51
|
Aveic S, Corallo D, Porcù E, Pantile M, Boso D, Zanon C, Viola G, Sidarovich V, Mariotto E, Quattrone A, Basso G, Tonini GP. TP-0903 inhibits neuroblastoma cell growth and enhances the sensitivity to conventional chemotherapy. Eur J Pharmacol 2017; 818:435-448. [PMID: 29154838 DOI: 10.1016/j.ejphar.2017.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022]
Abstract
Neuroblastoma (NB) is an embryonal tumor with low cure rate for patients classified as high-risk. This class of NB tumors shows a very complex genomic background and requires aggressive treatment strategies. In this work we evaluated the efficacy of the novel multi-kinase inhibitor TP-0903 in impairing NB cells' growth, proliferation and motility. In vitro studies were performed using cell lines with different molecular background, and in vivo studies were done using the zebrafish experimental model. Our results confirmed a strong cytotoxicity of TP-0903 already at the sub-micro molar concentrations. The observed cytotoxicity of TP-0903 was irreversible and the resulting apoptosis was caspase dependent. In addition, TP-0903 impaired colony formation and neurosphere creation. Depending on the molecular background of the selected NB cell lines, TP-0903 influenced either their capacity to migrate, to complete their cell cycle or both. Likewise, TP-0903 reduced NB cells intravasation in vitro and in vivo. Importantly, TP-0903 showed remarkable pharmacological efficacy not only as a mono-treatment, but also in combination with conventional chemotherapy drugs (ATRA, cisplatin, and VP16) in different types of NB cells. In conclusion, the multi-kinase activity of TP-0903 allowed the impairment of several biological processes required for expansion of NB cells, making them more vulnerable to the conventional chemotherapeutics. Altogether, our results support the eligibility of TP-0903 for further (pre)clinical assessments in NB.
Collapse
Affiliation(s)
- Sanja Aveic
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy.
| | - Diana Corallo
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Elena Porcù
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | - Marcella Pantile
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Daniele Boso
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | - Carlo Zanon
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Giampietro Viola
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | | | - Elena Mariotto
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | | | - Giuseppe Basso
- University of Padua, Laboratory of Oncohematology, SDB Department, Padua, Italy
| | - Gian Paolo Tonini
- Pediatric Research Institute - Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| |
Collapse
|
52
|
Hochnadel I, Kossatz-Boehlert U, Jedicke N, Lenzen H, Manns MP, Yevsa T. Cancer vaccines and immunotherapeutic approaches in hepatobiliary and pancreatic cancers. Hum Vaccin Immunother 2017; 13:2931-2952. [PMID: 29112462 PMCID: PMC5718787 DOI: 10.1080/21645515.2017.1359362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.
Collapse
Affiliation(s)
- Inga Hochnadel
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Uta Kossatz-Boehlert
- b Institute for Neuroanatomy, Eberhard-Karls University Tuebingen , Tuebingen , Germany
| | - Nils Jedicke
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Henrike Lenzen
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Michael P Manns
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Tetyana Yevsa
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
53
|
Guo Z, Li Y, Zhang D, Ma J. Axl inhibition induces the antitumor immune response which can be further potentiated by PD-1 blockade in the mouse cancer models. Oncotarget 2017; 8:89761-89774. [PMID: 29163786 PMCID: PMC5685707 DOI: 10.18632/oncotarget.21125] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/08/2017] [Indexed: 12/02/2022] Open
Abstract
Immune checkpoint blockers (ICB) have emerged as a promising new class of antitumor agents which significantly change the treatment landscape in a range of tumors; however, cancer patients benefited from ICB-based immunotherapy remains limited, scoring the need to explore the combination treatments with synergistic mechanisms of action. Axl receptor tyrosine kinase critically involves in the carcinogenesis of multiple cancers due to its dual roles in both promoting cancer invasion and metastasis and suppressing myeloid cell activation and function. Here, we found that Axl inhibition by tyrosine kinase inhibitors induces antitumor efficacy critically depending on immune effector mechanisms in two highly clinical relevant murine tumor models. Mechanistic investigation defined that Axl inhibition reprograms the immunological microenvironment leading to the increased proliferation, activation and effector function of tumor-infiltrating CD4+ and CD8+ T cells possibly through preferential accumulation and activation of CD103+ cross-presenting dendritic cells. More importantly, we show that Axl inhibition induces an adaptive immune resistance evidenced by unregulated PD-L1 expression on tumor cells and combined Axl inhibition with PD-1 blockade mounts a potent synergistic antitumor efficacy leading to tumor eradication. Thus, Axl-directed therapy in Axl expressing tumors could hold a great potential to subvert the innate and/or adaptive resistance to and broaden the coverage of population benefited from ICB-based immunotherapy.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, ShenYang, China
| | - Yan Li
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, ShenYang, China
| | - Dandan Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, ShenYang, China
| | - Jiaying Ma
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, ShenYang, China
| |
Collapse
|
54
|
Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochem J 2017; 474:3269-3306. [PMID: 28931648 DOI: 10.1042/bcj20160782] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
The concept of epithelial-mesenchymal plasticity (EMP), which describes the dynamic flux within the spectrum of phenotypic states that invasive carcinoma cells may reside, is being increasingly recognised for its role in cancer progression and therapy resistance. The myriad of events that are able to induce EMP, as well as the more recently characterised control loops, results in dynamic transitions of cancerous epithelial cells to more mesenchymal-like phenotypes through an epithelial-mesenchymal transition (EMT), as well as the reverse transition from mesenchymal phenotypes to an epithelial one. The significance of EMP, in its ability to drive local invasion, generate cancer stem cells and facilitate metastasis by the dissemination of circulating tumour cells (CTCs), highlights its importance as a targetable programme to combat cancer morbidity and mortality. The focus of this review is to consolidate the existing knowledge on the strategies currently in development to combat cancer progression via inhibition of specific facets of EMP. The prevalence of relapse due to therapy resistance and metastatic propensity that EMP endows should be considered when designing therapy regimes, and such therapies should synergise with existing chemotherapeutics to benefit efficacy. To further improve upon EMP-targeted therapies, it is imperative to devise monitoring strategies to assess the impact of such treatments on EMP-related phenomenon such as CTC burden, chemosensitivity/-resistance and micrometastasis in patients.
