, which can pose challenges to accurate population and quantitative genetic analyses. However, detecting CNVs in genomes, particularly in non-model organisms, presents a formidable challenge. To address this issue, we have developed a statistical framework and an accompanying r software package that leverage allelic-read depth from single nucleotide polymorphism (SNP) data for accurate CNV detection. Our framework capitalises on two key principles. First, it exploits the distribution of allelic-read depth ratios in heterozygotes for individual SNPs by comparing it against an expected distribution based on binomial sampling. Second, it identifies SNPs exhibiting an apparent excess of heterozygotes under Hardy-Weinberg equilibrium. By employing multiple statistical tests, our method not only enhances sensitivity to sampling effects but also effectively addresses reference biases, resulting in optimised SNP classification. Our framework is compatible with various NGS technologies (e.g. RADseq, Exome-capture). This versatility enables CNV calling from genomes of diverse complexities. To streamline the analysis process, we have implemented our framework in the user-friendly r package 'rCNV', which automates the entire workflow seamlessly. We trained our models using simulated data and validated their performance on four datasets derived from different sequencing technologies, including RADseq (Chinook salmon-Oncorhynchus tshawytscha), Rapture (American lobster-Homarus americanus), Exome-capture (Norway spruce-Picea abies) and WGS (Malaria mosquito-Anopheles gambiae).
Collapse
Affiliation(s)
- Piyal Karunarathne
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
- Institute of Population Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
| | - Klaus Schliep
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
| |
Collapse
|
80
|
Zou Y, Wei Z, Xiao K, Wu Z, Xu X. Genomic analysis of the emergent aquatic plant Sparganium stoloniferum provides insights into its clonality, local adaptation and demographic history. Mol Ecol Resour 2023; 23:1868-1879. [PMID: 37489278 DOI: 10.1111/1755-0998.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Clonal propagation and extensive dispersal of seeds and asexual propagules are two important features of aquatic plants that help them adapt to aquatic environments. Accurate measurements of clonality and effective clonal dispersal are essential for understanding the evolution of aquatic plants. Here, we first assembled a high-quality chromosome-level genome of a widespread emergent aquatic plant Sparganium stoloniferum to provide a reference for its population genomic study. We then performed high-depth resequencing of 173 individuals from 20 populations covering different basins across its range in China. Population genomic analyses revealed three genetic lineages reflecting the northeast (NE), southwest (SW) and northwest (NW) of its geographical distribution. The NE lineage diverged in the middle Pleistocene while the SW and NW lineages diverged until about 2400 years ago. Clonal relationship analyses identified nine populations as monoclonal population. Dispersal of vegetative propagules was identified between five populations covering three basins in the NE lineage, and dispersal distance was up to 1041 km, indicating high dispersibility in emergent aquatic plant species. We also identified lineage-specific positively selected genes that are likely to be involved in adaptations to saline wetlands and high-altitude environments. Our findings accurately measure the clonality, determine the dispersal range and frequency of vegetative propagules, and detect genetic signatures of local adaptation in a widespread emergent aquatic plant species, providing new perspectives on the evolution of aquatic plants.
Collapse
Affiliation(s)
- Yang Zou
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zijie Wei
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, China
| | - Keyan Xiao
- Hubei Xiuhu Botanical Garden, Xiaogan, China
| | - Zhigang Wu
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xinwei Xu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
81
|
Zinevich L, Prommer M, Laczkó L, Rozhkova D, Sorokin A, Karyakin I, Bagyura J, Cserkész T, Sramkó G. Phylogenomic insights into the polyphyletic nature of Altai falcons within eastern sakers (Falco cherrug) and the origins of gyrfalcons (Falco rusticolus). Sci Rep 2023; 13:17800. [PMID: 37853004 PMCID: PMC10584951 DOI: 10.1038/s41598-023-44534-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
The Altai falcon from Central Asia always attracted the attention of humans. Long considered a totemic bird in its native area, modern falconers still much appreciated this large-bodied and mighty bird of prey due to its rarity and unique look. The peculiar body characteristics halfway between the saker falcon (Falco cherrug) and the gyrfalcon (F. rusticolus) triggered debates about its contentious taxonomy. The weak phylogenetic signal associated with traditional genetic methods could not resolve this uncertainty. Here, we address the controversial evolutionary origin of Altai falcons by means of a genome-wide approach, Restriction-site Associated DNA sequencing, using sympatric eastern sakers falcons, allopatric western saker falcons and gyrfalcons as outgroup. This approach provided an unprecedented insight into the phylogenetic relationships of the studied populations by delivering 17,095 unlinked SNPs shedding light on the polyphyletic nature of Altai falcons within eastern sakers. Thus we concluded that the former must correspond to a low taxonomic rank, probably an ecotype or form of the latter. Also, we found that eastern sakers are paraphyletic without gyrfalcons, thus, these latter birds are best regarded as the direct sister lineage of the eastern sakers. This evolutionary relationship, corroborated also by re-analyzing the dataset with the inclusion of outgroup samples (F. biarmicus and F. peregrinus), put eastern sakers into a new light as the potential ancestral genetic source of high latitude and altitude adaptation in descendent populations. Finally, conservation genomic values hint at the stable genetic background of the studied saker populations.
