51
|
Langenhorst D, Fürst AL, Alberter K, Vilhena C, Dasari P, Daud M, Heilig L, Luther CH, Dittrich M, Reiher N, Wich M, Elmowafy M, Jacobsen ID, Jungnickel B, Zipfel PF, Beyersdorf N. Soluble Enolase 1 of Candida albicans and Aspergillus fumigatus Stimulates Human and Mouse B Cells and Monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:804-815. [PMID: 37436030 DOI: 10.4049/jimmunol.2200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Because of the growing numbers of immunocompromised patients, the incidence of life-threatening fungal infections caused by Candida albicans and Aspergillus fumigatus is increasing. We have recently identified enolase 1 (Eno1) from A. fumigatus as an immune evasion protein. Eno1 is a fungal moonlighting protein that mediates adhesion and invasion of human cells and also immune evasion through complement inactivation. We now show that soluble Eno1 has immunostimulatory activity. We observed that Eno1 from both C. albicans and A. fumigatus directly binds to the surface of lymphocytes, preferentially human and mouse B cells. Functionally, Eno1 upregulated CD86 expression on B cells and induced proliferation. Although the receptor for fungal Eno1 on B lymphocytes is still unknown, the comparison of B cells from wild-type and MyD88-deficient mice showed that B cell activation by Eno1 required MyD88 signaling. With respect to infection biology, we noted that mouse B cells stimulated by Eno1 secreted IgM and IgG2b. These Igs bound C. albicans hyphae in vitro, suggesting that Eno1-induced Ab secretion might contribute to protection from invasive fungal disease in vivo. Eno1 also triggered the release of proinflammatory cytokines from monocytes, particularly IL-6, which is a potent activator of B cells. Together, our data shed new light on the role of secreted Eno1 in infections with C. albicans and A. fumigatus. Eno1 secretion by these pathogenic microbes appears to be a double-edged sword by supporting fungal pathogenicity while triggering (antifungal) immunity.
Collapse
Affiliation(s)
- Daniela Langenhorst
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Anna-Lisa Fürst
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Karl Alberter
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Cláudia Vilhena
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Prasad Dasari
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Muhammad Daud
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Linda Heilig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Marcus Dittrich
- Chair of Bioinformatics, University of Würzburg, Würzburg, Germany
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Nadine Reiher
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | | | - Mohammed Elmowafy
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
- Department of Microbiology & Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | | | - Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
52
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
53
|
King J, Dambuza IM, Reid DM, Yuecel R, Brown GD, Warris A. Detailed characterisation of invasive aspergillosis in a murine model of X-linked chronic granulomatous disease shows new insights in infections caused by Aspergillus fumigatus versus Aspergillus nidulans. Front Cell Infect Microbiol 2023; 13:1241770. [PMID: 37724291 PMCID: PMC10505440 DOI: 10.3389/fcimb.2023.1241770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Introduction Invasive aspergillosis (IA) is the most prevalent infectious complication in patients with chronic granulomatous disease (CGD). Yet, understanding of fungal pathogenesis in the CGD host remains limited, particularly with regards to A. nidulans infection. Methods We have used a murine model of X-linked CGD to investigate how the pathogenesis of IA varies between A. fumigatus and A. nidulans, comparing infection in both X-linked CGD (gp91-/-) mice and their parent C57BL/6 (WT) mice. A 14-colour flow cytometry panel was used to assess the cell dynamics over the course of infection, with parallel assessment of pulmonary cytokine production and lung histology. Results We observed a lack of association between pulmonary pathology and infection outcome in gp91-/- mice, with no significant mortality in A. nidulans infected mice. An overwhelming and persistent neutrophil recruitment and IL-1 release in gp91-/- mice following both A. fumigatus and A. nidulans infection was observed, with divergent macrophage, dendritic cell and eosinophil responses and distinct cytokine profiles between the two infections. Conclusion We have provided an in-depth characterisation of the immune response to pulmonary aspergillosis in an X-linked CGD murine model. This provides the first description of distinct pulmonary inflammatory environments in A. fumigatus and A. nidulans infection in X-linked CGD and identifies several new avenues for further research.
Collapse
Affiliation(s)
- Jill King
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of General Paediatrics, Royal Aberdeen Children’s Hospital, Aberdeen, United Kingdom
| | - Ivy M. Dambuza
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delyth M. Reid
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytometrics, University of Exeter, Exeter, United Kingdom
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Adilia Warris
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
54
|
Yang L, Li W, Qi S, Jiang Q, Huang N, Yang Y, Ma D, Zhang W, Chen H, Zhu R. A Survey of Airborne Fungi and Their Sensitization Profile in Wuhan, China. Int Arch Allergy Immunol 2023; 184:1153-1164. [PMID: 37611554 DOI: 10.1159/000531245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 08/25/2023] Open
Abstract
INTRODUCTION Airborne fungi induce allergic symptoms in 3-10% of the population worldwide. To better prevent and manage fungi-related allergic diseases, it is essential to identify the genus and the distribution profile of airborne fungi. METHODS With this purpose in mind, we carried out a 12-month volumetric sampling study to monitor the airborne fungi and retrospectively analyzed the sensitization profile of four dominant fungi (Cladosporium, Alternaria, Aspergillus, and Penicillium) among respiratory allergies during the same study period in Wuhan, China. RESULTS A total of 29 different fungal genuses were identified, and the peak fungal concentration period was found to be in September and October, followed by May and June. The most prevalent fungi in this area were Cladosporium (36.36%), Ustilago (20.12%), and Alternaria (13.87%). In addition, the skin prick test data from 1,365 respiratory allergies patients showed that 202 (14.80%) of them were sensitized to fungi. The sensitization rates to Cladosporium, Alternaria, Aspergillus, and Penicillium were 11.72%, 4.69%, 1.98%, and 4.76%, respectively. The seasonal fluctuation of Alternaria and Aspergillus correlated with their sensitization rates. Among the fungal sensitized patients, 76 (37.62%) were sensitized to two or more kinds of fungi. The serum-specific IgE tests suggested low to high correlations existed between these fungi; however, these correlations were not found between fungi and other allergens. CONCLUSION Our study provides the distribution profile and reveals the clinical significance of the airborne fungi in Wuhan, which will facilitate the precise management of fungal allergy.
Collapse
Affiliation(s)
- Lin Yang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Wenjing Li
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Qi
- Department of Allergy, Wuhan No. 1 Hospital, Wuhan, China
| | - Qing Jiang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Huang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Yang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongxia Ma
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Chen
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
55
|
Le J, Kulatheepan Y, Jeyaseelan S. Role of toll-like receptors and nod-like receptors in acute lung infection. Front Immunol 2023; 14:1249098. [PMID: 37662905 PMCID: PMC10469605 DOI: 10.3389/fimmu.2023.1249098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
The respiratory system exposed to microorganisms continuously, and the pathogenicity of these microbes not only contingent on their virulence factors, but also the host's immunity. A multifaceted innate immune mechanism exists in the respiratory tract to cope with microbial infections and to decrease tissue damage. The key cell types of the innate immune response are macrophages, neutrophils, dendritic cells, epithelial cells, and endothelial cells. Both the myeloid and structural cells of the respiratory system sense invading microorganisms through binding or activation of pathogen-associated molecular patterns (PAMPs) to pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and NOD-like receptors (NLRs). The recognition of microbes and subsequent activation of PRRs triggers a signaling cascade that leads to the activation of transcription factors, induction of cytokines/5chemokines, upregulation of cell adhesion molecules, recruitment of immune cells, and subsequent microbe clearance. Since numerous microbes resist antimicrobial agents and escape innate immune defenses, in the future, a comprehensive strategy consisting of newer vaccines and novel antimicrobials will be required to control microbial infections. This review summarizes key findings in the area of innate immune defense in response to acute microbial infections in the lung. Understanding the innate immune mechanisms is critical to design host-targeted immunotherapies to mitigate excessive inflammation while controlling microbial burden in tissues following lung infection.
Collapse
Affiliation(s)
- John Le
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural & Mechanical College, Baton Rouge, LA, United States
| | - Yathushigan Kulatheepan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural & Mechanical College, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural & Mechanical College, Baton Rouge, LA, United States
- Section of Pulmonary and Critical Care Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
56
|
Gander-Bui HTT, Schläfli J, Baumgartner J, Walthert S, Genitsch V, van Geest G, Galván JA, Cardozo C, Graham Martinez C, Grans M, Muth S, Bruggmann R, Probst HC, Gabay C, Freigang S. Targeted removal of macrophage-secreted interleukin-1 receptor antagonist protects against lethal Candida albicans sepsis. Immunity 2023; 56:1743-1760.e9. [PMID: 37478856 DOI: 10.1016/j.immuni.2023.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Invasive fungal infections are associated with high mortality rates, and the lack of efficient treatment options emphasizes an urgency to identify underlying disease mechanisms. We report that disseminated Candida albicans infection is facilitated by interleukin-1 receptor antagonist (IL-1Ra) secreted from macrophages in two temporally and spatially distinct waves. Splenic CD169+ macrophages release IL-1Ra into the bloodstream, impeding early neutrophil recruitment. IL-1Ra secreted by monocyte-derived tissue macrophages further impairs pathogen containment. Therapeutic IL-1Ra neutralization restored the functional competence of neutrophils, corrected maladapted hyper-inflammation, and eradicated the otherwise lethal infection. Conversely, augmentation of macrophage-secreted IL-1Ra by type I interferon severely aggravated disease mortality. Our study uncovers how a fundamental immunoregulatory mechanism mediates the high disease susceptibility to invasive candidiasis. Furthermore, interferon-stimulated IL-1Ra secretion may exacerbate fungal dissemination in human patients with secondary candidemia. Macrophage-secreted IL-1Ra should be considered as an additional biomarker and potential therapeutic target in severe systemic candidiasis.
