51
|
Han J, Zhao Y, Shirai K, Molodtsov A, Kolling FW, Fisher JL, Zhang P, Yan S, Searles TG, Bader JM, Gui J, Cheng C, Ernstoff MS, Turk MJ, Angeles CV. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. NATURE CANCER 2021; 2:300-311. [PMID: 34179824 PMCID: PMC8223731 DOI: 10.1038/s43018-021-00180-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
While T-cell responses to cancer immunotherapy have been avidly studied, long-lived memory has been poorly characterized. In a cohort of metastatic melanoma survivors with exceptional responses to immunotherapy, we probed memory CD8+ T-cell responses across tissues, and across several years. Single-cell RNA sequencing revealed three subsets of resident memory T (TRM) cells shared between tumors and distant vitiligo-affected skin. Paired T-cell receptor sequencing further identified clonotypes in tumors that co-existed as TRM in skin and as effector memory T (TEM) cells in blood. Clonotypes that dispersed throughout tumor, skin, and blood preferentially expressed a IFNG / TNF-high signature, which had a strong prognostic value for melanoma patients. Remarkably, clonotypes from tumors were found in patient skin and blood up to nine years later, with skin maintaining the most focused tumor-associated clonal repertoire. These studies reveal that cancer survivors can maintain durable memory as functional, broadly-distributed TRM and TEM compartments.
Collapse
Affiliation(s)
- Jichang Han
- Departments of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yanding Zhao
- Departments of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Keisuke Shirai
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Departments of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Aleksey Molodtsov
- Departments of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fred W Kolling
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jan L Fisher
- Departments of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Peisheng Zhang
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Shaofeng Yan
- Departments of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Tyler G Searles
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Justin M Bader
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jiang Gui
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chao Cheng
- Baylor School of Medicine, Houston, TX, USA
| | | | - Mary Jo Turk
- Departments of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Christina V Angeles
- Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Departments of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
52
|
Su FY, Huang SC, Wei PC, Hsu PH, Li JP, Su LW, Hsieh YL, Hu CM, Hsu JL, Yang CY, Chung CY, Shew JY, Lan JL, Sytwu HK, Lee EYH, Lee WH. Redox sensor NPGPx restrains ZAP70 activity and modulates T cell homeostasis. Free Radic Biol Med 2021; 165:368-384. [PMID: 33460768 DOI: 10.1016/j.freeradbiomed.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Emerging evidences implicate the contribution of ROS to T cell activation and signaling. The tyrosine kinase, ζ-chain-associated protein of 70 kDa (ZAP70), is essential for T cell development and activation. However, it remains elusive whether a direct redox regulation affects ZAP70 activity upon TCR stimulation. Here, we show that deficiency of non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), a redox sensor, results in T cell hyperproliferation and elevated cytokine productions. T cell-specific NPGPx-knockout mice reveal enhanced T-dependent humoral responses and are susceptible to experimental autoimmune encephalomyelitis (EAE). Through proteomic approaches, ZAP70 is identified as the key interacting protein of NPGPx through disulfide bonding. NPGPx is activated by ROS generated from TCR stimulation, and modulates ZAP70 activity through redox switching to reduce ZAP70 recruitment to TCR/CD3 complex in membrane lipid raft, therefore subduing TCR responses. These results reveal a delicate redox mechanism that NPGPx serves as a modulator to curb ZAP70 functions in maintaining T cell homeostasis.
Collapse
Affiliation(s)
- Fang-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | - Pei-Chi Wei
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ju-Pi Li
- Division of Rheumatology and Immunology and Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Li-Wen Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yung-Lin Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jye-Lin Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Drug Development Research Center, China Medical University, Taichung, Taiwan
| | | | - Chen-Yen Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jin-Yuh Shew
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Joung-Liang Lan
- Division of Rheumatology and Immunology and Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Eva Y-Hp Lee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Drug Development Research Center, China Medical University, Taichung, Taiwan; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
53
|
Effect of Selenium and Iodine on Oxidative Stress in the First Trimester Human Placenta Explants. Nutrients 2021; 13:nu13030800. [PMID: 33671070 PMCID: PMC7997475 DOI: 10.3390/nu13030800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
Imbalanced maternal micronutrient status, poor placentation, and oxidative stress are associated with greater risk of pregnancy complications, which impact mother and offspring health. As selenium, iodine, and copper are essential micronutrients with key roles in antioxidant systems, this study investigated their potential protective effects on placenta against oxidative stress. First trimester human placenta explants were treated with different concentrations of selenium (sodium selenite), iodine (potassium iodide), their combination or copper (copper (II) sulfate). The concentrations represented deficient, physiological, or super physiological levels. Oxidative stress was induced by menadione or antimycin. Placenta explants were collected, fixed, processed, and embedded for laser ablation inductively coupled plasma-mass spectrometry (LA ICP-MS) element imaging or immunohistochemical labelling. LA ICP-MS showed that placenta could uptake selenium and copper from the media. Sodium selenite and potassium iodide reduced DNA damage and apoptosis (p < 0.05). Following oxidative stress induction, a higher concentration of sodium selenite (1.6 µM) was needed to reduce DNA damage and apoptosis while both concentrations of potassium iodide (0.5 and 1 µM) were protective (p < 0.05). A high concentration of copper (40 µM) increased apoptosis and DNA damage but this effect was no longer significant after induction of oxidative stress. Micronutrients supplementation can increase their content within the placenta and an optimal maternal micronutrient level is essential for placenta health.