Collapse
|
55
|
Abstract
A major challenge in anticancer treatment is the pre-existence or emergence of resistance to therapy. AXL and MER are two members of the TAM (TYRO3-AXL-MER) family of receptor tyrosine kinases, which, when activated, can regulate tumor cell survival, proliferation, migration and invasion, angiogenesis, and tumor-host interactions. An increasing body of evidence strongly suggests that these receptors play major roles in resistance to targeted therapies and conventional cytotoxic agents. Multiple resistance mechanisms exist, including the direct and indirect crosstalk of AXL and MER with other receptors and the activation of feedback loops regulating AXL and MER expression and activity. These mechanisms may be innate, adaptive, or acquired. A principal role of AXL appears to be in sustaining a mesenchymal phenotype, itself a major mechanism of resistance to diverse anticancer therapies. Both AXL and MER play a role in the repression of the innate immune response which may also limit response to treatment. Small molecule and antibody inhibitors of AXL and MER have recently been described, and some of these have already entered clinical trials. The optimal design of treatment strategies to maximize the clinical benefit of these AXL and MER targeting agents are discussed in relation to the different cancer types and the types of resistance encountered. One of the major challenges to successful development of these therapies will be the application of robust predictive biomarkers for clear-cut patient stratification.
Collapse
|
56
|
Akalu YT, Rothlin CV, Ghosh S. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy. Immunol Rev 2017; 276:165-177. [PMID: 28258690 DOI: 10.1111/imr.12522] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Sourav Ghosh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
57
|
Leconet W, Chentouf M, du Manoir S, Chevalier C, Sirvent A, Aït-Arsa I, Busson M, Jarlier M, Radosevic-Robin N, Theillet C, Chalbos D, Pasquet JM, Pèlegrin A, Larbouret C, Robert B. Therapeutic Activity of Anti-AXL Antibody against Triple-Negative Breast Cancer Patient-Derived Xenografts and Metastasis. Clin Cancer Res 2016; 23:2806-2816. [DOI: 10.1158/1078-0432.ccr-16-1316] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/11/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
|
58
|
Targeting the TAM Receptors in Leukemia. Cancers (Basel) 2016; 8:cancers8110101. [PMID: 27834816 PMCID: PMC5126761 DOI: 10.3390/cancers8110101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.
Collapse
|
59
|
Antony J, Tan TZ, Kelly Z, Low J, Choolani M, Recchi C, Gabra H, Thiery JP, Huang RYJ. The GAS6-AXL signaling network is a mesenchymal (Mes) molecular subtype-specific therapeutic target for ovarian cancer. Sci Signal 2016; 9:ra97. [PMID: 27703030 DOI: 10.1126/scisignal.aaf8175] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is a complex disease with heterogeneity among the gene expression molecular subtypes (GEMS) between patients. Patients with tumors of a mesenchymal ("Mes") subtype have a poorer prognosis than patients with tumors of an epithelial ("Epi") subtype. We evaluated GEMS of ovarian cancer patients for molecular signaling profiles and assessed how the differences in these profiles could be leveraged to improve patient clinical outcome. Kinome enrichment analysis identified AXL as a particularly abundant kinase in Mes-subtype tumor tissue and cell lines. In Mes cells, upon activation by its ligand GAS6, AXL coclustered with and transactivated the receptor tyrosine kinases (RTKs) cMET, EGFR, and HER2, producing sustained extracellular signal-regulated kinase (ERK) activation. In Epi-A cells, AXL was less abundant and induced a transient activation of ERK without evidence of RTK transactivation. AXL-RTK crosstalk also stimulated sustained activation of the transcription factor FRA1, which correlated with the induction of the epithelial-mesenchymal transition (EMT)-associated transcription factor SLUG and stimulation of motility exclusively in Mes-subtype cells. The AXL inhibitor R428 attenuated RTK and ERK activation and reduced cell motility in Mes cells in culture and reduced tumor growth in a chick chorioallantoic membrane model. A higher concentration of R428 was needed to inhibit ERK activation and cell motility in Epi-A cells. Silencing AXL in Mes-subtype cells reversed the mesenchymal phenotype in culture and abolished tumor formation in an orthotopic xenograft mouse model. Thus, AXL-targeted therapy may improve clinical outcome for patients with Mes-subtype ovarian cancer.