Collapse
Affiliation(s)
- Liudmila Zinevich
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow, Russian Federation
- All-Russian Research Institute for Environmental Protection, Moscow, Russian Federation
| | | | - Levente Laczkó
- HUN-REN-UD Conservation Biology Research Group, Egyetem tér 1, Debrecen, 4032, Hungary
- Evolutionary Genomics Research Group, Department of Botany, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Daria Rozhkova
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow, Russian Federation
- All-Russian Research Institute for Environmental Protection, Moscow, Russian Federation
| | - Alexander Sorokin
- All-Russian Research Institute for Environmental Protection, Moscow, Russian Federation
| | | | - János Bagyura
- MME - BirdLife Hungary, Költő utca 21, Budapest, 1121, Hungary
| | - Tamás Cserkész
- Hungarian Natural History Museum, Baross utca 13, Budapest, 1088, Hungary
| | - Gábor Sramkó
- HUN-REN-UD Conservation Biology Research Group, Egyetem tér 1, Debrecen, 4032, Hungary.
- Evolutionary Genomics Research Group, Department of Botany, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
82
|
Chaturvedi A, Li X, Dhandapani V, Marshall H, Kissane S, Cuenca-Cambronero M, Asole G, Calvet F, Ruiz-Romero M, Marangio P, Guigó R, Rago D, Mirbahai L, Eastwood N, Colbourne J, Zhou J, Mallon E, Orsini L. The hologenome of Daphnia magna reveals possible DNA methylation and microbiome-mediated evolution of the host genome. Nucleic Acids Res 2023; 51:9785-9803. [PMID: 37638757 PMCID: PMC10570034 DOI: 10.1093/nar/gkad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Properties that make organisms ideal laboratory models in developmental and medical research are often the ones that also make them less representative of wild relatives. The waterflea Daphnia magna is an exception, by both sharing many properties with established laboratory models and being a keystone species, a sentinel species for assessing water quality, an indicator of environmental change and an established ecotoxicology model. Yet, Daphnia's full potential has not been fully exploited because of the challenges associated with assembling and annotating its gene-rich genome. Here, we present the first hologenome of Daphnia magna, consisting of a chromosomal-level assembly of the D. magna genome and the draft assembly of its metagenome. By sequencing and mapping transcriptomes from exposures to environmental conditions and from developmental morphological landmarks, we expand the previously annotates gene set for this species. We also provide evidence for the potential role of gene-body DNA-methylation as a mutagen mediating genome evolution. For the first time, our study shows that the gut microbes provide resistance to commonly used antibiotics and virulence factors, potentially mediating Daphnia's environmental-driven rapid evolution. Key findings in this study improve our understanding of the contribution of DNA methylation and gut microbiota to genome evolution in response to rapidly changing environments.
Collapse
Affiliation(s)
- Anurag Chaturvedi
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaojing Li
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Hollie Marshall
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- Department of Genetics and Genome Biology, the University of Leicester, Leicester LE1 7RH, UK
| | - Stephen Kissane
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Maria Cuenca-Cambronero
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- Aquatic Ecology Group, University of Vic - Central University of Catalonia, 08500 Vic, Spain
| | - Giovanni Asole
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Ferriol Calvet
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Paolo Marangio
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Daria Rago
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Leda Mirbahai
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Niamh Eastwood
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Jiarui Zhou
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Eamonn Mallon
- Department of Genetics and Genome Biology, the University of Leicester, Leicester LE1 7RH, UK
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- The Alan Turing Institute, British Library, London NW1 2DB, UK
| |
Collapse
|
83
|
Petak C, Frati L, Brennan RS, Pespeni MH. Whole-Genome Sequencing Reveals That Regulatory and Low Pleiotropy Variants Underlie Local Adaptation to Environmental Variability in Purple Sea Urchins. Am Nat 2023; 202:571-586. [PMID: 37792925 DOI: 10.1086/726013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractOrganisms experience environments that vary across both space and time. Such environmental heterogeneity shapes standing genetic variation and may influence species' capacity to adapt to rapid environmental change. However, we know little about the kind of genetic variation that is involved in local adaptation to environmental variability. To address this gap, we sequenced the whole genomes of 140 purple sea urchins (Strongylocentrotus purpuratus) from seven populations that vary in their degree of pH variability. Despite no evidence of global population structure, we found a suite of single-nucleotide polymorphisms (SNPs) tightly correlated with local pH variability (outlier SNPs), which were overrepresented in regions putatively involved in gene regulation (long noncoding RNA and enhancers), supporting the idea that variation in regulatory regions is important for local adaptation to variability. In addition, outliers in genes were found to be (i) enriched for biomineralization and ion homeostasis functions related to low pH response, (ii) less central to the protein-protein interaction network, and (iii) underrepresented among genes highly expressed during early development. Taken together, these results suggest that loci that underlie local adaptation to pH variability in purple sea urchins fall in regions with potentially low pleiotropic effects (based on analyses involving regulatory regions, network centrality, and expression time) involved in low pH response (based on functional enrichment).