Collapse
|
54
|
Zhou R, Xiang C, Cao G, Xu H, Zhang Y, Yang H, Zhang J. Berberine accelerated wound healing by restoring TrxR1/JNK in diabetes. Clin Sci (Lond) 2021; 135:613-627. [PMID: 33491733 DOI: 10.1042/cs20201145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
The high disability, mortality and morbidity of diabetic ulcers make it urgent to explore effective strategies for diabetic wound repair. TrxR1 plays a vital role in regulating redox homeostasis in various pathologies. In the present study, the effect of berberine (BBR) on diabetic wounds was investigated in streptozotocin (STZ)-induced diabetic rats and a high glucose (HG)-induced cell model, and the mechanism of BBR on TrxR1 was elucidated. BBR treatment remarkably accelerated wound healing and enhanced extracellular matrix (ECM) synthesis and significantly inhibited HG-induced HaCaT cell damage. Further analysis indicated that BBR activated TrxR1, suppressed its downstream JNK signaling, thereby inhibiting oxidative stress and apoptosis, promoted cell proliferation, down-regulated matrix metalloproteinase (MMP) 9 (MMP9) and up-regulated transforming growth factor-β1 (TGF-β1) and tissue inhibitors of MMP 1 (TIMP1), resulting in accelerated wound healing. Importantly, the enhancement of BBR on wound repair was further abolished by TrxR1 inhibitor. Moreover, in diabetic wounds induced by a combination of STZ injection and high-fat diet, BBR significantly increased wound closure rate and TrxR1 expression, and this was reversed by TrxR1 inhibitor. These data indicated that topical BBR treatment accelerated diabetic wound healing by activating TrxR1. Targeting TrxR1 may be a novel, effective strategy for restoring redox homeostasis and promoting diabetic wound healing.
Collapse
Affiliation(s)
- Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangzhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
55
|
SoRelle ED, Dai J, Bonglack EN, Heckenberg EM, Zhou JY, Giamberardino SN, Bailey JA, Gregory SG, Chan C, Luftig MA. Single-cell RNA-seq reveals transcriptomic heterogeneity mediated by host-pathogen dynamics in lymphoblastoid cell lines. eLife 2021; 10:62586. [PMID: 33501914 PMCID: PMC7867410 DOI: 10.7554/elife.62586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Lymphoblastoid cell lines (LCLs) are generated by transforming primary B cells with Epstein–Barr virus (EBV) and are used extensively as model systems in viral oncology, immunology, and human genetics research. In this study, we characterized single-cell transcriptomic profiles of five LCLs and present a simple discrete-time simulation to explore the influence of stochasticity on LCL clonal evolution. Single-cell RNA sequencing (scRNA-seq) revealed substantial phenotypic heterogeneity within and across LCLs with respect to immunoglobulin isotype; virus-modulated host pathways involved in survival, activation, and differentiation; viral replication state; and oxidative stress. This heterogeneity is likely attributable to intrinsic variance in primary B cells and host–pathogen dynamics. Stochastic simulations demonstrate that initial primary cell heterogeneity, random sampling, time in culture, and even mild differences in phenotype-specific fitness can contribute substantially to dynamic diversity in populations of nominally clonal cells.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, United States
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Emmanuela N Bonglack
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, United States
| | - Emma M Heckenberg
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| | - Jeffrey Y Zhou
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Stephanie N Giamberardino
- Duke Molecular Physiology Institute and Department of Neurology, Duke University School of Medicine, Durham, United States
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, United States
| | - Simon G Gregory
- Duke Molecular Physiology Institute and Department of Neurology, Duke University School of Medicine, Durham, United States
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, United States
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
56
|
Integrative computational approach identifies drug targets in CD4 + T-cell-mediated immune disorders. NPJ Syst Biol Appl 2021; 7:4. [PMID: 33483502 PMCID: PMC7822845 DOI: 10.1038/s41540-020-00165-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immune-related diseases. CD4+ T cells’ metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease. Here, we develop genome-scale models of naïve, Th1, Th2, and Th17 CD4+ T-cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis. We subjected these models to in silico simulations for drug response analysis of existing FDA-approved drugs and compounds. Integration of disease-specific differentially expressed genes with altered reactions in response to metabolic perturbations identified 68 drug targets for the three autoimmune diseases. In vitro experimental validation, together with literature-based evidence, showed that modulation of fifty percent of identified drug targets suppressed CD4+ T cells, further increasing their potential impact as therapeutic interventions. Our approach can be generalized in the context of other diseases, and the metabolic models can be further used to dissect CD4+ T-cell metabolism.
