51
|
Yoshioka A, Tanabe HC, Nakagawa E, Sumiya M, Koike T, Sadato N. The Role of the Left Inferior Frontal Gyrus in Introspection during Verbal Communication. Brain Sci 2023; 13:brainsci13010111. [PMID: 36672092 PMCID: PMC9856826 DOI: 10.3390/brainsci13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Conversation enables the sharing of our subjective experiences through verbalizing introspected thoughts and feelings. The mentalizing network represents introspection, and successful conversation is characterized by alignment through imitation mediated by the mirror neuron system (MNS). Therefore, we hypothesized that the interaction between the mentalizing network and MNS mediates the conversational exchange of introspection. To test this, we performed hyperscanning functional magnetic resonance imaging during structured real-time conversations between 19 pairs of healthy participants. The participants first evaluated their preference for and familiarity with a presented object and then disclosed it. The control was the object feature identification task. When contrasted with the control, the preference/familiarity evaluation phase activated the dorso-medial prefrontal cortex, anterior cingulate cortex, precuneus, left hippocampus, right cerebellum, and orbital portion of the left inferior frontal gyrus (IFG), which represents introspection. The left IFG was activated when the two participants' statements of introspection were mismatched during the disclosure. Disclosing introspection enhanced the functional connectivity of the left IFG with the bilateral superior temporal gyrus and primary motor cortex, representing the auditory MNS. Thus, the mentalizing system and MNS are hierarchically linked in the left IFG during a conversation, allowing for the sharing of introspection of the self and others.
Collapse
Affiliation(s)
- Ayumi Yoshioka
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Hiroki C. Tanabe
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
- Correspondence: (H.C.T.); (N.S.); Tel.: +81-52-789-2256 (H.C.T.); +81-564-55-7841 (N.S.); Fax: +81-52-789-2256 (H.C.T.); +81-564-55-7843 (N.S.)
| | - Eri Nakagawa
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | - Motofumi Sumiya
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | - Takahiko Koike
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-8585, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Correspondence: (H.C.T.); (N.S.); Tel.: +81-52-789-2256 (H.C.T.); +81-564-55-7841 (N.S.); Fax: +81-52-789-2256 (H.C.T.); +81-564-55-7843 (N.S.)
| |
Collapse
|
52
|
Niesen M, Bourguignon M, Bertels J, Vander Ghinst M, Wens V, Goldman S, De Tiège X. Cortical tracking of lexical speech units in a multi-talker background is immature in school-aged children. Neuroimage 2023; 265:119770. [PMID: 36462732 DOI: 10.1016/j.neuroimage.2022.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Children have more difficulty perceiving speech in noise than adults. Whether this difficulty relates to an immature processing of prosodic or linguistic elements of the attended speech is still unclear. To address the impact of noise on linguistic processing per se, we assessed how babble noise impacts the cortical tracking of intelligible speech devoid of prosody in school-aged children and adults. Twenty adults and twenty children (7-9 years) listened to synthesized French monosyllabic words presented at 2.5 Hz, either randomly or in 4-word hierarchical structures wherein 2 words formed a phrase at 1.25 Hz, and 2 phrases formed a sentence at 0.625 Hz, with or without babble noise. Neuromagnetic responses to words, phrases and sentences were identified and source-localized. Children and adults displayed significant cortical tracking of words in all conditions, and of phrases and sentences only when words formed meaningful sentences. In children compared with adults, the cortical tracking was lower for all linguistic units in conditions without noise. In the presence of noise, the cortical tracking was similarly reduced for sentence units in both groups, but remained stable for phrase units. Critically, when there was noise, adults increased the cortical tracking of monosyllabic words in the inferior frontal gyri and supratemporal auditory cortices but children did not. This study demonstrates that the difficulties of school-aged children in understanding speech in a multi-talker background might be partly due to an immature tracking of lexical but not supra-lexical linguistic units.
Collapse
Affiliation(s)
- Maxime Niesen
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Otorhinolaryngology, 1070 Brussels, Belgium.
| | - Mathieu Bourguignon
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), UNI-ULB Neuroscience Institute, Laboratory of Neurophysiology and Movement Biomechanics, 1070 Brussels, Belgium.; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| | - Julie Bertels
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), UNI-ULB Neuroscience Institute, Cognition and Computation group, ULBabyLab - Consciousness, Brussels, Belgium
| | - Marc Vander Ghinst
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Otorhinolaryngology, 1070 Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of translational Neuroimaging, 1070 Brussels, Belgium
| | - Serge Goldman
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Nuclear Medicine, 1070 Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles (ULB), UNI - ULB Neurosciences Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LN2T), 1070 Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of translational Neuroimaging, 1070 Brussels, Belgium
| |
Collapse
|
53
|
Del Mauro G, Del Maschio N, Abutalebi J. The relationship between reading abilities and the left occipitotemporal sulcus: A dual perspective study. BRAIN AND LANGUAGE 2022; 235:105189. [PMID: 36260960 DOI: 10.1016/j.bandl.2022.105189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Reading activates a region within the left lateral occipitotemporal sulcus (OTS) known as the 'visual word form area' (VWFA). While several studies have investigated the impact of reading on brain structure through neuroplastic mechanisms, it has been recently suggested that individual differences in the pattern of the posterior OTS may predict reading skills in adults. In the present study, we first examined whether the structure and morphology and the anatomical connectivity of the left OTS are associated to reading ability. Second, we explored whether reading skills are predicted by the pattern of the left OTS. We found that reading skills were positively associated with increased connectivity between the left OTS and a network of reading-related regions in the left hemisphere. On the other hand, we did not observe an association between the pattern of the left OTS and reading skills. Finally, we found evidence that the morphology and the connectivity of the left OTS are correlated to its sulcal pattern.
Collapse
Affiliation(s)
- Gianpaolo Del Mauro
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Facultyof Psychology, Vita-Salute San Raffaele University, Milan, Italy; TheArctic University of Norway, Tromsø, Norway.
| |
Collapse
|
54
|
Bortolato T, Mundry R, Wittig RM, Girard-Buttoz C, Crockford C. Slow development of vocal sequences through ontogeny in wild chimpanzees (Pan troglodytes verus). Dev Sci 2022:e13350. [PMID: 36440660 DOI: 10.1111/desc.13350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The development of the unique, hierarchical, and endless combinatorial capacity in a human language requires neural maturation and learning through childhood. Compared with most non-human primates, where combinatorial capacity seems limited, chimpanzees present a complex vocal system comprising hundreds of vocal sequences. We investigated how such a complex vocal system develops and the processes involved. We recorded 10,929 vocal utterances of 98 wild chimpanzees aged 0-55 years, from Taï National Park, Ivory Coast. We developed customized Generalized non-Linear Models to estimate the ontogenetic trajectory of four structural components of vocal complexity: utterance length, diversity, probability of panting (requiring phonation across inhalation and exhalation), and probability of producing two adjacent panted units. We found chimpanzees need 10 years to reach adult levels of vocal complexity. In three variables, the steepest increase coincided with the age of first non-kin social interactions (2-5 years), and plateaued in sub-adults (8-10 years), as individuals integrate into adult social life. Producing two adjacent panted units may require more neuromuscular coordination of the articulators, as its emergence and steepest increase appear later in development. These results suggest prolonged maturational processes beyond those hitherto thought likely in species that do not learn their vocal repertoire. Our results suggest that multifaceted ontogenetic processes drive increases in vocal structural complexity in chimpanzees, particularly increases in social complexity and neuro-muscular maturation. As humans live in a complex social world, empirical support for the "social complexity hypothesis" may have relevance for theories of language evolution. RESEARCH HIGHLIGHTS: Chimpanzees need around 10 years to develop the vocal structural complexity present in the adult repertoire, way beyond the age of emergence of every single vocal unit. Multifaceted ontogenetic processes may drive increases in vocal structural complexity in chimpanzees, particularly increases in social complexity and neuro-muscular maturation. Non-linear increases in vocal complexity coincide with social developmental milestones. Vocal sequences requiring rapid articulatory change emerge later than other vocal sequences, suggesting neuro-muscular maturational processes continue through the juvenile years.
Collapse
Affiliation(s)
- Tatiana Bortolato
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, Bron, France.,Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, Centre Swiss des Recherches Scientifiques, Abidjan, Ivory Coast
| | - Roger Mundry
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.,Department for Primate Cognition, Georg-August-University, Göttingen, Germany.,Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Roman M Wittig
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, Bron, France.,Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, Centre Swiss des Recherches Scientifiques, Abidjan, Ivory Coast
| | - Cédric Girard-Buttoz
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, Bron, France.,Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, Centre Swiss des Recherches Scientifiques, Abidjan, Ivory Coast
| | - Catherine Crockford
- The Ape Social Mind Lab, Institut des Sciences Cognitives, CNRS, Bron, France.,Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Taï Chimpanzee Project, Centre Swiss des Recherches Scientifiques, Abidjan, Ivory Coast
| |
Collapse
|
55
|
Neurodevelopmental oscillatory basis of speech processing in noise. Dev Cogn Neurosci 2022; 59:101181. [PMID: 36549148 PMCID: PMC9792357 DOI: 10.1016/j.dcn.2022.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Humans' extraordinary ability to understand speech in noise relies on multiple processes that develop with age. Using magnetoencephalography (MEG), we characterize the underlying neuromaturational basis by quantifying how cortical oscillations in 144 participants (aged 5-27 years) track phrasal and syllabic structures in connected speech mixed with different types of noise. While the extraction of prosodic cues from clear speech was stable during development, its maintenance in a multi-talker background matured rapidly up to age 9 and was associated with speech comprehension. Furthermore, while the extraction of subtler information provided by syllables matured at age 9, its maintenance in noisy backgrounds progressively matured until adulthood. Altogether, these results highlight distinct behaviorally relevant maturational trajectories for the neuronal signatures of speech perception. In accordance with grain-size proposals, neuromaturational milestones are reached increasingly late for linguistic units of decreasing size, with further delays incurred by noise.
Collapse
|
56
|
Klein CC, Berger P, Goucha T, Friederici AD, Grosse Wiesmann C. Children’s syntax is supported by the maturation of BA44 at 4 years, but of the posterior STS at 3 years of age. Cereb Cortex 2022; 33:5426-5435. [PMID: 36408641 PMCID: PMC10152089 DOI: 10.1093/cercor/bhac430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract
Within the first years of life, children learn major aspects of their native language. However, the ability to process complex sentence structures, a core faculty in human language called syntax, emerges only slowly. A milestone in syntax acquisition is reached around the age of 4 years, when children learn a variety of syntactic concepts. Here, we ask which maturational changes in the child’s brain underlie the emergence of syntactically complex sentence processing around this critical age. We relate markers of cortical brain maturation to 3- and 4-year-olds’ sentence processing in contrast to other language abilities. Our results show that distinct cortical brain areas support sentence processing in the two age groups. Sentence production abilities at 3 years were associated with increased surface area in the most posterior part of the left superior temporal sulcus, whereas 4-year-olds showed an association with cortical thickness in the left posterior part of Broca’s area, i.e. BA44. The present findings suggest that sentence processing abilities rely on the maturation of distinct cortical regions in 3- compared to 4-year-olds. The observed shift to more mature regions involved in processing syntactically complex sentences may underlie behavioral milestones in syntax acquisition at around 4 years.