Collapse
Affiliation(s)
- Jane Antony
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore. Department of Surgery and Cancer, Imperial College London, London W120NN, U.K
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Zoe Kelly
- Department of Surgery and Cancer, Imperial College London, London W120NN, U.K
| | - Jeffrey Low
- Department of Obstetrics and Gynecology, National University Health System, Singapore 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, National University Health System, Singapore 119228, Singapore
| | - Chiara Recchi
- Department of Surgery and Cancer, Imperial College London, London W120NN, U.K
| | - Hani Gabra
- Department of Surgery and Cancer, Imperial College London, London W120NN, U.K
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore. Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore. Department of Obstetrics and Gynecology, National University Health System, Singapore 119228, Singapore. Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
60
|
Moody G, Belmontes B, Masterman S, Wang W, King C, Murawsky C, Tsuruda T, Liu S, Radinsky R, Beltran PJ. Antibody-mediated neutralization of autocrine Gas6 inhibits the growth of pancreatic ductal adenocarcinoma tumors in vivo. Int J Cancer 2016; 139:1340-9. [PMID: 27170265 DOI: 10.1002/ijc.30180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/06/2016] [Accepted: 04/15/2016] [Indexed: 02/02/2023]
Abstract
Gas6 and its receptors Axl, Mer and Tyro-3 (TAM) are highly expressed in human malignancy suggesting that signaling through this axis may be tumor-promoting. In pancreatic ductal adenocarcinoma (PDAC), Gas6 and the TAM receptor Axl are frequently co-expressed and their co-expression correlates with poor survival. A strategy was devised to generate fully human neutralizing antibodies against Gas6 using XenoMouse® technology. Hybridoma supernatants were selected based on their ability to inhibit Gas6 binding to the receptor Axl and block Gas6-induced Axl phosphorylation in human cells. Two purified antibodies isolated from the screened hybridomas, GMAB1 and GMAB2, displayed optimal cellular potency which was comparable to that of the soluble extracellular domain of the receptor Axl (Axl-Fc). In vivo characterization of GMAB1 was conducted using a pharmacodynamic assay that measured inhibition of Gas6-induced Akt activation in the mouse spleen. Treatment of mice with a single dose (100-1000 µg) of GMAB1 led to greater than 90% inhibition of Gas6-induced phosphorylated Akt (pAkt) for up to 72 hr. Based on the target coverage observed in the PD assay, the efficacy of GMAB1 was tested against human pancreatic adenocarcinoma xenografts. At doses of 50 µg and 150 µg, twice weekly, GMAB1 was able to inhibit 55% and 76% of tumor growth, respectively (p < 0.001 for both treatments vs. control Ig). When combined with gemcitabine, GMAB1 significantly inhibited tumor growth compared to either agent alone (p < 0.001). Together, the data suggest that Gas6 neutralization may be important as a potential strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Gordon Moody
- Oncology Research Therapeutic Area, Thousand Oaks, CA
| | | | | | - Wei Wang
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA
| | - Chadwick King
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA
| | | | - Trace Tsuruda
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA
| | - Shuying Liu
- Therapeutic Discovery, Amgen Inc., Thousand Oaks, CA
| | | | | |
Collapse
|
61
|
Tan L, Zhang Z, Gao D, Luo J, Tu ZC, Li Z, Peng L, Ren X, Ding K. 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors. J Med Chem 2016; 59:6807-25. [PMID: 27379978 DOI: 10.1021/acs.jmedchem.6b00608] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Li Tan
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhang Zhang
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Donglin Gao
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jinfeng Luo
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengqiu Li
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
62
|
Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov 2016; 15:311-25. [PMID: 26822829 DOI: 10.1038/nrd.2015.13] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial-mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial-mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial-mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification of compounds that affect epithelial-mesenchymal transition, highlight some compounds of particular interest, and address issues related to their clinical application.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy. Present address: Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, 20133 Milan, Italy
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via del Vespro 131, 90127 Palermo, Italy
| | - Ruggero De Maria
- Scientific Directorate, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
63
|
Roos L, van Dongen J, Bell CG, Burri A, Deloukas P, Boomsma DI, Spector TD, Bell JT. Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs. Clin Epigenetics 2016; 8:7. [PMID: 26798410 PMCID: PMC4721070 DOI: 10.1186/s13148-016-0172-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
Background A key focus in cancer research is the discovery of biomarkers that accurately diagnose early lesions in non-invasive tissues. Several studies have identified malignancy-associated DNA methylation changes in blood, yet no general cancer biomarker has been identified to date. Here, we explore the potential of blood DNA methylation as a biomarker of pan-cancer (cancer of multiple different origins) in 41 female cancer discordant monozygotic (MZ) twin-pairs sampled before or after diagnosis using the Illumina HumanMethylation450 BeadChip. Results We analysed epigenome-wide DNA methylation profiles in 41 cancer discordant MZ twin-pairs with affected individuals diagnosed with tumours at different single primary sites: the breast, cervix, colon, endometrium, thyroid gland, skin (melanoma), ovary, and pancreas. No significant global differences in whole blood DNA methylation profiles were observed. Epigenome-wide analyses identified one novel pan-cancer differentially methylated position at false discovery rate (FDR) threshold of 10 % (cg02444695, P = 1.8 × 10−7) in an intergenic region 70 kb upstream of the SASH1 tumour suppressor gene, and three suggestive