Collapse
|
57
|
Abstract
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
58
|
Zeng X, Zhang Y, Meng L, Fan G, Bai J, Chen J, Song Y, Seim I, Wang C, Shao Z, Liu N, Lu H, Fu X, Wang L, Liu X, Liu S, Shao Z. Genome sequencing of deep-sea hydrothermal vent snails reveals adaptions to extreme environments. Gigascience 2020; 9:giaa139. [PMID: 33319911 PMCID: PMC7736800 DOI: 10.1093/gigascience/giaa139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The scaly-foot snail (Chrysomallon squamiferum) is highly adapted to deep-sea hydrothermal vents and has drawn much interest since its discovery. However, the limited information on its genome has impeded further related research and understanding of its adaptation to deep-sea hydrothermal vents. FINDINGS Here, we report the whole-genome sequencing and assembly of the scaly-foot snail and another snail (Gigantopelta aegis), which inhabits similar environments. Using Oxford Nanopore Technology, 10X Genomics, and Hi-C technologies, we obtained a chromosome-level genome of C. squamiferum with an N50 size of 20.71 Mb. By constructing a phylogenetic tree, we found that these 2 deep-sea snails evolved independently of other snails. Their divergence from each other occurred ∼66.3 million years ago. Comparative genomic analysis showed that different snails have diverse genome sizes and repeat contents. Deep-sea snails have more DNA transposons and long terminal repeats but fewer long interspersed nuclear elements than other snails. Gene family analysis revealed that deep-sea snails experienced stronger selective pressures than freshwater snails, and gene families related to the nervous system, immune system, metabolism, DNA stability, antioxidation, and biomineralization were significantly expanded in scaly-foot snails. We also found 251 H-2 Class II histocompatibility antigen, A-U α chain-like (H2-Aal) genes, which exist uniquely in the Gigantopelta aegis genome. This finding is important for investigating the evolution of major histocompatibility complex (MHC) genes. CONCLUSION Our study provides new insights into deep-sea snail genomes and valuable resources for further studies.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Anker Engelunds Vej 1, Lyngby 2800, Denmark
| | | | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jie Bai
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Wenyuan Road 1,Nanjing 210046, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba 4102, Australia
| | - Congyan Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Zenghua Shao
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Nanxi Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Xiaoteng Fu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Liping Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| |
Collapse
|
59
|
Ma C, Hoffmann PR. Selenoproteins as regulators of T cell proliferation, differentiation, and metabolism. Semin Cell Dev Biol 2020; 115:54-61. [PMID: 33214077 DOI: 10.1016/j.semcdb.2020.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient that plays a key role in regulating the immune system. T cells are of particular interest due to their important role in promoting adaptive immunity against pathogens and cancer as well as regulating tolerance, all of which are influenced by dietary Se levels. The biological effects of Se are mainly exerted through the actions of the proteins into which it is inserted, i.e. selenoproteins. Thus, the roles that selenoproteins play in regulating T cell biology and molecular mechanisms involved have emerged as important areas of research for understanding how selenium affects immunity. Members of this diverse family of proteins exhibit a wide variety of functions within T cells that include regulating calcium flux induced by T cell receptor (TCR) engagement, shaping the redox tone of T cells before, during, and after activation, and linking TCR-induced activation to metabolic reprogramming required for T cell proliferation and differentiation. This review summarizes recent insights into the roles that selenoproteins play in these processes and their implications in understanding how Se may influence immunity.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, Hawaii 96813 USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, Hawaii 96813 USA.