Collapse
Affiliation(s)
- Cheslie C Klein
- Max Planck Institute for Human Cognitive and Brain Sciences Department of Neuropsychology, , Stephanstraße 1a, Leipzig 04103 , Germany
- Max Planck Institute for Human Cognitive and Brain Sciences Research Group Milestones of Early Cognitive Development, , Stephanstraße 1a, Leipzig 04103 , Germany
| | - Philipp Berger
- Max Planck Institute for Human Cognitive and Brain Sciences Department of Neuropsychology, , Stephanstraße 1a, Leipzig 04103 , Germany
- Max Planck Institute for Human Cognitive and Brain Sciences Research Group Milestones of Early Cognitive Development, , Stephanstraße 1a, Leipzig 04103 , Germany
| | - Tomás Goucha
- Max Planck Institute for Human Cognitive and Brain Sciences Department of Neuropsychology, , Stephanstraße 1a, Leipzig 04103 , Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences Department of Neuropsychology, , Stephanstraße 1a, Leipzig 04103 , Germany
| | - Charlotte Grosse Wiesmann
- Max Planck Institute for Human Cognitive and Brain Sciences Research Group Milestones of Early Cognitive Development, , Stephanstraße 1a, Leipzig 04103 , Germany
| |
Collapse
|
57
|
Weiss Y, Huber E, Ferjan Ramírez N, Corrigan NM, Yarnykh VL, Kuhl PK. Language input in late infancy scaffolds emergent literacy skills and predicts reading related white matter development. Front Hum Neurosci 2022; 16:922552. [PMID: 36457757 PMCID: PMC9705348 DOI: 10.3389/fnhum.2022.922552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Longitudinal studies provide the unique opportunity to test whether early language provides a scaffolding for the acquisition of the ability to read. This study tests the hypothesis that parental language input during the first 2 years of life predicts emergent literacy skills at 5 years of age, and that white matter development observed early in the 3rd year (at 26 months) may help to account for these effects. We collected naturalistic recordings of parent and child language at 6, 10, 14, 18, and 24 months using the Language ENvironment Analysis system (LENA) in a group of typically developing infants. We then examined the relationship between language measures during infancy and follow-up measures of reading related skills at age 5 years, in the same group of participants (N = 53). A subset of these children also completed diffusion and quantitative MRI scans at age 2 years (N = 20). Within this subgroup, diffusion tractography was used to identify white matter pathways that are considered critical to language and reading development, namely, the arcuate fasciculus (AF), superior and inferior longitudinal fasciculi, and inferior occipital-frontal fasciculus. Quantitative macromolecular proton fraction (MPF) mapping was used to characterize myelin density within these separately defined regions of interest. The longitudinal data were then used to test correlations between early language input and output, white matter measures at age 2 years, and pre-literacy skills at age 5 years. Parental language input, child speech output, and parent-child conversational turns correlated with pre-literacy skills, as well as myelin density estimates within the left arcuate and superior longitudinal fasciculus. Mediation analyses indicated that the left AF accounted for longitudinal relationships between infant home language measures and 5-year letter identification and letter-sound knowledge, suggesting that the left AF myelination at 2 years may serve as a mechanism by which early language experience supports emergent literacy.
Collapse
Affiliation(s)
- Yael Weiss
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Elizabeth Huber
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Naja Ferjan Ramírez
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Linguistics, University of Washington, Seattle, WA, United States
| | - Neva M. Corrigan
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Patricia K. Kuhl
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
58
|
Toneva M, Mitchell TM, Wehbe L. Combining computational controls with natural text reveals aspects of meaning composition. NATURE COMPUTATIONAL SCIENCE 2022; 2:745-757. [PMID: 36777107 PMCID: PMC9912822 DOI: 10.1038/s43588-022-00354-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To study a core component of human intelligence-our ability to combine the meaning of words-neuroscientists have looked to linguistics. However, linguistic theories are insufficient to account for all brain responses reflecting linguistic composition. In contrast, we adopt a data-driven approach to study the composed meaning of words beyond their individual meaning, which we term 'supra-word meaning'. We construct a computational representation for supra-word meaning and study its brain basis through brain recordings from two complementary imaging modalities. Using functional magnetic resonance imaging, we reveal that hubs that are thought to process lexical meaning also maintain supra-word meaning, suggesting a common substrate for lexical and combinatorial semantics. Surprisingly, we cannot detect supra-word meaning in magnetoencephalography, which suggests that composed meaning might be maintained through a different neural mechanism than the synchronized firing of pyramidal cells. This sensitivity difference has implications for past neuroimaging results and future wearable neurotechnology.
Collapse
Affiliation(s)
- Mariya Toneva
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.,Max Planck Institute for Software Systems, Saarbrücken, Germany
| | - Tom M. Mitchell
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Leila Wehbe
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA.,Correspondence and requests for materials should be addressed to Leila Wehbe.
| |
Collapse
|
59
|
Maran M, Numssen O, Hartwigsen G, Zaccarella E. Online neurostimulation of Broca's area does not interfere with syntactic predictions: A combined TMS-EEG approach to basic linguistic combination. Front Psychol 2022; 13:968836. [PMID: 36619118 PMCID: PMC9815778 DOI: 10.3389/fpsyg.2022.968836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Categorical predictions have been proposed as the key mechanism supporting the fast pace of syntactic composition in language. Accordingly, grammar-based expectations are formed-e.g., the determiner "a" triggers the prediction for a noun-and facilitate the analysis of incoming syntactic information, which is then checked against a single or few other word categories. Previous functional neuroimaging studies point towards Broca's area in the left inferior frontal gyrus (IFG) as one fundamental cortical region involved in categorical prediction during incremental language processing. Causal evidence for this hypothesis is however still missing. In this study, we combined Electroencephalography (EEG) and Transcranial Magnetic Stimulation (TMS) to test whether Broca's area is functionally relevant in predictive mechanisms for language. We transiently perturbed Broca's area during the first word in a two-word construction, while simultaneously measuring the Event-Related Potential (ERP) correlates of syntactic composition. We reasoned that if Broca's area is involved in predictive mechanisms for syntax, disruptive TMS during the first word would mitigate the difference in the ERP responses for predicted and unpredicted categories in basic two-word constructions. Contrary to this hypothesis, perturbation of Broca's area at the predictive stage did not affect the ERP correlates of basic composition. The correlation strength between the electrical field induced by TMS and the ERP responses further confirmed this pattern. We discuss the present results considering an alternative account of the role of Broca's area in syntactic composition, namely the bottom-up integration of words into constituents, and of compensatory mechanisms within the language predictive network.
Collapse
Affiliation(s)
- Matteo Maran
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany,*Correspondence: Matteo Maran,
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
60
|
Pérez-Navarro J, Lallier M, Clark C, Flanagan S, Goswami U. Local Temporal Regularities in Child-Directed Speech in Spanish. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:3776-3788. [PMID: 36194778 DOI: 10.1044/2022_jslhr-22-00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PURPOSE The purpose of this study is to characterize the local (utterance-level) temporal regularities of child-directed speech (CDS) that might facilitate phonological development in Spanish, classically termed a syllable-timed language. METHOD Eighteen female adults addressed their 4-year-old children versus other adults spontaneously and also read aloud (CDS vs. adult-directed speech [ADS]). We compared CDS and ADS speech productions using a spectrotemporal model (Leong & Goswami, 2015), obtaining three temporal metrics: (a) distribution of modulation energy, (b) temporal regularity of stressed syllables, and (c) syllable rate. RESULTS CDS was characterized by (a) significantly greater modulation energy in the lower frequencies (0.5-4 Hz), (b) more regular rhythmic occurrence of stressed syllables, and (c) a slower syllable rate than ADS, across both spontaneous and read conditions. DISCUSSION CDS is characterized by a robust local temporal organization (i.e., within utterances) with amplitude modulation bands aligning with delta and theta electrophysiological frequency bands, respectively, showing greater phase synchronization than in ADS, facilitating parsing of stress units and syllables. These temporal regularities, together with the slower rate of production of CDS, might support the automatic extraction of phonological units in speech and hence support the phonological development of children. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21210893.
Collapse
Affiliation(s)
- Jose Pérez-Navarro
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
- University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
| | - Catherine Clark
- BCBL, Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
- University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Sheila Flanagan
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Usha Goswami
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| |
Collapse
|
61
|
Wagley N, Booth JR. Neural pathways of phonological and semantic processing and its relations to children's reading skills. Front Neurosci 2022; 16:984328. [PMID: 36312011 PMCID: PMC9597189 DOI: 10.3389/fnins.2022.984328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Behavioral research shows that children's phonological ability is strongly associated with better word reading skills, whereas semantic knowledge is strongly related to better reading comprehension. However, most neuroscience research has investigated how brain activation during phonological and semantic processing is related to word reading skill. This study examines if connectivity during phonological processing in the dorsal inferior frontal gyrus (dIFG) to posterior superior temporal gyrus (pSTG) pathway is related to word reading skill, whereas connectivity during semantic processing in the ventral inferior frontal gyrus (vIFG) to posterior middle temporal gyrus (pMTG) pathway is related to reading comprehension skill. We used behavioral and functional magnetic resonance imaging (fMRI) data from a publicly accessible dataset on OpenNeuro.org. The research hypotheses and analytical plan were pre-registered on the Open Science Framework. Forty-six children ages 8-15 years old were included in the final analyses. Participants completed an in-scanner reading task tapping into phonology (i.e., word rhyming) and semantics (i.e., word meaning) as well as standardized measures of word reading and reading comprehension skill. In a series of registered and exploratory analyses, we correlated connectivity coefficients from generalized psychophysiological interactions (gPPI) with behavioral measures and used z-scores to test the equality of two correlation coefficients. Results from the preregistered and exploratory analyses indicated weak evidence that functional connectivity of dIFG to pSTG during phonological processing is positively correlated with better word reading skill, but no evidence that connectivity in the vIFG-pMTG pathway during semantic processing is related to better reading comprehension skill. Moreover, there was no evidence to support the differentiation between the dorsal pathway's relation to word reading and the ventral pathway's relation to reading comprehension skills. Our finding suggesting the importance of phonological processing to word reading is in line with prior behavioral and neurodevelopmental models.