signals in COL11A2, AXL, and LINC00340. Replication of the four top-ranked signals in an independent sample of nine cancer-discordant MZ twin-pairs showed a similar direction of association at COL11A2, AXL, and LINC00340, and significantly greater methylation discordance at AXL compared to 480 healthy concordant MZ twin-pairs. The effects at cg02444695 (near SASH1), COL11A2, and LINC00340 were the most promising in biomarker potential because the DNA methylation differences were found to pre-exist in samples obtained prior to diagnosis and were limited to a 5-year period before diagnosis. Gene expression follow-up at the top-ranked signals in 283 healthy individuals showed correlation between blood methylation and gene expression in lymphoblastoid cell lines at PRL, and in the skin tissue at AXL. A significant enrichment of differential DNA methylation was observed in enhancer regions (P = 0.03). Conclusions We identified DNA methylation signatures in blood associated with pan-cancer, at or near SASH1, COL11A2, AXL, and LINC00340. Three of these signals were present up to 5 years prior to cancer diagnosis, highlighting the potential clinical utility of whole blood DNA methylation analysis in cancer surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0172-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonie Roos
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jenny van Dongen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Christopher G Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK ; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK ; Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK ; Epigenomic Medicine, Centre for Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, UK
| | - Andrea Burri
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
64
|
Abstract
![]()
Development
of novel imaging probes for cancer diagnostics remains
critical for early detection of disease, yet most imaging agents are
hindered by suboptimal tumor accumulation. To overcome these limitations,
researchers have adapted antibodies for imaging purposes. As cancerous
malignancies express atypical patterns of cell surface proteins in
comparison to noncancerous tissues, novel antibody-based imaging agents
can be constructed to target individual cancer cells or surrounding
vasculature. Using molecular imaging techniques, these agents may
be utilized for detection of malignancies and monitoring of therapeutic
response. Currently, there are several imaging modalities commonly
employed for molecular imaging. These imaging modalities include positron
emission tomography (PET), single-photon emission computed tomography
(SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence
and bioluminescence), and photoacoustic (PA) imaging. While antibody-based
imaging agents may be employed for a broad range of diseases, this
review focuses on the molecular imaging of pancreatic cancer, as there
are limited resources for imaging and treatment of pancreatic malignancies.
Additionally, pancreatic cancer remains the most lethal cancer with
an overall 5-year survival rate of approximately 7%, despite significant
advances in the imaging and treatment of many other cancers. In this
review, we discuss recent advances in molecular imaging of pancreatic
cancer using antibody-based imaging agents. This task is accomplished
by summarizing the current progress in each type of molecular imaging
modality described above. Also, several considerations for designing
and synthesizing novel antibody-based imaging agents are discussed.
Lastly, the future directions of antibody-based imaging agents are
discussed, emphasizing the potential applications for personalized
medicine.
Collapse
Affiliation(s)
- Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Savo Bou Zein Eddine
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53792, United States.,University of Wisconsin Carbone Cancer Center , Madison, Wisconsin 53792, United States
| |
Collapse
|
65
|
Hilton DA, Shivane A, Kirk L, Bassiri K, Enki DG, Hanemann CO. Activation of multiple growth factor signalling pathways is frequent in meningiomas. Neuropathology 2015; 36:250-61. [DOI: 10.1111/neup.12266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 01/14/2023]
Affiliation(s)
- David A Hilton
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Aditya Shivane
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Leanne Kirk
- Department of Cellular and Anatomical Pathology; Derriford Hospital; Plymouth UK
| | - Kayleigh Bassiri
- Institute of Translational and Stratified Medicine; Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| | - Doyo G Enki
- Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine; Plymouth University Peninsula Schools of Medicine & Dentistry; Plymouth UK
| |
Collapse
|
66
|
Li Z, Lin P, Gao C, Peng C, Liu S, Gao H, Wang B, Wang J, Niu J, Niu W. Integrin β6 acts as an unfavorable prognostic indicator and promotes cellular malignant behaviors via ERK-ETS1 pathway in pancreatic ductal adenocarcinoma (PDAC). Tumour Biol 2015; 37:5117-31. [PMID: 26547582 DOI: 10.1007/s13277-015-4353-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most deadly cancers and is expected to become the second leading cause of cancer death by 2030. Despite extensive efforts to improve surgical treatment, limited progress has been made. Increasing evidence indicates that integrin β6 plays a crucial role in carcinoma invasion and metastasis. However, the expression and role of β6 in PDAC remain largely unknown. In the present study, we investigated the expression of β6 in PDAC and its potential value as a prognostic factor and therapeutic target. β6 upregulation was identified as an independent unfavorable prognostic indicator. Integrin β6 markedly promoted the proliferation and invasion of pancreatic carcinoma cells and induced ETS1 phosphorylation in an ERK-dependent manner, leading to the upregulation of matrix metalloprotease-9, which is essential for β6-mediated invasiveness of pancreatic carcinoma cells. Accordingly, small interfering RNA-mediated silencing of integrin β6 markedly suppressed xenograft tumor growth in vivo. Taken together, our results suggest that integrin β6 plays important roles in the progression of pancreatic carcinoma and contributes to reduced survival times, and may serve as a novel therapeutic target for the treatment of PDAC.