| |
Collapse
|
60
|
Zhang J, Saad R, Taylor EW, Rayman MP. Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol 2020; 37:101715. [PMID: 32992282 PMCID: PMC7481318 DOI: 10.1016/j.redox.2020.101715] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status. Moreover, the cure rate continued to rise beyond the selenium intake required to optimise selenoproteins, suggesting that selenoproteins are probably not the whole story. Nonetheless, the significantly reduced expression of a number of selenoproteins, including those involved in controlling ER stress, along with increased expression of IL-6 in SARS-CoV-2 infected cells in culture suggests a potential link between reduced selenoprotein expression and COVID-19-associated inflammation. In this comprehensive review, we describe the history of selenium in viral infections and then go on to assess the potential benefits of adequate and even supra-nutritional selenium status. We discuss the indispensable function of the selenoproteins in coordinating a successful immune response and follow by reviewing cytokine excess, a key mediator of morbidity and mortality in COVID-19, and its relationship to selenium status. We comment on the fact that the synthetic redox-active selenium compound, ebselen, has been found experimentally to be a strong inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host. That finding suggests that redox-active selenium species formed at high selenium intake might hypothetically inhibit SARS-CoV-2 proteases. We consider the tactics that SARS-CoV-2 could employ to evade an adequate host response by interfering with the human selenoprotein system. Recognition of the myriad mechanisms by which selenium might potentially benefit COVID-19 patients provides a rationale for randomised, controlled trials of selenium supplementation in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jinsong Zhang
- Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, PR China
| | - Ramy Saad
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK; Royal Sussex County Hospital, Brighton, BN2 5BE, UK
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
61
|
Muri J, Thut H, Kopf M. The thioredoxin-1 inhibitor Txnip restrains effector T-cell and germinal center B-cell expansion. Eur J Immunol 2020; 51:115-124. [PMID: 32902872 DOI: 10.1002/eji.202048851] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Thioredoxin-1 (Trx1) is a vital component for cellular redox homeostasis. In T cells, Trx1 donates electrons for the de novo synthesis of deoxyribonucleotides to allow rapid cell proliferation. The Trx-interacting protein (Txnip) binds to the reduced Trx1 and inhibits its activity. However, the role of Txnip in adaptive immunity in vivo is unknown. Here, we show that absence of Txnip increased proliferation of effector T cells and GC B-cell responses in response to lymphocytic choriomeningitis virus and Qβ virus-like particles, respectively, but did not affect development and homeostasis of T and B cells. While downregulation of Txnip and concomitant upregulation of Trx1 is critical for rapid T-cell expansion upon viral infection, re-expression of Txnip and consequently inhibition of Trx1 is important to restrain late T-cell expansion. Importantly, we demonstrated that T-cell receptor (TCR) engagement but not CD28 costimulation is critically required for Txnip downregulation. Thus, this study further uncovers positive and negative control of lymphocyte proliferation by the Trx1 system.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Helen Thut
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
62
|
Zhou L, Adrianto I, Wang J, Wu X, Datta I, Mi QS. Single-Cell RNA-Seq Analysis Uncovers Distinct Functional Human NKT Cell Sub-Populations in Peripheral Blood. Front Cell Dev Biol 2020; 8:384. [PMID: 32528956 PMCID: PMC7264113 DOI: 10.3389/fcell.2020.00384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Vα24-invariant human natural killer T (NKT) cells comprise a unique subset of CD1d-restricted T cells with potent immune regulatory function and are involved in the development of a variety of human diseases. However, the lack of comprehensive molecular subset identities limits their objective classification and clinical application. Using unbiased single-cell RNA sequencing (scRNA-seq) of over 4000 unstimulated and 7000 stimulated human peripheral blood NKT cells, we identified four and five clusters of NKT cells from each NKT group, respectively. Our study uncovers multiple previously unrecognized NKT subsets with potential functional specificities, including a cluster of NKT cells with regulatory T cell property. Flow cytometry and Ingenuity Pathway Analysis confirmed the existence of these NKT populations and indicated the related functional capacities. Our study provides the unbiased and more comprehensive molecular identities of human NKT subsets, which will eventually lead the way to tailored therapies targeting selected NKT subsets.
Collapse
Affiliation(s)
- Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Jie Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Xiaojun Wu
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Indrani Datta
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
63
|
Adamovsky O, Buerger AN, Vespalcova H, Sohag SR, Hanlon AT, Ginn PE, Craft SL, Smatana S, Budinska E, Persico M, Bisesi JH, Martyniuk CJ. Evaluation of Microbiome-Host Relationships in the Zebrafish Gastrointestinal System Reveals Adaptive Immunity Is a Target of Bis(2-ethylhexyl) Phthalate (DEHP) Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5719-5728. [PMID: 32255618 DOI: 10.1021/acs.est.0c00628] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To improve physical characteristics of plastics such as flexibility and durability, producers enrich materials with phthalates such as di-2-(ethylhexyl) phthalate (DEHP). DEHP is a high production volume chemical associated with metabolic and immune disruption in animals and humans. To reveal mechanisms implicated in phthalate-related disruption in the gastrointestinal system, male and female zebrafish were fed DEHP (3 ppm) daily for two months. At the transcriptome level, DEHP significantly upregulated gene networks in the intestine associated with helper T cells' (Th1, Th2, and Th17) specific pathways. The activation of gene networks associated with adaptive immunity was linked to the suppression of networks for tight junction, gap junctional intercellular communication, and transmembrane transporters, all of which are precursors for impaired gut integrity and performance. On a class level, DEHP exposure increased Bacteroidia and Gammaproteobacteria and decreased Verrucomicrobiae in both the male and female gastrointestinal system. Further, in males there was a relative increase in Fusobacteriia and Betaproteobacteria and a relative decrease in Saccharibacteria. Predictive algorithms revealed that the functional shift in the microbiome community, and the metabolites they produce, act to modulate intestinal adaptive immunity. This finding suggests that the gut microbiota may contribute to the adverse effects of DEHP on the host by altering metabolites sensed by both intestinal and immune Th cells. Our results suggest that the microbiome-gut-immune axis can be modified by DEHP and emphasize the value of multiomics approaches to study microbiome-host interactions following chemical perturbations.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amanda N Buerger