Collapse
|
84
|
Shu M, Moran EV. Identifying genetic variation associated with environmental gradients and drought-tolerance phenotypes in ponderosa pine. Ecol Evol 2023; 13:e10620. [PMID: 37841219 PMCID: PMC10576020 DOI: 10.1002/ece3.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
As climate changes, understanding the genetic basis of local adaptation in plants becomes an ever more pressing issue. Combining genotype-environment association (GEA) with genotype-phenotype association (GPA) analysis has an exciting potential to uncover the genetic basis of environmental responses. We use these approaches to identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individuals from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained after filtering for proximity to genes and used in our association analyses. We found 1374 associated with five major climate variables, with the largest number (1151) associated with April 1st snowpack. We also conducted a greenhouse study with various drought-tolerance traits measured in first-year seedlings of a subset of the genotyped trees grown in the greenhouse. 796 SNPs were associated with control-condition trait values, while 1149 were associated with responsiveness of these traits to drought. While no individual SNPs were associated with both the environmental variables and the measured traits, several annotated genes were associated with both, particularly those involved in cell wall formation, biotic and abiotic stress responses, and ubiquitination. However, the functions of many of the associated genes have not yet been determined due to the lack of gene annotation information for conifers. Future studies are needed to assess the developmental roles and ecological significance of these unknown genes.
Collapse
Affiliation(s)
- Mengjun Shu
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Emily V. Moran
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
85
|
Sun YX, Hu LS, Dong YW. Surviving hot summer: Roles of phenotypic plasticity of intertidal mobile species considering microhabitat environmental heterogeneity. J Therm Biol 2023; 117:103686. [PMID: 37669600 DOI: 10.1016/j.jtherbio.2023.103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 09/07/2023]
Abstract
For species inhabiting warming and variable thermal environment, coordinated changes in heat tolerance to temperature fluctuations, which largely depend on phenotypic plasticity, are pivotal in buffering high temperatures. Determining the roles of phenotypic plasticity in wild populations and common garden experiments help us understand how organisms survive hot summer and the warming world. We thus monitored the operative temperature of the intertidal limpets Cellana toreuma in both emergent rock and tidal pool microhabitats from June to October 2021, determined the variations of upper thermal limits of short-term acclimated and long-term acclimated limpets from different microhabitats (emergent rock and tidal pool), and further calculated the relationship between the upper thermal limits and acclimation capacity. Our results indicated that living on the emergent rock, limpets encountered more extreme events in summer. For the short-term acclimated samples, limpets on the emergent rock exhibited obvious variations of sublethal thermal limit (i.e., Arrhenius Break Point of cardiac performance, ABT) during summer months, however, this variation of ABT was absent in the limpets in the tidal pool. After the laboratory long-term acclimation, the ABTs and FLTs (Flat Line Temperature of cardiac performance, as an indicator of lethal temperature) of limpets both on the rock and in the tidal pool increased significantly in October, implying the potential existence of selection during the hot summer. Our results further showed that environmental temperature was an important driver of phenotypic plasticity. This study highlighted the changes in the thermal tolerance of intertidal limpets during summer in different microhabitats.
Collapse
Affiliation(s)
- Yong-Xu Sun
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Li-Sha Hu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China.
