51
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
52
|
Dopamine, Psychosis, and Symptom Fluctuation: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10091713. [PMID: 36141325 PMCID: PMC9498563 DOI: 10.3390/healthcare10091713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
It has been hypothesized since the 1960s that the etiology of schizophrenia is linked to dopamine. In the intervening 60 years, sophisticated brain imaging techniques, genetic/epigenetic advances, and new experimental animal models of schizophrenia have transformed schizophrenia research. The disease is now conceptualized as a heterogeneous neurodevelopmental disorder expressed phenotypically in four symptom domains: positive, negative, cognitive, and affective. The aim of this paper is threefold: (a) to review recent research into schizophrenia etiology, (b) to review papers that elicited subjective evidence from patients as to triggers and repressors of symptoms such as auditory hallucinations or paranoid thoughts, and (c) to address the potential role of dopamine in schizophrenia in general and, in particular, in the fluctuations in schizophrenia symptoms. The review also includes new discoveries in schizophrenia research, pointing to the involvement of both striatal neurons and glia, signaling pathway convergence, and the role of stress. It also addresses potential therapeutic implications. We conclude with the hope that this paper opens up novel avenues of research and new possibilities for treatment.
Collapse
|
53
|
Kaiser FMP, Gruenbacher S, Oyaga MR, Nio E, Jaritz M, Sun Q, van der Zwaag W, Kreidl E, Zopf LM, Dalm VASH, Pel J, Gaiser C, van der Vliet R, Wahl L, Rietman A, Hill L, Leca I, Driessen G, Laffeber C, Brooks A, Katsikis PD, Lebbink JHG, Tachibana K, van der Burg M, De Zeeuw CI, Badura A, Busslinger M. Biallelic PAX5 mutations cause hypogammaglobulinemia, sensorimotor deficits, and autism spectrum disorder. J Exp Med 2022; 219:213392. [PMID: 35947077 PMCID: PMC9372349 DOI: 10.1084/jem.20220498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
The genetic causes of primary antibody deficiencies and autism spectrum disorder (ASD) are largely unknown. Here, we report a patient with hypogammaglobulinemia and ASD who carries biallelic mutations in the transcription factor PAX5. A patient-specific Pax5 mutant mouse revealed an early B cell developmental block and impaired immune responses as the cause of hypogammaglobulinemia. Pax5 mutant mice displayed behavioral deficits in all ASD domains. The patient and the mouse model showed aberrant cerebellar foliation and severely impaired sensorimotor learning. PAX5 deficiency also caused profound hypoplasia of the substantia nigra and ventral tegmental area due to loss of GABAergic neurons, thus affecting two midbrain hubs, controlling motor function and reward processing, respectively. Heterozygous Pax5 mutant mice exhibited similar anatomic and behavioral abnormalities. Lineage tracing identified Pax5 as a crucial regulator of cerebellar morphogenesis and midbrain GABAergic neurogenesis. These findings reveal new roles of Pax5 in brain development and unravel the underlying mechanism of a novel immunological and neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Fabian M P Kaiser
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Sarah Gruenbacher
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Maria Roa Oyaga
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Enzo Nio
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Qiong Sun
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Lydia M Zopf
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Division of Allergy and Clinical Immunology, Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Johan Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Carolin Gaiser
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
| | - Rick van der Vliet
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, Netherlands
| | - Lucas Wahl
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - André Rietman
- Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Netherlands
| | - Louisa Hill
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Gertjan Driessen
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | | | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Cancer Institute, Erasmus MC, Rotterdam, Netherlands.,Department of Radiation Oncology, Erasmus MC, Rotterdam, Netherlands
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
54
|
Dai B, Sun F, Tong X, Ding Y, Kuang A, Osakada T, Li Y, Lin D. Responses and functions of dopamine in nucleus accumbens core during social behaviors. Cell Rep 2022; 40:111246. [PMID: 36001967 PMCID: PMC9511885 DOI: 10.1016/j.celrep.2022.111246] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 12/05/2022] Open
Abstract
Social behaviors are among the most important motivated behaviors. How dopamine (DA), a "reward" signal, releases during social behaviors has been a topic of interest for decades. Here, we use a genetically encoded DA sensor, GRABDA2m, to record DA activity in the nucleus accumbens (NAc) core during various social behaviors in male and female mice. We find that DA releases during approach, investigation and consummation phases of social behaviors signal animals' motivation, familiarity of the social target, and valence of the experience, respectively. Positive and negative social experiences evoke opposite DA patterns. Furthermore, DA releases during mating and fighting are sexually dimorphic with a higher level in males than in females. At the functional level, increasing DA in NAc enhances social interest toward a familiar conspecific and alleviates defeat-induced social avoidance. Altogether, our results reveal complex information encoded by NAc DA activity during social behaviors and their multistage functional roles.