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Hana Vespalcova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Shahadur R Sohag
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Amy T Hanlon
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Pamela E Ginn
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Serena L Craft
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Stanislav Smatana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
- Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Bozetechova 2, 61266 Brno, Czech Republic
| | - Eva Budinska
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Maria Persico
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
64
|
Yan Y, Wang L, Chen S, Zhao G, Fu C, Xu B, Tan X, Xiang Y, Chen G. Carbon Monoxide Inhibits T Cell Proliferation by Suppressing Reactive Oxygen Species Signaling. Antioxid Redox Signal 2020; 32:429-446. [PMID: 31810391 DOI: 10.1089/ars.2019.7814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Carbon monoxide (CO) confers antiproliferative effects on T cells; however, how these effects are produced remains unclear. Reactive oxygen species (ROS) have recently emerged as important modulators of T cell proliferation. In this study, we aimed to determine whether the inhibitory effects of CO on T cell proliferation are dependent on the inhibition of ROS signaling. Results: Pretreatment with CO-releasing molecule-2 (CORM-2) had potent inhibitory effects on mouse T cell proliferation stimulated by anti-CD3/CD28 antibodies. Interestingly, CORM-2 pretreatment markedly suppressed intracellular ROS generation as well as the activity of NADPH oxidase and mitochondrial complexes I-IV in T cells after stimulation. The inhibitory effects of CORM-2 on both ROS production and T cell proliferation were comparable with those produced by the use of antioxidant N-acetylcysteine or a combined administration of mitochondrial complex I-IV inhibitors. Moreover, increasing intracellular ROS via hydrogen peroxide supplementation largely reversed the inhibitory effect of CORM-2 on the proliferation of T cells. The inhibitory effects of CORM-2 on both cell proliferation and intracellular ROS production were also shown in a T cell proliferation model involving stimulation by allogeneic dendritic cells or phorbol 12-myristate 13-actetate/ionomycin, as well as in spontaneous cell proliferation models in EL-4 and RAW264.7 cells. In addition, CORM-2 treatment significantly inhibited T cell activation in vivo and attenuated concanavalin A-induced autoimmune hepatitis. Innovation: CO inhibits T cell proliferation via suppression of intracellular ROS production. Conclusion: The study could supply a general mechanism to explain the inhibitory effects of CO on T cell activation and proliferation, favoring its future application in T cell-mediated diseases.
Collapse
Affiliation(s)
- Yutao Yan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Guangyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Cheng Fu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyang Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ying Xiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
65
|
Muri J, Thut H, Feng Q, Kopf M. Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip. eLife 2020; 9:53627. [PMID: 32096759 PMCID: PMC7062472 DOI: 10.7554/elife.53627] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
Antioxidant systems, such as the thioredoxin-1 (Trx1) pathway, ensure cellular redox homeostasis. However, how such systems regulate development and function of myeloid cells is barely understood. Here we show that in contrast to its critical role in T cells, the murine Trx1 system is dispensable for steady-state myeloid-cell hematopoiesis due to their capacity to tap the glutathione/glutaredoxin pathway for DNA biosynthesis. However, the Trx1 pathway instrumentally enables nuclear NF-κB DNA-binding and thereby pro-inflammatory responses in monocytes and dendritic cells. Moreover, independent of this activity, Trx1 is critical for NLRP3 inflammasome activation and IL-1β production in macrophages by detoxifying excessive ROS levels. Notably, we exclude the involvement of the Trx1 inhibitor Txnip as a redox-sensitive ligand of NLRP3 as previously proposed. Together, this study suggests that targeting Trx1 may be exploited to treat inflammatory diseases.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Helen Thut
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Qian Feng
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
66
|
Kruithof PD, Lunev S, Aguilar Lozano SP, de Assis Batista F, Al-Dahmani ZM, Joles JA, Dolga AM, Groves MR, van Goor H. Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165716. [PMID: 32061776 DOI: 10.1016/j.bbadis.2020.165716] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1), also known as Rhodanese, is a mitochondrial enzyme which catalyzes the transfer of sulfur in several molecular pathways. After its initial identification as a cyanide detoxification enzyme, it was found that its functions also include sulfur metabolism, modification of iron‑sulfur clusters and the reduction of antioxidants glutathione and thioredoxin. TST deficiency was shown to be strongly related to the pathophysiology of metabolic diseases including diabetes and obesity. This review summarizes research related to the enzymatic properties and functions of TST, to then explore the association between the effects of TST on mitochondria and development of diseases such as diabetes and obesity.