Collapse
Affiliation(s)
- Neelima Wagley
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
62
|
Fang S, Weng S, Li L, Guo Y, Zhang Z, Fan X, Jiang T, Wang Y. Decreasing distance from tumor to the language network causes language deficit. Hum Brain Mapp 2022; 44:679-690. [PMID: 36169039 PMCID: PMC9842885 DOI: 10.1002/hbm.26092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/25/2023] Open
Abstract
Preoperative language deficits are associated with alterations in the language networks of patients with gliomas. This study investigated how gliomas affect language performance by altering the language network. Ninety patients with lower-grade gliomas were included, and their preoperative language performance was evaluated using the Western Aphasia Battery. We also calculated the topological properties based on resting state functional magnetic resonance imaging. All patients were classified according to aphasia quotient (AQ) into the aphasia (AQ < 93.8), mild anomia (AQ > 93.8 and naming section <9.8), and normal groups (AQ > 93.8). The shortest distance from the tumor to the language network (SDTN) was evaluated to identify the effect on language performance induced by the tumor. One-way analysis of variance and post hoc analysis with Sidak correction were used to analyze the differences in topological properties among the three groups. Causal mediation analysis was used to identify indirectly affected mediators. Compared with the mild anomia group, longer shortest path length (p = .0016), lower vulnerability (p = .0331), and weaker nodal efficiencies of three nodes (right caudal Brodmann area [BA] 45, right caudal BA 22, and left BA 41/42, all p < .05) were observed in the aphasia group. The SDTN mediated nodal degree centrality and nodal vulnerability (left rostroventral BA 39), which negatively affected the AQs. Conventional language eloquent and mirrored areas participated in the language network alterations induced by gliomas. The SDTN was a mediator that affected the preoperative language status in patients with gliomas.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Shimeng Weng
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Lianwang Li
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yuhao Guo
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Zhong Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xing Fan
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain TumorsChinese Academy of Medical SciencesBeijingChina
| | - Yinyan Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
63
|
Guo W, Geng S, Cao M, Feng J. The Brain Connectome for Chinese Reading. Neurosci Bull 2022; 38:1097-1113. [PMID: 35575936 PMCID: PMC9468198 DOI: 10.1007/s12264-022-00864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/20/2022] [Indexed: 10/18/2022] Open
Abstract
Chinese, as a logographic language, fundamentally differs from alphabetic languages like English. Previous neuroimaging studies have mainly focused on alphabetic languages, while the exploration of Chinese reading is still an emerging and fast-growing research field. Recently, a growing number of neuroimaging studies have explored the neural circuit of Chinese reading. Here, we summarize previous research on Chinese reading from a connectomic perspective. Converging evidence indicates that the left middle frontal gyrus is a specialized hub region that connects the ventral with dorsal pathways for Chinese reading. Notably, the orthography-to-phonology and orthography-to-semantics mapping, mainly processed in the ventral pathway, are more specific during Chinese reading. Besides, in addition to the left-lateralized language-related regions, reading pathways in the right hemisphere also play an important role in Chinese reading. Throughout, we comprehensively review prior findings and emphasize several challenging issues to be explored in future work.
Collapse
Affiliation(s)
- Wanwan Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Shujie Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China.
| |
Collapse
|
64
|
Ferreira L, Pinto JD, Temp DA, Broman EN, Skarzynski PH, Skarzynska MB, Moraes DADO, Sanfins MD, Biaggio EPV. The effect of child development on the components of the Frequency Following Response: Child development and the Frequency Following Response. PLoS One 2022; 17:e0260739. [PMID: 36048883 PMCID: PMC9436099 DOI: 10.1371/journal.pone.0260739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
During childhood, neuronal modifications occur so that typical childhood communicative development occurs. This work aims to contribute to the understanding of differences in the speech encoding of infants and school-age children by assessing the effects of child development, in different phases of early childhood, on the encoding of speech sounds. There were 98 subjects of both sexes, aged from 1 day to 8 years and 9 months who participated in the study. All subjects underwent a Frequency Following Response (FFR) assessment. A regression and linear correlation showed the effects of age in the FFR components, i.e., significant decrease in the latency and increased amplitude of all FFR waves with age. An increase in the slope measure was also observed. Younger infants require more time and show less robust responses when encoding speech than their older counterparts, which were shown to have more stable and well-organized FFR responses.
Collapse
Affiliation(s)
- Laís Ferreira
- Speech Therapy Department, Federal University of Santa Maria, Santa Maria, Brazil
- * E-mail:
| | - Julia Dalcin Pinto
- Speech Therapy Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Déborah Aurélio Temp
- Speech Therapy Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Eli Natáli Broman
- Speech Therapy Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Piotr H. Skarzynski
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
- Department of Heart Failure and Cardiac Rehabilitation, Warsaw, Poland
- Institute of Sensory Organs, Warsaw, Poland
| | - Magdalena B. Skarzynska
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
- Institute of Sensory Organs, Kajetany, Poland
- Center of Hearing and Speech, Kajetany, Poland
| | | | - Milaine Dominici Sanfins
- Faculty of Medical Science, State University of Campinas, Campinas, Brazil
- Advanced Neuroaudiology and Electrophysiology Center, São Paulo, Brazil
| | | |
Collapse
|
65
|
Parker A, Skoe E, Tecoulesco L, Naigles L. A Home-Based Approach to Auditory Brainstem Response Measurement: Proof-of-Concept and Practical Guidelines. Semin Hear 2022; 43:177-196. [PMID: 36313050 PMCID: PMC9605808 DOI: 10.1055/s-0042-1756163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Broad-scale neuroscientific investigations of diverse human populations are difficult to implement. This is because the primary neuroimaging methods (magnetic resonance imaging, electroencephalography [EEG]) historically have not been portable, and participants may be unable or unwilling to travel to test sites. Miniaturization of EEG technologies has now opened the door to neuroscientific fieldwork, allowing for easier access to under-represented populations. Recent efforts to conduct auditory neuroscience outside a laboratory setting are reviewed and then an in-home technique for recording auditory brainstem responses (ABRs) and frequency-following responses (FFRs) in a home setting is introduced. As a proof of concept, we have conducted two in-home electrophysiological studies: one in 27 children aged 6 to 16 years (13 with autism spectrum disorder) and another in 12 young adults aged 18 to 27 years, using portable electrophysiological equipment to record ABRs and FFRs to click and speech stimuli, spanning rural and urban and multiple homes and testers. We validate our fieldwork approach by presenting waveforms and data on latencies and signal-to-noise ratio. Our findings demonstrate the feasibility and utility of home-based ABR/FFR techniques, paving the course for larger fieldwork investigations of populations that are difficult to test or recruit. We conclude this tutorial with practical tips and guidelines for recording ABRs and FFRs in the field and discuss possible clinical and research applications of this approach.
Collapse
Affiliation(s)
- Ashley Parker
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Connecticut
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut
- Cognitive Sciences Program, University of Connecticut, Storrs, Connecticut
| | - Lee Tecoulesco
- Cognitive Sciences Program, University of Connecticut, Storrs, Connecticut
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| | - Letitia Naigles
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut
- Cognitive Sciences Program, University of Connecticut, Storrs, Connecticut
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
66
|
Marks RA, Eggleston RL, Sun X, Yu CL, Zhang K, Nickerson N, Hu XS, Kovelman I. The neurocognitive basis of morphological processing in typical and impaired readers. ANNALS OF DYSLEXIA 2022; 72:361-383. [PMID: 34255265 PMCID: PMC9663212 DOI: 10.1007/s11881-021-00239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Morphological awareness, or sensitivity to units of meaning, is an essential component of reading comprehension development. Current neurobiological models of reading and dyslexia have largely been built upon phonological processing models, yet reading for meaning is as essential as reading for sound. To fill this gap, the present study explores the relation between children's neural organization for morphological awareness and successful reading comprehension in typically developing and impaired readers. English-speaking children ages 6-11 (N = 97; mean age = 8.6 years, 25% reading impaired) completed standard literacy assessments as well as an auditory morphological awareness task during functional near-infrared spectroscopy (fNIRS) neuroimaging, which included root (e.g., PERSON + al) and derivational (e.g., quick + LY) morphology. Regression analyses revealed that children's morphological awareness predicted unique variance in reading comprehension above and beyond demographic factors, vocabulary knowledge, and decoding ability. Neuroimaging analyses further revealed that children with stronger reading comprehension showed greater engagement of brain regions associated with integrating sound and meaning, including left inferior frontal, middle temporal, and inferior parietal regions. This effect was especially notable for the derivational morphology condition that involved manipulating more analytically demanding and semantically abstract units (e.g., un-, -ly, -ion). Together, these findings suggest that successful reading comprehension, and its deficit in dyslexia, may be related to the ability to manipulate morpho-phonological units of word meaning and structure. These results inform theoretical perspectives on literacy and children's neural architecture for learning to read.
Collapse
Affiliation(s)
- Rebecca A Marks
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Rachel L Eggleston
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xin Sun
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chi-Lin Yu
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kehui Zhang
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nia Nickerson
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiao-Su Hu
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ioulia Kovelman
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
67
|
Pang L, Fan B, Chen Z, Chen Z, Lv C, Zheng J. Disruption of Cerebellar–Cerebral Functional Connectivity in Temporal Lobe Epilepsy and the Connection to Language and Cognitive Functions. Front Neurosci 2022; 16:871128. [PMID: 35837122 PMCID: PMC9273908 DOI: 10.3389/fnins.2022.871128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/27/2022] [Indexed: 01/26/2023] Open
Abstract
ObjectiveTo investigate the changes in the cerebellar-cerebral language network in temporal lobe epilepsy (TLE) patients from the cerebellar perspective, the research analyzes the changes of language and cognitive network in terms of functional connectivity (FC), as well as their efficiency of the reorganization were evaluated basing on relationship between the network metrics and neuropsychological scale scores.Methods30 TLE patients and 30 healthy controls were recruited. Brain activity was evaluated by voxel-mirrored homotopic connectivity analysis (VMHC). Two groups were analyzed and compared in terms of language FC using the following methods: Seed-to-Voxel analysis, pairwise correlations [region of interest(ROI)-to-ROI] and graph theory. Correlation analysis was performed between network properties and neuropsychological score.ResultsCompared with healthy participants, VMHC values in the Cerebellum Anterior Lobe, Frontal Lobe, Frontal_Sup_R/L, Cingulum_Ant_R/L, and Cingulum_Mid_R/L were decreased in TLE patients. Decreased FC was observed from the Cerebelum_10_R to the left inferior frontal gyrus, from the Cerebelum_6_R to the left Lingual Gyrus, from the Cerebelum_4_5_R to left Lingual Gyrus, left Cuneal Cortex and Precuneous Cortex, from the Cerebelum_3_R to Brain-Stem, and from the Cerebelum_Crus1_L to Cerebelum_6_R in TLE patients. The FC was enhanced between bilateral Cingulum_Mid and angular gyrus and frontoparietal insular cranium, between Frontal_Sup_Med L and left/right superior temporal gyrus (pSTG l/r), while it was decreased between left middle temporal gyrus and pSTG l/r. Compared with controls, the Betweenness Centrality (BC) of the right superior marginal gyrus (SMG), Temporal_Pole_Mid_R and Temporal_Mid_L as well as the Degree Centrality (DC) and Nodal Efficiency (NE) of the right SMG were lower in TLE patients. Further analysis showed that decreased VMHC in bilateral Cerebellum Anterior Lobe was positively correlated with the Boston Naming Test score in TLE patients, but it was negatively correlated with the Verbal Fluency Test score. The NE and DC of SMG_R were both negatively correlated with visual perception score in Montreal Cognitive Assessment.ConclusionOur results suggest that presence of abnormalities in the static functional connectivity and the language and cognitive network of TLE patients. Cerebellum potentially represents an intervention target for delaying or improving language and cognitive deficits in patients with TLE.
