51
|
Abstract
BACKGROUND Colitis-associated cancer (CAC) is caused by chronic intestinal inflammation and often results from refractory inflammatory bowel disease (IBD). Stress response proteins Cirp and HSPA4 are involved in the refractory clinical course and development of CAC. RNA-binding motif protein 3 (RBM3) is induced in response to various stresses and is upregulated in several cancers. However, the role of RBM3 in CAC is unclear. METHODS We assessed RBM3 expression and function in 263 human intestinal mucosa samples from patients with IBD and in Rbm3-deficient (Rbm3) mice. RESULTS Expression of RBM3 was correlated with the expression of stress response proteins Cirp, HSPA4, and HSP27 in the colonic mucosa of patients with IBD. Significant correlation was observed between the expression of RBM3 and that of Bcl-xL or stem cell markers. RBM3 expression increased and significantly correlated with R-spondin expression in the colonic mucosa of patients with refractory IBD, a condition associated with increased cancer risk, and RBM3 was overexpressed in human CACs. In the murine CAC model, Rbm3 deficiency decreased R-spondin and Bcl-xL expression and increased apoptotic cell number in the colonic mucosa, leading to reduced tumor multiplicity. Transplantation of wild-type and Rbm3 bone marrow did not alter tumor burden, indicating the importance of RBM3 in epithelial cells. CONCLUSIONS Our findings indicated that RBM3 was required for efficient inflammatory carcinogenesis in the murine CAC model and suggested that RBM3 could be a predictive biomarker of CAC risk and a new therapeutic target for cancer prevention in patients with IBD.
Collapse
|
52
|
Rumzhum NN, Ammit AJ. Cyclooxygenase 2: its regulation, role and impact in airway inflammation. Clin Exp Allergy 2016; 46:397-410. [PMID: 26685098 DOI: 10.1111/cea.12697] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclooxygenase 2 (COX-2: official gene symbol - PTGS2) has long been regarded as playing a pivotal role in the pathogenesis of airway inflammation in respiratory diseases including asthma. COX-2 can be rapidly and robustly expressed in response to a diverse range of pro-inflammatory cytokines and mediators. Thus, increased levels of COX-2 protein and prostanoid metabolites serve as key contributors to pathobiology in respiratory diseases typified by dysregulated inflammation. But COX-2 products may not be all bad: prostanoids can exert anti-inflammatory/bronchoprotective functions in airways in addition to their pro-inflammatory actions. Herein, we outline COX-2 regulation and review the diverse stimuli known to induce COX-2 in the context of airway inflammation. We discuss some of the positive and negative effects that COX-2/prostanoids can exert in in vitro and in vivo models of airway inflammation, and suggest that inhibiting COX-2 expression to repress airway inflammation may be too blunt an approach; because although it might reduce the unwanted effects of COX-2 activation, it may also negate the positive effects. Evidence suggests that prostanoids produced via COX-2 upregulation show diverse actions (and herein we focus on prostaglandin E2 as a key example); these can be either beneficial or deleterious and their impact on respiratory disease can be dictated by local concentration and specific interaction with individual receptors. We propose that understanding the regulation of COX-2 expression and associated receptor-mediated functional outcomes may reveal number of critical steps amenable to pharmacological intervention. These may prove invaluable in our quest towards future development of novel anti-inflammatory pharmacotherapeutic strategies for the treatment of airway diseases.
Collapse
Affiliation(s)
- N N Rumzhum
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - A J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
53
|
Zhu X, Bührer C, Wellmann S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 2016; 73:3839-59. [PMID: 27147467 PMCID: PMC5021741 DOI: 10.1007/s00018-016-2253-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Cold-inducible RNA-binding protein (CIRP) and RNA-binding motif protein 3 (RBM3) are two evolutionarily conserved RNA-binding proteins that are transcriptionally upregulated in response to low temperature. Featuring an RNA-recognition motif (RRM) and an arginine-glycine-rich (RGG) domain, these proteins display many similarities and specific disparities in the regulation of numerous molecular and cellular events. The resistance to serum withdrawal, endoplasmic reticulum stress, or other harsh conditions conferred by RBM3 has led to its reputation as a survival gene. Once CIRP protein is released from cells, it appears to bolster inflammation, contributing to poor prognosis in septic patients. A variety of human tumor specimens have been analyzed for CIRP and RBM3 expression. Surprisingly, RBM3 expression was primarily found to be positively associated with the survival of chemotherapy-treated patients, while CIRP expression was inversely linked to patient survival. In this comprehensive review, we summarize the evolutionary conservation of CIRP and RBM3 across species as well as their molecular interactions, cellular functions, and roles in diverse physiological and pathological processes, including circadian rhythm, inflammation, neural plasticity, stem cell properties, and cancer development.
Collapse
Affiliation(s)
- Xinzhou Zhu
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany
| | - Sven Wellmann
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
54
|
Palaniappan A, Ramar K, Ramalingam S. Computational Identification of Novel Stage-Specific Biomarkers in Colorectal Cancer Progression. PLoS One 2016; 11:e0156665. [PMID: 27243824 PMCID: PMC4887059 DOI: 10.1371/journal.pone.0156665] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
It is well-known that the conversion of normal colon epithelium to adenoma and then to carcinoma stems from acquired molecular changes in the genome. The genetic basis of colorectal cancer has been elucidated to a certain extent, and much remains to be known about the identity of specific cancer genes that are associated with the advancement of colorectal cancer from one stage to the next. Here in this study we attempted to identify novel cancer genes that could underlie the stage-specific progression and metastasis of colorectal cancer. We conducted a stage-based meta-analysis of the voluminous tumor genome-sequencing data and mined using multiple approaches for novel genes driving the progression to stage-II, stage-III and stage-IV colorectal cancer. The consensus of these driver genes seeded the construction of stage-specific networks, which were then analyzed for the centrality of genes, clustering of subnetworks, and enrichment of gene-ontology processes. Our study identified three novel driver genes as hubs for stage-II progression: DYNC1H1, GRIN2A, GRM1. Four novel driver genes were identified as hubs for stage-III progression: IGF1R, CPS1, SPTA1, DSP. Three novel driver genes were identified as hubs for stage-IV progression: GSK3B, GGT1, EIF2B5. We also identified several non-driver genes that appeared to underscore the progression of colorectal cancer. Our study yielded potential diagnostic biomarkers for colorectal cancer as well as novel stage-specific drug targets for rational intervention. Our methodology is extendable to the analysis of other types of cancer to fill the gaps in our knowledge.
Collapse
Affiliation(s)
- Ashok Palaniappan
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
- * E-mail:
| | - Karthick Ramar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Satish Ramalingam
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| |
Collapse
|
55
|
Florianova L, Xu B, Traboulsi S, Elmansi H, Tanguay S, Aprikian A, Kassouf W, Brimo F. Evaluation of RNA-binding motif protein 3 expression in urothelial carcinoma of the bladder: an immunohistochemical study. World J Surg Oncol 2015; 13:317. [PMID: 26577765 PMCID: PMC4650614 DOI: 10.1186/s12957-015-0730-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background RNA-binding motif protein 3 (RBM3), involved in cell survival, has paradoxically been linked to both oncogenesis as well as an increased survival in several cancers, including urothelial carcinoma (UCA). Methods The putative prognostic role of RBM3 was studied using cystectomy specimens with 152 invasive UCA with 35 matched metastases, 65 carcinomas in situ (CIS), 22 high-grade papillary UCAs (PAP), and 112 benign urothelium cases. Results The H-score (HS, staining intensity × % of positive cells) was used for RBM3 immunoexpression. CIS showed the highest HS (mean = 140) followed by benign urothelium (mean = 97). Metastases showed higher HS than primary invasive UCA (P ≤ 0.0001), and high HS was associated with a lower pT stage (P ≤ 0.0001) and a trend toward the absence of lymphovascular invasion (LVI, P = 0.09), but not pN stage (P = 0.35) and surgical margin status (P = 0.81). Univariate analysis (UVA) of disease recurrence only showed an association between pN stage and LVI (P = 0.005 and 0.03, respectively). On UVA of mortality, pT stage was strongly associated with death (P = 0.01) while pN stage, LVI, surgical margin status, and HS were not. Multivariate analysis confirmed the lack of HS association with recurrence (P = 0.08) and death (P = 0.32). Conclusions Stronger RBM3 immunoexpression correlated with lower stage tumors and a diminished risk for LVI. However, RBM3 does not seem to carry a prognostic significance for clinical outcome (recurrence and mortality). The exact prognostic role of RBM3 in UCA is yet to be determined.
Collapse
Affiliation(s)
- Livia Florianova
- Department of Pathology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Bin Xu
- Department of Pathology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Samer Traboulsi
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Hazem Elmansi
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Simon Tanguay
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Armen Aprikian
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Wassim Kassouf
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Fadi Brimo
- Department of Pathology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
56
|
Zhu X, Zelmer A, Kapfhammer JP, Wellmann S. Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress. FASEB J 2015; 30:624-34. [PMID: 26472337 DOI: 10.1096/fj.15-274639] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 01/01/2023]
Abstract
The cold-inducible RNA-binding motif protein 3 (RBM3) is involved in the protection of neurons in hypoxic-ischemic and neurodegenerative disorders. RBM3 belongs to a small group of proteins whose synthesis increases during hypothermia while global protein production is slowed down. To investigate the molecular mechanisms underlying RBM3 action, we subjected hippocampal organotypic slice cultures from RBM3 knockout mice to various stressors and found exuberant signaling of the endoplasmic reticulum (ER) stress pathway PRKR-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-CCAAT/enhancer-binding protein homologous protein (CHOP) as compared with wild-type mice. Further, blocking RBM3 expression in human embryonic kidney HEK293 cells by specific small interfering RNAs increased phosphorylation of PERK and eIF2α, whereas overexpression of RBM3 prevented PERK-eIF2α-CHOP signaling during ER stress induced by thapsigargin or tunicamycin. RBM3 did not affect expression of the ER stress sensor immunoglobulin binding protein/GRP78. However, based on affinity purification coupled with mass spectrometry, coimmunoprecipitation, and proximity ligation assay, we revealed that nuclear factor 90 (NF90) is a novel protein interactor of PERK and that this interaction is essential for RBM3-mediated regulation of PERK activity, which requires an RNA-dependent interaction. In conclusion, our data provide evidence for a central role of RBM3 in preventing cell death by inhibiting the PERK-eIF2α-CHOP ER stress pathway through cooperation with NF90.