Collapse
Affiliation(s)
- Hang Thi Thuy Gander-Bui
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Joëlle Schläfli
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Johanna Baumgartner
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Sabrina Walthert
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Vera Genitsch
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - José A Galván
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | - Carmen Cardozo
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
| | | | - Mona Grans
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Sabine Muth
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | | | - Cem Gabay
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Stefan Freigang
- Division of Experimental Pathology, Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
57
|
Soleimanifar N, Assadiasl S, Rostamian A, Abdollahi A, Salehi M, Abdolmaleki M, Barzegari S, Sobati A, Sadr M, Mohebbi B, Mojtahedi H, Nicknam MH. Percentage of Th1 and Th17 cells and serum level of IL-17 and IFN-γ cytokines in COVID-19-associated mucormycosis. Med Mycol 2023; 61:myad090. [PMID: 37604786 DOI: 10.1093/mmy/myad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/08/2023] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
The considerable number of the 2019 coronavirus disease (COVID-19) patients who developed mucormycosis infections in West and Central Asia urged a need to investigate the underlying causes of this fatal complication. It was hypothesized that an immunocompromised state secondary to the excessive administration of anti-inflammatory drugs was responsible for the outburst of mucormycosis in COVID-19 patients. Therefore, we aimed to study the implication of two major subsets of adaptive immunity T helper (Th)-1 and Th17 cells in disease development. Thirty patients with COVID-19-associated mucormycosis, 38 with COVID-19 without any sign or symptom of mucormycosis, and 26 healthy individuals were included. The percentage of Th1 and Th17 cells in peripheral blood, as well as the serum levels of interleukin (IL)-17 and interferon-gamma (IFN-γ), were evaluated using flow cytometry and ELISA techniques, respectively. Th17 cell percentage in patients with COVID-19-associated mucormycosis was significantly lower than in COVID-19 patients (P-value: <0.001) and healthy subjects (P-value: 0.01). In addition, the serum level of IL-17 in COVID-19 patients was significantly higher than that of healthy individuals (P-value: 0.01). However, neither the frequency of Th1 cells nor the serum level of IFN-γ was different between the study groups. Given the critical role of Th17 cells in the defense against mucosal fungal infections, these findings suggest that low numbers of Th17 and insufficient levels of IL-17 might be a predisposing factor for the development of mucormycosis during or after COVID-19 infection.
Collapse
Affiliation(s)
- Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolrahman Rostamian
- Rheumatology Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of pathology, school of medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Research center for antibiotic stewardship and antimicrobial resistance, Infectious diseases department, Tehran University of medical sciences, Tehran, Iran
| | - Mohsen Abdolmaleki
- Department of medical sciences, Aligudarz branch, Islamic Azad University, Aligudarz, Iran
| | - Saeed Barzegari
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Amol, Iran
| | - Abolfazl Sobati
- Department of nursing and midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohebbi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
58
|
Xu J, Zeng Y, Yu C, Xu S, Tang L, Zeng X, Huang Y, Sun Z, Xu B, Yu T. Visualization of the relationship between fungi and cancer from the perspective of bibliometric analysis. Heliyon 2023; 9:e18592. [PMID: 37529342 PMCID: PMC10388209 DOI: 10.1016/j.heliyon.2023.e18592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
The relationship between cancer and microorganisms has been extensively studied, with bacteria receiving more attention than fungi. However, fungi have been shown to play a significant role in cancer development and progression. Understanding the underlying mechanisms is crucial for identifying new avenues in prevention and treatment. To evaluate the current state of research on fungi and cancer, we conducted a comprehensive bibliometric analysis. Using the Web of Science Core Collection database, we searched for English-language articles published between 1998 and 2022. Analyzing the resulting publication data, we identified trends, patterns, and research gaps. Our analysis encompassed co-authorship networks, citation analysis, and keyword co-occurrence analysis. With 8283 publications identified, averaging 331.32 publications per year, our findings highlight China, the United States, India, Japan, and Germany as the top contributing countries. The Chinese Academy of Sciences, Sun Yat-Sen University, and University of São Paulo emerged as the most productive institutions. Key themes in the literature included "cancer," "cytotoxicity," "apoptosis," "metabolites," and "fungus." Recent trends indicate increased interest in keywords such as "green synthesis," "molecular docking," "anticancer activity," "antibacterial," "anticancer," and "silver nanoparticles." Our study provides a comprehensive assessment of the current research landscape in the field of fungi and cancer, offering insights into collaborative networks, research directions, and emerging hotspots. The growing publication rate demonstrates the rising interest in the topic, while identifying leading countries, institutions, and research themes serves as a valuable resource for researchers, policymakers, and funders interested in supporting investigations on fungi-derived compounds as potential anti-cancer agents.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Ying Zeng
- Affiliated People Hospital of Nanchang University, Nanchang 330000, China
| | - Chengdong Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Siyi Xu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Lei Tang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Xiaoqiang Zeng
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Yanxiao Huang
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| | - Bin Xu
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi, China
| | - Tenghua Yu
- Department of Breast Surgery, Affiliated Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, 330029, China
| |
Collapse
|
59
|
Ramsay C, Rohr JR. Ontogeny of immunity and potential implications for co-infection. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220127. [PMID: 37305918 PMCID: PMC10258665 DOI: 10.1098/rstb.2022.0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 06/13/2023] Open
Abstract
Immunity changes through ontogeny and can mediate facilitative and inhibitory interactions among co-infecting parasite species. In amphibians, most immune memory is not carried through metamorphosis, leading to variation in the complexity of immune responses across life stages. To test if the ontogeny of host immunity might drive interactions among co-infecting parasites, we simultaneously exposed Cuban treefrogs (Osteopilus septentrionalis) to a fungus (Batrachochytrium dendrobaditis, Bd) and a nematode (Aplectana hamatospicula) at tadpole, metamorphic and post-metamorphic life stages. We measured metrics of host immunity, host health and parasite abundance. We predicted facilitative interactions between co-infecting parasites as the different immune responses hosts mount to combat these infectious are energetically challenging to mount simultaneously. We found ontogenetic differences in IgY levels and cellular immunity but no evidence that metamorphic frogs were more immunosuppressed than tadpoles. There was also little evidence that these parasites facilitated one another and no evidence that A. hamatospicula infection altered host immunity or health. However, Bd, which is known to be immunosuppressive, decreased immunity in metamorphic frogs. This made metamorphic frogs both less resistant and less tolerant of Bd infection than the other life stages. These findings indicate that changes in immunity altered host responses to parasite exposures throughout ontogeny. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Chloe Ramsay
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46656, USA
| | - Jason R. Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46656, USA
| |
Collapse
|
60
|
Miranda N, Hoyer KK. Coccidioidomycosis Granulomas Informed by Other Diseases: Advancements, Gaps, and Challenges. J Fungi (Basel) 2023; 9:650. [PMID: 37367586 DOI: 10.3390/jof9060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Valley fever is a respiratory disease caused by a soil fungus, Coccidioides, that is inhaled upon soil disruption. One mechanism by which the host immune system attempts to control and eliminate Coccidioides is through granuloma formation. However, very little is known about granulomas during Coccidioides infection. Granulomas were first identified in tuberculosis (TB) lungs as early as 1679, and yet many gaps in our understanding of granuloma formation, maintenance, and regulation remain. Granulomas are best defined in TB, providing clues that may be leveraged to understand Coccidioides infections. Granulomas also form during several other infectious and spontaneous diseases including sarcoidosis, chronic granulomatous disease (CGD), and others. This review explores our current understanding of granulomas, as well as potential mechanisms, and applies this knowledge to unraveling coccidioidomycosis granulomas.
Collapse
Affiliation(s)
- Nadia Miranda
- Quantitative Systems Biology Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Katrina K Hoyer
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
61
|
Guan M, Yao L, Zhen Y, Song Y, Liu X, Liu Y, Chen R, Cui Y, Li S. Sporothrix globosa melanin regulates autophagy via the TLR2 signaling pathway in THP-1 macrophages. PLoS Negl Trop Dis 2023; 17:e0011281. [PMID: 37141335 DOI: 10.1371/journal.pntd.0011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/19/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Melanin, an important virulence factor of pathogenic fungi, has been shown to suppress host immune responses in multiple ways. Autophagy is a vital cellular mechanism underlying the host's innate immunity against microbial infections. However, the potential influence of melanin on autophagy has not been explored. We investigated the effect of melanin on autophagy in macrophages, which play a key role in controlling Sporothrix spp. infection, as well as the mechanism of melanin interaction with Toll-like receptor (TLR)-induced pathways. Sporothrix globosa conidia (wild-type and melanin-deficient mutant strains) or yeast cells were co-cultured with THP-1 macrophages to demonstrate that, although S. globosa infection led to the activation of autophagy-related proteins and increased autophagic flux, S. globosa melanin suppressed macrophage autophagy. Incubation with S. globosa conidia also increased the expression levels of reactive oxygen species and multiple proinflammatory cytokines (interleukin-6, tumor necrosis factor-α, interleukin-1β and interferon-γ) in macrophages. These effects were attenuated as melanin presented. Furthermore, while S. globosa conidia significantly increased the expression of both TLR2 and TLR4 in macrophages, the knockdown of TLR2, but not TLR4, with small interfering RNA suppressed autophagy. Overall, this study revealed the novel immune defense ability of S. globosa melanin to inhibit macrophage functionality by resisting macrophage autophagy through the regulation of TLR2 expression.
Collapse
Affiliation(s)
- Mengqi Guan
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Lei Yao
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yu Zhen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Liu
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Ruili Chen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
- Department of Dermatology and Venereology, Zhuhai People's Hospital, Zhuhai, China
| | - Yan Cui
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
62
|
Rozaliyani A, Antariksa B, Nurwidya F, Zaini J, Setianingrum F, Hasan F, Nugrahapraja H, Yusva H, Wibowo H, Bowolaksono A, Kosmidis C. The Fungal and Bacterial Interface in the Respiratory Mycobiome with a Focus on Aspergillus spp. Life (Basel) 2023; 13:life13041017. [PMID: 37109545 PMCID: PMC10142979 DOI: 10.3390/life13041017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The heterogeneity of the lung microbiome and its alteration are prevalently seen among chronic lung diseases patients. However, studies to date have primarily focused on the bacterial microbiome in the lung rather than fungal composition, which might play an essential role in the mechanisms of several chronic lung diseases. It is now well established that Aspergillus spp. colonies may induce various unfavorable inflammatory responses. Furthermore, bacterial microbiomes such as Pseudomonas aeruginosa provide several mechanisms that inhibit or stimulate Aspergillus spp. life cycles. In this review, we highlighted fungal and bacterial microbiome interactions in the respiratory tract, with a focus on Aspergillus spp.