Collapse
|
68
|
Wu YJ, Hou X, Peng C, Yu W, Oppenheim GM, Thierry G, Zhang D. Rapid learning of a phonemic discrimination in the first hours of life. Nat Hum Behav 2022; 6:1169-1179. [PMID: 35654965 PMCID: PMC9391223 DOI: 10.1038/s41562-022-01355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Human neonates can discriminate phonemes, but the neural mechanism underlying this ability is poorly understood. Here we show that the neonatal brain can learn to discriminate natural vowels from backward vowels, a contrast unlikely to have been learnt in the womb. Using functional near-infrared spectroscopy, we examined the neuroplastic changes caused by 5 h of postnatal exposure to random sequences of natural and reversed (backward) vowels (T1), and again 2 h later (T2). Neonates in the experimental group were trained with the same stimuli as those used at T1 and T2. Compared with controls, infants in the experimental group showed shorter haemodynamic response latencies for forward vs backward vowels at T1, maximally over the inferior frontal region. At T2, neural activity differentially increased, maximally over superior temporal regions and the left inferior parietal region. Neonates thus exhibit ultra-fast tuning to natural phonemes in the first hours after birth.
Collapse
Affiliation(s)
- Yan Jing Wu
- Faculty of Foreign Languages, Ningbo University, Ningbo, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Cheng Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wenwen Yu
- School of Psychology, Shenzhen University, Shenzhen, China
| | | | - Guillaume Thierry
- School of Psychology, Bangor University, Bangor, Wales, UK.,Faculty of English, Adam Mickiewicz University, Poznań, Poland
| | - Dandan Zhang
- School of Psychology, Shenzhen University, Shenzhen, China. .,Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China. .,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China.
| |
Collapse
|
69
|
Olivé G, Slušná D, Vaquero L, Muchart-López J, Rodríguez-Fornells A, Hinzen W. Structural connectivity in ventral language pathways characterizes non-verbal autism. Brain Struct Funct 2022; 227:1817-1829. [PMID: 35286477 PMCID: PMC9098538 DOI: 10.1007/s00429-022-02474-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
Abstract
Language capacities in autism spectrum disorders (ASD) range from normal scores on standardized language tests to absence of functional language in a substantial minority of 30% of individuals with ASD. Due to practical difficulties of scanning at this severe end of the spectrum, insights from MRI are scarce. Here we used manual deterministic tractography to investigate, for the first time, the integrity of the core white matter tracts defining the language connectivity network in non-verbal ASD (nvASD): the three segments of the arcuate (AF), the inferior fronto-occipital (IFOF), the inferior longitudinal (ILF) and the uncinate (UF) fasciculi, and the frontal aslant tract (FAT). A multiple case series of nine individuals with nvASD were compared to matched individuals with verbal ASD (vASD) and typical development (TD). Bonferroni-corrected repeated measure ANOVAs were performed separately for each tract-Hemisphere (2:Left/Right) × Group (3:TD/vASD/nvASD). Main results revealed (i) a main effect of group consisting in a reduction in fractional anisotropy (FA) in the IFOF in nvASD relative to TD; (ii) a main effect of group revealing lower values of radial diffusivity (RD) in the long segment of the AF in nvASD compared to vASD group; and (iii) a reduced volume in the left hemisphere of the UF when compared to the right, in the vASD group only. These results do not replicate volumetric differences of the dorsal language route previously observed in nvASD, and instead point to a disruption of the ventral language pathway, in line with semantic deficits observed behaviourally in this group.
Collapse
Affiliation(s)
- Guillem Olivé
- Department of Cognition, Development and Educational Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, 08097, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08097, Barcelona, Spain
| | - Dominika Slušná
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, 08018, Barcelona, Spain
| | - Lucía Vaquero
- Legal Medicine, Psychiatry, and Pathology Department, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | | | - Antoni Rodríguez-Fornells
- Department of Cognition, Development and Educational Psychology, Campus Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, 08097, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08097, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010, Barcelona, Spain
| | - Wolfram Hinzen
- Department of Translation and Language Sciences, Campus Poblenou, Pompeu Fabra University, 08018, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
70
|
Romeo RR, Choi B, Gabard-Durnam LJ, Wilkinson CL, Levin AR, Rowe ML, Tager-Flusberg H, Nelson CA. Parental Language Input Predicts Neuroscillatory Patterns Associated with Language Development in Toddlers at Risk of Autism. J Autism Dev Disord 2022; 52:2717-2731. [PMID: 34185234 PMCID: PMC9594983 DOI: 10.1007/s10803-021-05024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
In this study we investigated the impact of parental language input on language development and associated neuroscillatory patterns in toddlers at risk of Autism Spectrum Disorder (ASD). Forty-six mother-toddler dyads at either high (n = 22) or low (n = 24) familial risk of ASD completed a longitudinal, prospective study including free-play, resting electroencephalography, and standardized language assessments. Input quantity/quality at 18 months positively predicted expressive language at 24 months, and relationships were stronger for high-risk toddlers. Moderated mediations revealed that input-language relationships were explained by 24-month frontal and temporal gamma power (30-50 Hz) for high-risk toddlers who would later develop ASD. Results suggest that high-risk toddlers may be cognitively and neurally more sensitive to their language environments, which has implications for early intervention.
Collapse
Affiliation(s)
- Rachel R Romeo
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA. .,Department of Psychology, Harvard University, 33 Kirkland Street, Cambridge, MA, 02138, USA.
| | - Boin Choi
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA
| | - Laurel J Gabard-Durnam
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA.,Department of Psychology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA
| | - April R Levin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02215, USA
| | - Meredith L Rowe
- Harvard Graduate School of Education, 13 Appian Way, Cambridge, MA, 02138, USA
| | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA, 02215, USA
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, 1 Autumn Street, Boston, MA, 02215, USA.,Harvard Graduate School of Education, 13 Appian Way, Cambridge, MA, 02138, USA.,Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02215, USA
| |
Collapse
|
71
|
Asano R, Boeckx C, Fujita K. Moving beyond domain-specific vs. domain-general options in cognitive neuroscience. Cortex 2022; 154:259-268. [DOI: 10.1016/j.cortex.2022.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
|
72
|
Kruchinina O, Stankova E, Guillemard D, Galperina E. Passive Voice Comprehension during Thematic-Role Assignment in Russian-Speaking Children Aged 4-6 Is Reflected in the Sensitivity of ERP to Noun Inflections. Brain Sci 2022; 12:693. [PMID: 35741579 PMCID: PMC9220815 DOI: 10.3390/brainsci12060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
Children tend to rely on semantics rather than syntax during sentence comprehension. In transitive sentences, with no reliance on semantics, the syntax-based strategy becomes critical. We aimed to describe developmental changes of brain mechanisms for syntax processing in typically developing (TD) four to six year old’s. A specially designed sentence-picture matching task using active (AV) and passive (PV) voice enforced children to use grammar cues for sentence comprehension. Fifty children with above >60% level of accuracy in PV sentences comprehension demonstrated brain sensitivity to voice grammar markers-inflections of the second noun phrase (NP2), which was expressed in a greater event-related potentials (ERP) amplitude to PV vs. AV sentences in four-, five-, and six-year-old children. The biphasic positive-negative component at 200−400 ms was registered in the frontocentral and bilateral temporoparietal areas. Only in six-year-old children P600 was registered in the right temporoparietal area. LAN-like negativity seems to be a mechanism for distinguishing AV from PV in the early stages of mastering syntax processing of transitive sentences in four to five year old children. Both behavioral and ERP results distinguished six-year-olds from four-year-old’s and five-year-old’s, reflecting the possible transition to the “adult-like” syntax-based thematic role assignment.
Collapse
Affiliation(s)
| | | | | | - Elizaveta Galperina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia; (O.K.); (E.S.); (D.G.)
| |
Collapse
|
73
|
Neonatal brain injury influences structural connectivity and childhood functional outcomes. PLoS One 2022; 17:e0262310. [PMID: 34986206 PMCID: PMC8730412 DOI: 10.1371/journal.pone.0262310] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Neonatal brain injury may impact brain development and lead to lifelong functional impairments. Hypoxic-ischemic encephalopathy (HIE) and congenital heart disease (CHD) are two common causes of neonatal brain injury differing in timing and mechanism. Maturation of whole-brain neural networks can be quantified during development using diffusion magnetic resonance imaging (dMRI) in combination with graph theory metrics. DMRI of 35 subjects with CHD and 62 subjects with HIE were compared to understand differences in the effects of HIE and CHD on the development of network topological parameters and functional outcomes. CHD newborns had worse 12–18 month language (P<0.01) and 30 month cognitive (P<0.01), language (P = 0.05), motor outcomes (P = 0.01). Global efficiency, a metric of brain integration, was lower in CHD (P = 0.03) than in HIE, but transitivity, modularity and small-worldness were similar. After controlling for clinical factors known to affect neurodevelopmental outcomes, we observed that global efficiency was highly associated with 30 month motor outcomes (P = 0.02) in both groups. To explore neural correlates of adverse language outcomes in CHD, we used hypothesis-based and data-driven approaches to identify pathways with altered structural connectivity. We found that connectivity strength in the superior longitudinal fasciculus (SLF) tract 2 was inversely associated with expressive language. After false discovery rate correction, a whole connectome edge analysis identified 18 pathways that were hypoconnected in the CHD cohort as compared to HIE. In sum, our study shows that neonatal structural connectivity predicts early motor development after HIE or in subjects with CHD, and regional SLF connectivity is associated with language outcomes. Further research is needed to determine if and how brain networks change over time and whether those changes represent recovery or ongoing dysfunction. This knowledge will directly inform strategies to optimize neurologic functional outcomes after neonatal brain injury.
Collapse
|
74
|
Wu SH, Henderson LM, Gennari SP. Animacy-induced conflict in sentence production and comprehension from late childhood to adolescence. J Exp Child Psychol 2022; 217:105350. [PMID: 35104690 DOI: 10.1016/j.jecp.2021.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Some animacy configurations elicit parallel semantic interference in adult production and comprehension; for example, phrases with similar animate nouns like the man that the girl is hugging are more difficult than phrases like the doll that the girl is hugging. Yet little is known about how this interference manifests in development, particularly, beyond early childhood. Because frontal brain maturation and cognitive control improvements are known to occur across late childhood and adolescence, we investigated (a) how animacy-induced difficulty in production and comprehension vary with age throughout this period and (b) whether control processes reflected in the backward digit span (BDS) test uniquely explained these differences besides other language measures. In separate tasks, participants (8- to 15-year-old children; N = 91) heard auditory descriptions of depicted characters, produced characters' descriptions, and completed BDS, vocabulary, and reading experience tests. Results indicated that, as in adults, animacy modulated performance in production and comprehension across all ages. The animacy modulation interacted with age in production but not in comprehension, suggesting age-related animacy differences in production but relatively stable differences in comprehension despite processing speed improvements. Importantly, these age-related production differences were also modulated by the BDS scores; only participants with higher BDS scores displayed age-related animacy differences. Together, these results indicate that comprehension and production develop at different rates and that the development of BDS performance interacts with age-dependent changes in sentence planning from late childhood to adolescence. More generally, the study highlights tasks' disparities to be explained by cognitive and developmental models of language.