Collapse
Affiliation(s)
- Xinzhou Zhu
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andrea Zelmer
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josef P Kapfhammer
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sven Wellmann
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
57
|
Venugopal A, Subramaniam D, Balmaceda J, Roy B, Dixon DA, Umar S, Weir SJ, Anant S. RNA binding protein RBM3 increases β-catenin signaling to increase stem cell characteristics in colorectal cancer cells. Mol Carcinog 2015; 55:1503-1516. [PMID: 26331352 DOI: 10.1002/mc.22404] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths in the United States. It arises from loss of intestinal epithelial homeostasis and hyperproliferation of the crypt epithelium. In order to further understand the pathogenesis of CRC it is important to further understand the factors regulating intestinal epithelial proliferation and more specifically, regulation of the intestinal epithelial stem cell compartment. Here, we investigated the role of the RNA binding protein RBM3 in stem cell homeostasis in colorectal cancers. Using a doxycycline (Dox) inducible RBM3 overexpressing cell lines HCT 116 and DLD-1, we measured changes in side population (SP) cells that have high xenobiotic efflux capacity and increased capacity for self-renewal. In both cell lines, RBM3 induction showed significant increases in the percentage of side population cells. Additionally, we observed increases in spheroid formation and in cells expressing DCLK1, LGR5 and CD44Hi . As the Wnt/β-catenin signaling pathway is important for both physiologic and cancer stem cells, we next investigated the effects of RBM3 overexpression on β-catenin activity. RBM3 overexpression increased levels of nuclear β-catenin as well as TCF/LEF transcriptional activity. In addition, there was inactivation of GSK3β leading to decreased β-catenin phosphorylation. Pharmacologic inhibition of GSK3β using (2'Z,3'E)-6-Bromoindirubin-3'-oxime (BIO) also recapitulates the RBM3 induced β-catenin activity. In conclusion, we see that RNA binding protein RBM3 induces stemness in colorectal cancer cells through a mechanism involving suppression of GSK3β activity thereby enhancing β-catenin signaling. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anand Venugopal
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Julia Balmaceda
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Badal Roy
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dan A Dixon
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shahid Umar
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Scott J Weir
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
58
|
Melling N, Simon R, Mirlacher M, Izbicki JR, Stahl P, Terracciano LM, Bokemeyer C, Sauter G, Marx AH. Loss of RNA-binding motif protein 3 expression is associated with right-sided localization and poor prognosis in colorectal cancer. Histopathology 2015; 68:191-8. [PMID: 25922889 DOI: 10.1111/his.12726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022]
Abstract
AIMS RNA-binding motif protein 3 (RBM3) has recently been suggested as a prognostic biomarker in an array of human cancers. This study aimed to examine its effects in colorectal cancers. METHODS AND RESULTS RBM3 expression was analysed by immunohistochemistry on a tissue microarray containing 1800 colorectal cancers (CRCs). Nuclear RBM3 immunohistochemical staining was found in 95.9% of all interpretable CRCs. Loss of RBM3 expression was linked to advanced tumour stage (P < 0.0001), right-sided tumour localization (P < 0.0001), and poor prognosis (P = 0.0003). In a multivariable analysis including RBM3 staining, tumour grade, tumour stage, and nodal status, only tumour stage and nodal status proved to be independent prognostic markers (P < 0.0001 each), whereas the prognostic impact of RBM3 staining was not significant (P = 0.2655). CONCLUSIONS Our observations indicate that loss of RBM3 expression is an unfavourable prognostic marker in CRC, and is linked to right-sided tumour localization.
Collapse
Affiliation(s)
- Nathaniel Melling
- Department of Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Mirlacher
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Philip Stahl
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carsten Bokemeyer
- Department of Oncology, Haematology, BMT with section Pneumology, Hubertus Wald Cancer Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
59
|
Olofsson SE, Nodin B, Gaber A, Eberhard J, Uhlén M, Jirström K, Jerkeman M. Low RBM3 protein expression correlates with clinical stage, prognostic classification and increased risk of treatment failure in testicular non-seminomatous germ cell cancer. PLoS One 2015; 10:e0121300. [PMID: 25811459 PMCID: PMC4374873 DOI: 10.1371/journal.pone.0121300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background Expression of the RNA-binding motif protein 3 (RBM3) has been shown to correlate with favourable clinicopathological parameters and prognosis in several cancer diseases. The aim of this study was to examine the expression and prognostic ability of RBM3 in patients with testicular non-seminomatous germ cell tumours (NSGCT). Patients and Methods Immunohistochemical RBM3 expression was analysed in tissue microarrays with tumours from 206 patients. Chi-square test was applied to analyze associations between RBM3 expression and clinicopathological parameters. Kaplan-Meier analysis was used to assess the impact of RBM3 expression on cancer-specific survival (CSS) and failure-free survival (FFS). Cox regression proportional hazards models were used to estimate the relative risk for failure. Results In the entire cohort, there was a significant association between clinical stage (p=0.044) and RBM3 expression. Weak RBM3 expression correlated with a significantly reduced FFS [79.3% versus 90.4% (p=0.019)] and CSS [87.5% versus 97.3% (p=0.047)]. For patients with metastatic disease (n = 88), significant associations were found between RBM3 expression and IGCCC group (p=0.007). The FFS was significantly inferior for patients with low tumour-specific RBM3 expression [59.3% versus 79.0% (p=0.013)], and this association remained significant in a multivariable model for patients with metastatic disease (HR=3.67; 95% CI 1.14, 11.89). Conclusion Low RBM3 expression is an independent predictor of treatment failure in metastatic NSGCT, in relation to the prognostic factors included in the International Germ Cell Consensus Classification (IGCCC). These findings suggest that RBM3 may be a potential biomarker for treatment stratification in patients with metastatic non-seminomatous germ cell tumours, and therefore merit further validation.
Collapse
Affiliation(s)
- Sven-Erik Olofsson
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
- * E-mail:
| | - Björn Nodin
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alexander Gaber
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory and School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
- School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mats Jerkeman
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
60
|
Molecular characterization of RNA binding motif protein 3 (RBM3) gene from Pashmina goat. Res Vet Sci 2014; 98:51-8. [PMID: 25544695 DOI: 10.1016/j.rvsc.2014.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 07/03/2014] [Accepted: 11/26/2014] [Indexed: 11/20/2022]
Abstract
Pashmina goat inhabits the high altitude cold arid desert of Ladakh, India. This goat is known for its finest and costliest under fiber. Though the under fiber may be a part of its complex thermoregulation mechanism, the genetics of its adaptability under cold conditions is not known. As an attempt to understand its adaptive genetics, and the role of RNA-binding proteins at the cellular response, this study was conducted to characterize the RBM3 gene in Pashmina goat and its expression during hypothermia. The ORF of Pashmina RBM3 gene was 273 bp. Phylogenetic analysis revealed that Pashmina RBM3 is closely related to Bos taurus RBM3. Pashmina RBM3 was characterized by comparative modeling studies. The final 3-D model contained two α-helices and four β-sheets. qRT-PCR data showed that Pashmina RBM3 gene expression was significantly higher (P < 0.05) at moderate (30 °C) hypothermic stress conditions as compared with deep (15 °C) hypothermia.
Collapse
|
61
|
Jonsson L, Hedner C, Gaber A, Korkocic D, Nodin B, Uhlén M, Eberhard J, Jirström K. High expression of RNA-binding motif protein 3 in esophageal and gastric adenocarcinoma correlates with intestinal metaplasia-associated tumours and independently predicts a reduced risk of recurrence and death. Biomark Res 2014; 2:11. [PMID: 24963396 PMCID: PMC4067631 DOI: 10.1186/2050-7771-2-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 12/20/2022] Open
Abstract
Background High nuclear expression of the RNA-binding motif protein 3 (RBM3) has previously been found to correlate with favourable clinicopathological characteristics and a prolonged survival in several cancer forms. Here, we examined the clinicopathological correlates and prognostic significance of RBM3 expression in tumours from a consecutive cohort of upper gastrointestinal adenocarcinoma. Material and methods Immunohistochemical RBM3 expression was analysed in tissue microarrays with primary radiotherapy- and chemotherapy-naive adenocarcinoma of the esophagus, gastroesophageal junction and stomach (n = 173). In addition paired samples of normal squamous epithelium (n = 53), gastric mucosa (n = 117), Barrett’s esophagus/gastric intestinal metaplasia (n = 61) and lymph node metastases (n = 71) were analysed. Kaplan-Meier analysis and Cox proportional hazards modelling was applied to assess the impact of RBM3 expression on overall survival (OS) and recurrence-free survival (RFS). Results RBM3 expression was similar in primary tumours and lymph node metastases, but significantly higher in primary tumours and metastases arising in a background of intestinal metaplasia compared with cases without intestinal metaplasia (p < 0.001). RBM3 expression was significantly reduced in more advanced tumour stages (p = 0.006). Low RBM3 expression was significantly associated with a shorter OS in cases with radically resected (R0) tumours (HR 2.19, 95% CI 1.33-3.61, p = 0.002) and RFS in curatively treated patients with R0 resection/distant metastasis-free disease (HR = 3.21, 95% CI 1.64-6.30, p = 0.001). These associations remained significant in adjusted analysis (HR = 1.95, 95% CI 1.17-3.25, p = 0.010 for OS and HR = 3.02, 95% CI 1.45-6.29, p = 0.003 for RFS). Conclusion High expression of RBM3 may signify a subset of upper gastrointestinal cancers arising in a background of intestinal metaplasia and independently predicts a reduced risk of recurrence and death in patients with these cancer forms. These findings are of potential clinical utility and merit further validation.
Collapse
Affiliation(s)
- Liv Jonsson
- Department of Clinical Sciences, Division of Oncology-Pathology, Lund University, Skåne University Hospital, Lund 221 85, Sweden
| | - Charlotta Hedner
- Department of Clinical Sciences, Division of Oncology-Pathology, Lund University, Skåne University Hospital, Lund 221 85, Sweden
| | - Alexander Gaber
- Department of Clinical Sciences, Division of Oncology-Pathology, Lund University, Skåne University Hospital, Lund 221 85, Sweden
| | - Dejan Korkocic
- Department of Clinical Sciences, Division of Oncology-Pathology, Lund University, Skåne University Hospital, Lund 221 85, Sweden
| | - Björn Nodin
- Department of Clinical Sciences, Division of Oncology-Pathology, Lund University, Skåne University Hospital, Lund 221 85, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, AlbaNova University Center, Royal Institute of Technology, Stockholm 106 91, Sweden ; School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm 106 91, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences, Division of Oncology-Pathology, Lund University, Skåne University Hospital, Lund 221 85, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Oncology-Pathology, Lund University, Skåne University Hospital, Lund 221 85, Sweden
| |
Collapse
|
62
|
Zhao W, Xu D, Cai G, Zhu X, Qian M, Liu W, Cui Z. Spatiotemporal pattern of RNA-binding motif protein 3 expression after spinal cord injury in rats. Cell Mol Neurobiol 2014; 34:491-9. [PMID: 24570111 DOI: 10.1007/s10571-014-0033-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Abstract
RNA-binding motif protein 3 (RBM3) belongs to a very small group of cold inducible proteins with anti-apoptotic and proliferative functions. To elucidate the expression and possible function of RBM3 in central nervous system (CNS) lesion and repair, we performed a spinal cord injury (SCI) model in adult rats. Western blot analysis revealed that RBM3 level significantly increased at 1 day after damage, and then declined during the following days. Immunohistochemistry further confirmed that RBM3 immunoactivity was expressed at low levels in gray and white matters in normal condition and increased at 1 day after SCI. Besides, double immunofluorescence staining showed RBM3 was primarily expressed in the neurons and a few of astrocytes in the normal group. While after injury, the expression of RBM3 increased both in neurons and astrocytes at 1 day. We also examined the expression profiles of proliferating cell nuclear antigen (PCNA) and active caspase-3 in injured spinal cords by western blot. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many RBM3-expressing cells and rare caspase-3 was observed in RBM3-expressing cells at 1 day after injury. Our data suggested that RBM3 might play important roles in CNS pathophysiology after SCI.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
63
|
Cui Z, Zhang J, Bao G, Xu G, Sun Y, Wang L, Chen J, Jin H, Liu J, Yang L, Feng G, Li W. Spatiotemporal profile and essential role of RBM3 expression after spinal cord injury in adult rats. J Mol Neurosci 2014; 54:252-63. [PMID: 24668366 DOI: 10.1007/s12031-014-0282-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
Hypoxia and other adverse conditions are usually encountered by rapidly growing cells. The RNA-binding motif protein 3 (RBM3) is induced by low temperature and hypoxia. However, its expression and function in spinal cord injury are still unclear. To investigate the certain expression and biological function in the central nervous system, we performed an acute spinal cord contusion injury (SCI) model in adult rats. Western blot analysis indicated a striking expression upregulation of RBM3 after spinal cord injury (SCI). Double immunofluorescence staining prompted that RBM3 immunoreactivity was found in astrocytes and neurons. Interestingly, RBM3 expression was increased predominantly in astrocytes. Furthermore, colocalization of RBM3 with proliferating cell nuclear antigen (PCNA) was detected in astrocytes. To further understand whether RBM3 plays a role in astrocyte proliferation, we applied lipopolysaccharide (LPS) to induce astrocyte proliferation in vitro. Western blot analysis demonstrated that RBM3 expression was positively correlated with PCNA expression following LPS stimulation. Immunofluorescence analysis showed that the expression of RBM3 was also changed following the stimulation of astrocytes with LPS, which was parallel with the data in vivo. Additionally, knocking RBM3 down with small interfering RNA (siRNA) demonstrated that RBM3 might play a significant role in the proliferation of astrocytes treated by hypoxia in vitro. These results suggest that RBM3 may be involved in the proliferation of astrocytes after SCI. To summarize, we firstly uncover the temporal and spatial expression changes of RBM3 in spinal cord injury. Our data suggest that RBM3 might be implicated in central nervous system pathophysiology after SCI.
