51
|
Koks S, Wood DJ, Reimann E, Awiszus F, Lohmann CH, Bertrand J, Prans E, Maasalu K, Märtson A. The Genetic Variations Associated With Time to Aseptic Loosening After Total Joint Arthroplasty. J Arthroplasty 2020; 35:981-988. [PMID: 31791832 DOI: 10.1016/j.arth.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Total joint arthroplasty (TJA) is one of the most frequent surgical procedures performed in modern hospitals, and aseptic loosening is the most common indication for revision surgeries. We conducted a systemic exploration of potential genetic determinants for early aseptic loosening. METHODS Data from 423 patients undergoing TJA were collected and analyzed. Three analytical groups were formed based on joint arthroplasty status. Group 1 were TJA patients without symptoms of aseptic loosening of at least 1 year, group 2 were patients with primary TJA, and group 3 were patients receiving revision surgery because of aseptic loosening. Genome-wide genotyping comparing genotype frequencies between patients with and without aseptic loosening (group 3 vs groups 1 and 2) was conducted. A case-control association analysis and linear modeling were applied to identify the impact of the identified genes on implant survival with time to the revision as an outcome measure. RESULTS We identified 52 single-nucleotide polymorphisms (SNPs) with a genome-wide suggestive P value less than 10-5 to be associated with the implant loosening. The most remarkable odds ratios (OR) were found with the variations in the IFIT2/IFIT3 (OR, 21.6), CERK (OR, 12.6), and PAPPA (OR, 14.0) genes. Variations in the genotypes of 4 SNPs-rs115871127, rs16823835, rs13275667, and rs2514486-predicted variability in the time to aseptic loosening. The time to aseptic loosening varied from 8 to 16 years depending on the genotype, indicating a substantial effect of genetic variance. CONCLUSION Development of the aseptic loosening is associated with several genetic variations and we identified at least 4 SNPs with a significant effect on the time for loosening. These data could help to develop a personalized approach for TJA and loosening management.
Collapse
Affiliation(s)
- Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia; The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - David J Wood
- Department of Surgery, The University of Western Australia, Nedlands, WA, Australia
| | - Ene Reimann
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Ele Prans
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
52
|
Sharma V, Bose S, Kundu B, Bodhak S, Mitun D, Balla VK, Basu B. Probing the Influence of γ-Sterilization on the Oxidation, Crystallization, Sliding Wear Resistance, and Cytocompatibility of Chemically Modified Graphene-Oxide-Reinforced HDPE/UHMWPE Nanocomposites and Wear Debris. ACS Biomater Sci Eng 2020; 6:1462-1475. [PMID: 33455381 DOI: 10.1021/acsbiomaterials.9b01327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Osteolysis and aseptic loosening due to wear at the articulating interfaces of prosthetic joints are considered to be the key concerns for implant failure in load-bearing orthopedic applications. In an effort to reduce the wear and processing difficulties of ultrahigh-molecular-weight polyethylene (UHMWPE), our research group recently developed high-density polyethylene (HDPE)/UHMWPE nanocomposites with chemically modified graphene oxide (mGO). Considering the importance of sterilization, this work explores the influence of γ-ray dosage of 25 kGy on the clinically relevant performance-limiting properties of these newly developed hybrid nanocomposites in vitro. Importantly, this work also probes into the cytotoxic effects of the wear debris of different compositions and sizes on MC3T3 murine osteoblasts and human mesenchymal stem cells (hMSCs). In particular, γ-ray-sterilized 1 wt % mGO-reinforced HDPE/UHMWPE nanocomposites exhibit an improvement in the oxidation index (16%), free energy of immersion (-12.1 mN/m), surface polarity (5.0%), and hardness (42%). Consequently, such enhancements result in better tribological properties, especially coefficient of friction (+13%) and wear resistance, when compared with UHMWPE. A spectrum of analyses using transmission electron microscopy (TEM) and in vitro cytocompatibility assessment demonstrate that phagocytosable (0.5-4.5 μm) sterilized 1 mGO wear particles, when present in culture media at 5 mg/mL concentration, induce neither significant reduction in MC3T3 murine osteoblast and hMSC growth nor cell morphology phenotype, during 24, 48, and 72 h of incubation. Taken together, this study suggests that γ-ray-sterilized HDPE/UHMWPE/mGO nanocomposites can be utilized as promising articulating surfaces for total joint replacements.
Collapse
Affiliation(s)
- Vidushi Sharma
- Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore 560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Biswanath Kundu
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Subhadip Bodhak
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Das Mitun
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032, India.,Biomaterials and Corrosion Laboratory, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Vamsi Krishna Balla
- Bioceramics & Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S. C. Mullick Road, Kolkata 700032, India.,Materials Innovation Guild, Department of Mechanical Engineering, University of Louisville, Louisville, Kentucky 40208, United States
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
53
|
Xing H, Wang X, Xiao G, Zhao Z, Zou S, Li M, Richardson JJ, Tardy BL, Xie L, Komasa S, Okazaki J, Jiang Q, Yang G, Guo J. Hierarchical assembly of nanostructured coating for siRNA-based dual therapy of bone regeneration and revascularization. Biomaterials 2020; 235:119784. [PMID: 31981763 DOI: 10.1016/j.biomaterials.2020.119784] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/30/2022]
Abstract
Advancing bone implant engineering offers the opportunity to overcome crucial medical challenges and improve clinical outcomes. Although the establishment of a functional vascular network is crucial for bone development, its regeneration inside bone tissue has only received limited attention to date. Herein, we utilize siRNA-decorated particles to engineer a hierarchical nanostructured coating on clinically used titanium implants for the synergistic regeneration of skeletal and vascular tissues. Specifically, an siRNA was designed to target the regulation of cathepsin K and conjugated on nanoparticles. The functionalized nanoparticles were assembled onto the bone implant to form a hierarchical nanostructured coating. By regulating mRNA transcription, the coating significantly promotes cell viability and growth factor release related to vascularization. Moreover, microchip-based experiments demonstrate that the nanostructured coating facilitates macrophage-induced synergy in up-regulation of at least seven bone and vascular growth factors. Ovariectomized rat and comprehensive beagle dog models highlight that this siRNA-integrated nanostructured coating possesses all the key traits of a clinically promising candidate to address the myriad of challenges associated with bone regeneration.
Collapse
Affiliation(s)
- Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Xing Wang
- Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - Gao Xiao
- School of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, United States
| | - Zongmin Zhao
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, United States
| | - Shiquan Zou
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Man Li
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, 00076, Finland
| | - Liangxia Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, United States
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, Hirakata, Osaka, 540-8570, Japan
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, Hirakata, Osaka, 540-8570, Japan
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China.
| | - Guodong Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Junling Guo
- School of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, United States.
| |
Collapse
|
54
|
Ort MJ, Geissler S, Rakow A, Schoon J. The Allergic Bone Marrow? The Immuno-Capacity of the Human Bone Marrow in Context of Metal-Associated Hypersensitivity Reactions. Front Immunol 2019; 10:2232. [PMID: 31620137 PMCID: PMC6759684 DOI: 10.3389/fimmu.2019.02232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Arthroplasty ranks among the greatest achievements of surgical medicine, with total hip replacement termed “the operation of the century.” Despite its wide success, arthroplasty bears risks, such as local reactions to implant derived wear and corrosion products. Prevalence of allergies across Western society increases and along the number of reported hypersensitivity reactions to orthopedic implant materials. In this context the main focus is on delayed hypersensitivity (DTH). This mechanism is mainly attributed to T cells and an overreaction of the adaptive immune system. Arthroplasty implant materials are in direct contact with bone marrow (BM), which is discussed as a secondary lymphoid organ. However, the mechanisms of sensitization toward implant wear remain elusive. Nickel and cobalt ions can form haptens with native peptides to activate immune cell receptors and are therefore common T helper allergens in cutaneous DTH. The rising prevalence of metal-related allergy in the general population and evidence for the immune-modulating function of BM allow for the assumption hypersensitivity reactions could occur in peri-implant BM. There is evidence that pro-inflammatory factors released during DTH reactions enhance osteoclast activity and inhibit osteoblast function, an imbalance characteristic for osteolysis. Even though some mechanisms are understood, hypersensitivity has remained a diagnosis of exclusion. This review aims to summarize current views on the pathomechanism of DTH in arthroplasty with emphasis on BM and discusses recent advances and future directions for basic research and clinical diagnostics.
Collapse
Affiliation(s)
- Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anastasia Rakow
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janosch Schoon
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
55
|
Alippe Y, Mbalaviele G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin Immunopathol 2019; 41:607-618. [PMID: 31520179 PMCID: PMC6814643 DOI: 10.1007/s00281-019-00753-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
The inflammasomes are intracellular protein complexes that are assembled in response to a variety of perturbations including infections and injuries. Failure of the inflammasomes to rapidly clear the insults or restore tissue homeostasis can result in chronic inflammation. Recurring inflammation is also provoked by mutations that cause the constitutive assembly of the components of these protein platforms. Evidence suggests that chronic inflammation is a shared mechanism in bone loss associated with aging, dysregulated metabolism, autoinflammatory, and autoimmune diseases. Mechanistically, inflammatory mediators promote bone resorption while suppressing bone formation, an imbalance which over time leads to bone loss and increased fracture risk. Thus, while acute inflammation is important for the maintenance of bone integrity, its chronic state damages this tissue. In this review, we discuss the role of the inflammasomes in inflammation-induced osteolysis.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA.
| |
Collapse
|
56
|
Christiansen RJ, Münch HJ, Bonefeld CM, Thyssen JP, Sloth JJ, Geisler C, Søballe K, Jellesen MS, Jakobsen SS. Cytokine Profile in Patients with Aseptic Loosening of Total Hip Replacements and Its Relation to Metal Release and Metal Allergy. J Clin Med 2019; 8:jcm8081259. [PMID: 31434199 PMCID: PMC6723430 DOI: 10.3390/jcm8081259] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Metal release from total hip replacements (THRs) is associated with aseptic loosening (AL). It has been proposed that the underlying immunological response is caused by a delayed type IV hypersensitivity-like reaction to metals, i.e., metal allergy. The purpose of this study was to investigate the immunological response in patients with AL in relation to metal release and the prevalence of metal allergy. THR patients undergoing revision surgery due to AL or mechanical implant failures were included in the study along with a control group consisting of primary THR patients. Comprehensive cytokine analyses were performed on serum and periimplant tissue samples along with metal analysis using inductive coupled plasma mass spectrometry (ICP-MS). Patient patch testing was done with a series of metals related to orthopedic implant. A distinct cytokine profile was found in the periimplant tissue of patients with AL. Significantly increased levels of the proinflammatory cytokines IL-1β, IL-2, IL-8, IFN-γ and TNF-α, but also the anti-inflammatory IL-10 were detected. A general increase of metal concentrations in the periimplant tissue was observed in both revision groups, while Cr was significantly increased in patient serum with AL. No difference in the prevalence of metal sensitivity was established by patch testing. Increased levels of IL-1β, IL-8, and TNF-α point to an innate immune response. However, the presence of IL-2 and IFN-γ indicates additional involvement of T cell-mediated response in patients with AL, although this could not be detected by patch testing.