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
86
|
Heraghty SD, Jackson JM, Lozier JD. Whole genome analyses reveal weak signatures of population structure and environmentally associated local adaptation in an important North American pollinator, the bumble bee Bombus vosnesenskii. Mol Ecol 2023; 32:5479-5497. [PMID: 37702957 DOI: 10.1111/mec.17125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Studies of species that experience environmental heterogeneity across their distributions have become an important tool for understanding mechanisms of adaptation and predicting responses to climate change. We examine population structure, demographic history and environmentally associated genomic variation in Bombus vosnesenskii, a common bumble bee in the western USA, using whole genome resequencing of populations distributed across a broad range of latitudes and elevations. We find that B. vosnesenskii exhibits minimal population structure and weak isolation by distance, confirming results from previous studies using other molecular marker types. Similarly, demographic analyses with Sequentially Markovian Coalescent models suggest that minimal population structure may have persisted since the last interglacial period, with genomes from different parts of the species range showing similar historical effective population size trajectories and relatively small fluctuations through time. Redundancy analysis revealed a small amount of genomic variation explained by bioclimatic variables. Environmental association analysis with latent factor mixed modelling (LFMM2) identified few outlier loci that were sparsely distributed throughout the genome and although a few putative signatures of selective sweeps were identified, none encompassed particularly large numbers of loci. Some outlier loci were in genes with known regulatory relationships, suggesting the possibility of weak selection, although compared with other species examined with similar approaches, evidence for extensive local adaptation signatures in the genome was relatively weak. Overall, results indicate B. vosnesenskii is an example of a generalist with a high degree of flexibility in its environmental requirements that may ultimately benefit the species under periods of climate change.
Collapse
Affiliation(s)
- Sam D Heraghty
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
87
|
Donnelly S, Akin‐Fajiye M, Fraser LH. Plant provenance can influence the impacts of temperature and moisture on intraspecific competition in Pseudoroegneria spicata. Ecol Evol 2023; 13:e10603. [PMID: 37886429 PMCID: PMC10598250 DOI: 10.1002/ece3.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 10/28/2023] Open
Abstract
Warming and changing precipitation can alter the performance of native grasses that are essential to grassland ecosystems. Native grasses may respond to changing climate by phenotypic plasticity or lose their current ranges. Establishing plant species from southern, warmer provenances may reduce the likelihood of biodiversity loss and improve restoration success in cool, northern locations that are undergoing warming. We conducted competition trials for Pseudoroegneria spicata (bluebunch wheatgrass), a native grass commonly found in western North American grasslands, to understand the impact of temperature and moisture on plant-plant interactions. We obtained seeds from three locations along a latitudinal gradient in North America, two in British Columbia (BC), Canada, and one in California, USA. We compared the effects of warming, changing water inputs, and competitor provenance on pairwise competitive interactions among Pseudoroegneria spicata plants grown from seeds obtained from the three locations. We quantified interactions using the relative interaction intensity, which has values from -1 (complete competition) to +1 (complete facilitation). Target plants from northern British Columbia, the location with the coldest summer temperature, were generally more competitively suppressed when competing with plants from California, which had the warmest summer temperature and lowest summer precipitation. Competitive suppression of target plants from northern British Columbia and southern British Columbia was more intense when competitor provenance was more geographically distant from target plant provenance. Finally, plants from northern British Columbia and southern British Columbia were more suppressed at higher temperatures, indicating some local adaptation, while plants from California were not affected by competitors, temperature, or water input. Plants grown from seeds obtained from warm and dry locations appear to be more tolerant to competition at higher temperatures, compared to plants from cooler regions. Native plant diversity and restoration success in grasslands subjected to climate change may be preserved or improved by assisted migration of seeds from warm to cooler but warming locations.
Collapse
Affiliation(s)
- Sabina Donnelly
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| | - Morodoluwa Akin‐Fajiye
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| | - Lauchlan H. Fraser
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| |
Collapse
|
88
|
Wakamiya T, Kamioka T, Ishii Y, Takahashi J, Maeda T, Kawata M. Genetic differentiation and local adaptation of the Japanese honeybee, Apis cerana japonica. Ecol Evol 2023; 13:e10573. [PMID: 37780082 PMCID: PMC10541296 DOI: 10.1002/ece3.10573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
We examine the population genetic structure and divergence among the regional populations of the Japanese honeybee, Apis cerana japonica, by re-sequencing the genomes of 105 individuals from the three main Japanese islands with diverse climates. The genetic structure results indicated that these individuals are distinct from the mainland Chinese A. cerana samples. Furthermore, population structure analyses have identified three genetically distinct geographic regions in Japan: Northern (Tohoku-Kanto-Chubu districts), Central (Chugoku district), and Southern (Kyushu district). In some districts, "possible non-native" individuals, likely introduced from other regions in recent years, were discovered. Then, genome-wide scans were conducted to detect candidate genes for adaptation by two different approaches. We performed a population branch statistics (PBS) analysis to identify candidate genes for population-specific divergence. A latent factor mixed model (LFMM) was used to identify genes associated with climatic variables along a geographic gradient. The PBSmax analysis identified 25 candidate genes for population-specific divergence whereas the LFMM analysis identified 73 candidate genes for adaptation to climatic variables along a geographic gradient. However, no common genes were identified by both methods.