Collapse
Affiliation(s)
- Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Grupp K, Wilking J, Prien K, Hube-Magg C, Sirma H, Simon R, Steurer S, Budäus L, Haese A, Izbicki J, Sauter G, Minner S, Schlomm T, Tsourlakis MC. High RNA-binding motif protein 3 expression is an independent prognostic marker in operated prostate cancer and tightly linked to ERG activation and PTEN deletions. Eur J Cancer 2014; 50:852-61. [DOI: 10.1016/j.ejca.2013.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 01/08/2023]
|
65
|
Potential targets for colorectal cancer prevention. Int J Mol Sci 2013; 14:17279-303. [PMID: 23975167 PMCID: PMC3794728 DOI: 10.3390/ijms140917279] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 12/18/2022] Open
Abstract
The step-wise development of colorectal neoplasia from adenoma to carcinoma suggests that specific interventions could delay or prevent the development of invasive cancer. Several key factors involved in colorectal cancer pathogenesis have already been identified including cyclooxygenase 2 (COX-2), nuclear factor kappa B (NF-κB), survivin and insulin-like growth factor-I (IGF-I). Clinical trials of COX-2 inhibitors have provided the “proof of principle” that inhibition of this enzyme can prevent the formation of colonic adenomas and potentially carcinomas, however concerns regarding the potential toxicity of these drugs have limited their use as a chemopreventative strategy. Curcumin, resveratrol and quercetin are chemopreventive agents that are able to suppress multiple signaling pathways involved in carcinogenesis and hence are attractive candidates for further research.
Collapse
|
66
|
Zeng Y, Wodzenski D, Gao D, Shiraishi T, Terada N, Li Y, Vander Griend DJ, Luo J, Kong C, Getzenberg RH, Kulkarni P. Stress-response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing. Cancer Res 2013; 73:4123-33. [PMID: 23667174 DOI: 10.1158/0008-5472.can-12-1343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stress-response pathways play an important role in cancer. The cold-inducible RNA-binding protein RBM3 is upregulated in several types of cancer, including prostate cancer, but its pathogenic contributions are undetermined. RBM3 is expressed at low basal levels in human fetal prostate or in CD133(+) prostate epithelial cells (PrEC), compared with the adult prostate or CD133-PrEC, and RBM3 is downregulated in cells cultured in soft agar or exposed to stress. Notably, RBM3 overexpression in prostate cancer cells attenuated their stem cell-like properties in vitro as well as their tumorigenic potential in vivo. Interestingly, either overexpressing RBM3 or culturing cells at 32°C suppressed RNA splicing of the CD44 variant v8-v10 and increased expression of the standard CD44 (CD44s) isoform. Conversely, silencing RBM3 or culturing cells in soft agar (under conditions that enrich for stem cell-like cells) increased the ratio of CD44v8-v10 to CD44s mRNA. Mechanistic investigations showed that elevating CD44v8-v10 interfered with MMP9-mediated cleavage of CD44s and suppressed expression of cyclin D1, whereas siRNA-mediated silencing of CD44v8-v10 impaired the ability of prostate cancer cells to form colonies in soft agar. Together, these findings suggested that RBM3 contributed to stem cell-like character in prostate cancer by inhibiting CD44v8-v10 splicing. Our work uncovers a hitherto unappreciated role of RBM3 in linking stress-regulated RNA splicing to tumorigenesis, with potential prognostic and therapeutic implications in prostate cancer.
Collapse
Affiliation(s)
- Yu Zeng
- The James Buchanan Brady Urological Institute, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Ciafrè SA, Galardi S. microRNAs and RNA-binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol 2013; 10:935-42. [PMID: 23696003 PMCID: PMC4111733 DOI: 10.4161/rna.24641] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the last decade, an ever-growing number of connections between microRNAs (miRNAs) and RNA-binding proteins (RBPs) have uncovered a new level of complexity of gene expression regulation in cancer. In this review, we examine several aspects of the functional interactions between miRNAs and RBPs in cancer models. We will provide examples of reciprocal regulation: miRNAs regulating the expression of RBPs, or the converse, where an RNA-binding protein specifically regulates the expression of a specific miRNA, or when an RBP can exert a widespread effect on miRNAs via the modulation of a key protein for miRNA production or function. Moreover, we will focus on the ever-growing number of functional interactions that have been discovered in the last few years: RBPs that were shown to cooperate with microRNAs in the downregulation of shared target mRNAs or, on the contrary, that inhibit microRNA action, thus resulting in a protection of the specific target mRNAs. We surely need to obtain a deeper comprehension of such intricate networks to have a chance of understanding and, thus, fighting cancer.
Collapse
Affiliation(s)
- Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, Roma, Italy.
| | | |
Collapse
|
68
|
Boman K, Segersten U, Ahlgren G, Eberhard J, Uhlén M, Jirström K, Malmström PU. Decreased expression of RNA-binding motif protein 3 correlates with tumour progression and poor prognosis in urothelial bladder cancer. BMC Urol 2013; 13:17. [PMID: 23565664 PMCID: PMC3635919 DOI: 10.1186/1471-2490-13-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/26/2013] [Indexed: 11/30/2022] Open
Abstract
Background Low nuclear expression of the RNA-binding motif protein 3 (RBM3) has previously been found to be associated with poor prognosis in several cancer forms e.g. breast, ovarian, colorectal, prostate cancer and malignant melanoma. The aim of this study was to examine the prognostic impact of RBM3 expression in urinary bladder cancer. Methods Immunohistochemical RBM3 expression was examined in tumours from 343 patients with urothelial bladder cancer. Chi-square and Spearman’s correlation tests were applied to explore associations between RBM3 expression and clinicopathological characteristics. The impact of RBM3 expression on disease-specific survival (DSS), 5-year overall survival (OS) and progression-free survival (PFS) was assessed by Kaplan-Meier analysis and Cox proportional hazards modelling. Results Reduced nuclear RBM3 expression was significantly associated with more advanced tumour (T) stage (p <0.001) and high grade tumours (p=0.004). Negative RBM3 expression was associated with a significantly shorter DSS (HR=2.55; 95% CI 1.68-3.86)) and 5-year OS (HR=2.10; 95% CI 1.56-2.82), also in multivariable analysis (HR=1.65; 95% CI 1.07-2.53 for DSS and HR=1.54; 95% CI 1.13-2.10 for 5-year OS). In patients with Ta and T1 tumours expressing reduced RBM3 levels, Kaplan-Meier analysis revealed a significantly shorter PFS (p=0.048) and 5-year OS (p=0.006). Conclusion Loss of RBM3 expression is associated with clinically more aggressive tumours and an independent factor of poor prognosis in patients with urothelial bladder cancer and a potentially useful biomarker for treatment stratification and surveillance of disease progression.
Collapse
Affiliation(s)
- Karolina Boman
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, Lund 221 85, Sweden.
| | | | | | | | | | | | | |
Collapse
|
69
|
Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Res 2013; 1504:74-84. [PMID: 23415676 DOI: 10.1016/j.brainres.2013.01.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/02/2013] [Accepted: 01/22/2013] [Indexed: 11/23/2022]
Abstract
Therapeutic hypothermia has emerged as an effective neuroprotective therapy for cardiac arrest survivors. There are a number of purported mechanisms for therapeutic hypothermia, but the exact mechanism still remains to be elucidated. Although hypothermia generally down-regulates protein synthesis and metabolism in mammalian cells, a small subset of homologous (>70%) cold-shock proteins (RNA-binding motif protein 3, RBM3 and cold-inducible RNA-binding protein, CIRP) are induced under these conditions. In addition, RBM3 up-regulation in neuronal cells has recently been implicated in hypothermia-induced neuroprotection. Therefore, we compared the effects of moderate (33.5°C) and deep (17°C) hypothermia with normothermia (37°C) on the regulation of RBM3 and CIRP expressions in murine organotypic hippocampal slice cultures (OHSC), hippocampal neuronal cells (HT-22), and microglia cells (BV-2). Moderate hypothermia resulted in significant up-regulation of both RBM3 and CIRP mRNA in murine OHSC, but deep hyporthermia did not. RBM3 protein regulation was also significantly up-regulated by 33.5°C, but no significant up-regulation of CIRP protein was observed in the OHSC. Additionally, OHSC exposed to 17°C for 24h were positive for Propidium Iodide (PI) immunostaining, indicating the onset of cell death. Similarly, RBM3 gene expression in a HT-22 neuronal cells mono-culture and direct co-culture of HT-22 neuronal cells with BV-2 microglia cells were also up-regulated at 33.5°C but only in the co-culture at 17°C. No significant up-regulation of RBM3 nor CIRP gene expression were observed in a BV-2 mono-culture at either temperature. We observed that RBM3 mRNA and protein expressions in murine OHSC, as well as in mono-culture of HT-22 neuronal cells and direct co-culture of HT-22 neuronal cells with BV-2 microglia cells were significantly up-regulated by exposure to moderate hypothermia. These findings further support the implication of RBM3 as a potential effector for hypothermia-induced neuroprotection.