Collapse
Affiliation(s)
- Rune J Christiansen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Henrik J Münch
- Institute of Clinical Medicine-Orthopedic Surgery, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jacob P Thyssen
- Institute of Clinical Medicine, Copenhagen University, Gentofte Hospital, DK-2900 Hellerup, Denmark
| | - Jens J Sloth
- National Food Institute, Research Group on Nanobio Science, Technical University of Denmark, DK-2860 Søborg, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kjeld Søballe
- Institute of Clinical Medicine-Orthopedic Surgery, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Morten S Jellesen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Stig S Jakobsen
- Institute of Clinical Medicine-Orthopedic Surgery, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
57
|
Farah S, Doloff JC, Müller P, Sadraei A, Han HJ, Olafson K, Vyas K, Tam HH, Hollister-Lock J, Kowalski PS, Griffin M, Meng A, McAvoy M, Graham AC, McGarrigle J, Oberholzer J, Weir GC, Greiner DL, Langer R, Anderson DG. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. NATURE MATERIALS 2019; 18:892-904. [PMID: 31235902 PMCID: PMC7184801 DOI: 10.1038/s41563-019-0377-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/16/2019] [Indexed: 05/02/2023]
Abstract
Implantable medical devices have revolutionized modern medicine. However, immune-mediated foreign body response (FBR) to the materials of these devices can limit their function or even induce failure. Here we describe long-term controlled-release formulations for local anti-inflammatory release through the development of compact, solvent-free crystals. The compact lattice structure of these crystals allows for very slow, surface dissolution and high drug density. These formulations suppress FBR in both rodents and non-human primates for at least 1.3 years and 6 months, respectively. Formulations inhibited fibrosis across multiple implant sites-subcutaneous, intraperitoneal and intramuscular. In particular, incorporation of GW2580, a colony stimulating factor 1 receptor inhibitor, into a range of devices, including human islet microencapsulation systems, electrode-based continuous glucose-sensing monitors and muscle-stimulating devices, inhibits fibrosis, thereby allowing for extended function. We believe that local, long-term controlled release with the crystal formulations described here enhances and extends function in a range of medical devices and provides a generalized solution to the local immune response to implanted biomaterials.
Collapse
Affiliation(s)
- Shady Farah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua C Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical and Materials Science Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute and the Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Müller
- X-Ray Diffraction Facility, MIT Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atieh Sadraei
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hye Jung Han
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katy Olafson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Keval Vyas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hok Hei Tam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marissa Griffin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ashley Meng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malia McAvoy
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam C Graham
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - James McGarrigle
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose Oberholzer
- Department of Surgery, Division of Transplantation, University of Illinois at Chicago, Chicago, IL, USA
| | - Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
58
|
Inflammatory Responses Reprogram T REGS Through Impairment of Neuropilin-1. Sci Rep 2019; 9:10429. [PMID: 31320680 PMCID: PMC6639378 DOI: 10.1038/s41598-019-46934-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/08/2019] [Indexed: 01/23/2023] Open
Abstract
Chronic inflammatory insults compromise immune cell responses and ultimately contribute to pathologic outcomes. Clinically, it has been suggested that bone debris and implant particles, such as polymethylmethacrylate (PMMA), which are persistently released following implant surgery evoke heightened immune, inflammatory, and osteolytic responses that contribute to implant failure. However, the precise mechanism underlying this pathologic response remains vague. TREGS, the chief immune-suppressive cells, express the transcription factor Foxp3 and are potent inhibitors of osteoclasts. Using an intra-tibial injection model, we show that PMMA particles abrogate the osteoclast suppressive function of TREGS. Mechanistically, PMMA particles induce TREG instability evident by reduced expression of Foxp3. Importantly, intra-tibial injection of PMMA initiates an acute innate immune and inflammatory response, yet the negative impact on TREGS by PMMA remains persistent. We further show that PMMA enhance TH17 response at the expense of other T effector cells (TEFF), particularly TH1. At the molecular level, gene expression analysis showed that PMMA particles negatively regulate Nrp-1/Foxo3a axis to induce TREG instability, to dampen TREG activity and to promote phenotypic switch of TREGS to TH17 cells. Taken together, inflammatory cues and danger signals, such as bone and implant particles exacerbate inflammatory osteolysis in part through reprogramming TREGS.
Collapse
|
59
|
Koehler MI, Hartmann ES, Schluessel S, Beck F, Redeker JI, Schmitt B, Unger M, van Griensven M, Summer B, Fottner A, Mayer-Wagner S. Impact of Periprosthetic Fibroblast-Like Cells on Osteoclastogenesis in Co-Culture with Peripheral Blood Mononuclear Cells Varies Depending on Culture System. Int J Mol Sci 2019; 20:E2583. [PMID: 31130703 PMCID: PMC6567687 DOI: 10.3390/ijms20102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Co-culture studies investigating the role of periprosthetic fibroblasts (PPFs) in inflammatory osteoclastogenesis reveal contrary results, partly showing an osteoprotective function of fibroblasts and high OPG expression in monolayer. These data disagree with molecular analyses of original periosteolytic tissues. In order to find a more reliable model, PPFs were co-cultivated with peripheral blood mononuclear cells (PBMCs) in a transwell system and compared to conventional monolayer cultures. The gene expression of key regulators of osteoclastogenesis (macrophage colony-stimulating factor (MCSF), receptor activator of NF-κB ligand (RANK-L), osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα)) as well as the ability of bone resorption were analyzed. In monolayer co-cultures, PPFs executed an osteoprotective function with high OPG-expression, low RANK-L/OPG ratios, and a resulting inhibition of osteolysis even in the presence of MCSF and RANK-L. For transwell co-cultures, profound changes in gene expression, with a more than hundredfold decrease of OPG and a significant upregulation of TNFα were observed. In conclusion, we were able to show that a change of culture conditions towards a transwell system resulted in a considerably more osteoclastogenic gene expression profile, being closer to findings in original periosteolytic tissues. This study therefore presents an interesting approach for a more reliable in vitro model to examine the role of fibroblasts in periprosthetic osteoclastogenesis in the future.
Collapse
Affiliation(s)
- Miriam I Koehler
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Eliza S Hartmann
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Sabine Schluessel
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Felicitas Beck
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Julia I Redeker
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Baerbel Schmitt
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Marina Unger
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Burkhard Summer
- Department of Dermatology, Ludwig-Maximilians-University, Frauenlobstr. 9-11, 80337 Munich, Germany.
| | - Andreas Fottner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| |
Collapse
|
60
|
Swiatkowska I, Martin N, Hart AJ. Blood titanium level as a biomarker of orthopaedic implant wear. J Trace Elem Med Biol 2019; 53:120-128. [PMID: 30910194 DOI: 10.1016/j.jtemb.2019.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Joint replacement implants are usually manufactured from cobalt-chromium or titanium alloys. After the device is implanted, wear and corrosion generate metal particles and ions, which are released into local tissue and blood. The metal debris can cause a range of adverse local and systemic effects in patients. RESEARCH PROBLEM In the case of cobalt and chromium, a blood level exceeding 7 μg L-1 indicates potential for local toxicity, and a failing implant. It has been repeatedly suggested in the literature that measurement of titanium could also be used to assess implant function. Despite an increasing interest in this biomarker, and growing use of titanium in orthopaedics, it is unclear what blood concentrations should raise concerns. This is partly due to the technical challenges involved in the measurement of titanium in biological samples. AIM This Review summarises blood/serum titanium levels associated with well-functioning and malfunctioning prostheses, so that the prospects of using titanium measurements to gain insights into implant performance can be evaluated. CONCLUSION Due to inter-laboratory analytical differences, reliable conclusions regarding "normal" and "abnormal" titanium levels in patients with orthopaedic implants are difficult to draw. Diagnosis of symptomatic patients should be based on radiographic evidence combined with blood/serum metal levels.
Collapse
Affiliation(s)
- Ilona Swiatkowska
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP, Stanmore, UK.
| | - Nicholas Martin
- Trace Element Laboratory, Clinical Biochemistry, Charing Cross Hospital, W6 8RF, London, UK
| | - Alister J Hart
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP, Stanmore, UK; Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| |
Collapse
|
61
|
Torosyan Y, Spece H, Goodacre N, Azarbaijani Y, Marinac-Dabic D, Kurtz SM. In silico approaches for enhancing retrieval analysis as a source for discovery of implant reactivity-related mechanisms and biomarkers. J Biomed Mater Res B Appl Biomater 2019; 108:263-271. [PMID: 31012261 DOI: 10.1002/jbm.b.34386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/26/2018] [Accepted: 03/24/2019] [Indexed: 11/06/2022]
Abstract
The ability to characterize implant debris in conjunction with corresponding immune and tissue-destructive responses renders retrieval analysis as an important tool for evaluating orthopedic devices. We applied advanced analytics and in silico approaches to illustrate the retrieval-based potential to elucidate host responses and enable discovery of corresponding biomarkers indicative of in vivo implant performance. Hip retrieval analysis was performed using variables based on immunostaining, polarized microscopy, and fretting-corrosion and oxidation analyses. Statistical analyses were performed in R. Hierarchical/k-means clustering and principal component analysis were used for data analysis and visualization. Correlation Engine (CE) and Ingenuity Pathway Analysis (IPA) were employed for in silico corroboration of putative biomarkers. Higher giant cell and histiocyte scores and positivity for CD68 and CD3 indicating infiltration with macrophages and T-cells, respectively, were detected mainly among older generation hips with higher ultra-high-molecular-weight-polyethylene loads. Our in silico analysis using pre-existing data on wear particle-induced loosening substantiated the role of CD68 in implant-induced innate responses and identified the CD68-related molecular signature that can be indicative of development of aseptic loosening and can be further corroborated for diagnostic/prognostic testing in clinical setting. Thus, this study confirmed the great potential of advanced analytics and in silico approaches for enhancing retrieval analysis applications to discovery of new biomarkers for optimizing implant-related preclinical testing and clinical management. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:263-271, 2020.