Collapse
Affiliation(s)
- Shi Hui Wu
- Department of Psychology, University of York, York YO10 5DD, UK.
| | | | | |
Collapse
|
75
|
Abstract
Neuroplasticity, i.e., the modifiability of the brain, is different in development and adulthood. The first includes changes in: (i) neurogenesis and control of neuron number; (ii) neuronal migration; (iii) differentiation of the somato-dendritic and axonal phenotypes; (iv) formation of connections; (v) cytoarchitectonic differentiation. These changes are often interrelated and can lead to: (vi) system-wide modifications of brain structure as well as to (vii) acquisition of specific functions such as ocular dominance or language. Myelination appears to be plastic both in development and adulthood, at least, in rodents. Adult neuroplasticity is limited, and is mainly expressed as changes in the strength of excitatory and inhibitory synapses while the attempts to regenerate connections have met with limited success. The outcomes of neuroplasticity are not necessarily adaptive, but can also be the cause of neurological and psychiatric pathologies.
Collapse
|
76
|
Ruthig P, Schönwiesner M. Common principles in the lateralisation of auditory cortex structure and function for vocal communication in primates and rodents. Eur J Neurosci 2022; 55:827-845. [PMID: 34984748 DOI: 10.1111/ejn.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022]
Abstract
This review summarises recent findings on the lateralisation of communicative sound processing in the auditory cortex (AC) of humans, non-human primates, and rodents. Functional imaging in humans has demonstrated a left hemispheric preference for some acoustic features of speech, but it is unclear to which degree this is caused by bottom-up acoustic feature selectivity or top-down modulation from language areas. Although non-human primates show a less pronounced functional lateralisation in AC, the properties of AC fields and behavioral asymmetries are qualitatively similar. Rodent studies demonstrate microstructural circuits that might underlie bottom-up acoustic feature selectivity in both hemispheres. Functionally, the left AC in the mouse appears to be specifically tuned to communication calls, whereas the right AC may have a more 'generalist' role. Rodents also show anatomical AC lateralisation, such as differences in size and connectivity. Several of these functional and anatomical characteristics are also lateralized in human AC. Thus, complex vocal communication processing shares common features among rodents and primates. We argue that a synthesis of results from humans, non-human primates, and rodents is necessary to identify the neural circuitry of vocal communication processing. However, data from different species and methods are often difficult to compare. Recent advances may enable better integration of methods across species. Efforts to standardise data formats and analysis tools would benefit comparative research and enable synergies between psychological and biological research in the area of vocal communication processing.
Collapse
Affiliation(s)
- Philip Ruthig
- Faculty of Life Sciences, Leipzig University, Leipzig, Sachsen.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
| | | |
Collapse
|
77
|
Sanchez-Alonso S, Aslin RN. Towards a model of language neurobiology in early development. BRAIN AND LANGUAGE 2022; 224:105047. [PMID: 34894429 DOI: 10.1016/j.bandl.2021.105047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Understanding language neurobiology in early childhood is essential for characterizing the developmental structural and functional changes that lead to the mature adult language network. In the last two decades, the field of language neurodevelopment has received increasing attention, particularly given the rapid advances in the implementation of neuroimaging techniques and analytic approaches that allow detailed investigations into the developing brain across a variety of cognitive domains. These methodological and analytical advances hold the promise of developing early markers of language outcomes that allow diagnosis and clinical interventions at the earliest stages of development. Here, we argue that findings in language neurobiology need to be integrated within an approach that captures the dynamic nature and inherent variability that characterizes the developing brain and the interplay between behavior and (structural and functional) neural patterns. Accordingly, we describe a framework for understanding language neurobiology in early development, which minimally requires an explicit characterization of the following core domains: i) computations underlying language learning mechanisms, ii) developmental patterns of change across neural and behavioral measures, iii) environmental variables that reinforce language learning (e.g., the social context), and iv) brain maturational constraints for optimal neural plasticity, which determine the infant's sensitivity to learning from the environment. We discuss each of these domains in the context of recent behavioral and neuroimaging findings and consider the need for quantitatively modeling two main sources of variation: individual differences or trait-like patterns of variation and within-subject differences or state-like patterns of variation. The goal is to enable models that allow prediction of language outcomes from neural measures that take into account these two types of variation. Finally, we examine how future methodological approaches would benefit from the inclusion of more ecologically valid paradigms that complement and allow generalization of traditional controlled laboratory methods.
Collapse
Affiliation(s)
| | - Richard N Aslin
- Haskins Laboratories, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA; Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
78
|
Sonoda M, Silverstein BH, Jeong JW, Sugiura A, Nakai Y, Mitsuhashi T, Rothermel R, Luat AF, Sood S, Asano E. Six-dimensional dynamic tractography atlas of language connectivity in the developing brain. Brain 2021; 144:3340-3354. [PMID: 34849596 PMCID: PMC8677551 DOI: 10.1093/brain/awab225] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 11/12/2022] Open
Abstract
During a verbal conversation, our brain moves through a series of complex linguistic processing stages: sound decoding, semantic comprehension, retrieval of semantically coherent words, and overt production of speech outputs. Each process is thought to be supported by a network consisting of local and long-range connections bridging between major cortical areas. Both temporal and extratemporal lobe regions have functional compartments responsible for distinct language domains, including the perception and production of phonological and semantic components. This study provides quantitative evidence of how directly connected inter-lobar neocortical networks support distinct stages of linguistic processing across brain development. Novel six-dimensional tractography was used to intuitively visualize the strength and temporal dynamics of direct inter-lobar effective connectivity between cortical areas activated during each linguistic processing stage. We analysed 3401 non-epileptic intracranial electrode sites from 37 children with focal epilepsy (aged 5-20 years) who underwent extra-operative electrocorticography recording. Principal component analysis of auditory naming-related high-gamma modulations determined the relative involvement of each cortical area during each linguistic processing stage. To quantify direct effective connectivity, we delivered single-pulse electrical stimulation to 488 temporal and 1581 extratemporal lobe sites and measured the early cortico-cortical spectral responses at distant electrodes. Mixed model analyses determined the effects of naming-related high-gamma co-augmentation between connecting regions, age, and cerebral hemisphere on the strength of effective connectivity independent of epilepsy-related factors. Direct effective connectivity was strongest between extratemporal and temporal lobe site pairs, which were simultaneously activated between sentence offset and verbal response onset (i.e. response preparation period); this connectivity was approximately twice more robust than that with temporal lobe sites activated during stimulus listening or overt response. Conversely, extratemporal lobe sites activated during overt response were equally connected with temporal lobe language sites. Older age was associated with increased strength of inter-lobar effective connectivity especially between those activated during response preparation. The arcuate fasciculus supported approximately two-thirds of the direct effective connectivity pathways from temporal to extratemporal auditory language-related areas but only up to half of those in the opposite direction. The uncinate fasciculus consisted of <2% of those in the temporal-to-extratemporal direction and up to 6% of those in the opposite direction. We, for the first time, provided an atlas which quantifies and animates the strength, dynamics, and direction specificity of inter-lobar neural communications between language areas via the white matter pathways. Language-related effective connectivity may be strengthened in an age-dependent manner even after the age of 5.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Ayaka Sugiura
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Wakayama 6418509, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Robert Rothermel
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
79
|
Gao L, Xiao Y, Xu H. Gray matter asymmetry in asymptomatic carotid stenosis. Hum Brain Mapp 2021; 42:5665-5676. [PMID: 34498785 PMCID: PMC8559457 DOI: 10.1002/hbm.25645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Even clinically “asymptomatic” carotid stenosis is associated with multidomain cognitive impairment, gray matter (GM) atrophy, and silent lesion. However, the links between them remain unclear. Using structural MRI data, we examined GM asymmetry index (AI) and white matter hyperintensity (WMH) in 24 patients with severe asymptomatic carotid stenosis (SACS), 24 comorbidity‐matched controls, and independent samples of 84 elderly controls and 22 young adults. As compared to controls, SACS patients showed worse verbal memories, higher WMH burden, and right‐lateralized GM in posterior middle temporal and mouth‐somatomotor regions. These clusters extended to pars triangularis, lateral temporal, and cerebellar regions, when compared with young adults. Further, a full‐path of WMH burden (X), GM volume (atrophy, M1), AI (asymmetry, M2), and neuropsychological variables (Y) through a serial mediation model was analyzed. This analysis identified that left‐dominated GM atrophy and right‐lateralized asymmetry in the posterior middle temporal cortex mediated the relationship between WMH burden and recall memory in SACS patients. These results suggest that the unbalanced hemispheric atrophy in the posterior middle temporal cortex is crucial to mediating relationship between WMH burden and verbal recall memories, which may underlie accelerated aging and cognitive deterioration in patients with SACS and other vascular cognitive impairment.
Collapse
Affiliation(s)
- Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, China
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, China
| |
Collapse
|
80
|
King LS, Salo VC, Kujawa A, Humphreys KL. Advancing the RDoC initiative through the assessment of caregiver social processes. Dev Psychopathol 2021; 33:1648-1664. [PMID: 34311802 PMCID: PMC8792111 DOI: 10.1017/s095457942100064x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The relationships infants and young children have with their caregivers are fundamental to their survival and well-being. Theorists and researchers across disciplines have attempted to describe and assess the variation in these relationships, leading to a general acceptance that caregiving is critical to understanding child functioning, including developmental psychopathology. At the same time, we lack consensus on how to assess these fundamental relationships. In the present paper, we first review research documenting the importance of the caregiver-child relationship in understanding environmental risk for psychopathology. Second, we propose that the National Institute of Mental Health's Research Domain Criteria (RDoC) initiative provides a useful framework for extending the study of children's risk for psychopathology by assessing their caregivers' social processes. Third, we describe the units of analysis for caregiver social processes, documenting how the specific subconstructs in the domain of social processes are relevant to the goal of enhancing knowledge of developmental psychopathology. Lastly, we highlight how past research can inform new directions in the study of caregiving and the parent-child relationship through this innovative extension of the RDoC initiative.
Collapse
Affiliation(s)
- Lucy S King
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Virginia C Salo
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Autumn Kujawa
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
81
|
Schwab J, Liu M, Mueller JL. On the Acquisition of Polarity Items: 11- to 12-Year-Olds' Comprehension of German NPIs and PPIs. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2021; 50:1487-1509. [PMID: 34424452 PMCID: PMC8660713 DOI: 10.1007/s10936-021-09801-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 05/30/2023]
Abstract
Existing work on the acquisition of polarity-sensitive expressions (PSIs) suggests that children show an early sensitivity to the restricted distribution of negative polarity items (NPIs), but may be delayed in the acquisition of positive polarity items (PPIs). However, past studies primarily targeted PSIs that are highly frequent in children's language input. In this paper, we report an experimental investigation on children's comprehension of two NPIs and two PPIs in German. Based on corpus data indicating that the four tested PSIs are present in child-directed speech but rare in young children's utterances, we conducted an auditory rating task with adults and 11- to 12-year-old children. The results demonstrate that, even at 11-12 years of age, children do not yet show a completely target-like comprehension of the investigated PSIs. While they are adult-like in their responses to one of the tested NPIs, their responses did not demonstrate a categorical distinction between licensed and unlicensed PSI uses for the other tested expressions. The effect was led by a higher acceptance of sentences containing unlicensed PSIs, indicating a lack of awareness for their distributional restrictions. The results of our study pose new questions for the developmental time scale of the acquisition of polarity items.