Collapse
|
70
|
Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res 2013; 191:7-37. [PMID: 22893198 DOI: 10.1007/978-3-642-30331-9_2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cyclooxygenase-2 (COX-2) enzyme catalyzes the rate-limiting step of prostaglandin formation in pathogenic states and a large amount of evidence has demonstrated constitutive COX-2 expression to be a contributing factor promoting colorectal cancer (CRC). Various genetic, epigenetic, and inflammatory pathways have been identified to be involved in the etiology and development of CRC. Alteration in these pathways can influence COX-2 expression at multiple stages of colon carcinogenesis allowing for elevated prostanoid biosynthesis to occur in the tumor microenvironment. In normal cells, COX-2 expression levels are potently regulated at the post-transcriptional level through various RNA sequence elements present within the mRNA 3' untranslated region (3'UTR). A conserved AU-rich element (ARE) functions to target COX-2 mRNA for rapid decay and translational inhibition through association with various RNA-binding proteins to influence the fate of COX-2 mRNA. Specific microRNAs (miRNAs) bind regions within the COX-2 3'UTR and control COX-2 expression. In this chapter, we discuss novel insights in the mechanisms of altered post-transcriptional regulation of COX-2 in CRC and how this knowledge may be used to develop novel strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, KS 66106, USA.
| | | | | | | |
Collapse
|
71
|
Nodin B, Fridberg M, Jonsson L, Bergman J, Uhlén M, Jirström K. High MCM3 expression is an independent biomarker of poor prognosis and correlates with reduced RBM3 expression in a prospective cohort of malignant melanoma. Diagn Pathol 2012; 7:82. [PMID: 22805320 PMCID: PMC3433373 DOI: 10.1186/1746-1596-7-82] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background Malignant melanoma is the most lethal form of skin cancer with a variable clinical course even in patients with thin melanomas and localized disease. Despite increasing insights into melanoma biology, no prognostic biomarkers have yet been incorporated into clinical protocols. Reduced expression of the RNA binding motif protein 3 (RBM3) has been shown to correlate with tumour progression and poor prognosis in melanoma and several other cancer forms. In ovarian cancer, an inverse association was found between expression of RBM3 and the minichromosome maintenance 3 (MCM3) gene and protein. In melanoma, gene expression analysis and immunohistochemical validation has uncovered MCM3 as a putative prognostic biomarker. The aim of the present study was to examine the associations of MCM3 expression with clinical outcome and RBM3 expression in a prospective, population-based cohort of melanoma. Methods Immunohistochemical MCM3 expression was examined in 224 incident cases of primary melanoma from the Malmö Diet and Cancer Study, previously analysed for RBM3 expression. Spearman´s Rho and Chi-Square tests were used to explore correlations between MCM3 expression, clinicopathological factors, and expression of RBM3 and Ki67. Kaplan Meier analysis, the log rank test, and univariable and multivariable Cox proportional hazards modelling were used to assess the impact of MCM3 expression on disease-free survival (DFS) and melanoma-specific survival (MSS). Results High MCM3 expression was significantly associated with unfavourable clinicopathological features and high Ki67 expression. A significant inverse correlation was seen between expression of MCM3 and RBM3 (p = 0.025). High MCM3 expression was associated with a reduced DFS (HR = 5.62) and MSS (HR = 6.03), and these associations remained significant in multivariable analysis, adjusted for all other factors (HR = 5.01 for DFS and HR = 4.96 for MSS). RBM3 expression remained an independent prognostic factor for MSS but not DFS in the multivariable model. Conclusions These findings provide validation of the utility of MCM3 expression as an independent biomarker for prognostication of patients with primary melanoma. Moreover, the inverse association and prognostic impact of MCM3 and RBM3 expression indicate a possible interaction of these proteins in melanoma progression, the functional basis for which merits further study. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1814908129755401
Collapse
Affiliation(s)
- Björn Nodin
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
72
|
Hjelm B, Brennan DJ, Zendehrokh N, Eberhard J, Nodin B, Gaber A, Pontén F, Johannesson H, Smaragdi K, Frantz C, Hober S, Johnson LB, Påhlman S, Jirström K, Uhlen M. High nuclear RBM3 expression is associated with an improved prognosis in colorectal cancer. Proteomics Clin Appl 2012; 5:624-35. [PMID: 21956899 DOI: 10.1002/prca.201100020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PURPOSE In this study, we investigated the prognostic impact of human RBM3 expression in colorectal cancer using tissue microarray-based immunohistochemical analysis. EXPERIMENTAL DESIGN One polyclonal antibody and four monoclonal anti-RBM3 antibodies were generated and epitope mapped using two different methods. Bacterial display revealed five distinct epitopes for the polyclonal antibody, while the four mouse monoclonal antibodies were found to bind to three of the five epitopes. A peptide suspension bead array assay confirmed the five epitopes of the polyclonal antibody, while only one of the monoclonal antibodies could be mapped using this approach. Antibody specificity was confirmed by Western blotting and immunohistochemistry, including siRNA-mediated knock-down. Two of the antibodies (polyclonal and monoclonal) were subsequently used to analyze RBM3 expression in tumor samples from two independent colorectal cancer cohorts, one consecutive cohort (n=270) and one prospectively collected cohort of patients with cancer of the sigmoid colon (n=305). RBM3-expression was detected, with high correlation between both antibodies (R=0.81, p<0.001). RESULTS In both cohorts, tumors with high nuclear RBM3 staining had significantly prolonged the overall survival. This was also confirmed in multivariate analysis, adjusted for established prognostic factors. CONCLUSION AND CLINICAL RELEVANCE These data demonstrate that high tumor-specific nuclear expression of RBM3 is an independent predictor of good prognosis in colorectal cancer.
Collapse
Affiliation(s)
- Barbara Hjelm
- Department of Proteomics, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Subramaniam D, Periyasamy G, Ponnurangam S, Chakrabarti D, Sugumar A, Padigaru M, Weir SJ, Balakrishnan A, Sharma S, Anant S. CDK-4 inhibitor P276 sensitizes pancreatic cancer cells to gemcitabine-induced apoptosis. Mol Cancer Ther 2012; 11:1598-608. [PMID: 22532602 DOI: 10.1158/1535-7163.mct-12-0102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite advances in molecular pathogenesis, pancreatic cancer remains a major unsolved health problem. It is a rapidly invasive, metastatic tumor that is resistant to standard therapies. The phosphatidylinositol-3-kinase/Akt and mTOR signaling pathways are frequently dysregulated in pancreatic cancer. Gemcitabine is the mainstay treatment for metastatic pancreatic cancer. P276 is a novel CDK inhibitor that induces G(2)/M arrest and inhibits tumor growth in vivo models. Here, we determined that P276 sensitizes pancreatic cancer cells to gemcitabine-induced apoptosis, a mechanism-mediated through inhibition of Akt-mTOR signaling. In vitro, the combination of P276 and gemcitabine resulted in a dose- and time-dependent inhibition of proliferation and colony formation of pancreatic cancer cells but not with normal pancreatic ductal cells. This combination also induced apoptosis, as seen by activated caspase-3 and increased Bax/Bcl2 ratio. Gene profiling studies showed that this combination downregulated Akt-mTOR signaling pathway, which was confirmed by Western blot analyses. There was also a downregulation of VEGF and interleukin-8 expression suggesting effects on angiogenesis pathway. In vivo, intraperitoneal administration of the P276-Gem combination significantly suppressed the growth of pancreatic cancer tumor xenografts. There was a reduction in CD31-positive blood vessels and reduced VEGF expression, again suggesting an effect on angiogenesis. Taken together, these data suggest that P276-Gem combination is a novel potent therapeutic agent that can target the Akt-mTOR signaling pathway to inhibit both tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Many lines of evidence demonstrate that prostaglandins play an important role in cancer, and enhanced synthesis of prostaglandin E(2) (PGE(2)) is often observed in various human malignancies often associated with poor prognosis. PGE(2) synthesis is initiated with the release of arachidonic acid by phospholipase enzymes, where it is then converted into the intermediate prostaglandin prostaglandin H(2) (PGH(2)) by members of the cyclooxygenase family. The synthesis of PGE(2) from PGH(2) is facilitated by three different PGE synthases, and functional PGE(2) can promote tumor growth by binding to four EP receptors to activate signaling pathways that control cell proliferation, migration, apoptosis, and angiogenesis. An integral method of controlling gene expression is by posttranscriptional mechanisms that regulate mRNA stability and protein translation. Messenger RNA regulatory elements typically reside within the 3' untranslated region (3'UTR) of the transcript and play a critical role in targeting specific mRNAs for posttranscriptional regulation through microRNA (miRNA) binding and adenylate- and uridylate-rich element RNA-binding proteins. In this review, we highlight the current advances in our understanding of the impact these RNA sequence elements have upon regulating PGE(2) levels. We also identify various RNA sequence elements consistently observed within the 3'UTRs of the genes involved in the PGE(2) pathway, indicating these binding sites for miRNAs and RNA-binding proteins to be central regulators of PGE(2) synthesis and function. These findings may provide a rationale for the development of new therapeutic approaches to control tumor growth and metastasis promoted by elevated PGE(2) levels.
Collapse
Affiliation(s)
- Ashleigh E. Moore
- Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
| | - Lisa E. Young
- Novartis Institutes for Biomedical Research, RNAi Therapeutics, Cambridge, MA, USA
| | - Dan A. Dixon
- Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
75
|
Pilotte J, Dupont-Versteegden EE, Vanderklish PW. Widespread regulation of miRNA biogenesis at the Dicer step by the cold-inducible RNA-binding protein, RBM3. PLoS One 2011; 6:e28446. [PMID: 22145045 PMCID: PMC3228759 DOI: 10.1371/journal.pone.0028446] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/08/2011] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) play critical roles in diverse cellular events through their effects on translation. Emerging data suggest that modulation of miRNA biogenesis at post-transcriptional steps by RNA-binding proteins is a key point of regulatory control over the expression of some miRNAs and the cellular processes they influence. However, the extent and conditions under which the miRNA pathway is amenable to regulation at posttranscriptional steps are poorly understood. Here we show that RBM3, a cold-inducible, developmentally regulated RNA-binding protein and putative protooncogene, is an essential regulator of miRNA biogenesis. Utilizing miRNA array, Northern blot, and PCR methods, we observed that over 60% of miRNAs detectable in a neuronal cell line were significantly downregulated by knockdown of RBM3. Conversely, for select miRNAs assayed by Northern blot, induction of RBM3 by overexpression or mild hypothermia increased their levels. Changes in miRNA expression were accompanied by changes in the levels of their ~70 nt precursors, whereas primary transcript levels were unaffected. Mechanistic studies revealed that knockdown of RBM3 does not reduce Dicer activity or impede transport of pre-miRNAs into the cytoplasm. Rather, we find that RBM3 binds directly to ~70 nt pre-miRNA intermediates and promotes / de-represses their ability as larger ribonucleoproteins (pre-miRNPs) to associate with active Dicer complexes. Our findings suggest that the processing of a majority of pre-miRNPs by Dicer is subject to an intrinsic inhibitory influence that is overcome by RBM3 expression. RBM3 may thus orchestrate changes in miRNA expression during hypothermia and other cellular stresses, and in the euthermic contexts of early development, differentiation, and oncogenesis where RBM3 expression is highly elevated. Additionally, our data suggest that temperature-dependent changes in miRNA expression mediated by RBM3 may contribute to the therapeutic effects of hypothermia, and are an important variable to consider in in vitro studies of translation-dependent cellular events.