Collapse
Affiliation(s)
- Yelizaveta Torosyan
- Center for Devices and Radiological Health, Office of Clinical Evidence and Analysis, Food and Drug Administration, Silver Spring, Maryland
| | - Hannah Spece
- Center for Devices and Radiological Health, Office of Clinical Evidence and Analysis, Food and Drug Administration, Silver Spring, Maryland.,Drexel University, Philadelphia, Pennsylvania
| | - Norman Goodacre
- Center for Devices and Radiological Health, Office of Clinical Evidence and Analysis, Food and Drug Administration, Silver Spring, Maryland
| | - Yasameen Azarbaijani
- Center for Devices and Radiological Health, Office of Clinical Evidence and Analysis, Food and Drug Administration, Silver Spring, Maryland
| | - Danica Marinac-Dabic
- Center for Devices and Radiological Health, Office of Clinical Evidence and Analysis, Food and Drug Administration, Silver Spring, Maryland
| | - Steven M Kurtz
- Drexel University, Philadelphia, Pennsylvania.,Exponent, Inc., Philadelphia, Pennsylvania
| |
Collapse
|
62
|
Terkawi MA, Kadoya K, Takahashi D, Tian Y, Hamasaki M, Matsumae G, Alhasan H, Elmorsy S, Uetsuki K, Onodera T, Takahata M, Iwasaki N. Identification of IL-27 as potent regulator of inflammatory osteolysis associated with vitamin E-blended ultra-high molecular weight polyethylene debris of orthopedic implants. Acta Biomater 2019; 89:242-251. [PMID: 30880234 DOI: 10.1016/j.actbio.2019.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Abstract
Vitamin E-blended ultra-high molecular weight polyethylene (VE-UHMWPE) is a newly introduced material for prosthetic components that has proven a better mechanical performance with lesser adverse cellular responses than conventional polyethylene in experimental animal models. However, the mechanisms by which VE-UHMWPE particles trigger a reduced osteolytic activity are unclear and remain to be investigated. Therefore, the current study aims at exploring a possible anti-osteolytic mechanism associated with VE-UHMWPE particles. Transcriptional profiling and bioinformatic analyses of human macrophages stimulated by VE-UHMWPE particles revealed a distinct transcriptional program from macrophages stimulated with UHMWPE particles. Out of the up-regulated genes, IL-27 was found to be significantly elevated in macrophages cultured with VE-UHMWPE particles as compared to these with UHMWPE particles (p = 0.0084). Furthermore, we studied the potential anti-osteolytic function of IL-27 in osteolysis murine model. Interestingly, administration of recombinant IL-27 onto calvariae significantly alleviated osteolytic lesions triggered by UHMWPE particles (p = 0.0002). Likewise, IL-27 inhibited differentiation of osteoclasts (p = 0.0116) and reduced inflammatory response (p < 0.0001) elicited by conventional UHMWPE particles in vitro. This is the first study demonstrating the involvement of IL-27 in macrophage response to VE-UHMWPE particles and its regulatory role in osteolysis. Our data highlight a novel therapeutic agent for treatment of inflammatory osteolysis induced by polyethylene debris. STATEMENT OF SIGNIFICANCE: Aseptic loosening due to inflammatory osteolysis remains the major cause of arthroplasty failure and represents a substantial economic burden worldwide. Ideal approach to prevent this failure should be directed to minimize inflammatory response triggered by wear particles at the site of implant. Understanding the mechanism by which VE-UHMWPE particles triggers lesser cellular responses and reduced osteolysis as compared to conventional UHMWPE particles may aid in discovery of regulatory factors. In the current study, we reported that IL-27 is a potent regulator of inflammatory osteolysis involved in the reduced biologic activities and osteolytic potentials associated with VE-UHMWPE particles. Initiating the production IL-27 in vivo after total joint arthroplasties might be a novel strategy to prolong the life-spam of implant.
Collapse
Affiliation(s)
- Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Japan.
| | - Ken Kadoya
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan.
| | - Yuan Tian
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Masanari Hamasaki
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Sameh Elmorsy
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; Department of Orthopedic Surgery, Beni-Suef University, Faculty of Medicine, Mokbel 62511, Beni-Suef, Egypt
| | - Keita Uetsuki
- R&D Center, Teijin Nakashima Medical Co., Ltd., 5322, Haga, Kita-ku, Okayama 701-1221, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Japan
| | - Masahiko Takahata
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Hokkaido University, Faculty of Medicine and Graduate School of Medicine, Kita-15, Nish-7, Kita-ku, Sapporo 060-8638, Japan; Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Japan
| |
Collapse
|
63
|
Mishra PK, Palma M, Buechel B, Moore J, Davra V, Chu N, Millman A, Hallab NJ, Kanneganti TD, Birge RB, Behrens EM, Rivera A, Beebe KS, Benevenia J, Gause WC. Sterile particle-induced inflammation is mediated by macrophages releasing IL-33 through a Bruton's tyrosine kinase-dependent pathway. NATURE MATERIALS 2019; 18:289-297. [PMID: 30664693 PMCID: PMC6581031 DOI: 10.1038/s41563-018-0271-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/07/2018] [Indexed: 05/04/2023]
Abstract
Initiation of the innate sterile inflammatory response that can develop in response to microparticle exposure is little understood. Here, we report that a potent type 2 immune response associated with the accumulation of neutrophils, eosinophils and alternatively activated (M2) macrophages was observed in response to sterile microparticles similar in size to wear debris associated with prosthetic implants. Although elevations in interleukin-33 (IL-33) and type 2 cytokines occurred independently of caspase-1 inflammasome signalling, the response was dependent on Bruton's tyrosine kinase (BTK). IL-33 was produced by macrophages and BTK-dependent expression of IL-33 by macrophages was sufficient to initiate the type 2 response. Analysis of inflammation in patient periprosthetic tissue also revealed type 2 responses under aseptic conditions in patients undergoing revision surgery. These findings indicate that microparticle-induced sterile inflammation is initiated by macrophages activated to produce IL-33. They further suggest that both BTK and IL-33 may provide therapeutic targets for wear debris-induced periprosthetic inflammation.
Collapse
Affiliation(s)
- Pankaj K. Mishra
- Department of Medicine, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Correspondence should be addressed to W.C.G ()
| | - Mark Palma
- Department of Medicine, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Correspondence should be addressed to W.C.G ()
| | - Bonnie Buechel
- Department of Orthopaedic Surgery, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Jeffrey Moore
- Department of Orthopaedic Surgery, Seton Hall University – St. Joseph’s Regional Medical Center, Paterson, NJ, 07503
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Niansheng Chu
- Division of Pediatric Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Ariel Millman
- Department of Medicine, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Nadim J. Hallab
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | | | - Raymond B. Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Edward M. Behrens
- Division of Pediatric Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Amariliz Rivera
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Kathleen S. Beebe
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Department of Orthopaedic Surgery, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Joseph Benevenia
- Department of Orthopaedic Surgery, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - William C. Gause
- Department of Medicine, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| |
Collapse
|
64
|
Liu YW, An SB, Yang T, Xiao YJ, Wang L, Hu YH. Protection Effect of Curcumin for Macrophage-Involved Polyethylene Wear Particle-Induced Inflammatory Osteolysis by Increasing the Cholesterol Efflux. Med Sci Monit 2019; 25:10-20. [PMID: 30599093 PMCID: PMC6327781 DOI: 10.12659/msm.914197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Periprosthetic osteolysis, induced by wear particles and inflammation, is a common reason for failure of primary arthroplasty. Curcumin, a nature phenol from plants, has been reported to reduce the inflammation in macrophages. This study aimed to investigate the potential effect of curcumin on macrophage involved, wear particle-induced osteolysis and its mechanism. MATERIAL AND METHODS RAW264.7 macrophages were used to test the effects of polyethylene (PE) particles and curcumin on macrophage cholesterol efflux and phenotypic changes. A mouse model of PE particle-induced calvarial osteolysis was established to test the effects of curcumin in vivo. After 14 days of treatment, the bone quality of the affected areas was analyzed by micro-computed tomography (micro-CT) and histology, and the bone surrounding soft tissues were analyzed at the cellular and molecular levels. RESULTS We found that PE particles can stimulate osteoclastogenesis and produce an M1-like phenotype in macrophages in vitro. Curcumin enhanced the cholesterol efflux in macrophages, and maintained the M0-like phenotype under the influence of PE particles in vitro. Additionally, the cholesterol transmembrane regulators ABCA1, ABCG1, and CAV1 were enhanced by curcumin in vivo. We also found enhanced bone density, reduced osteoclastogenesis, and fewer inflammatory responses in the curcumin treated groups in our mouse osteolysis model. CONCLUSIONS Our study findings indicated that curcumin can inhibit macrophage involved osteolysis and inflammation via promoting cholesterol efflux. Maintaining the cholesterol efflux might be a potential strategy to prevent periprosthetic osteolysis after total joint arthroplasty surgery.
Collapse
Affiliation(s)
- Yu-Wei Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Sen-Bo An
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Tao Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yue-Jun Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Long Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yi-He Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
65
|
Zhang S, Xing M, Li B. Capsule-Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44267-44278. [PMID: 30511568 PMCID: PMC6461212 DOI: 10.1021/acsami.8b17264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many applications using drug-carrying biomedical materials require on-demand, localized delivery of multiple therapeutic agents in precisely controlled and patient-specific time sequences, especially after assembly of the delivery vehicles; however, creating such materials has proven extremely challenging. Here, we report a novel strategy to create polypeptide multilayer films integrated with capsules as vehicles for co-delivery of multiple drugs using layer-by-layer self-assembly technology. Our approach allows the multilayered polypeptide nanofilms and preimpregnated capsules to assemble into innovative biomedical materials with high and controllable loading of multiple drugs at any time postpreparation and to achieve pH-responsive and sustained release. The resulting capsule-integrated polypeptide multilayer films effectively co-deliver various drugs with very different properties, including proteins (e.g., growth factors) and nanoparticles, achieving bovine serum albumin loading of 80 μg cm-2 and release of 2 weeks, and histone loading of 100 μg cm-2 and release of 6 weeks; which also enable Staphylococcus aureus killing efficacy of 83% while maintaining osteoblast viability of >85% with silver nanoparticle delivery; and >5-fold cell adhesion and proliferation capability with live cell percentage of >90% via human recombinant bone morphogenetic protein 2 delivery. The successful development of such fascinating materials can not only function as advanced nanocoatings to reduce two major complications of orthopedic bone injuries (i.e., infection and delayed bone regeneration) but also provide new insights into the design and development of multifunctional materials for various other biomedical applications.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
66
|
Naringenin mitigates titanium dioxide (TiO 2)-induced chronic arthritis in mice: role of oxidative stress, cytokines, and NFκB. Inflamm Res 2018; 67:997-1012. [PMID: 30370484 DOI: 10.1007/s00011-018-1195-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE To evaluate the effect and mechanisms of naringenin in TiO2-induced chronic arthritis in mice, a model resembling prosthesis and implant inflammation. TREATMENT Flavonoids are antioxidant and anti-inflammatory molecules with important anti-inflammatory effect. Mice were daily treated with the flavonoid naringenin (16.7-150 mg/kg, orally) for 30 days starting 24 h after intra-articular knee injection of 3 mg of TiO2. METHODS TiO2-induced arthritis resembles cases of aseptic inflammation induced by prosthesis and/or implants. Mice were stimulated with 3 mg of TiO2 and after 24 h mice started to be treated with naringenin. The disease phenotype, treatment toxicity, histopathological damage, oxidative stress, cytokine expression and NFκB were evaluated after 30 days of treatment. RESULTS Naringenin inhibited TiO2-induced mechanical hyperalgesia (96%), edema (77%) and leukocyte recruitment (74%) without inducing toxicity. Naringenin inhibited histopathological index (HE, 49%), cartilage damage (Toluidine blue tibial staining 49%, and proteoglycan 98%), and bone resorption (TRAP-stained 73%). These effects were accompanied by inhibition of oxidative stress (gp91phox 93%, NBT 83%, and TBARS 41%) cytokine mRNA expression (IL-33 82%, TNFα 76%, pro-IL-1β 100%, and IL-6 61%), and NFκB activation (100%). CONCLUSION Naringenin ameliorates TiO2-induced chronic arthritis inducing analgesic and anti-inflammatory responses with improvement in the histopathological index, cartilage damage, and bone resorption.