Collapse
Affiliation(s)
- Takeshi Wakamiya
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Biological SciencesTokyo Metropolitan UniversityHachiojiJapan
| | | | - Yuu Ishii
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Taro Maeda
- Institute for Agro‐Environmental Sciences (NIAES)NAROTsukubaJapan
| | - Masakado Kawata
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
89
|
Bedford JA, Carine M, Chapman MA. Detection of locally adapted genomic regions in wild rice (Oryza rufipogon) using environmental association analysis. G3 (BETHESDA, MD.) 2023; 13:jkad194. [PMID: 37619981 PMCID: PMC10542315 DOI: 10.1093/g3journal/jkad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Oryza rufipogon is the wild progenitor of cultivated rice Oryza sativa and exhibits high levels of genetic diversity across its distribution, making it a useful resource for the identification of abiotic stress-tolerant varieties and genes that could limit future climate-changed-induced yield losses. To investigate local adaptation in O. rufipogon, we analyzed single nucleotide polymorphism (SNP) data from a panel of 286 samples located across a diverse range of climates. Environmental association analysis (EAA), a genome-wide association study (GWAS)-based method, was used and revealed 15 regions of the genome significantly associated with various climate factors. Genes within these environmentally associated regions have putative functions in abiotic stress response, phytohormone signaling, and the control of flowering time. This provides an insight into potential local adaptation in O. rufipogon and reveals possible locally adaptive genes that may provide opportunities for breeding novel rice varieties with climate change-resilient phenotypes.
Collapse
Affiliation(s)
- James A Bedford
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Mark Carine
- Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
90
|
Tanaka T, Hayakawa T, Teshima KM. Power of neutrality tests for detecting natural selection. G3 (BETHESDA, MD.) 2023; 13:jkad161. [PMID: 37481468 PMCID: PMC10542275 DOI: 10.1093/g3journal/jkad161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Detection of natural selection is one of the main interests in population genetics. Thus, many tests have been developed for detecting natural selection using genomic data. Although it is recognized that the utility of tests depends on several evolutionary factors, such as the timing of selection, strength of selection, frequency of selected alleles, demographic events, and initial frequency of selected allele when selection started acting (softness of selection), the relationships between such evolutionary factors and the power of tests are not yet entirely clear. In this study, we investigated the power of 4 tests: Tajiama's D, Fay and Wu's H, relative extended haplotype homozygosity (rEHH), and integrated haplotype score (iHS), under ranges of evolutionary parameters and demographic models to quantitatively expand the understanding of approaches for detecting selection. The results show that each test detects selection within a limited parameter range, and there are still wide ranges of parameters for which none of these tests work effectively. In addition, the parameter space in which each test shows the highest power overlaps the empirical results of previous research. These results indicate that our present perspective of adaptation is limited to only a part of actual adaptation.
Collapse
Affiliation(s)
- Tomotaka Tanaka
- Graduate School of System Life Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiyuki Hayakawa
- Graduate School of System Life Science, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Kosuke M Teshima
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
91
|
Enbody ED, Sendell-Price AT, Sprehn CG, Rubin CJ, Visscher PM, Grant BR, Grant PR, Andersson L. Community-wide genome sequencing reveals 30 years of Darwin's finch evolution. Science 2023; 381:eadf6218. [PMID: 37769091 DOI: 10.1126/science.adf6218] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galápagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd., St. Lucia QLD 4072, Australia
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Pkwy Building 2, College Station, TX 77843, USA
| |
Collapse
|
92
|
Maduna SN, Jónsdóttir ÓDB, Imsland AKD, Gíslason D, Reynolds P, Kapari L, Hangstad TA, Meier K, Hagen SB. Genomic Signatures of Local Adaptation under High Gene Flow in Lumpfish-Implications for Broodstock Provenance Sourcing and Larval Production. Genes (Basel) 2023; 14:1870. [PMID: 37895225 PMCID: PMC10606024 DOI: 10.3390/genes14101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for "cleaner fish" to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype-environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our 'global' sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.
Collapse
Affiliation(s)
- Simo Njabulo Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway;
| | | | - Albert Kjartan Dagbjartarson Imsland
- Akvaplan-Niva Iceland Office, Akralind 6, 201 Kópavogur, Iceland; (Ó.D.B.J.); (A.K.D.I.)