Collapse
Affiliation(s)
- Zequn Li
- Department of General Surgery, QiLu Hospital of Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, 250012, Shandong, China
| | - Pengfei Lin
- Department of General Surgery, QiLu Hospital of Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Public Health, Jinan, 250012, Shandong, China
| | - Chao Gao
- Department of General Surgery, QiLu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Cheng Peng
- Department of General Surgery, QiLu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Song Liu
- Department of Thyroid & Breast Surgery, Affiliated Hospital of Binzhou Medical College, Binzhou, 256603, Shandong, China
| | - Huijie Gao
- Department of General Surgery, QiLu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ben Wang
- Department of General Surgery, QiLu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jiayong Wang
- Department of General Surgery, QiLu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jun Niu
- Department of General Surgery, QiLu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Weibo Niu
- Department of General Surgery, QiLu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
67
|
Wu X, Zahari MS, Ma B, Liu R, Renuse S, Sahasrabuddhe NA, Chen L, Chaerkady R, Kim MS, Zhong J, Jelinek C, Barbhuiya MA, Leal-Rojas P, Yang Y, Kashyap MK, Marimuthu A, Ling M, Fackler MJ, Merino V, Zhang Z, Zahnow CA, Gabrielson E, Stearns V, Roa JC, Sukumar S, Gill PS, Pandey A. Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways. Oncotarget 2015; 6:29143-60. [PMID: 26356563 PMCID: PMC4745717 DOI: 10.18632/oncotarget.5020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. About 15-20% of all breast cancers are triple negative breast cancer (TNBC) and are often highly aggressive when compared to other subtypes of breast cancers. To better characterize the biology that underlies the TNBC phenotype, we profiled the phosphotyrosine proteome of a panel of twenty-six TNBC cell lines using quantitative high resolution Fourier transform mass spectrometry. A heterogeneous pattern of tyrosine kinase activation was observed based on 1,789 tyrosine-phosphorylated peptides identified from 969 proteins. One of the tyrosine kinases, AXL, was found to be activated in a majority of aggressive TNBC cell lines and was accompanied by a higher level of AXL expression. High levels of AXL expression are correlated with a significant decrease in patient survival. Treatment of cells bearing activated AXL with a humanized AXL antibody inhibited cell proliferation and migration in vitro, and tumor growth in mice. Overall, our global phosphoproteomic analysis provided new insights into the heterogeneity in the activation status of tyrosine kinase pathways in TNBCs. Our approach presents an effective means of identifying important novel biomarkers and targets for therapy such as AXL in TNBC.
Collapse
Affiliation(s)
- Xinyan Wu
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Muhammad Saddiq Zahari
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Binyun Ma
- 6 Department of Medicine, University of Southern California, Los Angeles, USA
| | - Ren Liu
- 6 Department of Medicine, University of Southern California, Los Angeles, USA
| | - Santosh Renuse
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- 5 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Nandini A. Sahasrabuddhe
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- 5 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Lily Chen
- 3 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Raghothama Chaerkady
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Min-Sik Kim
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jun Zhong
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Christine Jelinek
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mustafa A. Barbhuiya
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- 5 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Pamela Leal-Rojas
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- 7 Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Yi Yang
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Manoj Kumar Kashyap
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- 5 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Arivusudar Marimuthu
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- 5 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Min Ling
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mary Jo Fackler
- 3 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Vanessa Merino
- 3 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Zhen Zhang
- 3 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cynthia A. Zahnow
- 3 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Edward Gabrielson
- 3 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
- 4 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Vered Stearns
- 3 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Juan Carlos Roa
- 8 Advanced Center for Chronic Diseases (ACCDiS), Department of Pathology Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Saraswati Sukumar
- 3 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Parkash S. Gill
- 6 Department of Medicine, University of Southern California, Los Angeles, USA
| | - Akhilesh Pandey
- 1 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, USA
- 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- 3 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
- 4 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
68
|
Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 2015; 35:2687-97. [PMID: 26364599 DOI: 10.1038/onc.2015.343] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/14/2022]