Collapse
|
67
|
Ross RD, Deng Y, Fang R, Frisch NB, Jacobs JJ, Sumner DR. Discovery of biomarkers to identify peri-implant osteolysis before radiographic diagnosis. J Orthop Res 2018; 36:2754-2761. [PMID: 29873110 PMCID: PMC6482967 DOI: 10.1002/jor.24044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/07/2018] [Indexed: 02/04/2023]
Abstract
Peri-implant osteolysis is commonly diagnosed after substantial bone loss has occurred, making revision surgery more challenging. The goal of the current study was to identify urinary biomarkers that differentiate total hip replacement patients who eventually develop osteolysis from patients who do not. We used a repository of 24-h urine samples collected prior to surgery and annually thereafter in 26 patients, 16 who developed osteolysis, and 10 who did not. We examined the markers at radiographic diagnosis, annually for 6 years preceding diagnosis, at the first post-operative sampling point, and pre-operatively. Patients in the osteolysis and non-osteolysis groups were matched according to time post-surgery and did not differ in the male:female ratio or age at surgery. Seven candidate biomarkers were measured, including free deoxypyridinoline (DPD), cross-linked N-telopeptides (NTX), interleukin-6 (IL-6), interleukin-8 (IL-8), osteoprotegerin (OPG), α-crosslaps (α-CTX), and β-crosslaps (β-CTX). As an individual biomarker, DPD demonstrated the highest ability to predict osteolysis, with an area under the curve (AUC) in Receiver Operating Characteristic (ROC) analyses of 0.844 at 6 years prior to diagnosis. A panel of α-CTX and IL-6 was able to identify at-risk patients with an AUC of 0.941 or greater at all post-operative time points and an AUC of 1.000 pre-operatively. The results demonstrate the potential of using non-invasive biomarkers to identify patients at risk for peri-implant osteolysis long before the emergence of radiographic signs. Further, the high accuracy of the pre-operative biomarker levels demonstrates the potential importance of pre-existing, patient-specific factors driving subsequent osteolysis. Study Design © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2754-2761, 2018.
Collapse
Affiliation(s)
- Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Youping Deng
- Department of Complementary & Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813, USA
| | - Rui Fang
- Department of Complementary & Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii 96813, USA
| | - Nicholas B. Frisch
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - Joshua J. Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| | - D. Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
68
|
He Y, Zhang Y, Shen X, Tao B, Liu J, Yuan Z, Cai K. The fabrication and in vitro properties of antibacterial polydopamine-LL-37-POPC coatings on micro-arc oxidized titanium. Colloids Surf B Biointerfaces 2018; 170:54-63. [DOI: 10.1016/j.colsurfb.2018.05.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/19/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022]
|
69
|
Chamaon K, Schönfeld P, Awiszus F, Bertrand J, Lohmann CH. Ionic cobalt but not metal particles induces ROS generation in immune cells in vitro. J Biomed Mater Res B Appl Biomater 2018; 107:1246-1253. [PMID: 30261124 DOI: 10.1002/jbm.b.34217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Total joint replacement is one of the most successful procedures in orthopedic surgery today. However, metal implant materials undergo wear and corrosion processes. Generated particles and ions can cause a variety of cellular reactions. Cobalt-containing alloys are used frequently in implant materials. Some studies suggest that cobalt exhibits potential cytotoxic effects, for example, via generation of reactive oxygen species (ROS). To further elucidate the effects of cobalt on human cells, we determined cell viability and cytosolic and mitochondrial superoxide formation after incubation of either ions or particles with different cells. MM-6 and Jurkat cell lines were treated for 24, 48 and 72 h with either CoCrMo particles or cobalt ions (supplied as CoCl2 ). A total of 24 h exposure of both forms of cobalt did not induce cell death using terminal deoxynucleotidyl transferase (TUNEL) and trypan blue assay. Interestingly, the formation of superoxide (O2 .- ) is evoked mainly by ionic CoCl2 but not cobalt particles. Cobalt alloy particles are likely to even suppress O2 .- formation in mitochondria in both used cell lines. Furthermore, we did not observe any effect of cobalt particles on O2 .- formation in peripheral blood mononuclear cells (PBMCs) from healthy donors. We also found that the O2 - formation by CoCl2 within mitochondria is a generalized effect for all cell types used, while the formation of superoxide in cytosolic compartment is cell-type dependent. In summary, our data suggest that cobalt ions specifically induce the formation of O2 .- , whereas the cobalt particles were better tolerated. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1246-1253, 2019.
Collapse
Affiliation(s)
- Kathrin Chamaon
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Peter Schönfeld
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
70
|
Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study. Acta Biomater 2018; 77:106-115. [PMID: 29981946 DOI: 10.1016/j.actbio.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
Abstract
Wear-mediated osteolysis is a common complication occurring around implanted prosthesis, which ultimately leads to bone loss with mechanical instability and the need for surgical revision. At the moment, revision surgery is the only effective treatment. The aim of this study was to assess the efficacy of pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP), alone and in association, in a clinically relevant in vivo model of periprosthetic osteolysis. Titanium alloy pins were implanted intramedullary in distal femurs of male inbred rats and, after osseointegration, polyethylene particles were injected intra-articularly to induce osteolysis. Animals were divided in four groups of treatment: PEMFs, PRP, PEMFs + PRP and no treatment. Microtomography was performed during the course of experiments to monitor bone stock and microarchitecture. Histology, histomorphometry, immunohistochemistry and biomechanics were evaluated after treatments. Biophysical and biological stimulations significantly enhanced bone to implant contact, bone volume and bone microhardness and reduced fibrous capsule formation and the number of osteoclasts around implants. Among treatments, PEMFs alone and in association with PRP exerted better results than PRP alone. Present data suggest that biophysical stimulation, with or without the enrichment with platelet derived growth factors, might be a safe, mini-invasive and conservative therapy for counteracting osteolysis and prompting bone formation around implants. STATEMENT OF SIGNIFICANCE Pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP) show anabolic and anti-inflammatory effects and they are already been used in clinical practice, but separately. To date, there are no preclinical in vivo studies evaluating their combined efficacy in periprosthetic osteolysis, in bone tissue microarchitecture and in biomechanics. The aim of the present study was to evaluate the effects of PEMFs and PRP in vivo, when administered individually and in combination in the treatment of periprosthetic wear mediated ostelysis, and in restoring the osteogenetic properties of perimplant bone tissue and its biomechanical competence. The combination of PEMFs and PRP could be employed for counteracting the ostelysis process in a conservative and non surgical manner.
Collapse
|
71
|
Curtin JP, Wang M, Cheng T, Jin L, Sun H. The role of citrate, lactate and transferrin in determining titanium release from surgical devices into human serum. J Biol Inorg Chem 2018; 23:471-480. [PMID: 29623422 DOI: 10.1007/s00775-018-1557-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/30/2018] [Indexed: 11/25/2022]
Abstract
The presence of ionic titanium in the serum of patients with titanium implants is currently unexplained. This is presumed due to corrosion, and yet the serum titanium concentration measured in patients is far greater than that predicted by its solubility. The binding of titanium ion as Ti(IV) to human transferrin (hTF) in serum indicates that Ti(IV) ions interact with human physiology. This is an intriguing finding since there is currently no known role for titanium ions in human physiology. Thus, understanding the factors that determine in vivo titanium ion release is relevant to further understanding this metal's interactions with human biochemistry. The present study sought to determine the extent of titanium ion release of into human serum in vitro, and the role of citrate, lactate and hTF in this process. It was found that, when surgical devices of commercially pure titanium were placed into human serum, citrate and lactate concentrations were the prime determinants of titanium release. Crystallography revealed Ti(IV) bound to hTF in the presence of citrate alone, signalling that citrate can act as an independent ligand for Ti(IV) binding to hTF. Based on these findings, a two-stage process of titanium ion release into human serum that is dependent upon both citrate and hTF is proposed to explain the ongoing presence of titanium ion in human subjects with implanted titanium devices.
Collapse
Affiliation(s)
- Justin P Curtin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Minji Wang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
72
|
Alves SA, Rossi AL, Ribeiro AR, Toptan F, Pinto AM, Shokuhfar T, Celis JP, Rocha LA. Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J Mech Behav Biomed Mater 2018; 80:143-154. [DOI: 10.1016/j.jmbbm.2018.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/17/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
|
73
|
Vaishnavi R, Joseph J, Jyothi Prasanth M, Mohanty M, Sabareeswaran A. TLR-4 expression in corrosion metal debri induced hypoxic milieu around stainless steel fracture plates. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaad83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
74
|
Martin LJ, Akhavan B, Bilek MMM. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces. Nat Commun 2018; 9:357. [PMID: 29367659 PMCID: PMC5783936 DOI: 10.1038/s41467-017-02545-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/07/2017] [Indexed: 01/12/2023] Open
Abstract
Surface functionalization of an implantable device with bioactive molecules can overcome adverse biological responses by promoting specific local tissue integration. Bioactive peptides have advantages over larger protein molecules due to their robustness and sterilizability. Their relatively small size presents opportunities to control the peptide orientation on approach to a surface to achieve favourable presentation of bioactive motifs. Here we demonstrate control of the orientation of surface-bound peptides by tuning electric fields at the surface during immobilization. Guided by computational simulations, a peptide with a linear conformation in solution is designed. Electric fields are used to control the peptide approach towards a radical-functionalized surface. Spontaneous, irreversible immobilization is achieved when the peptide makes contact with the surface. Our findings show that control of both peptide orientation and surface concentration is achieved simply by varying the solution pH or by applying an electric field as delivered by a small battery.