Collapse
Affiliation(s)
- Juliane Schwab
- Institute of Cognitive Science, Osnabrück University, Wachsbleiche 27, 49090, Osnabrück, Germany.
| | - Mingya Liu
- Department of English and American Studies, Humboldt University of Berlin, Berlin, Germany
| | - Jutta L Mueller
- Department of Linguistics, University of Vienna, Vienna, Austria
| |
Collapse
|
82
|
Wang J, Wagley N, Rice ML, Booth JR. Semantic and syntactic specialization during auditory sentence processing in 7-8-year-old children. Cortex 2021; 145:169-186. [PMID: 34731687 PMCID: PMC8633078 DOI: 10.1016/j.cortex.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023]
Abstract
Previous studies indicate that adults show specialized syntactic and semantic processes in both the temporal and frontal lobes during language comprehension. Neuro-cognitive models of language development argue that this specialization appears earlier in the temporal than the frontal lobe. However, there is little evidence supporting this proposed progression. Our recently published study (Wang, Rice, & Booth, 2020), using multivoxel pattern analyses, detected that children as young as 5 to 6 years old exhibit specialization and integration in the temporal lobe, but not the frontal lobe. In the current study, we used the same approach to examine semantic and syntactic specialization in children ages 7 to 8 years old. We found support for semantic specialization in the left middle temporal gyrus (MTG) for correct sentences and in the triangular part of the left inferior frontal gyrus (IFG) for incorrect sentences. We also found that the left superior temporal gyrus (STG) played an integration role and was sensitive to both semantic and syntactic processing during both correct and incorrect sentence processing. However, there was no support for syntactic specialization in 7- to 8-year-old children. As compared to our previous study on 5- to 6-year-old children, which only showed semantic specialization in the temporal lobe, the current study suggests a developmental progression to semantic specialization in the frontal lobe. This project represents an important step forward in testing neuro-cognitive models of language processing in children.
Collapse
Affiliation(s)
- Jin Wang
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA.
| | - Neelima Wagley
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Mabel L Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS, USA
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
83
|
Qi T, Schaadt G, Friederici AD. Associated functional network development and language abilities in children. Neuroimage 2021; 242:118452. [PMID: 34358655 PMCID: PMC8463838 DOI: 10.1016/j.neuroimage.2021.118452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
During childhood, the brain is gradually converging to the efficient functional architecture observed in adults. How the brain's functional architecture evolves with age, particularly in young children, is however, not well understood. We examined the functional connectivity of the core language regions, in association with cortical growth and language abilities, in 175 young children in the age range of 4 to 9 years. We analyzed the brain's developmental changes using resting-state functional and T1-weighted structural magnetic resonance imaging data. The results showed increased functional connectivity strength with age between the pars triangularis of the left inferior frontal gyrus and left temporoparietal regions (cohen's d = 0.54, CI: 0.24 - 0.84), associated with children's language abilities. Stronger functional connectivity between bilateral prefrontal and temporoparietal regions was associated with better language abilities regardless of age. In addition, the stronger functional connectivity between the left inferior frontal and temporoparietal regions was associated with larger surface area and thinner cortical thickness in these regions, which in turn was associated with superior language abilities. Thus, using functional and structural brain indices, coupled with behavioral measures, we elucidate the association of functional language network development, language ability, and cortical growth, thereby adding to our understanding of the neural basis of language acquisition in young children.
Collapse
Affiliation(s)
- Ting Qi
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Education and Psychology, Free University of Berlin, Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
84
|
Marimon M, Hofmann A, Veríssimo J, Männel C, Friederici AD, Höhle B, Wartenburger I. Children's Learning of Non-adjacent Dependencies Using a Web-Based Computer Game Setting. Front Psychol 2021; 12:734877. [PMID: 34803816 PMCID: PMC8595475 DOI: 10.3389/fpsyg.2021.734877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Infants show impressive speech decoding abilities and detect acoustic regularities that highlight the syntactic relations of a language, often coded via non-adjacent dependencies (NADs, e.g., is singing). It has been claimed that infants learn NADs implicitly and associatively through passive listening and that there is a shift from effortless associative learning to a more controlled learning of NADs after the age of 2 years, potentially driven by the maturation of the prefrontal cortex. To investigate if older children are able to learn NADs, Lammertink et al. (2019) recently developed a word-monitoring serial reaction time (SRT) task and could show that 6-11-year-old children learned the NADs, as their reaction times (RTs) increased then they were presented with violated NADs. In the current study we adapted their experimental paradigm and tested NAD learning in a younger group of 52 children between the age of 4-8 years in a remote, web-based, game-like setting (whack-a-mole). Children were exposed to Italian phrases containing NADs and had to monitor the occurrence of a target syllable, which was the second element of the NAD. After exposure, children did a "Stem Completion" task in which they were presented with the first element of the NAD and had to choose the second element of the NAD to complete the stimuli. Our findings show that, despite large variability in the data, children aged 4-8 years are sensitive to NADs; they show the expected differences in r RTs in the SRT task and could transfer the NAD-rule in the Stem Completion task. We discuss these results with respect to the development of NAD dependency learning in childhood and the practical impact and limitations of collecting these data in a web-based setting.
Collapse
Affiliation(s)
- Mireia Marimon
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
| | - Andrea Hofmann
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
- Early Childhood Education Research, University of Applied Sciences, Potsdam, Germany
| | - João Veríssimo
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
- School of Arts and Humanities, University of Lisbon, Lisbon, Portugal
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Barbara Höhle
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
| | - Isabell Wartenburger
- Cognitive Sciences, Department of Linguistics, University of Potsdam, Potsdam, Germany
| |
Collapse
|
85
|
Wagley N, Booth JR. Neuro-cognitive development of semantic and syntactic bootstrapping in 6- to 7.5-year-old children. Neuroimage 2021; 241:118416. [PMID: 34298084 PMCID: PMC8629629 DOI: 10.1016/j.neuroimage.2021.118416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
The present study examined the longitudinal relations of brain and behavior from ages 6-7.5 years old to test the bootstrapping account of language development. Prior work suggests that children's vocabulary development is foundational for acquiring grammar (e.g., semantic bootstrapping) and that children rely on the syntactic context of sentences to learn the meaning of new words (e.g., syntactic bootstrapping). Yet, little is known about the dynamics underlying semantic and syntactic development as children enter elementary school. In a series of preregistered and exploratory analyses, we tested how semantic and syntactic behavioral skills may influence the development of brain regions implicated in these processes, i.e. left posterior middle temporal gyrus (pMTG) and inferior frontal gyrus (pars opercularis, IFGop), respectively. Vice-a-versa, we tested how these brain regions may influence the development of children's semantic and syntactic behavioral skills. We assessed semantic (N = 26) and syntactic (N = 30) processes behaviorally and in the brain when children were ages 5.5-6.5 years old (Time 1) and again at 7-8 years old (Time 2). All brain-behavior analyses controlled for T1 autoregressive effects and phonological memory. Exploratory hierarchical regression analyses suggested bi-directional influences, but with greater support for syntactic bootstrapping. Across the analyses, there was a small to medium effect of change in variance in models where semantics predicted syntax. Conversely, there was medium to large change in variance in models where syntax predicted semantics. In line with prior literature, results suggest a close relationship between lexical and grammatical development in children ages 6-7.5 years old. However, there was more robust evidence for syntactic bootstrapping, suggesting that acquisition of phrase structure in school age children may allow for more effective learning of word meanings. This complements prior behavioral studies and suggests a potential shift in the early reliance on semantics to later reliance on syntax in development.
Collapse
Affiliation(s)
- Neelima Wagley
- Department of Psychology and Human Development, Vanderbilt University, Nashville, USA.
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, USA
| |
Collapse
|
86
|
A distributed network supports spatiotemporal cerebral dynamics of visual naming. Clin Neurophysiol 2021; 132:2948-2958. [PMID: 34715419 DOI: 10.1016/j.clinph.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Cerebral spatiotemporal dynamics of visual naming were investigated in epilepsy patients undergoing stereo-electroencephalography (SEEG) monitoring. METHODS Brain networks were defined by Parcel-Activation-Resection-Symptom matching (PARS) approach by matching high-gamma (50-150 Hz) modulations (HGM) in neuroanatomic parcels during visual naming, with neuropsychological outcomes after resection/ablation of those parcels. Brain parcels with >50% electrode contacts simultaneously showing significant HGM were aligned, to delineate spatiotemporal course of naming-related HGM. RESULTS In 41 epilepsy patients, neuroanatomic parcels showed sequential yet temporally overlapping HGM course during visual naming. From bilateral occipital lobes, HGM became increasingly left lateralized, coursing through limbic system. Bilateral superior temporal HGM was noted around response time, and right frontal HGM thereafter. Correlations between resected/ablated parcels, and post-surgical neuropsychological outcomes showed specific regional groupings. CONCLUSIONS Convergence of data from spatiotemporal course of HGM during visual naming, and functional role of specific parcels inferred from neuropsychological deficits after resection/ablation of those parcels, support a model with six cognitive subcomponents of visual naming having overlapping temporal profiles. SIGNIFICANCE Cerebral substrates supporting visual naming are bilaterally distributed with relative hemispheric contribution dependent on cognitive demands at a specific time. PARS approach can be extended to study other cognitive and functional brain networks.
Collapse
|
87
|
Bugada MC, Kline JE, Parikh NA. Microstructural Measures of the Inferior Longitudinal Fasciculus Predict Later Cognitive and Language Development in Infants Born With Extremely Low Birth Weight. J Child Neurol 2021; 36:981-989. [PMID: 34187223 PMCID: PMC8458222 DOI: 10.1177/08830738211019862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Extremely preterm children are at high risk for adverse neurodevelopmental outcomes. Identifying predictors of discrete developmental outcomes early in life would allow for targeted neuroprotective therapies when neuroplasticity is at its peak. Our goal was to examine whether diffusion magnetic resonance imaging (MRI) metrics of the inferior longitudinal and uncinate fasciculi early in life could predict later cognitive and language outcomes. STUDY DESIGN In this pilot study, 43 extremely low-birth-weight preterm infants were scanned using diffusion MRI at term-equivalent age. White matter tracts were assessed via diffusion tensor imaging metrics of fractional anisotropy and mean diffusivity. The Language and Cognitive subscale scores of the Bayley Scales of Infant & Toddler Development-III at 18-22 months corrected age were our outcomes of interest. Multiple linear regression models were created to assess diffusion metrics of the inferior longitudinal and uncinate fasciculi as predictors of Bayley scores. We controlled for brain injury score on structural MRI, maternal education, birth weight, and age at MRI scan. RESULTS Of the 43 infants, 36 infants had high-quality diffusion tensor imaging and returned for developmental testing. The fractional anisotropy of the inferior longitudinal fasciculus was associated with Bayley-III scores in univariate analyses and was an independent predictor of Bayley-III cognitive and language development over and above known predictors in multivariable analyses. CONCLUSIONS Incorporating new biomarkers such as the fractional anisotropy of the inferior longitudinal fasciculus with structural MRI findings could enhance accuracy of neurodevelopment predictive models. Additional research is needed to validate our findings in a larger cohort.