Collapse
Affiliation(s)
- Julie Pilotte
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Esther E. Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter W. Vanderklish
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
76
|
Jonsson L, Gaber A, Ulmert D, Uhlén M, Bjartell A, Jirström K. High RBM3 expression in prostate cancer independently predicts a reduced risk of biochemical recurrence and disease progression. Diagn Pathol 2011; 6:91. [PMID: 21955582 PMCID: PMC3195697 DOI: 10.1186/1746-1596-6-91] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High expression of the RNA-binding protein RBM3 has previously been found to be associated with good prognosis in breast cancer, ovarian cancer, malignant melanoma and colorectal cancer. The aim of this study was to examine the prognostic impact of immunohistochemical RBM3 expression in prostate cancer. FINDINGS Immunohistochemical RBM3 expression was examined in a tissue microarray with malignant and benign prostatic specimens from 88 patients treated with radical prostatectomy for localized disease. While rarely expressed in benign prostate gland epithelium, RBM3 was found to be up-regulated in prostate intraepithelial neoplasia and present in various fractions and intensities in invasive prostate cancer. High nuclear RBM3 expression was significantly associated with a prolonged time to biochemical recurrence (BCR) (HR 0.56, 95% CI: 0.34-0.93, p = 0.024) and clinical progression (HR 0.09, 95% CI: 0.01-0.71, p = 0.021). These associations remained significant in multivariate analysis, adjusted for preoperative PSA level in blood, pathological Gleason score and presence or absence of extracapsular extension, seminal vesicle invasion and positive surgical margin (HR 0.41, 95% CI: 0.19-0.89, p = 0.024 for BCR and HR 0.06, 95% CI: 0.01-0.50, p = 0.009 for clinical progression). CONCLUSION Our results demonstrate that high nuclear expression of RBM3 in prostate cancer is associated with a prolonged time to disease progression and, thus, a potential biomarker of favourable prognosis. The value of RBM3 for prognostication, treatment stratification and follow-up of prostate cancer patients should be further validated in larger studies.
Collapse
Affiliation(s)
- Liv Jonsson
- Department of Clinical Sciences, Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
77
|
Sureban SM, May R, Mondalek FG, Qu D, Ponnurangam S, Pantazis P, Anant S, Ramanujam RP, Houchen CW. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J Nanobiotechnology 2011; 9:40. [PMID: 21929751 PMCID: PMC3200989 DOI: 10.1186/1477-3155-9-40] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/19/2011] [Indexed: 02/06/2023] Open
Abstract
Background The development of effective drug delivery systems capable of transporting small interfering RNA (siRNA) has been elusive. We have previously reported that colorectal cancer tumor xenograft growth was arrested following treatment with liposomal preparation of siDCAMKL-1. In this report, we have utilized Nanoparticle (NP) technology to deliver DCAMKL-1 specific siRNA to knockdown potential key cancer regulators. In this study, mRNA/miRNA were analyzed using real-time RT-PCR and protein by western blot/immunohistochemistry. siDCAMKL-1 was encapsulated in Poly(lactide-co-glycolide)-based NPs (NP-siDCAMKL-1); Tumor xenografts were generated in nude mice, treated with NP-siDCAMKL-1 and DAPT (γ-secretase inhibitor) alone and in combination. To measure let-7a and miR-144 expression in vitro, HCT116 cells were transfected with plasmids encoding the firefly luciferase gene with let-7a and miR-144 miRNA binding sites in the 3'UTR. Results Administration of NP-siDCAMKL-1 into HCT116 xenografts resulted in tumor growth arrest, downregulation of proto-oncogene c-Myc and Notch-1 via let-7a and miR-144 miRNA-dependent mechanisms, respectively. A corresponding reduction in let-7a and miR-144 specific luciferase activity was observed in vitro. Moreover, an upregulation of EMT inhibitor miR-200a and downregulation of the EMT-associated transcription factors ZEB1, ZEB2, Snail and Slug were observed in vivo. Lastly, DAPT-mediated inhibition of Notch-1 resulted in HCT116 tumor growth arrest and down regulation of Notch-1 via a miR-144 dependent mechanism. Conclusions These findings demonstrate that nanoparticle-based delivery of siRNAs directed at critical targets such as DCAMKL-1 may provide a novel approach to treat cancer through the regulation of endogenous miRNAs.
Collapse
Affiliation(s)
- Sripathi M Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Subramaniam D, Nicholes ND, Dhar A, Umar S, Awasthi V, Welch DR, Jensen RA, Anant S. 3,5-bis(2,4-difluorobenzylidene)-4-piperidone, a novel compound that affects pancreatic cancer growth and angiogenesis. Mol Cancer Ther 2011; 10:2146-56. [PMID: 21890747 DOI: 10.1158/1535-7163.mct-11-0399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dysregulated Notch signaling plays an important role in the progression of cancer. Notch signaling affects tumor growth and angiogenesis through the actions of its ligand Jagged-1. In this study, we developed a novel compound 3,5-bis(2,4-difluorobenzylidene)-4-piperidone (DiFiD) and determined that it inhibits cancer cell growth and its effects on Notch signaling. Intraperitoneal administration of DiFiD significantly suppressed growth of pancreatic cancer tumor xenografts. There was a reduction in CD31-positive blood vessels, suggesting that there was an effect on angiogenesis. In vitro, DiFiD inhibited the proliferation of various human and mouse pancreatic cancer cells while increasing activated caspase-3. Cell-cycle analyses showed that DiFiD induced G(2)-M arrest and decreased the expression of cell-cycle-related proteins cyclin A1 and D1 while upregulating cyclin-dependent kinase inhibitor p21WAF1. We next determined the mechanism of action. DiFiD reduced Notch-1 activation, resulting in reduced expression of its downstream target protein Hes-1. We further determined that the reduced Notch-1 activation was due to reduction in the ligand Jagged-1 and two critical components of the γ-secretase enzyme complex presenilin-1 and nicastrin. Ectopic expression of the Notch intracellular domain rescued the cells from DiFiD-mediated growth suppression. DiFiD-treated tumor xenografts also showed reduced levels of Jagged-1 and the γ-secretase complex proteins presenilin-1 and nicastrin. Taken together, these data suggest that DiFiD is a novel potent therapeutic agent that can target different aspects of the Notch signaling pathway to inhibit both tumor growth and angiogenesis.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
RBM3-regulated genes promote DNA integrity and affect clinical outcome in epithelial ovarian cancer. Transl Oncol 2011; 4:212-21. [PMID: 21804916 DOI: 10.1593/tlo.11106] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/28/2022] Open
Abstract
The RNA-binding motif protein 3 (RBM3) was initially discovered as a putative cancer biomarker based on its differential expression in various cancer forms in the Human Protein Atlas (HPA). We previously reported an association between high expression of RBM3 and prolonged survival in breast and epithelial ovarian cancer (EOC). Because the function of RBM3 has not been fully elucidated, the aim of this study was to use gene set enrichment analysis to identify the underlying biologic processes associated with RBM3 expression in a previously analyzed EOC cohort (cohort 1, n = 267). This revealed an association between RBM3 expression and several cellular processes involved in the maintenance of DNA integrity. RBM3-regulated genes were subsequently screened in the HPA to select for putative prognostic markers, and candidate proteins were analyzed in the ovarian cancer cell line A2780, whereby an up-regulation of Chk1, Chk2, and MCM3 was demonstrated in siRBM3-treated cells compared to controls. The prognostic value of these markers was assessed at the messenger RNA level in cohort 1 and the protein level in an independent EOC cohort (cohort 2, n = 154). High expression levels of Chk1, Chk2, and MCM3 were associated with a significantly shorter survival in both cohorts, and phosphorylated Chk2 was an adverse prognostic marker in cohort 2. These results uncover a putative role for RBM3 in DNA damage response, which might, in part, explain its cisplatin-sensitizing properties and good prognostic value in EOC. Furthermore, it is demonstrated that Chk1, Chk2, and MCM3 are poor prognostic markers in EOC.
Collapse
|
80
|
Hobbs SS, Goettel JA, Liang D, Yan F, Edelblum KL, Frey MR, Mullane MT, Polk DB. TNF transactivation of EGFR stimulates cytoprotective COX-2 expression in gastrointestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2011; 301:G220-9. [PMID: 21566012 PMCID: PMC3154604 DOI: 10.1152/ajpgi.00383.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TNF and epidermal growth factor (EGF) are well-known stimuli of cyclooxygenase (COX)-2 expression, and TNF stimulates transactivation of EGF receptor (EGFR) signaling to promote survival in colon epithelial cells. We hypothesized that COX-2 induction and cell survival signaling downstream of TNF are mediated by EGFR transactivation. TNF treatment was more cytotoxic to COX-2(-/-) mouse colon epithelial (MCE) cells than wild-type (WT) young adult mouse colon (YAMC) epithelial cells or COX-1(-/-) cells. TNF also induced COX-2 protein and mRNA expression in YAMC cells, but blockade of EGFR kinase activity or expression inhibited COX-2 upregulation. TNF-induced COX-2 expression was reduced and absent in EGFR(-/-) and TNF receptor-1 (TNFR1) knockout MCE cells, respectively, but was restored upon expression of the WT receptors. Inhibition of mediators of EGFR transactivation, Src family kinases and p38 MAPK, blocked TNF-induced COX-2 protein and mRNA expression. Finally, TNF injection increased COX-2 expression in colon epithelium of WT, but not kinase-defective EGFR(wa2) and EGFR(wa5), mice. These data indicate that TNFR1-dependent transactivation of EGFR through a p38- and/or an Src-dependent mechanism stimulates COX-2 expression to promote cell survival. This highlights an EGFR-dependent cell signaling pathway and response that may be significant in colitis-associated carcinoma.