Abstract
Antiangiogenic therapy resistance occurs frequently in patients with metastatic renal cell carcinoma (RCC). The purpose of this study was to understand the mechanism of resistance to sunitinib, an antiangiogenic small molecule, and to exploit this mechanism therapeutically. We hypothesized that sunitinib-induced upregulation of the prometastatic MET and AXL receptors is associated with resistance to sunitinib and with more aggressive tumor behavior. In the present study, tissue microarrays containing sunitinib-treated and untreated RCC tissues were stained with MET and AXL antibodies. The low malignant RCC cell line 786-O was chronically treated with sunitinib and assayed for AXL, MET, epithelial-mesenchymal transition (EMT) protein expression and activation. Co-culture experiments were used to examine the effect of sunitinib pretreatment on endothelial cell growth. The effects of AXL and MET were evaluated in various cell-based models by short hairpin RNA or inhibition by cabozantinib, the multi-tyrosine kinases inhibitor that targets vascular endothelial growth factor receptor, MET and AXL. Xenograft mouse models tested the ability of cabozantinib to rescue sunitinib resistance. We demonstrated that increased AXL and MET expression was associated with inferior clinical outcome in patients. Chronic sunitinib treatment of RCC cell lines activated both AXL and MET, induced EMT-associated gene expression changes, including upregulation of Snail and β-catenin, and increased cell migration and invasion. Pretreatment with sunitinib enhanced angiogenesis in 786-0/human umbilical vein endothelial cell co-culture models. The suppression of AXL or MET expression and the inhibition of AXL and MET activation using cabozantinib both impaired chronic sunitinib treatment-induced prometastatic behavior in cell culture and rescued acquired resistance to sunitinib in xenograft models. In summary, chronic sunitinib treatment induces the activation of AXL and MET signaling and promotes prometastatic behavior and angiogenesis. The inhibition of AXL and MET activity may overcome resistance induced by prolonged sunitinib therapy in metastatic RCC.
Collapse
|
69
|
Axl receptor tyrosine kinase is a potential therapeutic target in renal cell carcinoma. Br J Cancer 2015; 113:616-25. [PMID: 26180925 PMCID: PMC4647683 DOI: 10.1038/bjc.2015.237] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/01/2022] Open
Abstract
Background: Axl plays multiple roles in tumourigenesis in several cancers. Here we evaluated the expression and biological function of Axl in renal cell carcinoma (RCC). Methods: Axl expression was analysed in a tissue microarray of 174 RCC samples by immunostaining and a panel of 11 normal tumour pairs of human RCC tissues by western blot, as well as in RCC cell lines by both western blot and quantitative PCR. The effects of Axl knockdown in RCC cells on cell growth and signalling were investigated. The efficacy of a humanised Axl targeting monoclonal antibody hMAb173 was tested in histoculture and tumour xenograft. Results: We have determined by immunohistochemistry (IHC) that Axl is expressed in 59% of RCC array samples with moderate to high in 20% but not expressed in normal kidney tissue. Western blot analysis of 11 pairs of tumour and adjacent normal tissue show high Axl expression in 73% of the tumours but not normal tissue. Axl is also expressed in RCC cell lines in which Axl knockdown reduces cell viability and PI3K/Akt signalling. The Axl antibody hMAb173 significantly induced RCC cell apoptosis in histoculture and inhibited the growth of RCC tumour in vivo by 78%. The hMAb173-treated tumours also had significantly reduced Axl protein levels, inhibited PI3K signalling, decreased proliferation, and induced apoptosis. Conclusions: Axl is highly expressed in RCC and critical for RCC cell survival. Targeting Axl is a potential approach for RCC treatment.
Collapse
|
70
|
Gioia R, Trégoat C, Dumas PY, Lagarde V, Prouzet-Mauléon V, Desplat V, Sirvent A, Praloran V, Lippert E, Villacreces A, Leconet W, Robert B, Vigon I, Roche S, Mahon FX, Pasquet JM. CBL controls a tyrosine kinase network involving AXL, SYK and LYN in nilotinib-resistant chronic myeloid leukaemia. J Pathol 2015; 237:14-24. [PMID: 25965880 DOI: 10.1002/path.4561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 12/23/2022]
Abstract
A tyrosine kinase network composed of the TAM receptor AXL and the cytoplasmic kinases LYN and SYK is involved in nilotinib-resistance of chronic myeloid leukaemia (CML) cells. Here, we show that the E3-ubiquitin ligase CBL down-regulation occurring during prolonged drug treatment plays a critical role in this process. Depletion of CBL in K562 cells increases AXL and LYN protein levels, promoting cell resistance to nilotinib. Conversely, forced expression of CBL in nilotinib-resistant K562 cells (K562-rn) dramatically reduces AXL and LYN expression and resensitizes K562-rn cells to nilotinib. A similar mechanism was found to operate in primary CML CD34(+) cells. Mechanistically, the E3-ligase CBL counteracts AXL/SYK signalling, promoting LYN transcription by controlling AXL protein stability. Surprisingly, the role of AXL in resistance was independent of its ligand GAS6 binding and its TK activity, in accordance with a scaffold activity for this receptor being involved in this cellular process. Collectively, our results demonstrate a pivotal role for CBL in the control of a tyrosine kinase network mediating resistance to nilotinib treatment in CML cells.