Collapse
Affiliation(s)
- Paul D Kruithof
- Univeristy of Groningen, Department of Pharmacy and Drug Design, the Netherlands
| | - Sergey Lunev
- Univeristy of Groningen, Department of Pharmacy and Drug Design, the Netherlands
| | | | | | - Zayana M Al-Dahmani
- Univeristy of Groningen, Department of Pharmacy and Drug Design, the Netherlands
| | - Jaap A Joles
- University Medical Center Utrecht, Department of Nephrology and Hypertension, the Netherlands
| | - Amalia M Dolga
- University of Groningen, Department of Pharmacy, Molecular Pharmacology, the Netherlands
| | - Matthew R Groves
- Univeristy of Groningen, Department of Pharmacy and Drug Design, the Netherlands
| | - Harry van Goor
- University Medical Center Groningen, Department of Pathology and Medical Biology the Netherlands.
| |
Collapse
|
67
|
Li F, Okreglicka KM, Pohlmeier LM, Schneider C, Kopf M. Fetal monocytes possess increased metabolic capacity and replace primitive macrophages in tissue macrophage development. EMBO J 2020; 39:e103205. [PMID: 31894879 DOI: 10.15252/embj.2019103205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident macrophages (MΦTR ) originate from at least two distinct waves of erythro-myeloid progenitors (EMP) arising in the yolk sac (YS) at E7.5 and E8.5 with the latter going through a liver monocyte intermediate. The relative potential of these precursors in determining development and functional capacity of MΦTR remains unclear. Here, we studied development of alveolar macrophages (AM) after single and competitive transplantation of different precursors from YS, fetal liver, and fetal lung into neonatal Csf2ra-/- mice, which lack endogenous AM. Fetal monocytes, promoted by Myb, outcompeted primitive MΦ (pMΦ) in empty AM niches and preferentially developed to mature AM, which is associated with enhanced mitochondrial respiratory and glycolytic capacity and repression of the transcription factors c-Maf and MafB. Interestingly, AM derived from pMΦ failed to efficiently clear alveolar proteinosis and protect from fatal lung failure following influenza virus infection. Thus, our data demonstrate superior developmental and functional capacity of fetal monocytes over pMΦ in AM development and underlying mechanisms explaining replacement of pMΦ in fetal tissues.
Collapse
Affiliation(s)
- Fengqi Li
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Lea Maria Pohlmeier
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Christoph Schneider
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.,Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
68
|
Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, Wang Y, Wang YD, Qian C, Xu B, Kc A, Saravia J, Huang H, Yu J, Doench JG, Geiger TL, Chi H. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 2019; 576:471-476. [PMID: 31827283 PMCID: PMC6937596 DOI: 10.1038/s41586-019-1821-z] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
Adoptive cell therapy represents a new paradigm in cancer immunotherapy but can be limited by poor persistence and function of transferred T cells1. Here, through an in vivo pooled CRISPR-Cas9 mutagenesis screening, we demonstrate that CD8+ T cells are reprogrammed to long-lived effector cells with extensive accumulation, better persistence and robust effector function in tumors by targeting Regnase-1. Regnase-1-deficient CD8+ T cells show markedly improved therapeutic efficacy against mouse melanoma and leukemia. Through a secondary genome-scale CRISPR-Cas9 screening, we identify BATF as the key target of Regnase-1 and a rheostat in shaping antitumor responses. Loss of BATF suppresses the elevated accumulation and mitochondrial fitness of Regnase-1-deficient CD8+ T cells. Conversely, we reveal that targeting additional signaling factors including PTPN2 and SOCS1 improves the therapeutic efficacy of Regnase-1-deficient CD8+ T cells. Our findings suggest that T-cell persistence and effector function can be coordinated in tumor immunity and point to new avenues to improve the efficacy of adoptive cell therapy for cancer.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lingyun Long
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenting Zheng
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yogesh Dhungana
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Seon Ah Lim
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanyan Wang
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Chenxi Qian
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jordy Saravia
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongling Huang
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Terrence L Geiger
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
69
|
B1 and Marginal Zone B Cells but Not Follicular B2 Cells Require Gpx4 to Prevent Lipid Peroxidation and Ferroptosis. Cell Rep 2019; 29:2731-2744.e4. [DOI: 10.1016/j.celrep.2019.10.070] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
|
70
|
García-Giménez JL, Romá-Mateo C, Pallardó FV. Oxidative post-translational modifications in histones. Biofactors 2019; 45:641-650. [PMID: 31185139 DOI: 10.1002/biof.1532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/12/2019] [Indexed: 01/12/2023]
Abstract
Epigenetic regulation is attracting much attention because it explains many of the effects that the external environment induces in organisms. Changes in the cellular redox status and even more specifically in its nuclear redox compartment is one of these examples. Redox changes can induce modulation of the epigenetic regulation in cells. Here we present a few cases where reactive oxygen or nitrogen species induces epigenetic marks in histones. Posttranslational modification of these proteins like histone nitrosylation, carbonylation, or glutathionylation together with other mechanisms not reviewed here are the cornerstones of redox-related epigenetic regulation. We currently face a new field of research with potential important consequences for the treatment of many pathologies.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain
| |
Collapse
|
71
|