Collapse
Affiliation(s)
- Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Budhi Antariksa
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Fariz Nurwidya
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Jamal Zaini
- Department of Pulmonoloy and Respiratory Medicine, Faculty of Medicinie, Universitas Indonesia, Persahabatan National Respiratory Referral Hospital, Jakarta 13230, Indonesia
| | - Findra Setianingrum
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Firman Hasan
- Indonesia Pulmonary Mycoses Centre, Jakarta 10430, Indonesia
| | - Husna Nugrahapraja
- Life Science and Biotechnology, Bandung Institute of Technology, Bandung 40312, Indonesia
| | - Humaira Yusva
- Magister Program of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
| | - Chris Kosmidis
- Manchester Academic Health Science Centre, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M23 9LT, UK
| |
Collapse
|
63
|
Tischer-Zimmermann S, Salzer E, Bitencourt T, Frank N, Hoffmann-Freimüller C, Stemberger J, Maecker-Kolhoff B, Blasczyk R, Witt V, Fritsch G, Paster W, Lion T, Eiz-Vesper B, Geyeregger R. Rapid and sustained T cell-based immunotherapy against invasive fungal disease via a combined two step procedure. Front Immunol 2023; 14:988947. [PMID: 37090716 PMCID: PMC10114046 DOI: 10.3389/fimmu.2023.988947] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Aspergillus fumigatus (Asp) infections constitute a major cause of morbidity and mortality in patients following allogeneic hematopoietic stem cell transplantation (HSCT). In the context of insufficient host immunity, antifungal drugs show only limited efficacy. Faster and increased T-cell reconstitution correlated with a favorable outcome and a cell-based therapy approach strongly indicated successful clearance of fungal infections. Nevertheless, complex and cost- or time-intensive protocols hampered their implementation into clinical application. Methods To facilitate the clinical-scale manufacturing process of Aspergillus fumigatus-specific T cells (ATCs) and to enable immediate (within 24 hours) and sustained (12 days later) treatment of patients with invasive aspergillosis (IA), we adapted and combined two complementary good manufacturing practice (GMP)-compliant approaches, i) the direct magnetic enrichment of Interferon-gamma (IFN-γ) secreting ATCs using the small-scale Cytokine Secretion Assay (CSA) and ii) a short-term in vitro T-cell culture expansion (STE), respectively. We further compared stimulation with two standardized and commercially available products: Asp-lysate and a pool of overlapping peptides derived from different Asp-proteins (PepMix). Results For the fast CSA-based approach we detected IFN-γ+ ATCs after Asp-lysate- as well as PepMix-stimulation but with a significantly higher enrichment efficiency for stimulation with the Asp-lysate when compared to the PepMix. In contrast, the STE approach resulted in comparably high ATC expansion rates by using Asp-lysate or PepMix. Independent of the stimulus, predominantly CD4+ helper T cells with a central-memory phenotype were expanded while CD8+ T cells mainly showed an effector-memory phenotype. ATCs were highly functional and cytotoxic as determined by secretion of granzyme-B and IFN-γ. Discussion For patients with IA, the immediate adoptive transfer of IFN-γ+ ATCs followed by the administration of short-term in vitro expanded ATCs from the same donor, might be a promising therapeutic option to improve the clinical outcome.
Collapse
Affiliation(s)
- Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Elisabeth Salzer
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nelli Frank
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Julia Stemberger
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Volker Witt
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gerhard Fritsch
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Wolfgang Paster
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Thomas Lion
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - René Geyeregger
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
64
|
Hartmann P, Schnabl B. Fungal infections and the fungal microbiome in hepatobiliary disorders. J Hepatol 2023; 78:836-851. [PMID: 36565724 PMCID: PMC10033447 DOI: 10.1016/j.jhep.2022.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Liver and biliary diseases affect more than a billion people worldwide, with high associated morbidity and mortality. The impact of the intestinal bacterial microbiome on liver diseases has been well established. However, the fungal microbiome, or mycobiome, has been overlooked for a long time. Recently, several studies have shed light on the role of the mycobiome in the development and progression of hepatobiliary diseases. In particular, the fungal genus Candida has been found to be involved in the pathogenesis of multiple hepatobiliary conditions. Herein, we compare colonisation and infection, describe mycobiome findings in the healthy state and across the various hepatobiliary conditions, and point toward communalities. We detail how quantitation of immune responses to fungal antigens can be employed to predict disease severity, e.g. using antibodies to Saccharomyces cerevisiae or specific anti-Candida albicans antibodies. We also show how fungal products (e.g. beta-glucans, candidalysin) activate the host's immune system to exacerbate liver and biliary diseases. Finally, we describe how the gut mycobiome can be modulated to ameliorate hepatobiliary conditions.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Division of Gastroenterology, Hepatology & Nutrition, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
65
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
66
|
Bellet MM, Renga G, Pariano M, Stincardini C, D'Onofrio F, Goldstein AL, Garaci E, Romani L, Costantini C. COVID-19 and beyond: Reassessing the role of thymosin alpha1 in lung infections. Int Immunopharmacol 2023; 117:109949. [PMID: 36881979 PMCID: PMC9977614 DOI: 10.1016/j.intimp.2023.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
The recent COVID-19 pandemic has catalyzed the attention of the scientific community to the long-standing issue of lower respiratory tract infections. The myriad of airborne bacterial, viral and fungal agents to which humans are constantly exposed represents a constant threat to susceptible individuals and bears the potential to reach a catastrophic scale when the ease of inter-individual transmission couples with a severe pathogenicity. While we might be past the threat of COVID-19, the risk of future outbreaks of respiratory infections is tangible and argues for a comprehensive assessment of the pathogenic mechanisms shared by airborne pathogens. On this regard, it is clear that the immune system play a major role in dictating the clinical course of the infection. A balanced immune response is required not only to disarm the pathogens, but also to prevent collateral tissue damage, thus moving at the interface between resistance to infection and tolerance. Thymosin alpha1 (Tα1), an endogenous thymic peptide, is increasingly being recognized for its ability to work as an immunoregulatory molecule able to balance a derailed immune response, working as immune stimulatory or immune suppressive in a context-dependent manner. In this review, we will take advantage from the recent work on the COVID-19 pandemic to reassess the role of Tα1 as a potential therapeutic molecule in lung infections caused by either defective or exaggerated immune responses. The elucidation of the immune regulatory mechanisms of Tα1 might open a new window of opportunity for the clinical translation of this enigmatic molecule and a potential new weapon in our arsenal against lung infections.
Collapse
Affiliation(s)
- Marina M Bellet
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Fiorella D'Onofrio
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Allan L Goldstein
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Enrico Garaci
- MEBIC Consortium and University San Raffaele, Rome, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
67
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
68
|
Abstract
The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darin L Wiesner
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
69
|
Patel VM, Patel SV, Singletary K, Pacheco L. Recurrent Hydropneumothorax After COVID-19. Cureus 2023; 15:e36208. [PMID: 36937124 PMCID: PMC10017555 DOI: 10.7759/cureus.36208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
A 60-year-old male with a past medical history of heart failure with reduced ejection fraction, obstructive sleep apnea, atrial flutter, and hypertension initially presented to the emergency department with a chief complaint of shortness of breath. He was diagnosed with COVID-19-induced acute hypoxic respiratory failure. Before his presentation to the emergency department, he was treated with a brief course of hydroxychloroquine, azithromycin, and prednisone. His initial hospitalization was relatively uncomplicated. He then presented back to the emergency department approximately five months later with chief complaints of continued dyspnea and increased work of breathing. On this presentation, he was noted to have a right-sided pneumothorax with a moderate right-sided pleural effusion. The effusion was drained through CT (computed tomography)-guided catheter insertion. Pleural fluid culture and sensitivity were negative, and a cartridge-based nucleic acid amplification test (CBNAAT) was not performed. He was discharged a few days later to home. Over the next several weeks, the patient had recurrent admissions and chest tube placements for unresolving hydropneumothorax. He eventually had a right-sided posterolateral thoracotomy performed. The tissue sample from the thoracotomy was noted to have positive gram staining for fungal hyphae consistent with aspergillosis. This was initially considered a contaminant and not treated with antifungal medication. Unfortunately, after the thoracotomy, the patient continued to have complications including subcutaneous emphysema and recurring hydropneumothoraces. He was taken for another procedure after a repeat CT showed intercostal herniation of the pleura between the fifth and sixth ribs. The herniation was excised, and the pleura was repaired. This pleural tissue was then sent to pathology and noted to have non-caseating granulomas consistent with aspergillosis. At this time, the patient was started on voriconazole. After initiating this medication, the patient's last chest x-ray showed stable findings of his chronic disease process with no new or worsening hydropneumothorax.
Collapse
Affiliation(s)
| | - Shreya V Patel
- Internal Medicine, Brookwood Baptist Health, Birmingham, USA
| | - Kyle Singletary
- Internal Medicine, Brookwood Baptist Health, Birmingham, USA
| | - Lauren Pacheco
- Internal Medicine, Brookwood Baptist Health, Birmingham, USA
| |
Collapse
|
70
|
Özel Şahin G, Toka Özer T, Durmaz S. Investigation of fungus at stratum corneum of patients with acne vulgaris. Microb Pathog 2023; 175:105982. [PMID: 36621695 DOI: 10.1016/j.micpath.2023.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND The pathophysiology of acne is complex and multifactorial. In recent years, fungal infections have increased significantly. OBJECTIVES The purpose of this study was to evaluate the role of fungi in the etiopathogenesis of acne vulgaris. METHODS This was a prospective case-control study. A total of 200 individuals (100 with acne vulgaris and 100 without acne vulgaris) were enrolled in the study. Direct microscopic investigation and culturing of the samples were done according to Clinical and Laboratory Standards Institute criteria. Descriptive analyses, independent sample t-tests, and chi-squared tests were used for statistical analysis. The subjects in the control group were paired by age and gender with the patients. RESULTS Direct microscopic examination revealed hyphae in the samples of all subjects with acne and in the samples of four of the healthy controls. The cultures of 18 of the patients with acne vulgaris were positive for the following: 6 with Aspergillus spp., 7 with Penicillium spp., 3 with Cladosporium spp., 1 with Candida spp., and 1 with Acremonium spp. In addition, Candida spp. was observed in the cultures of two of the healthy controls. CONCLUSION We conclude that fungi may be involved in the etiopathogenesis of acne vulgaris.
Collapse
Affiliation(s)
- Gülay Özel Şahin
- Başkent University Hospital, Department of Dermatology, Konya, Turkey
| | - Türkan Toka Özer
- Ankara Training and Research Hospital, Department of Medical Microbiology, Ankara, Turkey.
| | - Süleyman Durmaz
- Medistanbul Hospital, Department of Medical Microbiology, Istanbul, Turkey
| |
Collapse
|
71
|
Preite NW, Kaminski VDL, Borges BM, Calich VLG, Loures FV. Myeloid-derived suppressor cells are associated with impaired Th1 and Th17 responses and severe pulmonary paracoccidioidomycosis which is reversed by anti-Gr1 therapy. Front Immunol 2023; 14:1039244. [PMID: 36776848 PMCID: PMC9909482 DOI: 10.3389/fimmu.2023.1039244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Previous studies on paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America, revealed that host immunity is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), and regulatory T-cells (Tregs). IDO-1 orchestrates local and systemic immunosuppressive effects through the recruitment and activation of myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid cells possessing a potent ability to suppress T-cell responses. However, the involvement of MDSCs in PCM remains uninvestigated. The presence, phenotype, and immunosuppressive activity of MDSCs were evaluated at 96 h, 2 weeks, and 8 weeks of pulmonary infection in C57BL/6 mice. Disease severity and immune responses were assessed in MDSC-depleted and nondepleted mice using an anti-Gr1 antibody. Both monocytic-like MDSCs (M-MDSCs) and polymorphonuclear-like MDSCs (PMN-MDSCs) massively infiltrated the lungs during Paracoccidioides brasiliensis infection. Partial reduction of MDSC frequency led to a robust Th1/Th17 lymphocyte response, resulting in regressive disease with a reduced fungal burden on target organs, diminishing lung pathology, and reducing mortality ratio compared with control IgG2b-treated mice. The suppressive activity of MDSCs on CD4 and CD8 T-lymphocytes and Th1/Th17 cells was also demonstrated in vitro using coculture experiments. Conversely, adoptive transfer of MDSCs to recipient P. brasiliensis-infected mice resulted in a more severe disease. Taken together, our data showed that the increased influx of MDSCs into the lungs was linked to more severe disease and impaired Th1 and Th17 protective responses. However, protective immunity was rescued by anti-Gr1 treatment, resulting in a less severe disease and controlled tissue pathology. In conclusion, MDSCs have emerged as potential target cells for the adjuvant therapy of PCM.