Collapse
Affiliation(s)
- Bing Dai
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiaoyu Tong
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yizhuo Ding
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Amy Kuang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
55
|
Piccin A, Courtand G, Contarino A. Morphine reduces the interest for natural rewards. Psychopharmacology (Berl) 2022; 239:2407-2419. [PMID: 35396673 DOI: 10.1007/s00213-022-06131-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Abstract
RATIONALE Alongside a pathological, excessive, motivation for substances of abuse, substance use disorder (SUD) patients often show a dramatic loss of interest for naturally rewarding activities, such as positive peer social interaction and food intake. Yet, pre-clinical evidence of the latter SUD features remains scarce and inconsistent. OBJECTIVES In the current study, we investigated the effect of non-rewarding and rewarding doses of morphine upon social behaviour, motivation for and intake of palatable food, in male and female C57BL/6J mice. METHODS First, the rewarding effects of two relatively low morphine doses (1.25 and 2.5 mg/kg) were assessed using a newly established single substance administration/conditioning trial conditioned place preference (CPP) paradigm. Then, morphine (1.25 and 2.5 mg/kg) effects upon social behaviour, motivation for and intake of palatable food were examined by the three-chamber (3-CH), an operant behaviour and a palatable food preference test, respectively. RESULTS Morphine (2.5 mg/kg) induced CPP in both male and female mice, whereas morphine (1.25 mg/kg) induced CPP only in female mice. Both morphine doses (1.25 and 2.5 mg/kg) reduced sociability, motivation for and intake of palatable food in male and female mice, independently of cognitive function or locomotor activity. CONCLUSIONS Female mice were more sensitive than male mice to the rewarding effects of morphine. Moreover, both a non-rewarding and a rewarding dose of morphine impaired the interest for naturally rewarding activities, indicating that brain reward systems might be more sensitive to the deleterious than to the rewarding effects of substances of abuse.
Collapse
Affiliation(s)
- Alessandro Piccin
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Gilles Courtand
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France.,CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Angelo Contarino
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France. .,CNRS, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
56
|
Simmler LD, Li Y, Hadjas LC, Hiver A, van Zessen R, Lüscher C. Dual action of ketamine confines addiction liability. Nature 2022; 608:368-373. [PMID: 35896744 DOI: 10.1038/s41586-022-04993-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/17/2022] [Indexed: 12/19/2022]
Abstract
Ketamine is used clinically as an anaesthetic and a fast-acting antidepressant, and recreationally for its dissociative properties, raising concerns of addiction as a possible side effect. Addictive drugs such as cocaine increase the levels of dopamine in the nucleus accumbens. This facilitates synaptic plasticity in the mesolimbic system, which causes behavioural adaptations and eventually drives the transition to compulsion1-4. The addiction liability of ketamine is a matter of much debate, in part because of its complex pharmacology that among several targets includes N-methyl-D-aspartic acid (NMDA) receptor (NMDAR) antagonism5,6. Here we show that ketamine does not induce the synaptic plasticity that is typically observed with addictive drugs in mice, despite eliciting robust dopamine transients in the nucleus accumbens. Ketamine nevertheless supported reinforcement through the disinhibition of dopamine neurons in the ventral tegmental area (VTA). This effect was mediated by NMDAR antagonism in GABA (γ-aminobutyric acid) neurons of the VTA, but was quickly terminated by type-2 dopamine receptors on dopamine neurons. The rapid off-kinetics of the dopamine transients along with the NMDAR antagonism precluded the induction of synaptic plasticity in the VTA and the nucleus accumbens, and did not elicit locomotor sensitization or uncontrolled self-administration. In summary, the dual action of ketamine leads to a unique constellation of dopamine-driven positive reinforcement, but low addiction liability.
Collapse
Affiliation(s)
- Linda D Simmler
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Yue Li
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Lotfi C Hadjas
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Agnès Hiver
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Ruud van Zessen
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland. .,Service de Neurologie, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
57
|
Bian WJ, Brewer CL, Kauer JA, de Lecea L. Adolescent sleep shapes social novelty preference in mice. Nat Neurosci 2022; 25:912-923. [PMID: 35618950 PMCID: PMC9283223 DOI: 10.1038/s41593-022-01076-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
Sleep disturbances frequently occur in neurodevelopmental disorders such as autism, but the developmental role of sleep is largely unexplored, and a causal relationship between developmental sleep defects and behavioral consequences in adulthood remains elusive. Here, we show that in mice, sleep disruption (SD) in adolescence, but not in adulthood, causes long-lasting impairment in social novelty preference. Furthermore, adolescent SD alters the activation and release patterns of dopaminergic neurons in the ventral tegmental area (VTA) in response to social novelty. This developmental sleep function is mediated by balanced VTA activity during adolescence; chemogenetic excitation mimics, whereas silencing rescues, the social deficits of adolescent SD. Finally, we show that in Shank3-mutant mice, improving sleep or rectifying VTA activity during adolescence ameliorates adult social deficits. Together, our results identify a critical role of sleep and dopaminergic activity in the development of social interaction behavior.