Hua S, Quan Y, Zhan M, Liao H, Li Y, Lu L. miR-125b-5p inhibits cell proliferation, migration, and invasion in hepatocellular carcinoma via targeting TXNRD1. Cancer Cell Int 2019; 19:203. [PMID: 31384178 PMCID: PMC6668076 DOI: 10.1186/s12935-019-0919-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background Thioredoxin reductase 1 (TXNRD1) is an antioxidant enzyme reportedly overexpressed in hepatocellular carcinoma (HCC); however, the detailed function and mechanisms of TXNRD1 in HCC remain obscure. In this study, we investigated the miR-125b-5p-specific regulation of TXNRD1 levels and its effect on HCC cells. Methods We detected miR-125b-5p levels in human HCC tissue samples through quantitative reverse transcription polymerase chain reaction (qRT-PCR), and in vitro experiments were employed to investigate the effect of miR-125b-5p on HCC cell proliferation, migration, and invasion. Additionally, we examined miR-125b-5p-mediated changes in TXNRD1 levels by qRT-PCR and western blotting, and a dual luciferase-reporter assay was conducted to confirm direct targeting of the 3' untranslated region of TXNRD1 mRNA by miR-125b-5p. Results miR-125b-5p expression was reduced in HCC tissues relative to that in matched para-carcinoma tissues; this finding was verified in HCC cohorts from the Gene Expression Omnibus and The Cancer Genome Atlas. Additionally, low miR-125b-5p expression was associated with poor prognosis in HCC patients, and gene-set enrichment analysis indicated that miR-125b-5p levels were associated with HCC proliferation and metastasis. As predicted, overexpressing miR-125b-5p restrained the proliferation, migration, and invasion of Huh7 and SK-Hep-1 cells and forced expression of the miR-125b-5p-downregulated TXNRD1 mRNA and protein levels in HCC cells. Moreover, dual luciferase-reporter assays revealed that miR-125b-5p targets TXNRD1 to directly regulate its expression, whereas TXNRD1 overexpression abolishes the inhibitory effect of miR-125b-5p on HCC cell proliferation, migration, and invasion. Conclusions These results demonstrated miR-125b-5p as a tumor suppressor in HCC through its inhibition of TXNRD1, thereby suggesting it as a potential target for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Shengni Hua
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000 China
| | - Yingyao Quan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000 China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000 China
| | - Huaxin Liao
- 2Biomedicine Institute, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000 China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000 China
| |
Collapse
|
72
|
Jia JJ, Geng WS, Wang ZQ, Chen L, Zeng XS. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019; 84:453-470. [DOI: 10.1007/s00280-019-03869-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/04/2019] [Indexed: 01/16/2023]
|
73
|
Chakraborty P, Chatterjee S, Kesarwani P, Thyagarajan K, Iamsawat S, Dalheim A, Nguyen H, Selvam SP, Nasarre P, Scurti G, Hardiman G, Maulik N, Ball L, Gangaraju V, Rubinstein MP, Klauber-DeMore N, Hill EG, Ogretmen B, Yu XZ, Nishimura MI, Mehrotra S. Thioredoxin-1 improves the immunometabolic phenotype of antitumor T cells. J Biol Chem 2019; 294:9198-9212. [PMID: 30971427 DOI: 10.1074/jbc.ra118.006753] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Adoptive transfer of tumor epitope-reactive T cells has emerged as a promising strategy to control tumor growth. However, chronically-stimulated T cells expanded for adoptive cell transfer are susceptible to cell death in an oxidative tumor microenvironment. Because oxidation of cell-surface thiols also alters protein functionality, we hypothesized that increasing the levels of thioredoxin (Trx), an antioxidant molecule facilitating reduction of proteins through cysteine thiol-disulfide exchange, in T cells will promote their sustained antitumor function. Using pre-melanosome protein (Pmel)-Trx1 transgenic mouse-derived splenic T cells, flow cytometry, and gene expression analysis, we observed here that higher Trx expression inversely correlated with reactive oxygen species and susceptibility to T-cell receptor restimulation or oxidation-mediated cell death. These Trx1-overexpressing T cells exhibited a cluster of differentiation 62Lhi (CD62Lhi) central memory-like phenotype with reduced glucose uptake (2-NBDGlo) and decreased effector function (interferon γlo). Furthermore, culturing tumor-reactive T cells in the presence of recombinant Trx increased the dependence of T cells on mitochondrial metabolism and improved tumor control. We conclude that strategies for increasing the antioxidant capacity of antitumor T cells modulate their immunometabolic phenotype leading to improved immunotherapeutic control of established tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Annika Dalheim
- the Department of Surgery, Loyola University, Maywood, Illinois 60153, and
| | | | | | | | - Gina Scurti
- the Department of Surgery, Loyola University, Maywood, Illinois 60153, and
| | | | - Nilanjana Maulik
- the Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030
| | | | | | | | | | - Elizabeth G Hill
- Public Health, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | | | | | | | | |
Collapse
|
74
|
Lundberg M, Mattsson Å, Reiser K, Holmgren A, Curbo S. Inhibition of the thioredoxin system by PX-12 (1-methylpropyl 2-imidazolyl disulfide) impedes HIV-1 infection in TZM-bl cells. Sci Rep 2019; 9:5656. [PMID: 30948772 PMCID: PMC6449384 DOI: 10.1038/s41598-019-42068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) entry is initiated by the binding between the viral envelope glycoprotein gp120 and the host receptor CD4, and followed by reduction of structural disulfides of gp120 and CD4. The host thioredoxin-1 (Trx1) efficiently reduces disulfides of gp120 and CD4 in vitro, and recently CD4-dependent HIV-1 entry was shown to be inhibited by anti-Trx1-antibodies, indicating a central role for Trx1. 1-methylpropyl-2-imidazolyl disulfide (PX-12) is a reversible inhibitor of the Trx1 system that may also cause a slow irreversible thioalkylation of Trx1. It was developed as an antitumor agent, however, the current study aimed to determine if it also has an anti-HIV-1 effect. We show that PX-12 has anti-HIV-1(IIIB) activity in TZM-bl cells, in fact, no virus was detected inside the cells in the presence of 10 µM PX-12. Moreover, PX-12 inhibited the enzymatic activity of Trx1 and the Trx1-dependent disulfide reduction of gp120. Microtubule polymerization and formation of acetylated microtubules were also inhibited, activities shown to be required for HIV-1 life cycle propagation. In conclusion, our data strengthens the notion that the early steps of the HIV-1 life cycle depends on the Trx1 system and indicate that the Trx1 system may be a rational drug target for HIV-1 treatment.