Collapse
Affiliation(s)
- Lewis J Martin
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Marcela M M Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, 2006, Australia.
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia.
- University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
75
|
Terkawi MA, Hamasaki M, Takahashi D, Ota M, Kadoya K, Yutani T, Uetsuki K, Asano T, Irie T, Arai R, Onodera T, Takahata M, Iwasaki N. Transcriptional profile of human macrophages stimulated by ultra-high molecular weight polyethylene particulate debris of orthopedic implants uncovers a common gene expression signature of rheumatoid arthritis. Acta Biomater 2018; 65:417-425. [PMID: 29109029 DOI: 10.1016/j.actbio.2017.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 01/09/2023]
Abstract
Osteolysis is a serious postoperative complication of total joint arthroplasty that leads to aseptic loosening and surgical revision. Osteolysis is a chronic destructive process that occurs when host macrophages recognize implant particles and release inflammatory mediators that increase bone-resorbing osteoclastic activity and attenuate bone-formation osteoblastic activity. Although much progress has been made in understanding the molecular responses of macrophages to implant particles, the pathways/signals that initiate osteolysis remain poorly characterized. Transcriptomics and gene-expression profiling of these macrophages may unravel key mechanisms in the pathogenesis of osteolysis and aid the identification of molecular candidates for therapeutic intervention. To this end, we analyzed the transcriptional profiling of macrophages exposed to ultra-high molecular weight polyethylene (UHMWPE) particles, the most common components used in bearing materials of orthopedic implants. Regulated genes in stimulated macrophages were involved in cytokine, chemokine, growth factor and receptor activities. Gene enrichment analysis suggested that stimulated macrophages elicited common gene expression signatures for inflammation and rheumatoid arthritis. Among the regulated genes, tumor necrosis factor superfamily member 15 (TNFSF15) and chemokine ligand 20 (CCL20) were further characterized as molecular targets involved in the pathogenesis of osteolysis. Treatment of monocyte cultures with TNFSF15 and CCL20 resulted in an increase in osteoclastogenesis and bone-resorbing osteoclastic activity, suggesting their potential contribution to loosening between implants and bone tissues. STATEMENT OF SIGNIFICANCE Implant loosening due to osteolysis is the most common mode of arthroplasty failure and represents a great challenge to orthopedic surgeons and a significant economic burden for patients and healthcare services worldwide. Bone loss secondary to a local inflammatory response initiated by particulate debris from implants is considered the principal feature of the pathogenesis of osteolysis. In the present study, we analyzed the transcriptional profiling of human macrophages exposed to UHMWPE particles and identified a large number of inflammatory genes that were not identified previously in macrophage responses to wear particles. Our data provide a new insight into the molecular pathogenesis of osteolysis and highlights a number of molecular targets with prognostic and therapeutic implications.
Collapse
|
76
|
Moran MM, Wilson BM, Ross RD, Virdi AS, Sumner DR. Arthrotomy-based preclinical models of particle-induced osteolysis: A systematic review. J Orthop Res 2017; 35:2595-2605. [PMID: 28548682 PMCID: PMC5702596 DOI: 10.1002/jor.23619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/24/2017] [Indexed: 02/04/2023]
Abstract
We completed a systematic literature review of in vivo animal models that use arthrotomy-based methods to study particle-induced peri-implant osteolysis. The purpose of the review was to characterize the models developed to date, to determine the questions addressed, to assess scientific rigor and transparency, and to identify gaps in knowledge. We probed three literature databases (Medline, Embase, and Scopus) and found 77 manuscripts that fit the search parameters. In the most recent 10 years, researchers mainly used rat and mouse models, whereas in the previous 20 years, large animal, canine, and rabbit models were more common. The studies have demonstrated several pathophysiology pathways, including macrophage migration, particle phagocytosis, increased local production of cytokines and lysosomal enzymes, elevated bone resorption, and suppressed bone formation. The effect of variation in particle characteristics and concentration received limited attention with somewhat mixed findings. Particle contamination by endotoxin was shown to exacerbate peri-implant osteolysis. The possibility of early diagnosis was demonstrated through imaging and biomarker approaches. Several studies showed that both local and systemic delivery of bisphosphonates inhibits the development of particle-induced osteolysis. Other methods of inhibiting osteolysis include the use of anabolic agents and altering the implant design. Few studies examined non-surgical rescue of loosened implants, with conflicting results with alendronate. We found that the manuscripts often lacked the methodological detail now advocated by the ARRIVE guidelines, suggesting that improvement in reporting would be useful to maximize rigor and transparency. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2595-2605, 2017.
Collapse
Affiliation(s)
- Meghan M. Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | | | - Ryan D. Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | - Amarjit S. Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | | |
Collapse
|
77
|
Granchi D, Savarino LM, Ciapetti G, Baldini N. Biological effects of metal degradation in hip arthroplasties. Crit Rev Toxicol 2017; 48:170-193. [PMID: 29130357 DOI: 10.1080/10408444.2017.1392927] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metals and metal alloys are the most used materials in orthopedic implants. The focus is on total hip arthroplasty (THA) that, though well tolerated, may be associated with local and remote adverse effects in the medium-long term. This review aims to summarize data on the biological consequences of the metal implant degradation that have been attributed predominantly to metal-on-metal (MoM) THA. Local responses to metals consist of a broad clinical spectrum ranging from small asymptomatic tissue lesions to severe destruction of bone and soft tissues, which are designated as metallosis, adverse reactions to metal debris (ARMD), aseptic lymphocytic vasculitis associated lesion (ALVAL), and pseudotumors. In addition, the dissemination of metal particles and ions throughout the body has been associated with systemic adverse effects, including organ toxicity, cancerogenesis, teratogenicity, and immunotoxicity. As proved by the multitude of studies in this field, metal degradation may increase safety issues associated with THA, especially with MoM hip systems. Data collection regarding local, systemic and long-term effects plays an essential role to better define any safety risks and to generate scientifically based recommendations.
Collapse
Affiliation(s)
- Donatella Granchi
- a Orthopedic Pathophysiology and Regenerative Medicine Unit , Rizzoli Orthopedic Institute , Bologna , Italy
| | - Lucia Maria Savarino
- a Orthopedic Pathophysiology and Regenerative Medicine Unit , Rizzoli Orthopedic Institute , Bologna , Italy
| | - Gabriela Ciapetti
- a Orthopedic Pathophysiology and Regenerative Medicine Unit , Rizzoli Orthopedic Institute , Bologna , Italy
| | - Nicola Baldini
- a Orthopedic Pathophysiology and Regenerative Medicine Unit , Rizzoli Orthopedic Institute , Bologna , Italy.,b Department of Biomedical and Neuromotor Science , University of Bologna , Bologna , Italy
| |
Collapse
|
78
|
Borghi SM, Mizokami SS, Pinho-Ribeiro FA, Fattori V, Crespigio J, Clemente-Napimoga JT, Napimoga MH, Pitol DL, Issa JPM, Fukada SY, Casagrande R, Verri WA. The flavonoid quercetin inhibits titanium dioxide (TiO 2)-induced chronic arthritis in mice. J Nutr Biochem 2017; 53:81-95. [PMID: 29197723 DOI: 10.1016/j.jnutbio.2017.10.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/31/2017] [Accepted: 10/16/2017] [Indexed: 01/14/2023]
Abstract
Titanium dioxide (TiO2) is a common component of orthopedic prosthesis. However, prosthesis wear releases TiO2, which induces inflammation and osteolysis in peri-prosthetic tissues. Quercetin is a flavonoid widely present in human diet, which presents biological activities such as antinociceptive, anti-inflammatory and antioxidant effects. Therefore, the effect of intraperitoneal treatment with quercetin in TiO2-induced arthritis model was evaluated. In the first set of experiments, mice received injection of TiO2 (0.1-3 mg/knee joint) and articular mechanical hyperalgesia, edema and histopathology analysis were performed in a 30 days protocol. The dose of 3 mg of TiO2 showed the most harmful effect, and was chosen to the following experiments. Subsequently, mice received 3 mg of TiO2 followed by post-treatment with quercetin during 30 days. Quercetin (10-100 mg/kg) inhibited in a dose-dependent manner TiO2-induced knee joint mechanical hyperalgesia, edema and leukocyte recruitment and did not induce damage in major organs such as liver, kidney and stomach. The dose of 30 mg/kg was chosen for the subsequent analysis, and reduced histopathological changes such as leukocyte infiltration, vascular proliferation and synovial hyperplasia (pannus formation) on day 30 after TiO2 challenge. The protective analgesic and anti-inflammatory mechanisms of quercetin included the inhibition of TiO2-induced neutrophil and macrophage recruitment, proteoglycan degradation, oxidative stress, cytokine production (TNF-α, IL-1β, IL-6, and IL-10), COX-2 mRNA expression, and bone resorption as well as activation of Nrf2/HO-1 signaling pathway. These results demonstrate the potential therapeutic applicability of the dietary flavonoid quercetin to reduce pain and inflammatory damages associated with prosthesis wear process-induced arthritis.
Collapse
Affiliation(s)
- Sergio M Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Sandra S Mizokami
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Jefferson Crespigio
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, 13045-755, Campinas, São Paulo, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, 13045-755, Campinas, São Paulo, Brazil
| | - Dimitrius L Pitol
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - João P M Issa
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, 86038-350, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
79
|
Hui T, Kubacki GW, Gilbert JL. Voltage and wear debris from Ti-6Al-4V interact to affect cell viability during in-vitro fretting corrosion. J Biomed Mater Res A 2017; 106:160-167. [PMID: 28884489 DOI: 10.1002/jbm.a.36220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 08/24/2017] [Indexed: 11/05/2022]
Abstract
Fretting corrosion (or mechanically assisted corrosion, MAC) is a major corrosion mechanism in modular orthopedic implants. There is a complex interplay between fretting corrosion and the surrounding biological environment that includes particle generation and electrochemical potential excursions and currents. The goal of this work is to directly investigate the effects of fretting on cells in vitro. Using an in vitro fretting device, MC3T3 preosteoblasts were cultured onto Ti-6Al-4V disks adjacent to the fretting site. Under fretting corrosion conditions, cell viability dramatically decreased to 0.5% with the voltage drop reaching -1 V (vs. Ag/AgCl). Under the same fretting corrosion conditions, but potentiostatically holding the Ti-6Al-4V sample surface potential to -300 mV or -50 mV (vs. Ag/AgCl), the cell viability increases to 70% and 38%, respectively. The results indicate that both cathodic potential excursions and wear debris play significant roles in affecting cell viability. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 160-167, 2018.