Collapse
Affiliation(s)
- Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil,*Correspondence: Flávio Vieira Loures,
| |
Collapse
|
72
|
Immunopathologic Role of Fungi in Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:ijms24032366. [PMID: 36768687 PMCID: PMC9917138 DOI: 10.3390/ijms24032366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Airborne fungi are ubiquitous in the environment and are commonly associated with airway inflammatory diseases. The innate immune defense system eliminates most inhaled fungi. However, some influence the development of chronic rhinosinusitis. Fungal CRS is thought of as not a common disease, and its incidence increases over time. Fungi are present in CRS patients and in healthy sinonasal mucosa. Although the immunological mechanisms have not been entirely explained, CRS patients may exhibit different immune responses than healthy people against airborne fungi. Fungi can induce Th1 and Th2 immune responses. In CRS, Th2-related immune responses against fungi are associated with pattern recognition receptors in nasal epithelial cells, the production of inflammatory cytokines and chemokines from nasal epithelial cells, and interaction with innate type 2 cells, lymphocytes, and inflammatory cells. Fungi also interact with neutrophils and eosinophils and induce neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs). NETs and EETs are associated with antifungal properties and aggravation of chronic inflammation in CRS by releasing intracellular granule proteins. Fungal and bacterial biofilms are commonly found in CRS and may support chronic and recalcitrant CRS infection. The fungal-bacterial interaction in the sinonasal mucosa could affect the survival and virulence of fungi and bacteria and host immune responses. The interaction between the mycobiome and microbiome may also influence the host immune response, impacting local inflammation and chronicity. Although the exact immunopathologic role of fungi in the pathogenesis of CRS is not completely understood, they contribute to the development of sinonasal inflammatory responses in CRS.
Collapse
|
73
|
Hoque MN, Rahman MS, Sarkar MMH, Habib MA, Akter S, Banu TA, Goswami B, Jahan I, Hossain MA, Khan MS, Islam T. Transcriptome analysis reveals increased abundance and diversity of opportunistic fungal pathogens in nasopharyngeal tract of COVID-19 patients. PLoS One 2023; 18:e0278134. [PMID: 36656835 PMCID: PMC9851516 DOI: 10.1371/journal.pone.0278134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/09/2022] [Indexed: 01/20/2023] Open
Abstract
We previously reported that SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiomes (bacteria, archaea and commensal respiratory viruses) with inclusion of pathobionts. This study aimed to assess the possible changes in the abundance and diversity of resident mycobiome in the nasopharyngeal tract (NT) of humans due to SARS-CoV-2 infections. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 = 8, Recovered = 7, and Healthy = 7) were collected for RNA-sequencing followed by taxonomic profiling of mycobiome. Our analyses indicate that SARS-CoV-2 infection significantly increased (p < 0.05, Wilcoxon test) the population and diversity of fungi in the NT with inclusion of a high proportion of opportunistic pathogens. We detected 863 fungal species including 533, 445, and 188 species in COVID-19, Recovered, and Healthy individuals, respectively that indicate a distinct mycobiome dysbiosis due to the SARS-CoV-2 infection. Remarkably, 37% of the fungal species were exclusively associated with SARS-CoV-2 infection, where S. cerevisiae (88.62%) and Phaffia rhodozyma (10.30%) were two top abundant species. Likewise, Recovered humans NT samples were predominated by Aspergillus penicillioides (36.64%), A. keveii (23.36%), A. oryzae (10.05%) and A. pseudoglaucus (4.42%). Conversely, Nannochloropsis oceanica (47.93%), Saccharomyces pastorianus (34.42%), and S. cerevisiae (2.80%) were the top abundant fungal species in Healthy controls nasal swabs. Importantly, 16% commensal fungal species found in the Healthy controls were not detected in either COVID-19 patients or when they were cured from COVID-19 (Recovered). We also detected several altered metabolic pathways correlated with the dysbiosis of fungal mycobiota in COVID-19 patients. Our results suggest that SARS-CoV-2 infection causes significant dysbiosis of mycobiome and related metabolic functions possibly play a determining role in the progression of SARS-CoV-2 pathogenesis. These findings might be helpful for developing mycobiome-based diagnostics, and also devising appropriate therapeutic regimens including antifungal drugs for prevention and control of concurrent fungal coinfections in COVID-19 patients.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Md Ahashan Habib
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - M. Anwar Hossain
- Jashore Unive rsity of Science and Technology, Jashore, Bangladesh
| | - M. Salim Khan
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, Bangladesh
| |
Collapse
|
74
|
PU.1-CD23 signaling mediates pulmonary innate immunity against Aspergillus fumigatus infection by driving inflammatory response. BMC Immunol 2023; 24:4. [PMID: 36650424 PMCID: PMC9844028 DOI: 10.1186/s12865-023-00539-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Aspergillosis is a common cause of morbidity and mortality in immunocompromised populations. PU.1 is critical for innate immunity against Aspergillus fumigatus (AF) in macrophages. However, the molecular mechanism underlying PU.1 mediating immunity against AF infection in human alveolar macrophages (AMs) is still unclear. METHODS In this study, we detected the expressions of PU.1, CD23, p-ERK, CCL20 and IL-8 and key inflammatory markers IL-1β, IL-6, TNF-α and IL-12 in human THP-1-derived macrophages (HTMs) or PU.1/CD23-overexpressed immunodeficient mice with AF infection. Moreover, we examined these expressions in PU.1-overexpressed/interfered HTMs. Additionally, we detected the phagocytosis of macrophages against AF infection with altered PU.1 expression. Dual luciferase, ChIP and EMSAs were performed to detect the interaction of PU.1 and CD23. And we invested the histological changes in mouse lung tissues transfected with PU.1/CD23-expressing adenoviruses in AF infection. RESULTS The results showed that the expressions of PU.1, CD23, p-ERK, CCL20, IL-8, IL-1β, IL-6, TNF-α and IL-12 increased significantly with AF infection, and PU.1 regulated the later 8 gene expressions in HTMs. Moreover, CD23 was directly activated by PU.1, and overexpression of CD23 in PU.1-interfered HTMs upregulated IL-1β, IL-6, TNF-α and IL-12 levels which were downregulated by PU.1 interference. PU.1 overexpression strengthened the phagocytosis of the HTMs against AF. And injection of PU.1/CD23-expressing adenoviruses attenuated pathological defects in immunodeficient mouse lung tissues with AF infection. Adenovirus (Ad)-PU.1 increased the CD23, p-ERK, CCL20, IL-8 levels. CONCLUSIONS Our study concluded that PU.1-CD23 signaling mediates innate immunity against AF in lungs through regulating inflammatory response. Therefore, PU.1-CD23 may be a new anti-aspergillosis therapeutic for the treatment of invasive aspergillosis with the deepening of gene therapy and its wide application in the clinic.
Collapse
|
75
|
Chen Q, Fan Y, Zhang B, Yan C, Chen Z, Wang L, Hu Y, Huang Q, Su J, Ren J, Xu H. Specific fungi associated with response to capsulized fecal microbiota transplantation in patients with active ulcerative colitis. Front Cell Infect Microbiol 2023; 12:1086885. [PMID: 36683707 PMCID: PMC9849685 DOI: 10.3389/fcimb.2022.1086885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Objective Fecal microbiota transplantation (FMT) is a novel microbial treatment for patients with ulcerative colitis (UC). In this study, we performed a clinical trial of capsulized FMT in UC patients to determine the association between the gut fungal community and capsulized FMT outcomes. Design This study recruited patients with active UC (N = 22) and healthy individuals (donor, N = 9) according to the criteria. The patients received capsulized FMT three times a week. Patient stool samples were collected before (week 0) and after FMT follow-up visits at weeks 1, 4, and 12. Fungal communities were analysed using shotgun metagenomic sequencing. Results According to metagenomic analysis, fungal community evenness index was greater in samples collected from patients, and the overall fungal community was clustered among the samples collected from donors. The dominant fungi in fecal samples collected from donors and patients were Ascomycota and Basidiomycota. However, capsulized FMT ameliorated microbial fungal diversity and altered fungal composition, based on metagenomic analysis of fecal samples collected before and during follow-up visits after capsulized FMT. Fungal diversity decreased in samples collected from patients who achieved remission after capsulized FMT, similar to samples collected from donors. Patients achieving remission after capsulized FMT had specific enrichment of Kazachstania naganishii, Pyricularia grisea, Lachancea thermotolerans, and Schizosaccharomyces pombe compared with patients who did not achieve remission. In addition, the relative abundance of P. grisea was higher in remission fecal samples during the follow-up visit. Meanwhile, decreased levels of pathobionts, such as Candida and Debaryomyces hansenii, were associated with remission in patients receiving capsulized FMT. Conclusion In the metagenomic analysis of fecal samples from donors and patients with UC receiving capsulized FMT, shifts in gut fungal diversity and composition were associated with capsulized FMT and validated in patients with active UC. We also identified the specific fungi associated with the induction of remission. ClinicalTrails.gov (NCT03426683).
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China,Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China,Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Jianlin Ren, ; Hongzhi Xu,
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China,Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China,Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China,*Correspondence: Jianlin Ren, ; Hongzhi Xu,
| |
Collapse
|
76
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
77
|
Corrêa-Moreira D, Castro R, da Costa GL, Lima-Neto RG, Oliveira MME. Cerebrospinal fluid: a target of some fungi and an overview. Mem Inst Oswaldo Cruz 2023; 118:e220251. [PMID: 36946852 PMCID: PMC10027065 DOI: 10.1590/0074-02760220251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Meningitis is a potentially life-threatening infection characterised by the inflammation of the leptomeningeal membranes. The estimated annual prevalence of 8.7 million cases globally and the disease is caused by many different viral, bacterial, and fungal pathogens. Although several genera of fungi are capable of causing infections in the central nervous system (CNS), the most significant number of registered cases have, as causal agents, yeasts of the genus Cryptococcus. The relevance of cryptococcal meningitis has changed in the last decades, mainly due to the increase in the number of people living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and medications that impair the immune responses. In this context, coronavirus disease 19 (COVID-19) has also emerged as a risk factor for invasive fungal infections (IFI), including fungal meningitis (FM), due to severe COVID-19 disease is associated with increased pro-inflammatory cytokines, interleukin (IL)-1, IL-6, and tumour necrosis factor-alpha, reduced CD4-interferon-gamma expression, CD4 and CD8 T cells. The gold standard technique for fungal identification is isolating fungi in the culture of the biological material, including cerebrospinal fluid (CSF). However, this methodology has as its main disadvantage the slow or null growth of some fungal species in culture, which makes it difficult to finalise the diagnosis. In conclusions, this article, in the first place, point that it is necessary to accurately identify the etiological agent in order to assist in the choice of the therapeutic regimen for the patients, including the implementation of actions that promote the reduction of the incidence, lethality, and fungal morbidity, which includes what is healthy in the CNS.