Collapse
Affiliation(s)
- Matthew C. Bugada
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julia E. Kline
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nehal A. Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
88
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
89
|
Lu HH, Che WC, Lin YJ, Liang JS. Association of sibling presence with language development before early school age among children with developmental delays: A longitudinal study. J Formos Med Assoc 2021; 121:1044-1052. [PMID: 34393007 DOI: 10.1016/j.jfma.2021.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND/PURPOSE Having siblings is a crucial ecological factor in children's language development. Whether siblings play a role in the language development of children with developmental delays remains unknown. This study therefore aimed to assess the association between sibling presence and changes in language trajectories of children with developmental delays before reaching early school age. METHODS This retrospective cohort-sequential longitudinal study analyzed data from an institution designated by Taiwan's Ministry of Health and Welfare for assessing and identifying young children with developmental delays between December 2008 and February 2016. We included 174 children, aged 10-58 months (mean [standard deviation (SD)], 31.74 [10.15] months), with developmental delays who underwent at least three waves of evaluation. The final evaluation occurred at 37-90 months of age. Data collection spanned over an age from 10 to 90 months. The primary outcome was language delays as determined by board-certified speech-language pathologists. RESULTS Of the 174 participants (131 boys), 64.94 % (n = 113) had siblings. The likelihood of both receptive language delay and expressive language delay for participants with siblings increased gradually from 10 to 90 months and exceeded that of participants without siblings, respectively (adjusted odds ratios [aOR], 1.04, 1.04; 95 % confidence interval [CI], 1.01-1.07, 1.01-1.07; P = 0.014, 0.020). CONCLUSIONS Having siblings does not necessarily positively associate with language development in children with developmental delays. Clinicians should consider the association of sibling presence with language development for these children in a broader familial-ecological context before they reach early school age.
Collapse
Affiliation(s)
- Hsin-Hui Lu
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Chun Che
- Department of Audiology and Speech-language Pathology, Mackay Medical College, New Taipei City, Taiwan
| | - Yu-Ju Lin
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jao-Shwann Liang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Nursing, Asia Eastern University of Science and Technology, New Taipei City, Taiwan.
| |
Collapse
|
90
|
Yu X, Ferradal SL, Sliva DD, Dunstan J, Carruthers C, Sanfilippo J, Zuk J, Zöllei L, Boyd E, Gagoski B, Ou Y, Grant PE, Gaab N. Functional Connectivity in Infancy and Toddlerhood Predicts Long-Term Language and Preliteracy Outcomes. Cereb Cortex 2021; 32:bhab230. [PMID: 34347052 PMCID: PMC10847903 DOI: 10.1093/cercor/bhab230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Functional connectivity (FC) techniques can delineate brain organization as early as infancy, enabling the characterization of early brain characteristics associated with subsequent behavioral outcomes. Previous studies have identified specific functional networks in infant brains that underlie cognitive abilities and pathophysiology subsequently observed in toddlers and preschoolers. However, it is unknown whether and how functional networks emerging within the first 18 months of life contribute to the development of higher order, complex functions of language/literacy at school-age. This 5-year longitudinal imaging project starting in infancy, utilized resting-state functional magnetic resonance imaging and demonstrated prospective associations between FC in infants/toddlers and subsequent language and foundational literacy skills at 6.5 years old. These longitudinal associations were shown independently of key environmental influences and further present in a subsample of infant imaging data (≤12 months), suggesting early emerged functional networks specifically linked to high-order language and preliteracy skills. Moreover, emergent language skills in infancy and toddlerhood contributed to the prospective associations, implicating a role of early linguistic experiences in shaping the FC correlates of long-term oral language skills. The current results highlight the importance of functional organization established in infancy and toddlerhood as a neural scaffold underlying the learning process of complex cognitive functions.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Silvina L Ferradal
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA
| | - Danielle D Sliva
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Jade Dunstan
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Clarisa Carruthers
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Joseph Sanfilippo
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jennifer Zuk
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA 02215, USA
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Emma Boyd
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Borjan Gagoski
- Harvard Medical School, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Radiology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Yangming Ou
- Harvard Medical School, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Radiology, Boston Children's Hospital, Boston, MA 02215, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - P Ellen Grant
- Harvard Medical School, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Radiology, Boston Children's Hospital, Boston, MA 02215, USA
- Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Harvard Graduate School of Education Boston, Boston, MA 02115, USA
| |
Collapse
|
91
|
Paul M, Männel C, van der Kant A, Mueller JL, Höhle B, Wartenburger I, Friederici AD. Gradual development of non-adjacent dependency learning during early childhood. Dev Cogn Neurosci 2021; 50:100975. [PMID: 34139635 PMCID: PMC8217683 DOI: 10.1016/j.dcn.2021.100975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022] Open
Abstract
In order to become proficient native speakers, children have to learn the morpho-syntactic relations between distant elements in a sentence, so-called non-adjacent dependencies (NADs). Previous research suggests that NAD learning in children comprises different developmental stages, where until 2 years of age children are able to learn NADs associatively under passive listening conditions, while starting around the age of 3-4 years children fail to learn NADs during passive listening. To test whether the transition between these developmental stages occurs gradually, we tested children's NAD learning in a foreign language using event-related potentials (ERPs). We found ERP evidence of NAD learning across the ages of 1, 2 and 3 years. The amplitude of the ERP effect indexing NAD learning, however, decreased with age. These findings might indicate a gradual transition in children's ability to learn NADs associatively. Cognitively, this transition might be driven by children's increasing knowledge of their native language, hindering NAD learning in novel contexts. Neuroanatomically, maturation of the prefrontal cortex might play a crucial role, promoting top-down learning, affecting bottom-up, associative learning. In sum, our study suggests that NAD learning under passive listening conditions undergoes a gradual transition between different developmental stages during early childhood.
Collapse
Affiliation(s)
- Mariella Paul
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany; Psychology of Language Research Group, University of Göttingen, Germany.
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Germany
| | - Anne van der Kant
- Cognitive Sciences, Dept. Linguistics, University of Potsdam, Germany
| | - Jutta L Mueller
- Institute of Cognitive Science, Osnabrück University, Germany; Institute of Linguistics, University of Vienna, Austria
| | - Barbara Höhle
- Cognitive Sciences, Dept. Linguistics, University of Potsdam, Germany
| | - Isabell Wartenburger
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany; Cognitive Sciences, Dept. Linguistics, University of Potsdam, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Germany
| |
Collapse
|
92
|
Wang J, Pines J, Joanisse M, Booth JR. Reciprocal relations between reading skill and the neural basis of phonological awareness in 7- to 9-year-old children. Neuroimage 2021; 236:118083. [PMID: 33878381 PMCID: PMC8361856 DOI: 10.1016/j.neuroimage.2021.118083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/25/2021] [Accepted: 04/08/2021] [Indexed: 01/06/2023] Open
Abstract
By using a longitudinal design and functional magnetic resonance imaging (fMRI), our previous study (Wang et al., 2020) found a scaffolding effect of early phonological processing in the superior temporal gyrus (STG) in 6-year-old children on later behavioral reading skill in 7.5-year-old children. Other than this previous study, nothing is known about longitudinal change in the bidirectional relation between reading skill and phonological processing in the brain. To fill this gap, in the current study, we used the same experimental paradigm as in Wang et al. (2020) to measure children's reading skill and brain activity during an auditory phonological awareness task, but with children who were 7.5 years old at Time 1 (T1) and about 1.5 years later when they were 9 years old at Time 2 (T2). The phonological awareness task included both small grain (i.e., onset) and large grain (i.e., rhyme) conditions. In a univariate analysis, we found that better reading skill at T1 predicted lower brain activation in IFG at T2 for onset processing after controlling for brain activation and non-verbal IQ at T1. This suggests that early reading ability reduces the effort of phonemic access, thus supporting the refinement hypothesis. When using general psychophysiological interaction (gPPI), we found that higher functional connectivity from IFG to STG for rhyme processing at T1 predicted better reading skill at T2 after controlling for reading skill and non-verbal IQ at T1. This suggests that the early effectiveness of accessing rhyme representations scaffolds reading acquisition. As both results did not survive multiple comparison corrections, replication of these findings is needed. However, both findings are consistent with prior studies demonstrating that phonological access in the frontal lobe becomes important in older elementary school readers. Moreover, the refinement effect for onsets is consistent with the hypothesis that learning to read allows for better access of small grain phonology, and the scaffolding effect for rhymes supports the idea that reading progresses to larger grain orthography-to-phonology mapping in older skilled readers. The current study, along with our previous study on younger children, indicates that the development of reading skill is associated with (1) the early importance of the quality of the phonological representations to later access of these representations, and (2) early importance of small grain sizes to later development of large grain ones.
Collapse
Affiliation(s)
- Jin Wang
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA.
| | - Julia Pines
- Neuroscience Program, College of Arts and Sciences, Vanderbilt University, Nashville, TN, USA
| | - Marc Joanisse
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
93
|
Enge A, Abdel Rahman R, Skeide MA. A meta-analysis of fMRI studies of semantic cognition in children. Neuroimage 2021; 241:118436. [PMID: 34329724 DOI: 10.1016/j.neuroimage.2021.118436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
Our capacity to derive meaning from things that we see and words that we hear is unparalleled in other animal species and current AI systems. Despite a wealth of functional magnetic resonance imaging (fMRI) studies on where different semantic features are processed in the adult brain, the development of these systems in children is poorly understood. Here we conducted an extensive database search and identified 50 fMRI experiments investigating semantic world knowledge, semantic relatedness judgments, and the differentiation of visual semantic object categories in children (total N = 1,018, mean age = 10.1 years, range 4-15 years). Synthesizing the results of these experiments, we found consistent activation in the bilateral inferior frontal gyri (IFG), fusiform gyri (FG), and supplementary motor areas (SMA), as well as in the left middle and superior temporal gyri (MTG/STG). Within this system, we found little evidence for age-related changes across childhood and high overlap with the adult semantic system. In sum, the identification of these cortical areas provides the starting point for further research on the mechanisms by which the developing brain learns to make sense of its environment.