Collapse
Affiliation(s)
- Tiantian Hui
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, 13244.,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, 13244
| | - Gregory W Kubacki
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, 13244.,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, 13244.,Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634
| | - Jeremy L Gilbert
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, 13244.,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, 13244.,Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
80
|
Tschon M, Veronesi F, Contartese D, Sartori M, Martini L, Vincenzi F, Ravani A, Varani K, Fini M. Effects of pulsed electromagnetic fields and platelet rich plasma in preventing osteoclastogenesis in an in vitro model of osteolysis. J Cell Physiol 2017; 233:2645-2656. [PMID: 28786478 DOI: 10.1002/jcp.26143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022]
Abstract
Osteolysis is the main limiting cause for the survival of an orthopedic prosthesis and is accompanied by an enhancement in osteoclastogenesis and inflammation, due by wear debris formation. Unfortunately therapeutic treatments, besides revision surgery, are not available. The aim of the present study was to evaluate the effects of Pulsed Electro Magnetic Fields (PEMFs) and platelet rich plasma (PRP), alone or in combination, in an in vitro model of osteolysis. Rats peripheral blood mononuclear cells were cultured on Ultra High Molecular Weight Polyethylene particles and divided into four groups of treatments: (1) PEMF stimulation (12 hr/day, 2.5 mT, 75 Hz, 1.3 ms pulse duration); (2) 10% PRP; (3) combination of PEMFs, and PRP; (4) no treatment. Treatments were performed for 3 days and cell viability, osteoclast number, expression of genes related to osteoclastogenesis and inflammation and production of pro-inflammatory cytokines were assessed up to 14 days. PEMF stimulation exerted best results because it increased cell viability at early time points and counteracted osteoclastogenesis at 14 days. On the contrary, PRP increased osteoclastogenesis and reduced cell viability in comparison to PEMFs alone. The combination of PEMFs and PRP increased cell viability over time and reduced osteoclastogenesis in comparison to PRP alone. However, these positive results did not exceed the level achieved by PEMF alone. At longer time points PEMF could not counteract osteoclastogenesis increased by PRP. Regarding inflammation, all treatments maintained the production of pro-inflammatory cytokines at low level, although PRP increased the level of interleukin 1 beta.
Collapse
Affiliation(s)
- Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Deyanira Contartese
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Maria Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Research Innovation and Technology Department (RIT), Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Lucia Martini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, Laboratory of Cellular and Molecular Pharmacology, University of Ferrara, Ferrara, Italy
| | - Annalisa Ravani
- Department of Medical Sciences, Laboratory of Cellular and Molecular Pharmacology, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, Laboratory of Cellular and Molecular Pharmacology, University of Ferrara, Ferrara, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
81
|
Schoon J, Geißler S, Traeger J, Luch A, Tentschert J, Perino G, Schulze F, Duda GN, Perka C, Rakow A. Multi-elemental nanoparticle exposure after tantalum component failure in hip arthroplasty: In-depth analysis of a single case. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2415-2423. [PMID: 28821464 DOI: 10.1016/j.nano.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/22/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Porous tantalum components are widely used for complex acetabular reconstructions in revision hip arthroplasty. Multiple other metal alloys such as titanium-aluminum-vanadium or cobalt-chromium-molybdenum are principally used in artificial joint setups. We report a case of tantalum component failure being both cause and effect of a multiple metal exposure. Our aims were to assess and to characterize associated particle exposure and biological consequences. Metal level quantification revealed substantial in vivo exposure to particulate and dissociated tantalum, zirconium, chromium, cobalt, molybdenum, titanium, aluminum and vanadium in periprosthetic compartments. Aside from micron-sized particles, nanoparticles of a broad size range and elemental composition were obtained. Histological exams verified a spectrum of necrotic changes in the periprosthetic tissues. In the presented case tantalum release was accompanied by concomitance of particles originating from other utilized metals. We conclude that an overall in vivo exposure assessment is mandatory for realistic appraisal of metal toxicity and associated risks.
Collapse
Affiliation(s)
- Janosch Schoon
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Geißler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Juliane Traeger
- Institute of Chemistry, Inorganic Chemistry, University of Potsdam, Potsdam, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Giorgio Perino
- Hospital for Special Surgery, Department of Pathology and Laboratory Medicine, New York, USA
| | - Frank Schulze
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Perka
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anastasia Rakow
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
82
|
Ribeiro AR, Mukherjee A, Hu X, Shafien S, Ghodsi R, He K, Gemini-Piperni S, Wang C, Klie RF, Shokuhfar T, Shahbazian-Yassar R, Borojevic R, Rocha LA, Granjeiro JM. Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy. NANOSCALE 2017; 9:10684-10693. [PMID: 28654127 DOI: 10.1039/c7nr02239e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.
Collapse
Affiliation(s)
- Ana R Ribeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Immunological Responses to Total Hip Arthroplasty. J Funct Biomater 2017; 8:jfb8030033. [PMID: 28762999 PMCID: PMC5618284 DOI: 10.3390/jfb8030033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients’ joints, and has significantly improved their quality of life. However, these implants are expected to eventually fail after 15–25 years in situ due to slow progressive inflammatory responses at the bone-implant interface. Such inflammatory responses are primarily mediated by immune cells such as macrophages, triggered by implant wear particles. As a result, aseptic loosening is the main cause for revision surgery over the mid and long-term and is responsible for more than 70% of hip revisions. In some patients with a metal-on-metal (MoM) implant, metallic implant wear particles can give rise to metal sensitivity. Therefore, engineering biomaterials, which are immunologically inert or support the healing process, require an in-depth understanding of the host inflammatory and wound-healing response to implanted materials. This review discusses the immunological response initiated by biomaterials extensively used in THA, ultra-high-molecular-weight polyethylene (UHMWPE), cobalt chromium (CoCr), and alumina ceramics. The biological responses of these biomaterials in bulk and particulate forms are also discussed. In conclusion, the immunological responses to bulk and particulate biomaterials vary greatly depending on the implant material types, the size of particulate and its volume, and where the response to bulk forms of differing biomaterials are relatively acute and similar, while wear particles can initiate a variety of responses such as osteolysis, metal sensitivity, and so on.
Collapse
|
84
|
Alippe Y, Wang C, Ricci B, Xiao J, Qu C, Zou W, Novack DV, Abu-Amer Y, Civitelli R, Mbalaviele G. Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep 2017; 7:6630. [PMID: 28747793 PMCID: PMC5529467 DOI: 10.1038/s41598-017-07014-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
The NLRP3 inflammasome senses a variety of signals referred to as danger associated molecular patterns (DAMPs), including those triggered by crystalline particulates or degradation products of extracellular matrix. Since some DAMPs confer tissue-specific activation of the inflammasomes, we tested the hypothesis that bone matrix components function as DAMPs for the NLRP3 inflammasome and regulate osteoclast differentiation. Indeed, bone particles cause exuberant osteoclastogenesis in the presence of RANKL, a response that correlates with NLRP3 abundance and the state of inflammasome activation. To determine the relevance of these findings to bone homeostasis, we studied the impact of Nlrp3 deficiency on bone using pre-clinical mouse models of high bone turnover, including estrogen deficiency and sustained exposure to parathyroid hormone or RANKL. Despite comparable baseline indices of bone mass, bone loss caused by hormonal or RANKL perturbations is significantly reduced in Nlrp3 deficient than in wild type mice. Consistent with the notion that osteolysis releases DAMPs from bone matrix, pharmacologic inhibition of bone resorption by zoledronate attenuates inflammasome activation in mice. Thus, signals originating from bone matrix activate the NLRP3 inflammasome in the osteoclast lineage, and may represent a bone-restricted positive feedback mechanism that amplifies bone resorption in pathologic conditions of accelerated bone turnover.
Collapse
Affiliation(s)
- Yael Alippe
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Biancamaria Ricci
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Jianqiu Xiao
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Chao Qu
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, United States.
| |
Collapse
|
85
|
Takagi M, Takakubo Y, Pajarinen J, Naganuma Y, Oki H, Maruyama M, Goodman SB. Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat 2017; 10:68-85. [PMID: 29130033 PMCID: PMC5676564 DOI: 10.1016/j.jot.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The innate immune sensors, Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), can recognize not only exogenous pathogen-associated molecular patterns (PAMPs), but also endogenous molecules created upon tissue injury, sterile inflammation, and degeneration. Endogenous ligands are called damage-associated molecular patterns (DAMPs), and include endogenous molecules released from activated and necrotic cells as well as damaged extracellular matrix. TLRs and NLRs can interact with various ligands derived from PAMPs and DAMPs, leading to activation and/or modulation of intracellular signalling pathways. Intensive research on the innate immune sensors, TLRs and NLRs, has brought new insights into the pathogenesis of not only various infectious and rheumatic diseases, but also aseptic foreign body granuloma and septic inflammation of failed total hip replacements (THRs). In this review, recent knowledge is summarized on the innate immune system, including TLRs and NLRs and their danger signals, with special reference to their possible role in the adverse local host response to THRs. Translational potential of this article: A clear understanding of the roles of Toll-like receptors and NOD-like receptors in aseptic and septic loosening of joint replacements will facilitate potential strategies to mitigate these events, thereby extending the longevity of implants in humans.
Collapse
Affiliation(s)
- Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Yuya Takakubo
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yasushi Naganuma
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Hiroharu Oki
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
86
|
Doloff JC, Veiseh O, Vegas AJ, Tam HH, Farah S, Ma M, Li J, Bader A, Chiu A, Sadraei A, Aresta-Dasilva S, Griffin M, Jhunjhunwala S, Webber M, Siebert S, Tang K, Chen M, Langan E, Dholokia N, Thakrar R, Qi M, Oberholzer J, Greiner DL, Langer R, Anderson DG. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. NATURE MATERIALS 2017; 16:671-680. [PMID: 28319612 PMCID: PMC5445003 DOI: 10.1038/nmat4866] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/19/2017] [Indexed: 05/11/2023]
Abstract
Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.