Collapse
Affiliation(s)
- Danielly Corrêa-Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| | - Rodolfo Castro
- Fundação Oswaldo Cruz-Fiocruz, Escola Nacional de Saúde Pública, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Saúde Coletiva, Rio de Janeiro, RJ, Brasil
| | - Gisela Lara da Costa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| | | | - Manoel Marques Evangelista Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
78
|
Jenks JD, Aneke CI, Al-Obaidi MM, Egger M, Garcia L, Gaines T, Hoenigl M, Thompson GR. Race and ethnicity: Risk factors for fungal infections? PLoS Pathog 2023; 19:e1011025. [PMID: 36602962 DOI: 10.1371/journal.ppat.1011025] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Racial and ethnic identities, largely understood as social rather than biologic constructs, may impact risk for acquiring infectious diseases, including fungal infections. Risk factors may include genetic and immunologic differences such as aberrations in host immune response, host polymorphisms, and epigenomic factors stemming from environmental exposures and underlying social determinants of health. In addition, certain racial and ethnic groups may be predisposed to diseases that increase risk for fungal infections, as well as disparities in healthcare access and health insurance. In this review, we analyzed racial and ethnic identities as risk factors for acquiring fungal infections, as well as race and ethnicity as they relate to risk for severe disease from fungal infections. Risk factors for invasive mold infections such as aspergillosis largely appear related to environmental differences and underlying social determinants of health, although immunologic aberrations and genetic polymorphisms may contribute in some circumstances. Although black and African American individuals appear to be at high risk for superficial and invasive Candida infections and cryptococcosis, the reasons for this are unclear and may be related to underling social determinants of health, disparities in access to healthcare, and other socioeconomic disparities. Risk factors for all the endemic fungi are likely largely related to underlying social determinants of health, socioeconomic, and health disparities, although immunologic mechanisms likely play a role as well, particularly in disseminated coccidioidomycosis.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Durham County Department of Public Health, Durham, North Carolina, United States of America
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Chioma Inyang Aneke
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Mohanad M Al-Obaidi
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Matthias Egger
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Lorena Garcia
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, California, United States of America
| | - Tommi Gaines
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California, San Diego, California, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California, San Diego, California, United States of America
| | - George R Thompson
- University of California Davis Center for Valley Fever, Sacramento, California, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
79
|
Mo L, Su G, Su H, Huang W, Luo X, Tao C. Effect of IL-10 in the pathogenesis of HIV/AIDS patients with cryptococcal meningitis. Mol Cell Biochem 2023; 478:1-11. [PMID: 35708865 DOI: 10.1007/s11010-022-04488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
This study aimed to explore the role of IL-10 in the pathogenesis of HIV/AIDS patients with cryptococcal meningitis (CM).Patients were assigned into 4 groups (n = 40/group): group A (HIV/AIDS with CM), group B (HIV/AIDS with tuberculosis), group C (HIV/AIDS), and group D (CM). The levels of IL-10 and associated indicators were measured and the correlations were analyzed by Pearson correlation and partial correlation method. In plasma and cerebrospinal fluid (CSF), no significant difference was observed on IL-10 level between group A and other groups (P > 0.050). R values for IL-10 and relevant indicators in blood were as follows (P < 0.050): group A, IFN-γ (-0.377), IL-12 (0.743), IL-4 (0.881), and IL-6 (0.843); group B, IL-12 (0.740), IL-4 (0.573), and IL-6 (0.900); group C, IL-12 (0.402) and IL-4 (0.896); group D, IL-12 (0.575), IL-4 (0.852), and CD8 (0.325). R values for IL-10 and related indicators in CSF were as follows (P < 0.050): group A, TNF-α (0.664), IL-4 (0.852), white blood cells (WBCs, 0.321) and total protein (TP, 0.330); group B, TNF-α (0.566), IL-4 (0.702), and lactate dehydrogenase (LDH, 0.382); group D, IFN-γ (0.807) and IL-4 (0.441). IL-10 level was positively correlated with IL-4, IL-6, IL-12, TNF-α, WBC, and TP in blood or CSF, and negatively correlated with IFN-γ in blood, suggesting that IL-10 affected both pro-inflammatory and anti-inflammatory activities in the pathogenesis of HIV/AIDS with CM.
Collapse
Affiliation(s)
- Lida Mo
- Department of Laboratory Medicine, Nanning Fourth People's Hospital, Guangxi AIDS Clinical Treatment Center (Nanning), Nanning Infectious Disease Hospital Affiliated to Guangxi Medical University, Nanning, 530023, China
| | - Guosheng Su
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China.,Department of Laboratory Medicine, People's Hospital of Guangxi-ASEAN Economic and Technological Development Zone, The Tenth People's Hospital of Nanning, Nanning, 530105, Guangxi, China
| | - Hanzhen Su
- Department of Laboratory Medicine, Nanning Fourth People's Hospital, Guangxi AIDS Clinical Treatment Center (Nanning), Nanning Infectious Disease Hospital Affiliated to Guangxi Medical University, Nanning, 530023, China
| | - Wanhong Huang
- Department of Laboratory Medicine, Nanning Fourth People's Hospital, Guangxi AIDS Clinical Treatment Center (Nanning), Nanning Infectious Disease Hospital Affiliated to Guangxi Medical University, Nanning, 530023, China
| | - Xiaolu Luo
- Department of Laboratory Medicine, Nanning Fourth People's Hospital, Guangxi AIDS Clinical Treatment Center (Nanning), Nanning Infectious Disease Hospital Affiliated to Guangxi Medical University, Nanning, 530023, China.
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
80
|
Hahn RC, Hagen F, Mendes RP, Burger E, Nery AF, Siqueira NP, Guevara A, Rodrigues AM, de Camargo ZP. Paracoccidioidomycosis: Current Status and Future Trends. Clin Microbiol Rev 2022; 35:e0023321. [PMID: 36074014 PMCID: PMC9769695 DOI: 10.1128/cmr.00233-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Paracoccidioidomycosis (PCM), initially reported in 1908 in the city of São Paulo, Brazil, by Adolpho Lutz, is primarily a systemic and neglected tropical mycosis that may affect individuals with certain risk factors around Latin America, especially Brazil. Paracoccidioides brasiliensis sensu stricto, a classical thermodimorphic fungus associated with PCM, was long considered to represent a monotypic taxon. However, advances in molecular taxonomy revealed several cryptic species, including Paracoccidioides americana, P. restrepiensis, P. venezuelensis, and P. lutzii, that show a preference for skin and mucous membranes, lymph nodes, and respiratory organs but can also affect many other organs. The classical diagnosis of PCM benefits from direct microscopy culture-based, biochemical, and immunological assays in a general microbiology laboratory practice providing a generic identification of the agents. However, molecular assays should be employed to identify Paracoccidioides isolates to the species level, data that would be complemented by epidemiological investigations. From a clinical perspective, all probable and confirmed cases should be treated. The choice of treatment and its duration must be considered, along with the affected organs, process severity, history of previous treatment failure, possibility of administering oral medication, associated diseases, pregnancy, and patient compliance with the proposed treatment regimen. Nevertheless, even after appropriate treatment, there may be relapses, which generally occur 5 years after the apparent cure following treatment, and also, the mycosis may be confused with other diseases. This review provides a comprehensive and critical overview of the immunopathology, laboratory diagnosis, clinical aspects, and current treatment of PCM, highlighting current issues in the identification, treatment, and patient follow-up in light of recent Paracoccidioides species taxonomic developments.
Collapse
Affiliation(s)
- Rosane Christine Hahn
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Rinaldo Poncio Mendes
- Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Faculdade de Medicina, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Federal University of Alfenasgrid.411180.d (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Andreia Ferreira Nery
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Nathan Pereira Siqueira
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Armando Guevara
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
81
|
Griffiths JS, Orr SJ, Morton CO, Loeffler J, White PL. The Use of Host Biomarkers for the Management of Invasive Fungal Disease. J Fungi (Basel) 2022; 8:jof8121307. [PMID: 36547640 PMCID: PMC9784708 DOI: 10.3390/jof8121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal disease (IFD) causes severe morbidity and mortality, and the number of IFD cases is increasing. Exposure to opportunistic fungal pathogens is inevitable, but not all patients with underlying diseases increasing susceptibility to IFD, develop it. IFD diagnosis currently uses fungal biomarkers and clinical risk/presentation to stratify high-risk patients and classifies them into possible, probable, and proven IFD. However, the fungal species responsible for IFD are highly diverse and present numerous diagnostic challenges, which culminates in the empirical anti-fungal treatment of patients at risk of IFD. Recent studies have focussed on host-derived biomarkers that may mediate IFD risk and can be used to predict, and even identify IFD. The identification of novel host genetic variants, host gene expression changes, and host protein expression (cytokines and chemokines) associated with increased risk of IFD has enhanced our understanding of why only some patients at risk of IFD actually develop disease. Furthermore, these host biomarkers when incorporated into predictive models alongside conventional diagnostic techniques enhance predictive and diagnostic results. Once validated in larger studies, host biomarkers associated with IFD may optimize the clinical management of populations at risk of IFD. This review will summarise the latest developments in the identification of host biomarkers for IFD, their use in predictive modelling and their potential application/usefulness for informing clinical decisions.
Collapse
Affiliation(s)
- James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Selinda J. Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - P. Lewis White
- Public Health Wales, Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
- Correspondence:
| |
Collapse
|
82
|
Sarden N, Sinha S, Potts KG, Pernet E, Hiroki CH, Hassanabad MF, Nguyen AP, Lou Y, Farias R, Winston BW, Bromley A, Snarr BD, Zucoloto AZ, Andonegui G, Muruve DA, McDonald B, Sheppard DC, Mahoney DJ, Divangahi M, Rosin N, Biernaskie J, Yipp BG. A B1a-natural IgG-neutrophil axis is impaired in viral- and steroid-associated aspergillosis. Sci Transl Med 2022; 14:eabq6682. [PMID: 36475902 DOI: 10.1126/scitranslmed.abq6682] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lung naturally resists Aspergillus fumigatus (Af) in healthy individuals, but multiple conditions can disrupt this resistance, leading to lethal invasive infections. Core processes of natural resistance and its breakdown are undefined. We investigated three distinct conditions predisposing to lethal aspergillosis-severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection, influenza A viral pneumonia, and systemic corticosteroid use-in human patients and murine models. We found a conserved and essential coupling of innate B1a lymphocytes, Af-binding natural immunoglobulin G antibodies, and lung neutrophils. Failure of this axis concealed Af from neutrophils, allowing rapid fungal invasion and disease. Reconstituting the axis with immunoglobulin therapy reestablished resistance, thus representing a realistic pathway to repurpose currently available therapies. Together, we report a vital host resistance pathway that is responsible for protecting against life-threatening aspergillosis in the context of distinct susceptibilities.