- Department of Biological Sciences, High Technology Centre, University of Bergen, 5020 Bergen, Norway
| | | | | | - Lauri Kapari
- Akvaplan-Niva, Framsenteret, 9296 Tromsø, Norway;
| | | | | | - Snorre B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway;
| |
Collapse
|
93
|
Rahman SR, Lozier JD. Genome-wide DNA methylation patterns in bumble bee (Bombus vosnesenskii) populations from spatial-environmental range extremes. Sci Rep 2023; 13:14901. [PMID: 37689750 PMCID: PMC10492822 DOI: 10.1038/s41598-023-41896-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Unraveling molecular mechanisms of adaptation to complex environments is crucial to understanding tolerance of abiotic pressures and responses to climatic change. Epigenetic variation is increasingly recognized as a mechanism that can facilitate rapid responses to changing environmental cues. To investigate variation in genetic and epigenetic diversity at spatial and thermal extremes, we use whole genome and methylome sequencing to generate a high-resolution map of DNA methylation in the bumble bee Bombus vosnesenskii. We sample two populations representing spatial and environmental range extremes (a warm southern low-elevation site and a cold northern high-elevation site) previously shown to exhibit differences in thermal tolerance and determine positions in the genome that are consistently and variably methylated across samples. Bisulfite sequencing reveals methylation characteristics similar to other arthropods, with low global CpG methylation but high methylation concentrated in gene bodies and in genome regions with low nucleotide diversity. Differentially methylated sites (n = 2066) were largely hypomethylated in the northern high-elevation population but not related to local sequence differentiation. The concentration of methylated and differentially methylated sites in exons and putative promoter regions suggests a possible role in gene regulation, and this high-resolution analysis of intraspecific epigenetic variation in wild Bombus suggests that the function of methylation in niche adaptation would be worth further investigation.
Collapse
Affiliation(s)
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
94
|
Leites L, Benito Garzón M. Forest tree species adaptation to climate across biomes: Building on the legacy of ecological genetics to anticipate responses to climate change. GLOBAL CHANGE BIOLOGY 2023; 29:4711-4730. [PMID: 37029765 DOI: 10.1111/gcb.16711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Intraspecific variation plays a critical role in extant and future forest responses to climate change. Forest tree species with wide climatic niches rely on the intraspecific variation resulting from genetic adaptation and phenotypic plasticity to accommodate spatial and temporal climate variability. A centuries-old legacy of forest ecological genetics and provenance trials has provided a strong foundation upon which to continue building on this knowledge, which is critical to maintain climate-adapted forests. Our overall objective is to understand forest trees intraspecific responses to climate across species and biomes, while our specific objectives are to describe ecological genetics models used to build our foundational knowledge, summarize modeling approaches that have expanded the traditional toolset, and extensively review the literature from 1994 to 2021 to highlight the main contributions of this legacy and the new analyzes of provenance trials. We reviewed 103 studies comprising at least three common gardens, which covered 58 forest tree species, 28 of them with range-wide studies. Although studies using provenance trial data cover mostly commercially important forest tree species from temperate and boreal biomes, this synthesis provides a global overview of forest tree species adaptation to climate. We found that evidence for genetic adaptation to local climate is commonly present in the species studied (79%), being more common in conifers (87.5%) than in broadleaf species (67%). In 57% of the species, clines in fitness-related traits were associated with temperature variables, in 14% of the species with precipitation, and in 25% of the species with both. Evidence of adaptation lags was found in 50% of the species with range-wide studies. We conclude that ecological genetics models and analysis of provenance trial data provide excellent insights on intraspecific genetic variation, whereas the role and limits of phenotypic plasticity, which will likely determine the fate of extant forests, is vastly understudied.
Collapse
Affiliation(s)
- Laura Leites
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
95
|
Everitt T, Wallberg A, Christmas MJ, Olsson A, Hoffmann W, Neumann P, Webster MT. The Genomic Basis of Adaptation to High Elevations in Africanized Honey Bees. Genome Biol Evol 2023; 15:evad157. [PMID: 37625795 PMCID: PMC10484329 DOI: 10.1093/gbe/evad157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
A range of different genetic architectures underpin local adaptation in nature. Honey bees (Apis mellifera) in the Eastern African Mountains harbor high frequencies of two chromosomal inversions that likely govern adaptation to this high-elevation habitat. In the Americas, honey bees are hybrids of European and African ancestries and adaptation to latitudinal variation in climate correlates with the proportion of these ancestries across the genome. It is unknown which, if either, of these forms of genetic variation governs adaptation in honey bees living at high elevations in the Americas. Here, we performed whole-genome sequencing of 29 honey bees from both high- and low-elevation populations in Colombia. Analysis of genetic ancestry indicated that both populations were predominantly of African ancestry, but the East African inversions were not detected. However, individuals in the higher elevation population had significantly higher proportions of European ancestry, likely reflecting local adaptation. Several genomic regions exhibited particularly high differentiation between highland and lowland bees, containing candidate loci for local adaptation. Genes that were highly differentiated between highland and lowland populations were enriched for functions related to reproduction and sperm competition. Furthermore, variation in levels of European ancestry across the genome was correlated between populations of honey bees in the highland population and populations at higher latitudes in South America. The results are consistent with the hypothesis that adaptation to both latitude and elevation in these hybrid honey bees are mediated by variation in ancestry at many loci across the genome.