Collapse
Affiliation(s)
- Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Omid Veiseh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Arturo J. Vegas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Hok Hei Tam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Shady Farah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Minglin Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Jie Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Andrew Bader
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Alan Chiu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Atieh Sadraei
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Stephanie Aresta-Dasilva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Marissa Griffin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
| | - Siddharth Jhunjhunwala
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Matthew Webber
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sean Siebert
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Katherine Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Michael Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Erin Langan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Nimit Dholokia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Raj Thakrar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Meirigeng Qi
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Jose Oberholzer
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- ; Tel.: +1 617 258 6843; fax: +1 617 258 8827
| |
Collapse
|
87
|
Mbalaviele G, Novack DV, Schett G, Teitelbaum SL. Inflammatory osteolysis: a conspiracy against bone. J Clin Invest 2017; 127:2030-2039. [PMID: 28569732 DOI: 10.1172/jci93356] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are many causes of inflammatory osteolysis, but regardless of etiology and cellular contexts, the osteoclast is the bone-degrading cell. Thus, the impact of inflammatory cytokines on osteoclast formation and function was among the most important discoveries advancing the treatment of focal osteolysis, leading to development of therapeutic agents that either directly block the bone-resorptive cell or do so indirectly via cytokine arrest. Despite these advances, a substantial number of patients with inflammatory arthritis remain resistant to current therapies, and even effective anti-inflammatory drugs frequently do not repair damaged bone. Thus, insights into events such as those impacted by inflammasomes, which signal through cytokine-dependent and -independent mechanisms, are needed to optimize treatment of inflammatory osteolysis.
Collapse
Affiliation(s)
| | - Deborah V Novack
- Department of Medicine, Division of Bone and Mineral Diseases, and.,Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, and.,Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
88
|
Are clinical findings of systemic titanium dispersion following implantation explained by available in vitro evidence? An evidence-based analysis. J Biol Inorg Chem 2017; 22:799-806. [PMID: 28516215 DOI: 10.1007/s00775-017-1464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Although the presence of titanium wear particles released into tissues is known to induce local inflammation following the therapeutic implantation of titanium devices into humans, the role that titanium ions play in adverse tissue responses has received little attention. Support that ongoing titanium ion release occurs is evidenced by the presence of ionic titanium bound to transferrin in blood, and ongoing excretion in the urine of patients with titanium devices. However, as reports documenting the presence of titanium within tissues do not distinguish between particulate and ionic forms due to technical challenges, the degree to which ionic titanium is released into tissues is unknown. To determine the potential for titanium ion release into tissues, this study evaluates available in vitro evidence relating to the release of ionic titanium under physiological conditions. This is a systematic literature review of studies reporting titanium ion release into solutions from titanium devices under conditions replicating the interstitial pH and constituents. Inclusion and exclusion criteria were defined. Of 452 articles identified, titanium ions were reported in nine media relevant to human biology in seventeen studies. Only one study, using human serum replicated both physiological pH and the concentration of constituents while reporting the presence of titanium ions. While there is insufficient information to explain the factors that contribute to the presence of titanium ions in serum of humans implanted with titanium devices, currently available information suggests that areas of future inquiry include the role of transferrin and organic acids.
Collapse
|
89
|
Veronesi F, Tschon M, Fini M. Gene Expression in Osteolysis: Review on the Identification of Altered Molecular Pathways in Preclinical and Clinical Studies. Int J Mol Sci 2017; 18:E499. [PMID: 28245614 PMCID: PMC5372515 DOI: 10.3390/ijms18030499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Aseptic loosening (AL) due to osteolysis is the primary cause of joint prosthesis failure. Currently, a second surgery is still the only available treatment for AL, with its associated drawbacks. The present review aims at identifying genes whose expression is altered in osteolysis, and that could be the target of new pharmacological treatments, with the goal of replacing surgery. This review also aims at identifying the molecular pathways altered by different wear particles. We reviewed preclinical and clinical studies from 2010 to 2016, analyzing gene expression of tissues or cells affected by osteolysis. A total of 32 in vitro, 16 in vivo and six clinical studies were included. These studies revealed that genes belonging to both inflammation and osteoclastogenesis pathways are mainly involved in osteolysis. More precisely, an increase in genes encoding for the following factors were observed: Interleukins 6 and 1β (IL16 and β), Tumor Necrosis Factor α (TNFα), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), Cathepsin K (CATK) and Tartrate-resistant acid phosphatase (TRAP). Titanium (Ti) and Polyethylene (PE) were the most studied particles, showing that Ti up-regulated inflammation and osteoclastogenesis related genes, while PE up-regulated primarily osteoclastogenesis related genes.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
90
|
Lin TH, Pajarinen J, Lu L, Nabeshima A, Cordova LA, Yao Z, Goodman SB. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:117-154. [PMID: 28215222 DOI: 10.1016/bs.apcsb.2016.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system.
Collapse
Affiliation(s)
- T-H Lin
- Stanford University, Stanford, CA, United States
| | - J Pajarinen
- Stanford University, Stanford, CA, United States
| | - L Lu
- Stanford University, Stanford, CA, United States
| | - A Nabeshima
- Stanford University, Stanford, CA, United States
| | - L A Cordova
- Stanford University, Stanford, CA, United States; Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Z Yao
- Stanford University, Stanford, CA, United States
| | - S B Goodman
- Stanford University, Stanford, CA, United States.
| |
Collapse
|
91
|
Yousef S, Visco A, Galtieri G, Nocita D, Espro C. Wear behaviour of UHMWPE reinforced by carbon nanofiller and paraffin oil for joint replacement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:234-244. [PMID: 28183604 DOI: 10.1016/j.msec.2016.11.088] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/03/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022]
Abstract
The majority of artificial joints incorporate biomedical grade Ultra High Molecular Weight Poly Ethylene (UHMWPE), whose wear is considered most important in controlling service time of the whole joint. The aim of this work was to improve wear resistance of UHMWPE through the addition of 0.5-2.0wt% of Carbon Nano Filler (CNF) and 2% wt of Paraffin Oil (PO) using ball milling (BM) and extrusion techniques (EX). The wear tests on these nanocomposites were conducted by a pin on disc in dry (air) and wet media (simulated synovial fluid or artificial lubricant, and bovine synovial fluid or natural lubricant). Mechanical tests (tensile and hardness), physical analysis (calorimetric, density, wet ability, roughness) and morphological observations were also performed. The experimental results showed that natural lubricant provides the greatest reduction in wear rate while the largest one occurred in air. Furthermore, the BM mixed nanocomposites with a filler load of 1.0% exhibited the best wear resistance among all the samples with an improvement of 42%, 64% and 83% in air, artificial and natural lubricant, respectively. This is due to its higher ductility and thermal features, and lower wet ability in the two lubricants.
Collapse
Affiliation(s)
- Samy Yousef
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; Dept. of Production Engineering and Printing Technology, Akhbar Elyom Academy, 6th of October, Egypt
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy.
| | - Giovanna Galtieri
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Davide Nocita
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| |
Collapse
|
92
|
Sartori M, Vincenzi F, Ravani A, Cepollaro S, Martini L, Varani K, Fini M, Tschon M. RAW 264.7 co-cultured with ultra-high molecular weight polyethylene particles spontaneously differentiate into osteoclasts: an in vitro model of periprosthetic osteolysis. J Biomed Mater Res A 2016; 105:510-520. [PMID: 27667508 DOI: 10.1002/jbm.a.35912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Wear-particle osteolysis affects prosthesis survival leading to implant loosening up to 70% of revisions. Therapeutic strategies are increasing, however alternative testing methods to experimentally evaluate such treatments are lacking. The aim of this study was to reproduce an in vitro osteolysis model recapitulating the events that, starting from the exposure of macrophages to polyethylene, lead to the establishment of osteoclastogenesis and inflammation. Responses to polyethylene, at 3 and 7 days, in a macrophage cell line, RAW 264.7, were determined by DNA quantification, immunofluorescence, pit assay, gene expression, cytokine production and NF-kB activation. Results showed that 3 days exposure to particles could induce a significant production of Tumor Necrosis Factor alpha (p < 0.0005) and Prostaglandin E2 (p < 0.005) compared to controls. Particles also induced macrophages to spontaneously differentiate into mature and active osteoclasts, in terms of identification of multinucleated cells by Phalloidin staining and by the analysis of osteoclast-specific gene markers. In particular, at 3 days polyethylene induced a significant up-regulation of Nuclear Factor of Activated T-cells, cytoplasmic 1, Receptor Activator of Nuclear factor Kappa-B and Receptor Activator of Nuclear Factor Kappa-B Ligand genes (p < 0.0005) compared to controls. At protein level, the particles induced a significant increase of Receptor Activator of Nuclear Factor Kappa-B Ligand at day 7 over controls (p < 0.0005). Osteoclasts were capable to resorb bone even in absence of differentiating factors. The possible mechanism, beside spontaneous osteoclastogenesis mediated by wear debris, was identified in an autocrine up-regulation of Receptor activator of nuclear factor kappa-B ligand gene expression and protein synthesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 510-520, 2017.
Collapse
Affiliation(s)
- M Sartori
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, BITTA, Rizzoli Orthopaedic Institute- Research, Innovation and Technology Department (RIT), via di Barbiano 1/10, 40136, Bologna, Italy
| | - F Vincenzi
- Laboratory of Cellular and Molecular Pharmacology Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| | - A Ravani
- Laboratory of Cellular and Molecular Pharmacology Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| | - S Cepollaro
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40136, Italy
| | - L Martini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40136, Italy
| | - K Varani
- Laboratory of Cellular and Molecular Pharmacology Department of Medical Sciences, University of Ferrara, via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40136, Italy
| | - M Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, via di Barbiano 1/10, Bologna, 40136, Italy
| |
Collapse
|
93
|
Rakow A, Schoon J, Dienelt A, John T, Textor M, Duda G, Perka C, Schulze F, Ode A. Influence of particulate and dissociated metal-on-metal hip endoprosthesis wear on mesenchymal stromal cells in vivo and in vitro. Biomaterials 2016; 98:31-40. [DOI: 10.1016/j.biomaterials.2016.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
|
94
|
A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response. Bone Res 2016; 4:16014. [PMID: 27468360 PMCID: PMC4941197 DOI: 10.1038/boneres.2016.14] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/08/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
In a world where increasing joint arthroplasties are being performed on increasingly younger patients, osteolysis as the leading cause of failure after total joint arthroplasty (TJA) has gained considerable attention. Ultra-high molecular weight polyethylene wear-induced osteolysis is the process by which prosthetic debris mechanically released from the surface of prosthetic joints induces an immune response that favors bone catabolism, resulting in loosening of prostheses with eventual failure or fracture. The immune response initiated is innate in that it is nonspecific and self-propagating, with monocytic cells and osteoclasts being the main effectors. To date, detecting disease early enough to implement effective intervention without unwanted systemic side effects has been a major barrier. These barriers can be overcome using newer in vivo imaging techniques and modules linked with fluorescence and/or chemotherapies. We discuss the pathogenesis of osteolysis, and provide discussion of the challenges with imaging and therapeutics. We describe a positron emission tomography imaging cinnamoyl-Phe-(D)-Leu-Phe-(D)-Leu-Phe-Lys module, specific to macrophages, which holds promise in early detection of disease and localization of treatment. Further research and increased collaboration among therapeutic and three-dimensional imaging researchers are essential in realizing a solution to clinical osteolysis in TJA.