Collapse
Affiliation(s)
- Nicole Sarden
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Kyle G Potts
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Erwan Pernet
- Meakins-Christie Laboratories, Departments of Medicine and Pathology, McGill International TB Centre, McGill University, Montreal, QC H4A 3JI, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carlos H Hiroki
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mortaza F Hassanabad
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Angela P Nguyen
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yuefei Lou
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raquel Farias
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Brent W Winston
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Amy Bromley
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Brendan D Snarr
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Amanda Z Zucoloto
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Graciela Andonegui
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Daniel A Muruve
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Braedon McDonald
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.,Division of Infectious Diseases and Department of Medical Microbiology, McGill University Health Centre, Montreal, QC H4A 3JI, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Departments of Medicine and Pathology, McGill International TB Centre, McGill University, Montreal, QC H4A 3JI, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nicole Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
83
|
Sen R, Caplan L. Current treatment and molecular targets for axial spondyloarthritis: Evidence from randomized controlled trials. Curr Opin Pharmacol 2022; 67:102307. [PMID: 36335714 DOI: 10.1016/j.coph.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that predominantly affects the axial skeleton and is characterized by inflammatory back pain. While much has been published regarding non-steroidal anti-inflammatory drugs and tumor necrosis factor inhibitors, other classes of medications which leverage alternate molecular mechanisms receive less attention. In this review, we summarize a few of the novel targets in axSpA, review the putative mechanism of action of therapies that focus on these targets, and reference the germane recently completed, ongoing, or proposed randomized controlled clinical trials. The agents addressed include inhibitors of interleukin-23, interleukin-17, janus kinases, granulocyte-macrophage colony-stimulating factor, macrophage migration inhibitory factor, antibodies recognizing T cell receptor beta variable 9 gene positive clones, as well as inhibitors of mitogen-activated protein kinase-activated protein kinase-2.
Collapse
Affiliation(s)
- Rouhin Sen
- Rocky Mountain Regional Veterans Affairs Medical Center (VAMC), Denver, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA
| | - Liron Caplan
- Rocky Mountain Regional Veterans Affairs Medical Center (VAMC), Denver, CO, USA; University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
84
|
Lindsø Andersen P, Jemec GB, Erikstrup C, Didriksen M, Dinh KM, Mikkelsen S, Sørensen E, Nielsen KR, Bruun MT, Hjalgrim H, Hansen TF, Sækmose SG, Ostrowski SR, Saunte DML, Pedersen OB. Human leukocyte antigen system associations in Malassezia-related skin diseases. Arch Dermatol Res 2022; 315:895-902. [PMID: 36394635 DOI: 10.1007/s00403-022-02454-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The human leukocyte antigen system (HLA) is divided into two classes involved in antigen presentation: class I presenting intracellular antigens and class II presenting extracellular antigens. While susceptibility to infections is correlated with the HLA system, data on associations between HLA genotypes and Malassezia-related skin diseases (MRSD) are lacking. Thus, the objective of this study was to investigate associations between HLA alleles and MRSD. MATERIALS AND METHODS Participants in The Danish Blood Donor Study (2010-2018) provided questionnaire data on life style, anthropometric measures, and registry data on filled prescriptions. Genotyping was done using Illumina Infinium Global Screening Array, and HLA alleles were imputed using the HIBAG algorithm. Cases and controls were defined using filled prescriptions on topical ketoconazole 2% as a proxy of MRSD. Logistic regressions assessed associations between HLA alleles and MRSD adjusted for confounders and Bonferroni corrected for multiple tests. RESULTS A total of 9455 participants were considered MRSD cases and 24,144 participants as controls. We identified four risk alleles B*57:01, OR 1.19 (95% CI: 1.09-1.31), C*01:02, OR 1.19 (95% CI: 1.08-1.32), C*06:02, OR 1.14 (95% CI: 1.08-1.22), and DRB1*01:01, OR 1.10 (95% CI: 1.04-1.17), and two protective alleles, DQB1*02:01, OR 0.89 (95% CI: 0.85-0.94), and DRB1*03:01, OR 0.89 (95% CI: 0.85-0.94). CONCLUSION Five novel associations between HLA alleles and MRSD were identified in our cohort, and one previous association was confirmed. Future studies should assess the correlation between Malassezia antigens and antigen-binding properties of the associated HLA alleles.
Collapse
Affiliation(s)
- P Lindsø Andersen
- Department of Dermatology, Zealand University Hospital Roskilde, Sygehusvej 5, 4000, Roskilde, Denmark.
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark.
| | - G B Jemec
- Department of Dermatology, Zealand University Hospital Roskilde, Sygehusvej 5, 4000, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - C Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - M Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - K M Dinh
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - S Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - E Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - K R Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - M T Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - H Hjalgrim
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - T F Hansen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Glostrup, Denmark
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S G Sækmose
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - S R Ostrowski
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - D M L Saunte
- Department of Dermatology, Zealand University Hospital Roskilde, Sygehusvej 5, 4000, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - O B Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
85
|
Zhang Z, Zheng Y, Chen Y, Yin Y, Chen Y, Chen Q, Hou Y, Shen S, Lv M, Wang T. Gut fungi enhances immunosuppressive function of myeloid-derived suppressor cells by activating PKM2-dependent glycolysis to promote colorectal tumorigenesis. Exp Hematol Oncol 2022; 11:88. [DOI: 10.1186/s40164-022-00334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Accumulating evidence implicates that gut fungi are associated with the pathogenesis of colorectal cancer (CRC). Our previous study has revealed that Candida tropicalis (C. tropicalis) promotes colorectal tumorigenesis by enhancing immunosuppressive function of myeloid-derived suppressor cells (MDSCs) and increasing accumulation of MDSCs, but the underlying mechanisms remain unestablished.
Methods
Bone marrow–derived MDSCs were stimulated with C. tropicalis. RNA-sequencing analysis was performed to screen the differentially expressed genes. Quantitative real-time PCR and western blot were used to measure the expression of related proteins. Co-culture assay of MDSCs and CD8+ T cells was used to determine the immunosuppressive ability of MDSCs. Metabolomic analysis was conducted to detect metabolic reprogramming of MDSCs. Aerobic glycolysis of MDSCs was assessed by extracellular acidification rate (ECAR), glucose consumption and lactate production. A CAC mouse model was induced by AOM and DSS to determine the therapeutic action of TEPP-46. IHC and immunofluorescence were performed to examine the expression of PKM2, PKM2 (p-Y105) and iNOS in human CRC-infiltrated MDSCs.
Results
C. tropicalis facilitates immunosuppressive function of MDSCs by increasing the expression of iNOS, COX2 and NOX2, production of nitric oxide (NO) and reactive oxygen species (ROS). Mechanistically, C. tropicalis facilitates the immunosuppressive function of MDSCs through the C-type lectin receptors Dectin-3 and Syk. C. tropicalis-enhanced immunosuppressive function of MDSCs is further dependent on aerobic glycolysis. On the one hand, NO produced by MDSCs enhanced aerobic glycolysis in a positive feedback manner. On the other hand, C. tropicalis promotes p-Syk binding to PKM2, which results in PKM2 Tyr105 phosphorylation and PKM2 nuclear translocation in MDSCs. Nuclear PKM2 interacts with HIF-1α and subsequently upregulates the expression of HIF-1α target genes encoding glycolytic enzymes, GLUT1, HK2, PKM2, LDHA and PDK1, which are required for the C. tropicalis-induced aerobic glycolysis of MDSCs. Blockade of PKM2 nuclear translocation attenuates C. tropicalis-mediated colorectal tumorigenesis. The high expression of PKM2, PKM2 (p-Y105) and iNOS in CRC-infiltrated MDSCs correlates with the development of human CRC.
Conclusion
C. tropicalis enhances immunosuppressive function of MDSCs via Syk-PKM2-HIF-1α-glycolysis signaling axis, which drives CRC. Therefore, we identify the Syk-PKM2-HIF-1α-glycolysis signaling axis as a potential therapeutic target for CRC.
Collapse
|
86
|
Gupta SK, Osmanoglu Ö, Minocha R, Bandi SR, Bencurova E, Srivastava M, Dandekar T. Genome-wide scan for potential CD4+ T-cell vaccine candidates in Candida auris by exploiting reverse vaccinology and evolutionary information. Front Med (Lausanne) 2022; 9:1008527. [PMID: 36405591 PMCID: PMC9669072 DOI: 10.3389/fmed.2022.1008527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2023] Open
Abstract
Candida auris is a globally emerging fungal pathogen responsible for causing nosocomial outbreaks in healthcare associated settings. It is known to cause infection in all age groups and exhibits multi-drug resistance with high potential for horizontal transmission. Because of this reason combined with limited therapeutic choices available, C. auris infection has been acknowledged as a potential risk for causing a future pandemic, and thus seeking a promising strategy for its treatment is imperative. Here, we combined evolutionary information with reverse vaccinology approach to identify novel epitopes for vaccine design that could elicit CD4+ T-cell responses against C. auris. To this end, we extensively scanned the family of proteins encoded by C. auris genome. In addition, a pathogen may acquire substitutions in epitopes over a period of time which could cause its escape from the immune response thus rendering the vaccine ineffective. To lower this possibility in our design, we eliminated all rapidly evolving genes of C. auris with positive selection. We further employed highly conserved regions of multiple C. auris strains and identified two immunogenic and antigenic T-cell epitopes that could generate the most effective immune response against C. auris. The antigenicity scores of our predicted vaccine candidates were calculated as 0.85 and 1.88 where 0.5 is the threshold for prediction of fungal antigenic sequences. Based on our results, we conclude that our vaccine candidates have the potential to be successfully employed for the treatment of C. auris infection. However, in vivo experiments are imperative to further demonstrate the efficacy of our design.