Collapse
Affiliation(s)
- Stuart S. Hobbs
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics,
| | - Jeremy A. Goettel
- 2Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Dongchun Liang
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics,
| | - Fang Yan
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics,
| | - Karen L. Edelblum
- 2Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Mark R. Frey
- 3Departments of Pediatrics and Biochemistry and Molecular Biology, The Saban Research Institute of Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| | - Matthew T. Mullane
- 1Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics,
| | - D. Brent Polk
- 3Departments of Pediatrics and Biochemistry and Molecular Biology, The Saban Research Institute of Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
81
|
Jonsson L, Bergman J, Nodin B, Manjer J, Pontén F, Uhlén M, Jirström K. Low RBM3 protein expression correlates with tumour progression and poor prognosis in malignant melanoma: an analysis of 215 cases from the Malmö Diet and Cancer Study. J Transl Med 2011; 9:114. [PMID: 21777469 PMCID: PMC3156749 DOI: 10.1186/1479-5876-9-114] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/21/2011] [Indexed: 12/01/2022] Open
Abstract
Background We have previously reported that expression of the RNA- and DNA-binding protein RBM3 is associated with a good prognosis in breast cancer and ovarian cancer. In this study, the prognostic value of immunohistochemical RBM3 expression was assessed in incident cases of malignant melanoma from a prospective population-based cohort study. Methods Until Dec 31st 2008, 264 incident cases of primary invasive melanoma had been registered in the Malmö Diet and Cancer Study. Histopathological and clinical information was obtained for available cases and tissue microarrays (TMAs) constructed from 226 (85.6%) suitable paraffin-embedded tumours and 31 metastases. RBM3 expression was analysed by immunohistochemistry on the TMAs and a subset of full-face sections. Chi-square and Mann-Whitney U tests were used for comparison of RBM3 expression and relevant clinicopathological characteristics. Kaplan Meier analysis and Cox proportional hazards modelling were used to assess the relationship between RBM3 and recurrence free survival (RFS) and overall survival (OS). Results RBM3 could be assessed in 215/226 (95.1%) of primary tumours and all metastases. Longitudinal analysis revealed that 16/31 (51.6%) of metastases lacked RBM3 expression, in contrast to the primary tumours in which RBM3 was absent in 3/215 (1.4%) cases and strongly expressed in 120/215 (55.8%) cases. Strong nuclear RBM3 expression in the primary tumour was significantly associated with favourable clinicopathological parameters; i.e. non-ulcerated tumours, lower depth of invasion, lower Clark level, less advanced clinical stage, low mitotic activity and non-nodular histological type, and a prolonged RFS (RR = 0.50; 95% CI = 0.27-0.91) and OS (RR = 0.36, 95%CI = 0.20-0.64). Multivariate analysis demonstrated that the beneficial prognostic value of RBM3 remained significant for OS (RR = 0.33; 95%CI = 0.18-0.61). Conclusions In line with previous in vitro data, we here show that RBM3 is down-regulated in metastatic melanoma and high nuclear RBM3 expression in the primary tumour is an independent marker of a prolonged OS. The potential utility of RBM3 in treatment stratification of patients with melanoma should be pursued in future studies.
Collapse
Affiliation(s)
- Liv Jonsson
- Department of Clinical Sciences, Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
82
|
Matsuda A, Ogawa M, Yanai H, Naka D, Goto A, Ao T, Tanno Y, Takeda K, Watanabe Y, Honda K, Taniguchi T. Generation of mice deficient in RNA-binding motif protein 3 (RBM3) and characterization of its role in innate immune responses and cell growth. Biochem Biophys Res Commun 2011; 411:7-13. [PMID: 21684257 DOI: 10.1016/j.bbrc.2011.06.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 12/28/2022]
Abstract
The activation of innate immune responses is critical to host defense against microbial infections, wherein nucleic acid-sensing pattern recognition receptors recognize DNA or RNA from viruses or bacteria and activate downstream signaling pathways. In a search for new DNA-sensing molecules that regulate innate immune responses, we identified RNA-binding motif protein 3 (RBM3), whose role has been implicated in the regulation of cell growth. In this study, we generated Rbm3-deficient (Rbm3(-/-)) mice to study the role of RBM3 in immune responses and cell growth. Despite evidence for its interaction with immunogenic DNA in a cell, no overt phenotypic abnormalities were found in cells from Rbm3(-/-) mice for the DNA-mediated induction of cytokine genes. Interestingly, however, Rbm3(-/-) mouse embryonic fibroblasts (MEFs) showed poorer proliferation rates as compared to control MEFs. Further cell cycle analysis revealed that Rbm3(-/-) MEFs have markedly increased number of G2-phase cells, suggesting a hitherto unknown role of RBM3 in the G2-phase control. Thus, these mutant mice and cells may provide new tools with which to study the mechanisms underlying the regulation of cell cycle and oncogenesis.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Ferry AL, Vanderklish PW, Dupont-Versteegden EE. Enhanced survival of skeletal muscle myoblasts in response to overexpression of cold shock protein RBM3. Am J Physiol Cell Physiol 2011; 301:C392-402. [PMID: 21593448 DOI: 10.1152/ajpcell.00098.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cold-inducible RNA-binding protein (RBM3) is suggested to be involved in the regulation of skeletal muscle mass. Cell death pathways are implicated in the loss of muscle mass and therefore the role of RBM3 in muscle apoptosis in C(2)C(12) myoblasts was investigated in this study. RBM3 overexpression was induced by either cold shock (32°C exposure for 6 h) or transient transfection with a myc-tagged RBM3 expression vector. Cell death was induced by H(2)O(2) (1,000 μM) or staurosporine (StSp, 5 μM), and it was shown that cold shock and RBM3 transfection were associated with attenuation of morphological changes and an increase in cell viability compared with normal temperature or empty vector, respectively. No changes in proliferation were observed with either cold shock or RBM3 transfection. DNA fragmentation was not increased in response to H(2)O(2), and a cell permeability assay indicated that cell death in response to H(2)O(2) is more similar to necrosis than apoptosis. RBM3 overexpression reduced apoptosis and the collapse of the membrane potential in response to StSp. Moreover, the increase in caspase-3, -8, and -9 activities in response to StSp was returned to control levels with RBM3 overexpression. These results indicate that increased RBM3 expression decreases muscle cell necrosis as well as apoptosis and therefore RBM3 could potentially serve as an intervention for the loss of muscle cell viability during muscle atrophy and muscle diseases.
Collapse
Affiliation(s)
- Amy L Ferry
- Department of Rehabilitation Sciences, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | |
Collapse
|
84
|
Chip S, Zelmer A, Ogunshola OO, Felderhoff-Mueser U, Nitsch C, Bührer C, Wellmann S. The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection. Neurobiol Dis 2011; 43:388-96. [PMID: 21527344 DOI: 10.1016/j.nbd.2011.04.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 02/07/2023] Open
Abstract
Induced hypothermia is the only therapy with proven efficacy to reduce brain damage after perinatal asphyxia. While hypothermia down-regulates global protein synthesis and cell metabolism, low temperature induces a small subset of proteins that includes the RNA-binding protein RBM3 (RNA-binding motif protein 3), which has recently been implicated in cell survival. Here, immunohistochemistry of the developing postnatal murine brain revealed a spatio-temporal neuronal RBM3 expression pattern very similar to that of doublecortin, a marker of neuronal precursor cells. Mild hypothermia (32°C) profoundly promoted RBM3 expression and rescued neuronal cells from forced apoptosis as studied in primary neurons, PC12 cells, and cortical organotypic slice cultures. Blocking RBM3 expression in neuronal cells by specific siRNAs significantly diminished the neuroprotective effect of hypothermia while vector-driven RBM3 over-expression reduced cleavage of PARP, prevented internucleosomal DNA fragmentation, and LDH release also in the absence of hypothermia. Together, neuronal RBM3 up-regulation in response to hypothermia apparently accounts for a substantial proportion of hypothermia-induced neuroprotection.
Collapse
Affiliation(s)
- Sophorn Chip
- Children's University Hospital Basel, Spitalstrasse 33, 4031 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
85
|
Kim H, Watkinson J, Anastassiou D. Biomarker discovery using statistically significant gene sets. J Comput Biol 2011; 18:1329-38. [PMID: 21457009 DOI: 10.1089/cmb.2010.0085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of large gene expression data sets in the presence and absence of a phenotype can lead to the selection of a group of genes serving as biomarkers jointly predicting the phenotype. Among gene selection methods, filter methods derived from ranked individual genes have been widely used in existing products for diagnosis and prognosis. Univariate filter approaches selecting genes individually, although computationally efficient, often ignore gene interactions inherent in the biological data. On the other hand, multivariate approaches selecting gene subsets are known to have a higher risk of selecting spurious gene subsets due to the overfitting of the vast number of gene subsets evaluated. Here we propose a framework of statistical significance tests for multivariate feature selection that can reduce the risk of selecting spurious gene subsets. Using three existing data sets, we show that our proposed approach is an essential step to identify such a gene set that is generated by a significant interaction of its members, even improving classification performance when compared to established approaches. This technique can be applied for the discovery of robust biomarkers for medical diagnosis.
Collapse
Affiliation(s)
- Hoon Kim
- Center for Computational Biology and Bioinformatics, Department of Electrical Engineering, Columbia University, New York,New York 10027, USA
| | | | | |
Collapse
|
86
|
Frey MR, Hilliard VC, Mullane MT, Polk DB. ErbB4 promotes cyclooxygenase-2 expression and cell survival in colon epithelial cells. J Transl Med 2010; 90:1415-24. [PMID: 20585313 PMCID: PMC2947587 DOI: 10.1038/labinvest.2010.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ErbB4 receptor tyrosine kinase is expressed at high levels in human and mouse colitis, and inhibits colon epithelial cell apoptosis in the presence of proinflammatory cytokines. In this study, we investigated the molecular mechanisms responsible for ErbB4-induced cell survival. In cultured mouse colon epithelial cells, ErbB4 overexpression resulted in increased levels of cyclooxygenase-2 (COX-2) mRNA and protein; in contrast, ErbB4 knockdown with siRNA blocked COX-2 accumulation in response to tumor necrosis factor. Although ErbB4 is expressed as up to four isoforms in epithelial tissues, its ability to promote COX-2 expression was isoform independent. ErbB4-stimulated COX-2 induction was associated with an increase in mRNA half-life and was blocked by inhibition of Src, phosphatidylinositol (PI) 3-kinase, or epidermal growth factor receptor (EGFR). Furthermore, ErbB4 expression promoted EGFR phosphorylation in the presence of heregulin, implicating ErbB4-EGFR heterodimerization in these responses. As to the cellular responses to ErbB4 activation, increased survival of ErbB4-expressing cells in the presence of proinflammatory cytokines was sensitive to the COX-2 inhibitor celecoxib. Furthermore, ErbB4-overexpressing cells acquired the ability to form colonies in soft agar, indicative of cellular transformation, also in a celecoxib-sensitive manner. Together our data indicate that ErbB4 is a key regulator of COX-2 expression and cellular survival in colon epithelial cells, acting in concert with EGFR through a Src- and PI 3-kinase-dependent mechanism. These results suggest that chronic overexpression of ErbB4 in the context of inflammation could contribute to colitis-associated tumorigenesis by inhibiting colonocyte apoptosis.
Collapse
Affiliation(s)
- Mark Ronald Frey
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Valda Catherine Hilliard
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew Travis Mullane
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - D. Brent Polk
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Vanderbilt University School of Medicine, Nashville, TN 37232, Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
87
|
Colitti M. Expression of putative stem cell markers related to developmental stage of sheep mammary glands. Anat Histol Embryol 2010; 39:555-62. [PMID: 20809917 DOI: 10.1111/j.1439-0264.2010.01028.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is thought that the regenerative capacity of the mammary gland following post-lactation involution resides in multipotent stem cells within the luminal tissue. Adult stem cells make up a small percentage of the cells found in mature organ systems, however to define useful markers has long been a challenge. c-Kit (KIT) and its ligand stem cell factor (KITLG), ATP-binding cassette sub-family G member 2 (ABCG2) and Musashi 1 (MSI1) are good candidate to identify progenitor cells in their niche. Using real-time PCR we showed that KIT, KITLG and MSI1 expressions were up regulated before lambing and at involution relatively to prepubertal stage. The in situ hybridization analysis for KIT gene confirmed and localized the expression in luminal epithelial cells. The changes in the expression profile of putative stem cell markers in mammary glands of sheep suggest that they modify with the progression of lactation cycle, being up regulated during differentiation and down regulated during lactation.