Collapse
Affiliation(s)
- Turid Everitt
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Wallberg
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Wolfgang Hoffmann
- Grupo de Biocalorimetría, Universidad de Pamplona, Pamplona, Colombia
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Matthew T Webster
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
96
|
Deng Z, Zhang X, Wolinska J, Blair D, Hu W, Yin M. Climate has contributed to population diversification of Daphnia galeata across Eurasia. Mol Ecol 2023; 32:5110-5124. [PMID: 37548328 DOI: 10.1111/mec.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Climate is a fundamental abiotic factor that plays a key role in driving the evolution, distribution and population diversification of species. However, there have been few investigations of genomic signatures of adaptation to local climatic conditions in cladocerans. Here, we have provided the first high-quality chromosome-level genome assembly (~143 Mb, scaffold N50 12.6 Mb) of the waterflea, Daphnia galeata, and investigated genomic variation in 22 populations from Central Europe and Eastern China. Our ecological-niche models suggested that the historic distribution of D. galeata in Eurasia was significantly affected by Quaternary climate fluctuations. We detected pronounced genomic and morphometric divergences between European and Chinese D. galeata populations. Such divergences could be partly explained by genomic signatures of thermal adaptation to distinct climate regimes: a set of candidate single-nucleotide polymorphisms (SNPs) potentially associated with climate were detected. These SNPs were in genes significantly enriched in the Gene ontology terms "determination of adult lifespan" and "translation repressor activity", and especially, mthl5 and SOD1 involved in the IIS pathway, and EIF4EBP2 involved in the target of the rapamycin signalling pathway. Our study indicates that certain alleles might be associated with particular temperature regimes, playing a functional role in shaping the population structure of D. galeata at a large geographical scale. These results highlight the potential role of molecular variation in the response to climate variation, in the context of global climate change.
Collapse
Affiliation(s)
- Zhixiong Deng
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Xiuping Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
97
|
Li B, Gschwend AR. Vitis labrusca genome assembly reveals diversification between wild and cultivated grapevine genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1234130. [PMID: 37719220 PMCID: PMC10501149 DOI: 10.3389/fpls.2023.1234130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
Wild grapevines are important genetic resources in breeding programs to confer adaptive fitness traits and unique fruit characteristics, but the genetics underlying these traits, and their evolutionary origins, are largely unknown. To determine the factors that contributed to grapevine genome diversification, we performed comprehensive intragenomic and intergenomic analyses with three cultivated European (including the PN40024 reference genome) and two wild North American grapevine genomes, including our newly released Vitis labrusca genome. We found the heterozygosity of the cultivated grapevine genomes was twice as high as the wild grapevine genomes studied. Approximately 30% of V. labrusca and 48% of V. vinifera Chardonnay genes were heterozygous or hemizygous and a considerable number of collinear genes between Chardonnay and V. labrusca had different gene zygosity. Our study revealed evidence that supports gene gain-loss events in parental genomes resulted in the inheritance of hemizygous genes in the Chardonnay genome. Thousands of segmental duplications supplied source material for genome-specific genes, further driving diversification of the genomes studied. We found an enrichment of recently duplicated, adaptive genes in similar functional pathways, but differential retention of environment-specific adaptive genes within each genome. For example, large expansions of NLR genes were discovered in the two wild grapevine genomes studied. Our findings support variation in transposable elements contributed to unique traits in grapevines. Our work revealed gene zygosity, segmental duplications, gene gain-and-loss variations, and transposable element polymorphisms can be key driving forces for grapevine genome diversification.