Collapse
Affiliation(s)
- Alexander Enge
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany.
| | - Rasha Abdel Rahman
- Department of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
| | - Michael A Skeide
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| |
Collapse
|
94
|
Li M, Song L, Zhang Y, Han Z. White matter network of oral word reading identified by network-based lesion-symptom mapping. iScience 2021; 24:102862. [PMID: 34386727 PMCID: PMC8346667 DOI: 10.1016/j.isci.2021.102862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Oral word reading is supported by a neural subnetwork that includes gray matter regions and white matter tracts connected by the regions. Traditional methods typically determine the reading-relevant focal gray matter regions or white matter tracts rather than the reading-relevant global subnetwork. The present study developed a network-based lesion-symptom mapping (NLSM) method to identify the reading-relevant global white matter subnetwork in 84 brain-damaged patients. The global subnetwork was selected among all possible subnetworks because its global efficiency exhibited the best explanatory power for patients' reading scores. This reading subnetwork was left lateralized and included 7 gray matter regions and 15 white matter tracts. Moreover, the reading subnetwork had additional explanatory power for the patients' reading performance after eliminating the effects of reading-related local regions and tracts. These findings refine the reading neuroanatomical architecture and indicate that the NLSM can be a better method for revealing behavior-specific subnetworks.
Collapse
Affiliation(s)
- Mingyang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luping Song
- Shenzhen University General Hospital, Department of Rehabilitation Medicine, Shenzhen 518055, China
| | - Yumei Zhang
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Corresponding author
| |
Collapse
|
95
|
Ghio M, Cara C, Tettamanti M. The prenatal brain readiness for speech processing: A review on foetal development of auditory and primordial language networks. Neurosci Biobehav Rev 2021; 128:709-719. [PMID: 34274405 DOI: 10.1016/j.neubiorev.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Despite consolidated evidence for the prenatal ability to elaborate and respond to sounds and speech stimuli, the ontogenetic functional brain maturation of language responsiveness in the foetus is still poorly understood. Recent advances in in-vivo foetal neuroimaging have contributed to a finely detailed picture of the anatomo-functional hallmarks that define the prenatal neurodevelopment of auditory and language-related networks. Here, we first outline available evidence for the prenatal development of auditory and language-related brain structures and of their anatomical connections. Second, we focus on functional connectivity data showing the emergence of auditory and primordial language networks in the foetal brain. Third, we recapitulate functional neuroimaging studies assessing the prenatal readiness for sound processing, as a crucial prerequisite for the foetus to experientially respond to spoken language. In conclusion, we suggest that the state of the art has reached sufficient maturity to directly assess the neural mechanisms underlying the prenatal readiness for speech processing and to evaluate whether foetal neuromarkers can predict the postnatal development of language acquisition abilities and disabilities.
Collapse
Affiliation(s)
- Marta Ghio
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | - Cristina Cara
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | - Marco Tettamanti
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy.
| |
Collapse
|
96
|
Overath T, Paik JH. From acoustic to linguistic analysis of temporal speech structure: Acousto-linguistic transformation during speech perception using speech quilts. Neuroimage 2021; 235:117887. [PMID: 33617990 PMCID: PMC8246445 DOI: 10.1016/j.neuroimage.2021.117887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
Speech perception entails the mapping of the acoustic waveform to linguistic representations. For this transformation to succeed, the speech signal needs to be tracked over various temporal windows at high temporal precision in order to decode linguistic units ranging from phonemes (tens of milliseconds) to sentences (seconds). Here, we tested the hypothesis that cortical processing of speech-specific temporal structure is modulated by higher-level linguistic analysis. Using fMRI, we measured BOLD signal changes to 4 s long speech quilts with variable temporal structure (30, 120, 480, 960 ms segment lengths), as well as natural speech, created from a familiar (English) or foreign (Korean) language. We found evidence for the acoustic analysis of temporal speech properties in superior temporal sulcus (STS): the BOLD signal increased as a function of temporal speech structure in both familiar and foreign languages. However, activity in left inferior gyrus (IFG) revealed evidence for linguistic processing of temporal speech properties: the BOLD signal increased as a function of temporal speech structure only in familiar, but not in foreign speech. Network connectivity analyses suggested that left IFG modulates the processing of temporal speech structure in primary and non-primary auditory cortex, which in turn sensitizes the analysis of temporal speech structure in STS. The results thus suggest that acousto-linguistic transformation of temporal speech structure is achieved by a cortical network comprising primary and non-primary auditory cortex, STS, and left IFG.
Collapse
Affiliation(s)
- Tobias Overath
- Department of Psychology & Neuroscience, Duke University, Durham, North Carolina, 27708, U.S.A.; Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, 27708, U.S.A.; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina, 27708, U.S.A..
| | - Joon H Paik
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, 27708, U.S.A
| |
Collapse
|
97
|
Watson SK, Burkart JM, Schapiro SJ, Lambeth SP, Mueller JL, Townsend SW. Reply to comment on "Nonadjacent dependency processing in monkeys, apes, and humans". SCIENCE ADVANCES 2021; 7:7/30/eabj1517. [PMID: 34290100 PMCID: PMC8294750 DOI: 10.1126/sciadv.abj1517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Rawski et al. revisit our recent findings suggesting the latent ability to process nonadjacent dependencies ("Non-ADs") in monkeys and apes. Specifically, the authors question the relevance of our findings for the evolution of human syntax. We argue that (i) these conclusions hinge upon an assumption that language processing is necessarily hierarchical, which remains an open question, and (ii) our goal was to probe the foundational cognitive mechanisms facilitating the processing of syntactic Non-ADs-namely, the ability to recognize predictive relationships in the input.
Collapse
Affiliation(s)
- Stuart K Watson
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland.
- Center for the Interdisciplinary Study of Language Evolution, Zurich, Switzerland
| | - Judith M Burkart
- Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Steven J Schapiro
- UT MD Anderson Cancer Research Center, Bastrop, TX, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Jutta L Mueller
- Institute of Linguistics, University of Vienna, Vienna, Austria
| | - Simon W Townsend
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, Zurich, Switzerland
- Department of Psychology, University of Warwick, Coventry, UK
| |
Collapse
|
98
|
Alho J, Bharadwaj H, Khan S, Mamashli F, Perrachione TK, Losh A, McGuiggan NM, Joseph RM, Hämäläinen MS, Kenet T. Altered maturation and atypical cortical processing of spoken sentences in autism spectrum disorder. Prog Neurobiol 2021; 203:102077. [PMID: 34033856 DOI: 10.1016/j.pneurobio.2021.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is associated with widespread receptive language impairments, yet the neural mechanisms underlying these deficits are poorly understood. Neuroimaging has shown that processing of socially-relevant sounds, including speech and non-speech, is atypical in ASD. However, it is unclear how the presence of lexical-semantic meaning affects speech processing in ASD. Here, we recorded magnetoencephalography data from individuals with ASD (N = 22, ages 7-17, 4 females) and typically developing (TD) peers (N = 30, ages 7-17, 5 females) during unattended listening to meaningful auditory speech sentences and meaningless jabberwocky sentences. After adjusting for age, ASD individuals showed stronger responses to meaningless jabberwocky sentences than to meaningful speech sentences in the same left temporal and parietal language regions where TD individuals exhibited stronger responses to meaningful speech. Maturational trajectories of meaningful speech responses were atypical in temporal, but not parietal, regions in ASD. Temporal responses were associated with ASD severity, while parietal responses were associated with aberrant involuntary attentional shifting in ASD. Our findings suggest a receptive speech processing dysfunction in ASD, wherein unattended meaningful speech elicits abnormal engagement of the language system, while unattended meaningless speech, filtered out in TD individuals, engages the language system through involuntary attention capture.
Collapse
Affiliation(s)
- Jussi Alho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hari Bharadwaj
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA
| | - Ainsley Losh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Graduate School of Education, University of California, Riverside, CA, USA
| | - Nicole M McGuiggan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Matti S Hämäläinen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
99
|
Choi D, Dehaene-Lambertz G, Peña M, Werker JF. Neural indicators of articulator-specific sensorimotor influences on infant speech perception. Proc Natl Acad Sci U S A 2021; 118:e2025043118. [PMID: 33980713 PMCID: PMC8157983 DOI: 10.1073/pnas.2025043118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
While there is increasing acceptance that even young infants detect correspondences between heard and seen speech, the common view is that oral-motor movements related to speech production cannot influence speech perception until infants begin to babble or speak. We investigated the extent of multimodal speech influences on auditory speech perception in prebabbling infants who have limited speech-like oral-motor repertoires. We used event-related potentials (ERPs) to examine how sensorimotor influences to the infant's own articulatory movements impact auditory speech perception in 3-mo-old infants. In experiment 1, there were ERP discriminative responses to phonetic category changes across two phonetic contrasts (bilabial-dental /ba/-/ɗa/; dental-retroflex /ɗa/-/ɖa/) in a mismatch paradigm, indicating that infants auditorily discriminated both contrasts. In experiment 2, inhibiting infants' own tongue-tip movements had a disruptive influence on the early ERP discriminative response to the /ɗa/-/ɖa/ contrast only. The same articulatory inhibition had contrasting effects on the perception of the /ba/-/ɗa/ contrast, which requires different articulators (the lips vs. the tongue) during production, and the /ɗa/-/ɖa/ contrast, whereby both phones require tongue-tip movement as a place of articulation. This articulatory distinction between the two contrasts plausibly accounts for the distinct influence of tongue-tip suppression on the neural responses to phonetic category change perception in definitively prebabbling, 3-mo-old, infants. The results showing a specificity in the relation between oral-motor inhibition and phonetic speech discrimination suggest a surprisingly early mapping between auditory and motor speech representation already in prebabbling infants.
Collapse
Affiliation(s)
- Dawoon Choi
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, INSERM, F-91191 Gif/Yvette, France
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, F-91191 Gif/Yvette, France
- Cognitive Neuroimaging Unit, University Paris-Sud, F-91191 Gif/Yvette, France
| | - Marcela Peña
- Escuela de psicología, Pontificia Universidad Catolica de Chile, Santiago 7820244, Chile
| | - Janet F Werker
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
100
|
Hertrich I, Dietrich S, Blum C, Ackermann H. The Role of the Dorsolateral Prefrontal Cortex for Speech and Language Processing. Front Hum Neurosci 2021; 15:645209. [PMID: 34079444 PMCID: PMC8165195 DOI: 10.3389/fnhum.2021.645209] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
This review article summarizes various functions of the dorsolateral prefrontal cortex (DLPFC) that are related to language processing. To this end, its connectivity with the left-dominant perisylvian language network was considered, as well as its interaction with other functional networks that, directly or indirectly, contribute to language processing. Language-related functions of the DLPFC comprise various aspects of pragmatic processing such as discourse management, integration of prosody, interpretation of nonliteral meanings, inference making, ambiguity resolution, and error repair. Neurophysiologically, the DLPFC seems to be a key region for implementing functional connectivity between the language network and other functional networks, including cortico-cortical as well as subcortical circuits. Considering clinical aspects, damage to the DLPFC causes psychiatric communication deficits rather than typical aphasic language syndromes. Although the number of well-controlled studies on DLPFC language functions is still limited, the DLPFC might be an important target region for the treatment of pragmatic language disorders.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Susanne Dietrich
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Corinna Blum
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|