Collapse
Affiliation(s)
- Mathias Lundberg
- Department of Clinical Science and Education, Södersjukhuset, Internal medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Åse Mattsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kathrin Reiser
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Curbo
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
75
|
Muri J, Thut H, Heer S, Krueger CC, Bornkamm GW, Bachmann MF, Kopf M. The thioredoxin-1 and glutathione/glutaredoxin-1 systems redundantly fuel murine B-cell development and responses. Eur J Immunol 2019; 49:709-723. [PMID: 30802940 DOI: 10.1002/eji.201848044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 02/22/2019] [Indexed: 11/10/2022]
Abstract
Antioxidant systems maintain cellular redox homeostasis. The thioredoxin-1 (Trx1) and the glutathione (GSH)/glutaredoxin-1 (Grx1) systems are key players in preserving cytosolic redox balance. In fact, T lymphocytes critically rely on reducing equivalents from the Trx1 system for DNA biosynthesis during metabolic reprogramming upon activation. We here show that the Trx1 system is also indispensable for development and functionality of marginal zone (MZ) B cells and B1 cells in mice. In contrast, development of conventional B cells, follicular B-cell homeostasis, germinal center reactions, and antibody responses are redundantly sustained by both antioxidant pathways. Proliferating B2 cells lacking Txnrd1 have increased glutathione (GSH) levels and upregulated cytosolic Grx1, which is barely detectable in expanding thymocytes. These results suggest that the redox capacity driving proliferation is more robust and flexible in B cells than in T cells, which may have profound implications for the therapy of B and T-cell neoplasms.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Helen Thut
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Sebastian Heer
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Caroline C Krueger
- Department of BioMedical Research, University of Bern, Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Georg W Bornkamm
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, München, Germany
| | - Martin F Bachmann
- Department of BioMedical Research, University of Bern, Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
76
|
de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA. Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cell Mol Life Sci 2019; 76:837-863. [PMID: 30430198 PMCID: PMC11105419 DOI: 10.1007/s00018-018-2963-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Cancers of the reproductive organs have a strong association with mitochondrial defects, and a deeper understanding of the role of this organelle in preneoplastic-neoplastic changes is important to determine the appropriate therapeutic intervention. Mitochondria are involved in events during cancer development, including metabolic and oxidative status, acquisition of metastatic potential, resistance to chemotherapy, apoptosis, and others. Because of their origin from melatonin-producing bacteria, mitochondria are speculated to produce melatonin and its derivatives at high levels; in addition, exogenously administered melatonin accumulates in the mitochondria against a concentration gradient. Melatonin is transported into tumor cell by GLUT/SLC2A and/or by the PEPT1/2 transporters, and plays beneficial roles in mitochondrial homeostasis, such as influencing oxidative phosphorylation and electron flux, ATP synthesis, bioenergetics, calcium influx, and mitochondrial permeability transition pore. Moreover, melatonin promotes mitochondrial homeostasis by regulating nuclear DNA and mtDNA transcriptional activities. This review focuses on the main functions of melatonin on mitochondrial processes, and reviews from a mechanistic standpoint, how mitochondrial crosstalk evolved in ovarian, endometrial, cervical, breast, and prostate cancers relative to melatonin's known actions. We put emphasis on signaling pathways whereby melatonin interferes within cancer-cell mitochondria after its administration. Depending on subtype and intratumor metabolic heterogeneity, melatonin seems to be helpful in promoting apoptosis, anti-proliferation, pro-oxidation, metabolic shifting, inhibiting neovasculogenesis and controlling inflammation, and restoration of chemosensitivity. This results in attenuation of development, progression, and metastatic potential of reproductive cancers, in addition to lowering the risk of recurrence and improving the life quality of patients.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil.
| | | | - Maira Smaniotto Cucielo
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Henrique Spaulonci Silveira
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, TX, 78229, USA
| | - Luiz Antonio Lupi
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| |
Collapse
|