Collapse
Affiliation(s)
- Romain Gioia
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Claire Trégoat
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Pierre-Yves Dumas
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Valérie Lagarde
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Valérie Prouzet-Mauléon
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Vanessa Desplat
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Audrey Sirvent
- CNRS UMR5237, Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France
| | - Vincent Praloran
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Eric Lippert
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Arnaud Villacreces
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Wilhem Leconet
- Equipe Immunociblage et Radiobiologie en Oncologie, IRCM Institut de Recherche en Cancérologie de Montpellier, INSERM U896-Université Montpellier1-ICM, Montpellier, France
| | - Bruno Robert
- Equipe Immunociblage et Radiobiologie en Oncologie, IRCM Institut de Recherche en Cancérologie de Montpellier, INSERM U896-Université Montpellier1-ICM, Montpellier, France
| | - Isabelle Vigon
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Serge Roche
- CNRS UMR5237, Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France
| | - François-Xavier Mahon
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| | - Jean-Max Pasquet
- Hématopoïèse Leucémique et Cibles Thérapeutiques, INSERM U1035, Université de Bordeaux, France
| |
Collapse
|
71
|
Janning M, Ben-Batalla I, Loges S. Axl inhibition: a potential road to a novel acute myeloid leukemia therapy? Expert Rev Hematol 2015; 8:135-8. [PMID: 25578023 DOI: 10.1586/17474086.2015.997704] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Novel treatment options in acute myeloid leukemia (AML) are urgently needed; treatment has not changed significantly over the past decades and survival is still dismal, especially in elderly patients. Axl, a member of the Tyro3, Axl, Mer (TAM) receptor family, mediates proliferation and survival of AML cells and is upregulated upon cytostatic treatment. In addition, AML cells induce expression of the Axl ligand growth arrest-specific gene 6 (Gas6) in bone marrow stroma cells, which further amplifies their growth and therapy resistance. Interruption of Axl signaling by pharmacological approaches, including the small molecule Axl inhibitor BGB324, decreased disease burden and prolonged survival of AML mice. The Gas6-Axl pathway has translational relevance because Axl is expressed by approximately 50% of AML patients and Axl-targeting approaches can block growth of primary human AML cells. Thus, Axl represents a potential novel target in AML and BGB324 is now in clinical development.
Collapse
Affiliation(s)
- Melanie Janning
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
72
|
Graham DK, DeRyckere D, Davies KD, Earp HS. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 2014; 14:769-85. [PMID: 25568918 DOI: 10.1038/nrc3847] [Citation(s) in RCA: 518] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.
Collapse
|
73
|
Pénzes K, Baumann C, Szabadkai I, Őrfi L, Kéri G, Ullrich A, Torka R. Combined inhibition of AXL, Lyn and p130Cas kinases block migration of triple negative breast cancer cells. Cancer Biol Ther 2014; 15:1571-82. [PMID: 25482942 PMCID: PMC4623058 DOI: 10.4161/15384047.2014.956634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blocking the migration of metastatic cancer cells is a major goal in the therapy of cancer. The receptor tyrosine kinase AXL is one of the main triggers for cancer cell migration in neoplasia of breast, colon, skin, thyroid and prostate. In our study we analyzed the effect of AXL inhibition on cell motility and viability in triple negative breast cancer cell lines overexpressing AXL. Thereby we reveal that the compound BMS777607, exhibiting the lowest IC50 values for inhibition of AXL kinase activity in the studied cell lines, attenuates cell motility to a lower extent than the kinase inhibitors MPCD84111 and SKI606. By analyzing the target kinases of MPCD84111 and SKI606 with kinase profiling assays we identified Lyn, a Src family kinase, as a target of both compounds. Knockdown of Lyn and the migration-related CRK-associated substrate (p130Cas), had a significant inhibitory effect on cell migration. Taken together, our findings highlight the importance of combinatorial or multikinase inhibition of non-receptor tyrosine kinases and AXL receptor tyrosine kinase in the therapy of triple negative breast cancer.