Collapse
Affiliation(s)
| | - Andrea R. Gschwend
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
98
|
Oakley CG, Schemske DW, McKay JK, Ågren J. Ecological genetics of local adaptation in Arabidopsis: An 8-year field experiment. Mol Ecol 2023; 32:4570-4583. [PMID: 37317048 DOI: 10.1111/mec.17045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
There is considerable evidence for local adaptation in nature, yet important questions remain regarding its genetic basis. How many loci are involved? What are their effect sizes? What is the relative importance of conditional neutrality versus genetic trade-offs? Here we address these questions in the self-pollinating, annual plant Arabidopsis thaliana. We used 400 recombinant inbred lines (RILs) derived from two locally adapted populations in Italy and Sweden, grew the RILs and parents at the parental locations, and mapped quantitative trait loci (QTL) for mean fitness (fruits/seedling planted). We previously published results from the first 3 years of the study, and here add five additional years, providing a unique opportunity to assess how temporal variation in selection might affect QTL detection and classification. We found 10 adaptive and one maladaptive QTL in Italy, and six adaptive and four maladaptive QTL in Sweden. The discovery of maladaptive QTL at both sites suggests that even locally adapted populations are not always at their genotypic optimum. Mean effect sizes for adaptive QTL, 0.97 and 0.55 fruits in Italy and Sweden, respectively, were large relative to the mean fitness of the RILs (approximately 8 fruits/seedling planted at both sites). Both genetic trade-offs (four cases) and conditional neutrality (seven cases) contribute to local adaptation in this system. The 8-year dataset provided greater power to detect QTL and to estimate their locations compared to our previous 3-year study, identifying one new genetic trade-off and resolving one genetic trade-off into two conditionally adaptive QTL.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Botany and Plant Pathology, and the Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan, USA
| | - John K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
99
|
Leiva C, Pérez-Portela R, Lemer S. Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO 2 seeps. Commun Biol 2023; 6:769. [PMID: 37481685 PMCID: PMC10363134 DOI: 10.1038/s42003-023-05103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023] Open
Abstract
Ocean acidification, caused by anthropogenic CO2 emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO2 seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival.
Collapse
Affiliation(s)
- Carlos Leiva
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA.
| | - Rocío Pérez-Portela
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Lemer
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA
| |
Collapse
|
100
|
Chen X, Avia K, Forler A, Remoué C, Venon A, Rousselet A, Lucas G, Kwarteng AO, Rover R, Le Guilloux M, Belcram H, Combes V, Corti H, Olverà-Vazquez S, Falque M, Alins G, Kirisits T, Ursu TM, Roman A, Volk GM, Bazot S, Cornille A. Ecological and evolutionary drivers of phenotypic and genetic variation in the European crabapple [Malus sylvestris (L.) Mill.], a wild relative of the cultivated apple. ANNALS OF BOTANY 2023; 131:1025-1037. [PMID: 37148364 PMCID: PMC10332392 DOI: 10.1093/aob/mcad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Studying the relationship between phenotypic and genetic variation in populations distributed across environmental gradients can help us to understand the ecological and evolutionary processes involved in population divergence. We investigated the patterns of genetic and phenotypic diversity in the European crabapple, Malus sylvestris, a wild relative of the cultivated apple (Malus domestica) that occurs naturally across Europe in areas subjected to different climatic conditions, to test for divergence among populations. METHODS Growth rates and traits related to carbon uptake in seedlings collected across Europe were measured in controlled conditions and associated with the genetic status of the seedlings, which was assessed using 13 microsatellite loci and the Bayesian clustering method. Isolation-by-distance, isolation-by-climate and isolation-by-adaptation patterns, which can explain genetic and phenotypic differentiation among M. sylvestris populations, were also tested. KEY RESULTS A total of 11.6 % of seedlings were introgressed by M. domestica, indicating that crop-wild gene flow is ongoing in Europe. The remaining seedlings (88.4 %) belonged to seven M. sylvestris populations. Significant phenotypic trait variation among M. sylvestris populations was observed. We did not observe significant isolation by adaptation; however, the significant association between genetic variation and the climate during the Last Glacial Maximum suggests that there has been local adaptation of M. sylvestris to past climates. CONCLUSIONS This study provides insight into the phenotypic and genetic differentiation among populations of a wild relative of the cultivated apple. This might help us to make better use of its diversity and provide options for mitigating the impact of climate change on the cultivated apple through breeding.
Collapse
Affiliation(s)
- X Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - K Avia
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - A Forler
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - C Remoué
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Venon
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Rousselet
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Lucas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - A O Kwarteng
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - R Rover
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Le Guilloux
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Belcram
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - V Combes
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Corti
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - S Olverà-Vazquez
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Falque
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Alins
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA-Fruit Production, PCiTAL, Parc 21 de Gardeny, edifici Fruitcentre, 25003 Lleida, Spain
| | - T Kirisits
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82 (Franz Schwackhöfer-Haus), A-1190 Vienna, Austria
| | - T M Ursu
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - A Roman
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - G M Volk
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA
| | - S Bazot
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris‐Saclay, Orsay, France
| | - A Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|