Collapse
Affiliation(s)
- M Colitti
- Department of Scienze Animali, Faculty of Veterinary Medicine, University of Udine, via delle Scienze, 208, 33100 Udine, Italy.
| |
Collapse
|
88
|
Ehlén A, Brennan DJ, Nodin B, O'Connor DP, Eberhard J, Alvarado-Kristensson M, Jeffrey IB, Manjer J, Brändstedt J, Uhlén M, Pontén F, Jirström K. Expression of the RNA-binding protein RBM3 is associated with a favourable prognosis and cisplatin sensitivity in epithelial ovarian cancer. J Transl Med 2010; 8:78. [PMID: 20727170 PMCID: PMC2936876 DOI: 10.1186/1479-5876-8-78] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022] Open
Abstract
Background We recently demonstrated that increased expression of the RNA-binding protein RBM3 is associated with a favourable prognosis in breast cancer. The aim of this study was to examine the prognostic value of RBM3 mRNA and protein expression in epithelial ovarian cancer (EOC) and the cisplatin response upon RBM3 depletion in a cisplatin-sensitive ovarian cancer cell line. Methods RBM3 mRNA expression was analysed in tumors from a cohort of 267 EOC cases (Cohort I) and RBM3 protein expression was analysed using immunohistochemistry (IHC) in an independent cohort of 154 prospectively collected EOC cases (Cohort II). Kaplan Meier analysis and Cox proportional hazards modelling were applied to assess the relationship between RBM3 and recurrence free survival (RFS) and overall survival (OS). Immunoblotting and IHC were used to examine the expression of RBM3 in a cisplatin-resistant ovarian cancer cell line A2780-Cp70 and its cisplatin-responsive parental cell line A2780. The impact of RBM3 on cisplatin response in EOC was assessed using siRNA-mediated silencing of RBM3 in A2780 cells followed by cell viability assay and cell cycle analysis. Results Increased RBM3 mRNA expression was associated with a prolonged RFS (HR = 0.64, 95% CI = 0.47-0.86, p = 0.003) and OS (HR = 0.64, 95% CI = 0.44-0.95, p = 0.024) in Cohort I. Multivariate analysis confirmed that RBM3 mRNA expression was an independent predictor of a prolonged RFS, (HR = 0.61, 95% CI = 0.44-0.84, p = 0.003) and OS (HR = 0.62, 95% CI = 0.41-0.95; p = 0.028) in Cohort I. In Cohort II, RBM3 protein expression was associated with a prolonged OS (HR = 0.53, 95% CI = 0.35-0.79, p = 0.002) confirmed by multivariate analysis (HR = 0.61, 95% CI = 0.40-0.92, p = 0.017). RBM3 mRNA and protein expression levels were significantly higher in the cisplatin sensitive A2780 cell line compared to the cisplatin resistant A2780-Cp70 derivative. siRNA-mediated silencing of RBM3 expression in the A2780 cells resulted in a decreased sensitivity to cisplatin as demonstrated by increased cell viability and reduced proportion of cells arrested in the G2/M-phase. Conclusions These data demonstrate that RBM3 expression is associated with cisplatin sensitivity in vitro and with a good prognosis in EOC. Taken together these findings suggest that RBM3 may be a useful prognostic and treatment predictive marker in EOC.
Collapse
Affiliation(s)
- Asa Ehlén
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Sunley K, Butler M. Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnol Adv 2010; 28:385-94. [DOI: 10.1016/j.biotechadv.2010.02.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 12/31/2022]
|
90
|
Anant S, Houchen CW, Pawar V, Ramalingam S. Role of RNA-Binding Proteins in Colorectal Carcinogenesis. CURRENT COLORECTAL CANCER REPORTS 2010; 6:68-73. [PMID: 20401169 DOI: 10.1007/s11888-010-0048-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
RNA-binding proteins (RBPs) play key roles in the posttranscriptional regulation of gene expression. RBPs control various posttranscriptional events, including splicing, polyadenylation, mRNA stability, transport, and translation. It is becoming apparent that RBPs play a significant role in pathophysiologic conditions such as inflammation and cancer. More importantly, we and others have begun dissecting the role of mRNA stability and translation in regulating gene expression, dysregulation of which has serious consequences for the fate of the cell. In this article, we discuss this emerging area of posttranscriptional gene regulation and the role of RBPs in the aberrant expression of proteins in tumorigenesis.
Collapse
Affiliation(s)
- Shrikant Anant
- Section of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 920 Stanton L. Young Boulevard WP1345, Oklahoma City, OK 73104, USA; Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
91
|
Posttranscriptional Regulation of Cyclooxygenase 2 Expression in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2010; 6:60-67. [PMID: 20577575 DOI: 10.1007/s11888-010-0044-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclooxygenase (COX)-2 enzyme catalyzes the rate-limiting step of prostaglandin formation in pathogenic states, and overexpression of COX-2 occurs at multiple stages of colon carcinogenesis, allowing elevated prostaglandin synthesis to occur in the tumor microenvironment. In normal cells, COX-2 expression levels are potently regulated at the posttranscriptional level through various RNA sequence elements present within the mRNA 3' untranslated region (3'UTR). A conserved AU-rich element functions to target COX-2 mRNA for rapid decay and translational inhibition through association with various RNA-binding proteins to influence the fate of COX-2 mRNA. The 3'UTR contains alternative polyadenylation signals that result in a shortened 3'UTR and loss of regulatory elements. Specific microRNAs have been identified to bind regions within the COX-2 3'UTR and control COX-2 expression. Recent evidence demonstrates the functional significance of the COX-2 3'UTR and how improper recognition of the 3'UTR can contribute to COX-2 overexpression in colorectal cancer.
Collapse
|
92
|
Guo X, Wu Y, Hartley RS. Cold-inducible RNA-binding protein contributes to human antigen R and cyclin E1 deregulation in breast cancer. Mol Carcinog 2010; 49:130-40. [PMID: 19777567 DOI: 10.1002/mc.20582] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cell cycle regulator cyclin E1 is aberrantly expressed in a variety of human cancers. In breast cancer, elevated cyclin E1 correlates with poor outcome, as do high cytoplasmic levels of the stress-induced RNA-binding protein human antigen R (HuR). We showed previously that increased cytoplasmic HuR elevates cyclin E1 in MCF-7 breast cancer cells by stabilizing its mRNA. We show here that cold-inducible RNA-binding protein (CIRP) co-regulates cyclin E1 with HuR in breast cancer cells. CIRP had been shown to interact with HuR in Xenopus laevis oocytes and to be decreased in endometrial cancer. To investigate if human CIRP and HuR co-regulate cyclin E1, HuR and CIRP levels were altered in MCF-7 cells and effects on cyclin E1 assessed. Altering HuR expression resulted in a reciprocal change in CIRP expression, while altering CIRP expression resulted in corresponding changes in HuR and cyclin E1 expression. CIRP and HuR co-precipitated in the presence of RNA and CIRP enhanced HuR binding to the cyclin E1 mRNA and increased cyclin E1 mRNA stability. CIRP co-localized with HuR predominantly in the nucleus, but also in discrete cytoplasmic foci identified as stress granules (SGs). CIRP overexpression increased the number of HuR-containing SGs, while its knockdown decreased them. Our results suggest that CIRP positively regulates HuR, ultimately resulting in increased protein synthesis of at least one of its targets.
Collapse
Affiliation(s)
- Xun Guo
- Department of Cell Biology and Physiology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA
| | | | | |
Collapse
|
93
|
Wellmann S, Truss M, Bruder E, Tornillo L, Zelmer A, Seeger K, Bührer C. The RNA-binding protein RBM3 is required for cell proliferation and protects against serum deprivation-induced cell death. Pediatr Res 2010; 67:35-41. [PMID: 19770690 DOI: 10.1203/pdr.0b013e3181c13326] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hypoxia and other adverse conditions are commonly encountered by rapidly growing cells. The RNA-binding protein RBM3 (RNA-binding motif protein 3), which is transcriptionally induced by low temperature and hypoxia, has recently been implicated in survival of colon cancer cells by mechanisms involving cyclooxygenase-2 (COX-2) signaling. Immunohistochemically, we found strong RBM3 expression in a variety of malignant and proliferating tissues but low expression in resting and terminally differentiated cells. RBM3 expression in fibroblasts and human embryonal kidney (HEK293) cells subjected to serum deprivation or contact inhibition closely paralleled proliferation rates, assessed by real-time RT-PCR and immunoblotting. siRNA-mediated RBM3 knockdown reduced cell viability and finally led to cell death, which did not involve caspase-3-mediated apoptosis, cell cycle arrest, or COX-2 regulation. In contrast, RBM3 over-expression rescued cells from death under serum starvation. This was associated with increased translation rates, as measured by C serine and H phenylalanine incorporation. Together, RBM3 is a critical factor providing cellular survival advantages in an adverse microenvironment presumably by restoring translation efficacy.
Collapse
Affiliation(s)
- Sven Wellmann
- Clinic of Neonatology, University Hospital Zürich, CH-8091 Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
94
|
Meisner NC, Filipowicz W. Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 700:106-23. [PMID: 21627034 DOI: 10.1007/978-1-4419-7823-3_10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene expression in eukaryotes is subject to extensive regulation at posttranscriptional levels. One of the most important sites of control involves mRNA 3' untranslated regions (3'UTRs), which are recognized by RNA-binding proteins (RBPs) and microRNAs (miRNAs). These factors greatly influence translational efficiency and stability of target mRNAs and often also determine their cellular localization. HuR, a ubiquitously expressed member of the ELAV family of RBPs, has been implicated in regulation of stability and translation of over one hundred mRNAs in mammalian cells. Recent data indicate that some of the effects of HuR can be explained by its interplay with miRNAs. Binding of HuR may suppress the inhibitory effect of miRNAs interacting with the 3'UTR and redirect the repressed mRNA to polysomes for active translation. However, HuR can also synergize with miRNAs. The finding that HuR is able to disengage miRNAs from the repressed mRNA, or render them inactive, provides evidence that miRNA regulation is much more dynamic then originally anticipated. In this chapter we review properties of HuR and describe examples of the cross-talk between the protein and miRNAs, with emphasis on response of the regulation to cellular stress.