Collapse
|
95
|
Brulefert K, Córdova LA, Brulin B, Faucon A, Hulin P, Nedellec S, Gouin F, Passuti N, Ishow E, Heymann D. Pro-osteoclastic in vitro effect of Polyethylene-like nanoparticles: Involvement in the pathogenesis of implant aseptic loosening. J Biomed Mater Res A 2016; 104:2649-57. [PMID: 27254768 DOI: 10.1002/jbm.a.35803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
Polyethylene micro-sized wear particles released from orthopedic implants promote inflammation and osteolysis; however, less is known about the bioactivity of polyethylene nanosized wear particles released from the last generation of polymer-bearing surfaces. We aim to assess the internalization of fluorescent polyethylene-like nanoparticles by both human macrophages and osteoclasts and also, to determine their effects in osteoclastogenesis in vitro. Human macrophages and osteoclasts were incubated with several ratios of fluorescent polyethylene-like nanoparticles between 1 and 72 h, and 4 h, 2, 4, 6, and 9 days, respectively. The internalization of nanoparticles was quantified by flow cytometry and followed by both confocal and video time-lapse microscopy. Osteoclast differentiation and activity was semiquantified by tartrate-resistant acid phosphatase (TRAP) staining, TRAP mRNA relative expression, and pit resorption assay, respectively. Macrophages, osteoclast precursors and mature osteoclasts internalized nanoparticles in a dose- and time-dependent manner and maintained their resorptive activity. In addition, nanoparticles significantly increased the osteoclastogenesis as shown by upregulation of the TRAP expressing cell number. We conclude that polyethylene-like nanosized wear particles promote osteoclast differentiation without alteration of bone resorptive activity of mature osteoclasts and they could be considered as important actors in periprosthetic osteolysis of the last new generation of polymer-bearing surfaces. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2649-2657, 2016.
Collapse
Affiliation(s)
- Kevin Brulefert
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France.,Nantes University Hospital, Nantes, France
| | - Luis A Córdova
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France. .,University of Nantes, Nantes Atlantique Universities, Nantes, France. .,Department of Oral and Maxillofacial Surgery-Faculty of Dentistry, University of Chile-Conicyt, Santiago, Chile.
| | - Bénédicte Brulin
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France
| | - Adrien Faucon
- CEISAM-UMR CNRS 6230, University of Nantes, Nantes, France
| | - Philipe Hulin
- Nantes University Hospital, Nantes, France.,MicroPICell Platform, SFR Santé François Bonamy, INSERM, UMS 016-UMS CNRS 3556, Nantes, France
| | - Steven Nedellec
- Nantes University Hospital, Nantes, France.,MicroPICell Platform, SFR Santé François Bonamy, INSERM, UMS 016-UMS CNRS 3556, Nantes, France
| | - François Gouin
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France.,Nantes University Hospital, Nantes, France
| | - Norbert Passuti
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France.,Nantes University Hospital, Nantes, France
| | - Eléna Ishow
- CEISAM-UMR CNRS 6230, University of Nantes, Nantes, France
| | - Dominique Heymann
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, INSERM, UMR 957, Nantes, 44035, France.,University of Nantes, Nantes Atlantique Universities, Nantes, France.,Nantes University Hospital, Nantes, France.,Department of Oncology and Metabolism, University of Sheffield, The Medical School, Sheffield, England, United Kingdom
| |
Collapse
|
96
|
Paukkeri EL, Korhonen R, Hämäläinen M, Pesu M, Eskelinen A, Moilanen T, Moilanen E. The Inflammatory Phenotype in Failed Metal-On-Metal Hip Arthroplasty Correlates with Blood Metal Concentrations. PLoS One 2016; 11:e0155121. [PMID: 27227536 PMCID: PMC4882013 DOI: 10.1371/journal.pone.0155121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/25/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Hip arthroplasty is the standard treatment of a painful hip destruction. The use of modern metal-on-metal (MOM) bearing surfaces gained popularity in total hip arthroplasties during the last decade. Recently, worrisome failures due to adverse reaction to metal debris (ARMD), including pseudotumor response, have been widely reported. However, the pathogenesis of this reaction remains poorly understood. The aim of the present study was to investigate the ARMD response by flow cytometry approach. METHODS Sixteen patients with a failed Articular Surface Replacement (ASR) hip prosthesis were included in the study. Samples of pseudotumor tissues collected during revision surgery were degraded by enzyme digestion and cells were typed by flow cytometry. Whole blood chromium and cobalt concentrations were analyzed with mass spectrometry before revision surgery. RESULTS Flow cytometry analysis showed that the peri-implant pseudotumor tissue expressed two principal phenotypes, namely macrophage-dominated and T-lymphocyte-dominated response; the average portions being 54% (macrophages) and 25% (T-lymphocytes) in macrophage-dominated inflammation and 20% (macrophages) and 54% (T-lymphocytes) in T-lymphocyte-dominated response. The percentages of B-lymphocytes and granulocytes were lower in both phenotypes. Interestingly, the levels of blood chromium and cobalt were significantly higher in patients with macrophage-dominated response. CONCLUSIONS The results suggest that the adverse tissue reactions induced by MOM wear particles contain heterogeneous pathogeneses and that the metal levels are an important factor in the determination of the inflammatory phenotype. The present results support the hypothesis that higher metal levels cause cytotoxicity and tissue injury and macrophages are recruited to clear the necrotic debris. On the other hand, the adverse response developed in association with lower metal levels is T-lymphocyte-dominated and is likely to reflect hypersensitivity reaction.
Collapse
Affiliation(s)
- Erja-Leena Paukkeri
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Riku Korhonen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Marko Pesu
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, Tampere, Finland.,Department of Dermatology, Tampere University Hospital, Tampere, Finland
| | | | - Teemu Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
97
|
Christo S, Bachhuka A, Diener KR, Vasilev K, Hayball JD. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry. Sci Rep 2016; 6:26207. [PMID: 27188492 PMCID: PMC4870632 DOI: 10.1038/srep26207] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/22/2016] [Indexed: 01/28/2023] Open
Abstract
Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.
Collapse
Affiliation(s)
- Susan Christo
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia
| | - Akash Bachhuka
- Mawson Institute, University of South Australia, SA, 5095, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Krasimir Vasilev
- Mawson Institute, University of South Australia, SA, 5095, Australia.,School of Engineering, University of South Australia, SA, 5095, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
98
|
Gu Z, Huang B, Li Y, Tian M, Li L, Yu X. Strontium-doped calcium polyphosphate/ultrahigh molecular weight polyethylene composites: A new class of artificial joint components with enhanced biological efficacy to aseptic loosening. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:526-33. [DOI: 10.1016/j.msec.2015.12.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/10/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
|
99
|
Pettersson M, Kelk P, Belibasakis GN, Bylund D, Molin Thorén M, Johansson A. Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J Periodontal Res 2016; 52:21-32. [PMID: 26987886 PMCID: PMC5297875 DOI: 10.1111/jre.12364] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Peri-implantitis is a destructive inflammatory process characterized by destruction of the implant-supporting bone. Inflammasomes are large intracellular multiprotein complexes that play a central role in innate immunity by activating the release of proinflammatory cytokines. Although inflammasome activation has previously been linked to periodontal inflammation, there is still no information on a potential association with peri-implantitis. The aim of this study was to examine cytotoxic and proinflammatory effects, including inflammasome activation, of metals used in dental implants, in an in vitro model, as well as from clinical tissue samples. MATERIAL AND METHODS Human macrophages were exposed to different metals [titanium (Ti), cobalt, chromium and molybdenum] in a cell-culture assay. Cytotoxicity was determined using the neutral red uptake assay. Cytokine secretion was quantified using an ELISA, and the expression of genes of various inflammasome components was analysed using quantitative PCR. In addition, the concentrations of interleukin-1β (IL-1β) and Ti in mucosal tissue samples taken in the vicinity of dental implants were determined using ELISA and inductively coupled plasma mass spectrometry, respectively. RESULTS Ti ions in physiological solutions stimulated inflammasome activation in human macrophages and consequently IL-1β release. This effect was further enhanced by macrophages that have been exposed to lipopolysaccharides. The proinflammatory activation caused by Ti ions disappeared after filtration (0.22 μm), which indicates an effect of particles. Ti ions alone did not stimulate transcription of the inflammasome components. The Ti levels of tissue samples obtained in the vicinity of Ti implants were sufficiently high (≥ 40 μm) to stimulate secretion of IL-1β from human macrophages in vitro. CONCLUSION Ti ions form particles that act as secondary stimuli for a proinflammatory reaction.
Collapse
Affiliation(s)
- M Pettersson
- Prosthetic Dentistry, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - P Kelk
- Department of Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - G N Belibasakis
- Section of Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - D Bylund
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - M Molin Thorén
- Prosthetic Dentistry, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - A Johansson
- Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
100
|
Chan KW, Liao CZ, Wong HM, Kwok Yeung KW, Tjong SC. Preparation of polyetheretherketone composites with nanohydroxyapatite rods and carbon nanofibers having high strength, good biocompatibility and excellent thermal stability. RSC Adv 2016. [DOI: 10.1039/c5ra22134j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The WST-1 assay shows that the PEEK/15 vol% nHA–1.9 vol% CNF hybrid composite has excellent biocompatibility.
Collapse
Affiliation(s)
- Kai Wang Chan
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Cheng Zhu Liao
- Department of Materials Science and Engineering
- South University of Science and Technology of China
- Shenzhen
- China
| | - Hoi Man Wong
- Department of Orthopedics and Traumatology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- Hong Kong
| | - Kelvin Wai Kwok Yeung
- Department of Orthopedics and Traumatology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- Hong Kong
| | - Sie Chin Tjong
- Department of Physics and Materials Science
- City University of Hong Kong
- Kowloon
- Hong Kong
| |
Collapse
|