Collapse
Affiliation(s)
- Shishir K. Gupta
- Department of Bioinformatics, Biocenter, Functional Genomics and Systems Biology Group, University of Würzburg, Würzburg, Germany
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Özge Osmanoglu
- Department of Bioinformatics, Biocenter, Functional Genomics and Systems Biology Group, University of Würzburg, Würzburg, Germany
| | - Rashmi Minocha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sourish Reddy Bandi
- Department of Bioinformatics, Biocenter, Functional Genomics and Systems Biology Group, University of Würzburg, Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, Biocenter, Functional Genomics and Systems Biology Group, University of Würzburg, Würzburg, Germany
| | - Mugdha Srivastava
- Department of Bioinformatics, Biocenter, Functional Genomics and Systems Biology Group, University of Würzburg, Würzburg, Germany
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Functional Genomics and Systems Biology Group, University of Würzburg, Würzburg, Germany
- BioComputing Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
87
|
She X, Zhang P, Shi D, Peng J, Wang Q, Meng X, Jiang Y, Calderone R, Bellanti JA, Liu W, Li D. The mitochondrial complex I proteins of Candida albicans moderate phagocytosis and the production of pro-inflammatory cytokines in murine macrophages and dendritic cells. FASEB J 2022; 36:e22575. [PMID: 36208290 DOI: 10.1096/fj.202200275rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Loss of respiratory functions impairs Candida albicans colonization of host tissues and virulence in a murine model of candidiasis. Furthermore, it is known that respiratory inhibitors decrease mannan synthesis and glucan exposure and thereby promotes phagocytosis. To understand the impact of respiratory proteins of C. albicans on host innate immunity, we characterized cell wall defects in three mitochondrial complex I (CI) null mutants (nuo1Δ, nuo2Δ and ndh51Δ) and in one CI regulator mutant (goa1Δ), and we studied the corresponding effects of these mutants on phagocytosis, neutrophil killing and cytokine production by dendritic cells (DCs). We find that reductions of phosphopeptidomannan (PPM) in goa1Δ, nuo1Δ and phospholipomannan (PLM) in nuo2Δ lead to reductions of IL-2, IL-4, and IL-10 but increase of TNF-α in infected DCs. While PPM loss is a consequence of a reduced phospho-Cek1/2 MAPK that failed to promote phagocytosis and IL-22 production in goa1Δ and nuo1Δ, a 30% glucan reduction and a defective Mek1 MAPK response in ndh51Δ lead to only minor changes in phagocytosis and cytokine production. Glucan exposure and PLM abundance seem to remain sufficient to opsonize neutrophil killing perhaps via humoral immunity. The diversity of immune phenotypes in these mutants possessing divergent cell wall defects is further supported by their transcriptional profiles in each infected murine macrophage scenario. Since metabolic processes, oxidative stress-induced senescence, and apoptosis are differently affected in these scenarios, we speculate that during the early stages of infection, host immune cells coordinate their bioactivities based upon a mixture of signals generated during host-fungi interactions.
Collapse
Affiliation(s)
- Xiaodong She
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Sport Science Research Center, Shandong Sport University, Jinan, China
| | - Dongmei Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Dermatology, Jining No. 1 People's Hospital, Jining, China
| | - Jingwen Peng
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Qiong Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yong Jiang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Department of Dermatology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
88
|
Rai MN, Parsania C, Rai R. Mapping the mutual transcriptional responses during Candida albicans and human macrophage interactions by dual RNA-sequencing. Microb Pathog 2022; 173:105864. [DOI: 10.1016/j.micpath.2022.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
89
|
Wurster S, Watowich SS, Kontoyiannis DP. Checkpoint inhibitors as immunotherapy for fungal infections: Promises, challenges, and unanswered questions. Front Immunol 2022; 13:1018202. [PMID: 36389687 PMCID: PMC9640966 DOI: 10.3389/fimmu.2022.1018202] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 09/22/2023] Open
Abstract
Opportunistic fungal infections have high mortality in patients with severe immune dysfunction. Growing evidence suggests that the immune environment of invasive fungal infections and cancers share common features of immune cell exhaustion through activation of immune checkpoint pathways. This observation gave rise to several preclinical studies and clinical case reports describing blockade of the Programmed Cell Death Protein 1 and Cytotoxic T-Lymphocyte Antigen 4 immune checkpoint pathways as an adjunct immune enhancement strategy to treat opportunistic fungal infections. The first part of this review summarizes the emerging evidence for contributions of checkpoint pathways to the immunopathology of fungal sepsis, opportunistic mold infections, and dimorphic fungal infections. We then review the potential merits of immune checkpoint inhibitors (ICIs) as an antifungal immunotherapy, including the incomplete knowledge of the mechanisms involved in both immuno-protective effects and toxicities. In the second part of this review, we discuss the limitations of the current evidence and the many unknowns about ICIs as an antifungal immune enhancement strategy. Based on these gaps of knowledge and lessons learned from cancer immunology studies, we outline a research agenda to determine a "sweet spot" for ICIs in medical mycology. We specifically discuss the importance of more nuanced animal models, the need to study ICI-based combination therapy, potential ICI resistance, the role of the immune microenvironment, and the impact of ICIs given as part of oncological therapies on the natural immunity to various pathogenic fungi.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
90
|
Montaño DE, Hartung S, Wich M, Ali R, Jungnickel B, von Lilienfeld-Toal M, Voigt K. The TLR-NF-kB axis contributes to the monocytic inflammatory response against a virulent strain of Lichtheimia corymbifera, a causative agent of invasive mucormycosis. Front Immunol 2022; 13:882921. [PMID: 36311802 PMCID: PMC9608459 DOI: 10.3389/fimmu.2022.882921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Invasive mucormycosis (IM) is a life-threatening infection caused by the fungal order Mucorales, its diagnosis is often delayed, and mortality rates range from 40-80% due to its rapid progression. Individuals suffering from hematological malignancies, diabetes mellitus, organ transplantations, and most recently COVID-19 are particularly susceptible to infection by Mucorales. Given the increase in the occurrence of these diseases, mucormycosis has emerged as one of the most common fungal infections in the last years. However, little is known about the host immune response to Mucorales. Therefore, we characterized the interaction among L. corymbifera—one of the most common causative agents of IM—and human monocytes, which are specialized phagocytes that play an instrumental role in the modulation of the inflammatory response against several pathogenic fungi. This study covered four relevant aspects of the host-pathogen interaction: i) The recognition of L. corymbifera by human monocytes. ii) The intracellular fate of L. corymbifera. iii) The inflammatory response by human monocytes against the most common causative agents of mucormycosis. iv) The main activated Pattern-Recognition Receptors (PRRs) inflammatory signaling cascades in response to L. corymbifera. Here, we demonstrate that L. corymbifera exhibits resistance to intracellular killing over 24 hours, does not germinate, and inflicts minimal damage to the host cell. Nonetheless, viable fungal spores of L. corymbifera induced early production of the pro-inflammatory cytokine IL-1β, and late release of TNF-α and IL-6 by human monocytes. Moreover, we revealed that IL-1β production predominantly depends on Toll-like receptors (TLRs) priming, especially via TLR4, while TNF-α is secreted via C-type lectin receptors (CTLs), and IL-6 is produced by synergistic activation of TLRs and CTLs. All these signaling pathways lead to the activation of NF-kB, a transcription factor that not only regulates the inflammatory response but also the apoptotic fate of monocytes during infection with L. corymbifera. Collectively, our findings provide new insights into the host-pathogen interactions, which may serve for future therapies to enhance the host inflammatory response to L. corymbifera.
Collapse
Affiliation(s)
- Dolly E. Montaño
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Susann Hartung
- Infections in Hematology and Oncology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Melissa Wich
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Rida Ali
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Berit Jungnickel
- Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, Germany
| | - Marie von Lilienfeld-Toal
- Infections in Hematology and Oncology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Department of Hematology and Medical Oncology, Jena University Hospital, Jena, Germany
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
- Jena Microbial Resource Collection, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- *Correspondence: Kerstin Voigt,
| |
Collapse
|
91
|
Ponde NO, Lortal L, Tsavou A, Hepworth OW, Wickramasinghe DN, Ho J, Richardson JP, Moyes DL, Gaffen SL, Naglik JR. Receptor-kinase EGFR-MAPK adaptor proteins mediate the epithelial response to Candida albicans via the cytolytic peptide toxin, candidalysin. J Biol Chem 2022; 298:102419. [PMID: 36037968 PMCID: PMC9530844 DOI: 10.1016/j.jbc.2022.102419] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.
Collapse
Affiliation(s)
- Nicole O Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Antzela Tsavou
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Olivia W Hepworth
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Don N Wickramasinghe
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jemima Ho
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh Pennsylvania, USA.
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
92
|
Lakhtakia L, Spalgais S, Kumar R. Spectrum of pulmonary aspergillus diseases in post TB lung diseases. Indian J Tuberc 2022; 69:523-529. [PMID: 36460383 DOI: 10.1016/j.ijtb.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Post-Pulmonary TB structural lung disease with cavitation and bronchiectasis favours the growth of Aspergillus. It leads to progressive lung destruction and the persistence of symptoms after successful ATT and can mimic smear-negative PTB. There is lack of prevalence study of this disease from India. Antifungal therapy is very beneficial, as it reduces both morbidity and mortality. The present study is being undertaken to study the occurrence of spectrum of PA in PTBLD. METHODS This is a prospective observational study, conducted at one of the tertiary chest institute of India over a period of one year, after approval from institutional human ethics committee. A total of 60 patients with history of treatment for PTB were recruited. Active PTB were excluded. Diagnosis of PA in were established on the basis of clinical, radiological, microbiological and serological parameters. Based on this, the spectrum of PA viz. CPA, ABPA and IPA were established. RESULTS The mean age was 47.88 ± 12.89 years with males being 60%. Mean duration of illness was 6.57 ± 5.11 years with mean asymptomatic period of 4.97 ± 7.41 year. Cough and breathlessness (100%) being the most common symptom followed by wheezing (58%). PA was diagnosed in 48% of cases out of which 43% cases were of CPA. The most common subtype of CPA was simple aspergilloma 14 (54%) followed by CCPA 10 (38%), 2CFPA (8%). ABPA was diagnosed in two cases of PA and one case of aspergillus sensitization. None of the case diagnosed as IPA. CONCLUSION We found high prevalence of PA among PTBLD, especially CPA. Early recognition and treatment with antifungal has the potential to reduce the morbidity and mortality. There is a need of prospective community-based larger multicentric studies to precisely define the prevalence of these disorders.