Collapse
|
95
|
Jögi A, Brennan DJ, Rydén L, Magnusson K, Fernö M, Stål O, Borgquist S, Uhlen M, Landberg G, Påhlman S, Pontén F, Jirström K. Nuclear expression of the RNA-binding protein RBM3 is associated with an improved clinical outcome in breast cancer. Mod Pathol 2009; 22:1564-74. [PMID: 19734850 DOI: 10.1038/modpathol.2009.124] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-strand RNA-binding proteins (RBPs) are involved in many aspects of RNA metabolism and in the regulation of gene transcription. The RBP RBM3 was recently suggested to be a proto-oncogene in colorectal cancer; however, such a role has not been corroborated by previous studies in the colon or other tumor types, and the prognostic implications of tumor-specific RBM3 expression remain unclear. Mono-specific antibodies against RBM3 were generated. Antibody specificity was confirmed using siRNA gene silencing, western blotting and immunohistochemistry on a panel of breast cancer cell lines. Using tissue microarrays and IHC, RBM3 protein expression was examined in 48 normal tissues and in 20 common cancers. Additional analysis in two independent breast cancer cohorts (n=1016) with long-term follow-up was also carried out. RBM3 was upregulated in cancer compared to normal tissues. The nuclear expression of RBM3 in breast cancer was associated with low grade (P<0.001), small tumors (P<0.001), estrogen receptor (ER) positivity (P<0.001) and Ki-67 negativity (P<0.001) in both the breast cancer cohorts. An increased nuclear expression of RBM3 was associated with a prolonged overall and recurrence-free survival. The prognostic value was particularly pronounced in hormone receptor-positive tumors and remained significant in multivariate interaction analysis after controlling for tamoxifen treatment (HR: 0.49, 95% CI: 0.30-0.79, P=0.004). These data strongly indicate that nuclear RBM3 is an independent favorable prognostic factor in breast cancer, and seems to have a specific role in ER-positive tumors.
Collapse
Affiliation(s)
- Annika Jögi
- Department of Laboratory Medicine, Center for Molecular Pathology, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Huttlin EL, Chen X, Barrett-Wilt GA, Hegeman AD, Halberg RB, Harms AC, Newton MA, Dove WF, Sussman MR. Discovery and validation of colonic tumor-associated proteins via metabolic labeling and stable isotopic dilution. Proc Natl Acad Sci U S A 2009; 106:17235-40. [PMID: 19805096 PMCID: PMC2761368 DOI: 10.1073/pnas.0909282106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Indexed: 12/12/2022] Open
Abstract
The unique biology of a neoplasm is reflected by its distinct molecular profile compared with normal tissue. To understand tumor development better, we have undertaken a quantitative proteomic search for abnormally expressed proteins in colonic tumors from Apc(Min/+) (Min) mice. By raising pairs of Min and wild-type mice on diets derived from natural-abundance or (15)N-labeled algae, we used metabolic labeling to compare protein levels in colonic tumor versus normal tissue. Because metabolic labeling allows internal control throughout sample preparation and analysis, technical error is minimized as compared with in vitro labeling. Several proteins displayed altered expression, and a subset was validated via stable isotopic dilution using synthetic peptide standards. We also compared gene and protein expression among tumor and nontumor tissue, revealing limited correlation. This divergence was especially pronounced for species showing biological change, highlighting the complementary perspectives provided by transcriptomics and proteomics. Our work demonstrates the power of metabolic labeling combined with stable isotopic dilution as an integrated strategy for the identification and validation of differentially expressed proteins using rodent models of human disease.
Collapse
Affiliation(s)
| | - Xiaodi Chen
- McArdle Laboratory for Cancer Research, Department of Oncology
| | | | - Adrian D. Hegeman
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108
| | | | | | | | - William F. Dove
- McArdle Laboratory for Cancer Research, Department of Oncology
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706; and
| | | |
Collapse
|
97
|
Galante PAF, Sandhu D, de Sousa Abreu R, Gradassi M, Slager N, Vogel C, de Souza SJ, Penalva LOF. A comprehensive in silico expression analysis of RNA binding proteins in normal and tumor tissue: Identification of potential players in tumor formation. RNA Biol 2009; 6:426-33. [PMID: 19458496 DOI: 10.4161/rna.6.4.8841] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA binding proteins (RBPs) are involved in several post-transcriptional stages of gene expression and dictate the quality and quantity of the cellular proteome. When aberrantly expressed, they can lead to disease states as well as cancers. A basic requirement to understand their role in normal tissue development and cancer is the build of comprehensive gene expression maps. In this direction, we generated a list with 383 human RBPs based on the NCBI and EMSEMBL databases. SAGE and MPSS were then used to verify their levels of expression in normal tissues while SAGE and microarray datasets were used to perform comparisons between normal and tumor tissues. As main outcomes of our studies, we identified clusters of co-expressed or co-regulated genes that could act together in the development and maintenance of specific tissues; we also obtained a high confidence list of RBPs aberrantly expressed in several tumor types. This later list contains potential candidates to be explored as diagnostic and prognostic markers as well as putative targets for cancer therapy approaches.
Collapse
Affiliation(s)
- Pedro A F Galante
- Ludwig Institute for Cancer Research-São Paulo Branch, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M. A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Mol Biol Rep 2009; 37:839-45. [PMID: 19672695 DOI: 10.1007/s11033-009-9636-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/21/2009] [Indexed: 12/29/2022]
Abstract
Plants are highly adapted to respond to a range of environmental stresses commonly by altering their gene expression and metabolism as a result of cell signalling which may be mediated by reactive oxygen species. The glycine-rich RNA-binding proteins ATGRP7 and ATGRP8 were rapidly upregulated in response to peroxide-induced oxidative stress and were amongst the most abundant RNA binding proteins isolated by oligo(dT) chromatography. The oligo(dT)-bound mRNP complexes were analysed proteomically, and were seen to contain potential isoforms of the ATGRP proteins; other proteins that contain an RNA Recognition Motif (RRM); and chloroplast RNA binding proteins. These findings suggest that ATGRP proteins have an evolutionarily conserved function in the regulation of gene expression at the posttranscriptional level in response to environmental stress.
Collapse
Affiliation(s)
- Fabian Schmidt
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | | | | | | | | | | | | |
Collapse
|
99
|
Sureban SM, May R, Ramalingam S, Subramaniam D, Natarajan G, Anant S, Houchen CW. Selective blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a MicroRNA-dependent mechanism. Gastroenterology 2009; 137:649-59, 659.e1-2. [PMID: 19445940 PMCID: PMC2775069 DOI: 10.1053/j.gastro.2009.05.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/30/2009] [Accepted: 05/06/2009] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression. The tumor suppressor miRNA let-7a has been reported to be inhibited posttranscriptionally in embryonic stem cells and in human cancers. Microtubule-associated kinase DCAMKL-1 is a putative intestinal stem cell marker that is expressed in Apc(Min/+) adenomas. We investigated the role of DCAMKL-1 on expression of let-7a miRNA and the oncogene c-Myc and in tumorigenesis. METHODS Human tissue microassay slides were immunostained for DCAMKL-1. HCT116 and SW480 cells were transfected with DCAMKL-1 small interfering RNA (siRNA) (si-DCAMKL-1) and analyzed for DCAMKL-1, c-Myc (using immunoblot and real-time reverse-transcription polymerase chain reaction [RT-PCR]), and pri-let-7a miRNA (using real-time RT-PCR) levels. A liposomal preparation of si-DCAMKL-1 was administered into HCT116 xenografts in nude mice, and tumor volumes were measured. A luciferase reporter assay, with a plasmid containing a let-7a-binding site at the 3' untranslated region, was utilized to measure let-7a in cell lines. Cells were isolated from normal mouse intestine using DCAMKL-1 and fluorescence-activated cell sorting (FACS) and subjected to pri-let-7a miRNA analysis. RESULTS Expression of DCAMKL-1 was increased in human colorectal cancers. siRNA-mediated blockade of DCAMKL-1 resulted in H tumor xenograft growth arrest, increased pri-let-7a miRNA, a corresponding decrease in luciferase activity, and decreased expression of the oncogene c-Myc. DCAMKL-1(+) cells isolated by FACS demonstrated a significant decrease in pri-let-7a miRNA, compared with more differentiated cells. CONCLUSIONS DCAMKL-1 is a negative regulator of let-7a miRNA biogenesis in intestinal stem and colorectal cancer cells; it could represent a novel target for anti-cancer stem cell-based strategies.
Collapse
Affiliation(s)
- Sripathi M. Sureban
- Department of Medicine, University of Oklahoma HealthSciences Center, Oklahoma City, Oklahoma 73104.,Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma 73104
| | - Randal May
- Department of Medicine, University of Oklahoma HealthSciences Center, Oklahoma City, Oklahoma 73104.,Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma 73104
| | - Satish Ramalingam
- Department of Medicine, University of Oklahoma HealthSciences Center, Oklahoma City, Oklahoma 73104
| | - Dharmalingam Subramaniam
- Department of Medicine, University of Oklahoma HealthSciences Center, Oklahoma City, Oklahoma 73104
| | - Gopalan Natarajan
- Department of Medicine, University of Oklahoma HealthSciences Center, Oklahoma City, Oklahoma 73104
| | - Shrikant Anant
- Department of Medicine, University of Oklahoma HealthSciences Center, Oklahoma City, Oklahoma 73104.,Department Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.,OU Cancer Institute, Oklahoma City, Oklahoma 73104
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma HealthSciences Center, Oklahoma City, Oklahoma 73104.,OU Cancer Institute, Oklahoma City, Oklahoma 73104.,Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
100
|
Sureban SM, May R, Ramalingam S, Subramaniam D, Natarajan G, Anant S, Houchen CW. Selective blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a MicroRNA-dependent mechanism. Gastroenterology 2009. [PMID: 19445940 DOI: 10.1053/j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression. The tumor suppressor miRNA let-7a has been reported to be inhibited posttranscriptionally in embryonic stem cells and in human cancers. Microtubule-associated kinase DCAMKL-1 is a putative intestinal stem cell marker that is expressed in Apc(Min/+) adenomas. We investigated the role of DCAMKL-1 on expression of let-7a miRNA and the oncogene c-Myc and in tumorigenesis. METHODS Human tissue microassay slides were immunostained for DCAMKL-1. HCT116 and SW480 cells were transfected with DCAMKL-1 small interfering RNA (siRNA) (si-DCAMKL-1) and analyzed for DCAMKL-1, c-Myc (using immunoblot and real-time reverse-transcription polymerase chain reaction [RT-PCR]), and pri-let-7a miRNA (using real-time RT-PCR) levels. A liposomal preparation of si-DCAMKL-1 was administered into HCT116 xenografts in nude mice, and tumor volumes were measured. A luciferase reporter assay, with a plasmid containing a let-7a-binding site at the 3' untranslated region, was utilized to measure let-7a in cell lines. Cells were isolated from normal mouse intestine using DCAMKL-1 and fluorescence-activated cell sorting (FACS) and subjected to pri-let-7a miRNA analysis. RESULTS Expression of DCAMKL-1 was increased in human colorectal cancers. siRNA-mediated blockade of DCAMKL-1 resulted in H tumor xenograft growth arrest, increased pri-let-7a miRNA, a corresponding decrease in luciferase activity, and decreased expression of the oncogene c-Myc. DCAMKL-1(+) cells isolated by FACS demonstrated a significant decrease in pri-let-7a miRNA, compared with more differentiated cells. CONCLUSIONS DCAMKL-1 is a negative regulator of let-7a miRNA biogenesis in intestinal stem and colorectal cancer cells; it could represent a novel target for anti-cancer stem cell-based strategies.
Collapse
Affiliation(s)
- Sripathi M Sureban
- Department of Medicine, Digestive Diseases and Nutrition Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | | | |
Collapse
|