Collapse
Key Words
- AKT, RAC-α serine/threonine-protein kinase
- AXL
- EGFR, epidermal growth factor receptor
- ELISA, enzyme-linked immunosorbant assay
- FAK, focal adhesion kinase
- Gas6, growth arrest specific 6
- Lyn
- MAPK, mitogen activated protein kinases
- PI3K, phosphatidylinositol 3-kinase
- Pyk2, proline-rich tyrosine kinase 2
- RTK, receptor tyrosine kinase
- TKI, tyrosine kinase inhibitor
- TNBC, triple negative breast cancer
- breast cancer
- migration
- migration related kinases
- p130Cas
- siRNA, short interfering RNA
- tyrosine kinase inhibitors
Collapse
Affiliation(s)
- Kinga Pénzes
- Department of Molecular Biology; Max-Planck-Institute of Biochemistry; Martinsried, Germany,MTA-SE Pathobiochemistry Research Group; Department of Medical Chemistry; Semmelweis University; Budapest, Hungary
| | - Christine Baumann
- Department of Molecular Biology; Max-Planck-Institute of Biochemistry; Martinsried, Germany
| | | | - László Őrfi
- Vichem Chemie Research Ltd.; Budapest, Hungary,Department of Pharmaceutical Chemistry; Semmelweis University; Budapest, Hungary
| | - György Kéri
- Vichem Chemie Research Ltd.; Budapest, Hungary,MTA-SE Pathobiochemistry Research Group; Department of Medical Chemistry; Semmelweis University; Budapest, Hungary
| | - Axel Ullrich
- Department of Molecular Biology; Max-Planck-Institute of Biochemistry; Martinsried, Germany
| | - Robert Torka
- Department of Molecular Biology; Max-Planck-Institute of Biochemistry; Martinsried, Germany,Correspondence to: Robert Torka;
| |
Collapse
|
74
|
Lew ED, Oh J, Burrola PG, Lax I, Zagórska A, Través PG, Schlessinger J, Lemke G. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife 2014; 3. [PMID: 25265470 PMCID: PMC4206827 DOI: 10.7554/elife.03385] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/28/2014] [Indexed: 12/22/2022] Open
Abstract
The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor–ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding ‘Gla domain’ is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis. DOI:http://dx.doi.org/10.7554/eLife.03385.001 Cells send out and receive signals to communicate with other cells. Detecting these signals is largely carried out by proteins called receptors that span the cell surface membrane. These proteins typically have extracellular domains outside of the cell that can bind to specific signaling molecules and an intracellular domain inside the cell that relays the information inwards to trigger a response. Three such receptor proteins are collectively known as the TAM receptors. Each day, many billions of cells in the human body die and are engulfed by other cells and broken down so that their building blocks can be reused. TAM receptors are required for this process; and the TAM receptors also help prevent the immune system from going out of control, which would damage the body's own tissues. Two different signaling proteins, called Gas6 and Protein S, can bind to and activate TAM receptors. Both of the signaling proteins can also bind to a phospholipid molecule that is found on the surface membrane of dead cells. However, it is not known if all three TAM receptors bind to both signaling proteins equally, and the importance of the phospholipid-binding domain in the signaling proteins remains unclear. To shed light on the workings of these receptors, Lew et al. created mouse cells that each only express one out of the three TAM receptors. These cells were then exposed to intact Gas6 and Protein S, or shortened versions that lacked the phospholipid-binding domain. Lew et al. found that Gas6 could trigger a response through all three TAM receptors but that Protein S was specific for only two out of the three receptors. Signaling proteins with or without their phospholipid-binding domains bound equally well to the receptors, but the maximum level of response was only triggered when both signaling proteins were intact and the phospholipid molecule was present. This is important since the phospholipid can be thought of as an ‘eat-me’ signal by which the dead cells are recognized by the TAM receptor-expressing cells that will engulf them. Using mice that only produce a TAM receptor called Mer, Lew et al. show that Protein S alone can trigger the process that engulfs and breaks down cells in a living organism. These data and previous work suggest that two TAM receptors—including Mer—are involved in the daily engulfment of dying cells, whereas the third mediates this process during infection and tissue damage. Molecules that inhibit or activate the function of TAM receptors are currently being developed to treat cancer and other diseases. By revealing which receptors respond to which signaling molecules, the findings of Lew et al. will serve to guide these efforts. DOI:http://dx.doi.org/10.7554/eLife.03385.002
Collapse
Affiliation(s)
- Erin D Lew
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jennifer Oh
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Patrick G Burrola
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Irit Lax
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Anna Zagórska
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Paqui G Través
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
75
|
An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis. Nat Chem Biol 2014; 10:977-83. [PMID: 25242553 DOI: 10.1038/nchembio.1636] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/14/2014] [Indexed: 12/24/2022]
Abstract
Aberrant signaling through the Axl receptor tyrosine kinase has been associated with a myriad of human diseases, most notably metastatic cancer, identifying Axl and its ligand Gas6 as important therapeutic targets. Using rational and combinatorial approaches, we engineered an Axl 'decoy receptor' that binds Gas6 with high affinity and inhibits its function, offering an alternative approach from drug discovery efforts that directly target Axl. Four mutations within this high-affinity Axl variant caused structural alterations in side chains across the Gas6-Axl binding interface, stabilizing a conformational change on Gas6. When reformatted as an Fc fusion, the engineered decoy receptor bound Gas6 with femtomolar affinity, an 80-fold improvement compared to binding of the wild-type Axl receptor, allowing effective sequestration of Gas6 and specific abrogation of Axl signaling. Moreover, increased Gas6 binding affinity was critical and correlative with the ability of decoy receptors to potently inhibit metastasis and disease progression in vivo.
Collapse
|
76
|
Fauvel B, Yasri A. Antibodies directed against receptor tyrosine kinases: current and future strategies to fight cancer. MAbs 2014; 6:838-51. [PMID: 24859229 DOI: 10.4161/mabs.29089] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy.
Collapse
Affiliation(s)
| | - Aziz Yasri
- OriBase Pharma; Cap Gamma; Parc Euromédecine; Montpellier, France
| |
Collapse
|