Collapse
Affiliation(s)
- Lovika Lakhtakia
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Raj Kumar
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
93
|
Wu H, Yin X, Zhao X, Wu Z, Xiao Y, Di Q, Sun P, Tang H, Quan J, Chen W. HDAC11 negatively regulates antifungal immunity by inhibiting Nos2 expression via binding with transcriptional repressor STAT3. Redox Biol 2022; 56:102461. [PMID: 36087429 PMCID: PMC9465110 DOI: 10.1016/j.redox.2022.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Han Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaofan Yin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zherui Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ping Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiazheng Quan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Institute of Biological Therapy, Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
94
|
Ophidiomyces ophidiicola detection and infection: a global review on a potential threat to the world’s snake populations. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractOphidiomyces ophidiicola (Oo) is one of the most relevant fungal pathogens for snakes. It is the etiological agent of ophidiomycosis, an emerging disease causing dysecdysis, skin abnormalities, crusting cutaneous lesions, and ulcerations. Despite this major tegumentary “tropism”, Oo infection can be systemic and it is capable of inducing visceral lesions. Moreover, ophidiomycosis may lead to abnormalities of reproductive physiology, hunting behavior, and thermoregulation, thus increasing the risks of sublethal effects and predation on affected snakes. Oo seems horizontally transmitted and can induce postnatal mortality. This article reviews published data on Oo detection and infection in all snake species in countries around the world and categorizes these data using new classification parameters. The presence of this fungus has been recorded in 11 states (considering the USA as a whole); however, in four states, the mycosis has only been reported in snakes held in captivity. Detection and/or infection of Oo has been ascertained in 62 snake species, divided into nine families. The taxa have been categorized with diagnostic criteria in order to report, for each species, the highest rank of categorization resulting from all cases. Therefore, 20 species have been included within the class “Ophidiomycosis and Oo shedder”, 11 within “Ophidiomycosis”, 16 in “Apparent ophidiomycosis”, and 15 within “Ophidiomyces ophidiicola present”. We also discuss the significance and limits of case classifications and Oo’s impact on wild populations, and we suggest methods for preliminary surveillance. Standardized methods, interdisciplinary studies, and cooperation between various research institutions may facilitate further Oo screening studies, elucidate the unclear aspects of the disease, and protect ophidiofauna from this emerging threat at the global level.
Collapse
|
95
|
GM-CSF+ Tc17 cells are required to bolster vaccine immunity against lethal fungal pneumonia without causing overt pathology. Cell Rep 2022; 41:111543. [PMID: 36288707 PMCID: PMC9641983 DOI: 10.1016/j.celrep.2022.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
GM-CSF co-expressing T17 cells instigate pathologic inflammation during autoimmune disorders, but their function in immunity to infections is unclear. Here, we demonstrate the role of GM-CSF+Tc17 cells for vaccine immunity against lethal fungal pneumonia and the cytokine requirements for their induction and memory homeostasis. Vaccine-induced GM-CSF+ Tc17 cells are necessary to bolster pulmonary fungal immunity without inflating pathology. Although GM-CSF expressing Tc17 cells preferentially elevate during the memory phase, their phenotypic attributes strongly suggest they are more like Tc17 cells than IFNγ-producing Tc1 cells. IL-1 and IL-23, but not GM-CSF, are necessary to elicit GM-CSF+Tc17 cells following vaccination. IL-23 is dispensable for memory Tc17 and GM-CSF+ Tc17 cell maintenance, but recall responses of effector or memory Tc17 cells in the lung require it. Our study reveals the beneficial, nonpathological role of GM-CSF+ Tc17 cells during fungal vaccine immunity. GM-CSF+ and IL-17A+ lineages of T cells are instrumental in controlling many fungal and bacterial infections and implicated in autoimmune pathology, host-microbial interactions at the mucosal surfaces, and neuro-immune nexus. Mudalagiriyappa et al. show that GM-CSF expressing Tc17 cells are necessary for mediating fungal vaccine immunity without augmenting pathology.
Collapse
|
96
|
Shende R, Wong SSW, Meitei HT, Lal G, Madan T, Aimanianda V, Pal JK, Sahu A. Protective role of host complement system in Aspergillus fumigatus infection. Front Immunol 2022; 13:978152. [PMID: 36211424 PMCID: PMC9539816 DOI: 10.3389/fimmu.2022.978152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal infection for immunocompromised hosts. It is, therefore, necessary to understand the immune pathways that control this infection. Although the primary infection site is the lungs, aspergillosis can disseminate to other organs through unknown mechanisms. Herein we have examined the in vivo role of various complement pathways as well as the complement receptors C3aR and C5aR1 during experimental systemic infection by Aspergillus fumigatus, the main species responsible for IA. We show that C3 knockout (C3-/-) mice are highly susceptible to systemic infection of A. fumigatus. Intriguingly, C4-/- and factor B (FB)-/- mice showed susceptibility similar to the wild-type mice, suggesting that either the complement pathways display functional redundancy during infection (i.e., one pathway compensates for the loss of the other), or complement is activated non-canonically by A. fumigatus protease. Our in vitro study substantiates the presence of C3 and C5 cleaving proteases in A. fumigatus. Examination of the importance of the terminal complement pathway employing C5-/- and C5aR1-/- mice reveals that it plays a vital role in the conidial clearance. This, in part, is due to the increased conidial uptake by phagocytes. Together, our data suggest that the complement deficiency enhances the susceptibility to systemic infection by A. fumigatus.
Collapse
Affiliation(s)
- Rajashri Shende
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Sarah Sze Wah Wong
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
| | - Heikrujam Thoihen Meitei
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Taruna Madan
- Department of Innate Immunity, ICMR – National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| | - Jayanta Kumar Pal
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| |
Collapse
|
97
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
98
|
Wizrah MS, Chua SM, Luo Z, Manik MK, Pan M, Whyte JM, Robertson AA, Kappler U, Kobe B, Fraser JA. AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans. J Biol Chem 2022; 298:102453. [PMID: 36063996 PMCID: PMC9525906 DOI: 10.1016/j.jbc.2022.102453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/27/2023] Open
Abstract
The fungal pathogen Cryptococcus neoformans is a leading cause of meningoencephalitis in the immunocompromised. As current antifungal treatments are toxic to the host, costly, limited in their efficacy, and associated with drug resistance, there is an urgent need to identify vulnerabilities in fungal physiology to accelerate antifungal discovery efforts. Rational drug design was pioneered in de novo purine biosynthesis as the end products of the pathway, ATP and GTP, are essential for replication, transcription, and energy metabolism, and the same rationale applies when considering the pathway as an antifungal target. Here, we describe the identification and characterization of C. neoformans 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/5'-inosine monophosphate cyclohydrolase (ATIC), a bifunctional enzyme that catalyzes the final two enzymatic steps in the formation of the first purine base inosine monophosphate. We demonstrate that mutants lacking the ATIC-encoding ADE16 gene are adenine and histidine auxotrophs that are unable to establish an infection in a murine model of virulence. In addition, our assays employing recombinantly expressed and purified C. neoformans ATIC enzyme revealed Km values for its substrates AICAR and 5-formyl-AICAR are 8-fold and 20-fold higher, respectively, than in the human ortholog. Subsequently, we performed crystallographic studies that enabled the determination of the first fungal ATIC protein structure, revealing a key serine-to-tyrosine substitution in the active site, which has the potential to assist the design of fungus-specific inhibitors. Overall, our results validate ATIC as a promising antifungal drug target.
Collapse
Affiliation(s)
- Maha S.I. Wizrah
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Sheena M.H. Chua
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Zhenyao Luo
- School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Mohammad K. Manik
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Mengqi Pan
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Jessica M.L. Whyte
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Avril A.B. Robertson
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, Queensland, Australia,School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia,For correspondence: James A. Fraser
| |
Collapse
|
99
|
Cotorogea-Simion M, Pavel B, Isac S, Telecan T, Matache IM, Bobirca A, Bobirca FT, Rababoc R, Droc G. What Is Different in Acute Hematologic Malignancy-Associated ARDS? An Overview of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091215. [PMID: 36143892 PMCID: PMC9503421 DOI: 10.3390/medicina58091215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Acute hematologic malignancies are a group of heterogeneous blood diseases with a high mortality rate, mostly due to acute respiratory failure (ARF). Acute respiratory distress syndrome (ARDS) is one form of ARF which represents a challenging clinical condition. The paper aims to review current knowledge regarding the variable pathogenic mechanisms, as well as therapeutic options for ARDS in acute hematologic malignancy patients. Data collection: We provide an overview of ARDS in patients with acute hematologic malignancy, from an etiologic perspective. We searched databases such as PubMed or Google Scholar, including articles published until June 2022, using the following keywords: ARDS in hematologic malignancy, pneumonia in hematologic malignancy, drug-induced ARDS, leukostasis, pulmonary leukemic infiltration, pulmonary lysis syndrome, engraftment syndrome, diffuse alveolar hemorrhage, TRALI in hematologic malignancy, hematopoietic stem cell transplant ARDS, radiation pneumonitis. We included relevant research articles, case reports, and reviews published in the last 18 years. Results: The main causes of ARDS in acute hematologic malignancy are: pneumonia-associated ARDS, leukostasis, leukemic infiltration of the lung, pulmonary lysis syndrome, drug-induced ARDS, radiotherapy-induced ARDS, diffuse alveolar hemorrhage, peri-engraftment respiratory distress syndrome, hematopoietic stem cell transplantation-related ARDS, transfusion-related acute lung injury. Conclusions: The short-term prognosis of ARDS in acute hematologic malignancy relies on prompt diagnosis and treatment. Due to its etiological heterogeneity, precision-based strategies should be used to improve overall survival. Future studies should focus on identifying the relevance of such etiologic-based diagnostic strategies in ARDS secondary to acute hematologic malignancy.
Collapse
Affiliation(s)
- Mihail Cotorogea-Simion
- Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Bogdan Pavel
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sebastian Isac
- Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence:
| | - Teodora Telecan
- Department of Urology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Urology, Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Irina-Mihaela Matache
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Anca Bobirca
- Department of Rheumatology, Dr. I. Cantacuzino Hospital, 073206 Bucharest, Romania
| | - Florin-Teodor Bobirca
- Department of General Surgery, Dr. I. Cantacuzino Hospital, 073206 Bucharest, Romania
| | - Razvan Rababoc
- Department of Internal Medicine II, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Gabriela Droc
- Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
100
|
Shao TY, Haslam DB, Bennett RJ, Way SS. Friendly fungi: symbiosis with commensal Candida albicans. Trends Immunol 2022; 43:706-717. [PMID: 35961916 PMCID: PMC10027380 DOI: 10.1016/j.it.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/22/2022]
Abstract
Mucosal tissues are constitutively colonized by a wide assortment of host-adapted microbes. This includes the polymorphic fungus Candida albicans which is a primary target of human adaptive responses. Immunogenicity is replicated after intestinal colonization in preclinical models with a surprising array of protective benefits for most hosts, but harmful consequences for a few. The interaction between fungus and host is complex, and traditionally, the masking of antigenic fungal ligands has been viewed as a tactic for fungal immune evasion during invasive infection. However, we propose that dynamic expression of cell wall moieties, host cell lysins, and other antigenic C. albicans determinants is necessary during the more ubiquitous context of intestinal colonization to prime immunogenicity and optimize mammalian host symbiosis.
Collapse
Affiliation(s)
- Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Immunobiology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - David B Haslam
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA.
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|