Collapse
Affiliation(s)
- Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Chelsie L Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
58
|
Cutando L, Puighermanal E, Castell L, Tarot P, Belle M, Bertaso F, Arango-Lievano M, Ango F, Rubinstein M, Quintana A, Chédotal A, Mameli M, Valjent E. Cerebellar dopamine D2 receptors regulate social behaviors. Nat Neurosci 2022; 25:900-911. [PMID: 35710984 DOI: 10.1038/s41593-022-01092-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/10/2022] [Indexed: 01/18/2023]
Abstract
The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.
Collapse
Affiliation(s)
- Laura Cutando
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France. .,Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Emma Puighermanal
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Castell
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Pauline Tarot
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Morgane Belle
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | | | - Fabrice Ango
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France.,INM, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET; FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina; and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Albert Quintana
- Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.,Inserm UMR-S 1270, Paris, France
| | | |
Collapse
|
59
|
Pohl TT, Hörnberg H. Neuroligins in neurodevelopmental conditions: how mouse models of de novo mutations can help us link synaptic function to social behavior. Neuronal Signal 2022; 6:NS20210030. [PMID: 35601025 PMCID: PMC9093077 DOI: 10.1042/ns20210030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental conditions (or neurodevelopmental disorders, NDDs) are highly heterogeneous with overlapping characteristics and shared genetic etiology. The large symptom variability and etiological heterogeneity have made it challenging to understand the biological mechanisms underpinning NDDs. To accommodate this individual variability, one approach is to move away from diagnostic criteria and focus on distinct dimensions with relevance to multiple NDDs. This domain approach is well suited to preclinical research, where genetically modified animal models can be used to link genetic variability to neurobiological mechanisms and behavioral traits. Genetic factors associated with NDDs can be grouped functionally into common biological pathways, with one prominent functional group being genes associated with the synapse. These include the neuroligins (Nlgns), a family of postsynaptic transmembrane proteins that are key modulators of synaptic function. Here, we review how research using Nlgn mouse models has provided insight into how synaptic proteins contribute to behavioral traits associated with NDDs. We focus on how mutations in different Nlgns affect social behaviors, as differences in social interaction and communication are a common feature of most NDDs. Importantly, mice carrying distinct mutations in Nlgns share some neurobiological and behavioral phenotypes with other synaptic gene mutations. Comparing the functional implications of mutations in multiple synaptic proteins is a first step towards identifying convergent neurobiological pathways in multiple brain regions and circuits.
Collapse
Affiliation(s)
- Tobias T. Pohl
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Hanna Hörnberg
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| |
Collapse
|
60
|
Gonzalez Abreu JA, Rosenberg AE, Fricker BA, Wallace KJ, Seifert AW, Kelly AM. Species-typical group size differentially influences social reward neural circuitry during nonreproductive social interactions. iScience 2022; 25:104230. [PMID: 35521530 PMCID: PMC9062245 DOI: 10.1016/j.isci.2022.104230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
We investigated whether nonreproductive social interactions may be rewarding for colonial but not non-colonial species. We found that the colonial spiny mouse (Acomys cahirinus) is significantly more gregarious, more prosocial, and less aggressive than its non-colonial relative, the Mongolian gerbil (Meriones unguiculatus). In an immediate-early gene study, we examined oxytocin (OT) and tyrosine hydroxylase (TH) neural responses to interactions with a novel, same-sex conspecific or a novel object. The paraventricular nucleus of the hypothalamus (PVN) OT cell group was more responsive to interactions with a conspecific compared to a novel object in both species. However, the ventral tegmental area (VTA) TH cell group showed differential responses only in spiny mice. Further, PVN OT and VTA TH neural responses positively correlated in spiny mice, suggesting functional connectivity. These results suggest that colonial species may have evolved neural mechanisms associated with reward in novel, nonreproductive social contexts to promote large group-living.
Collapse
Affiliation(s)
| | - Ashley E. Rosenberg
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Brandon A. Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Kelly J. Wallace
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, 675 Rose Street, Lexington, KY 40506, USA
| | - Aubrey M. Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| |
Collapse
|
61
|
Musardo S, Contestabile A, Knoop M, Baud O, Bellone C. Oxytocin neurons mediate the effect of social isolation via the VTA circuits. eLife 2022; 11:73421. [PMID: 35451958 PMCID: PMC9075949 DOI: 10.7554/elife.73421] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Social interaction during adolescence strongly influences brain function and behavior, and the recent pandemic has emphasized the devastating effect of social distancing on mental health. While accumulating evidence has shown the importance of the reward system in encoding specific aspects of social interaction, the consequences of social isolation on the reward system and the development of social skills later in adulthood are still largely unknown. Here, we found that one week of social isolation during adolescence in male mice increased social interaction at the expense of social habituation and social novelty preference. Behavioral changes were accompanied by the acute hyperexcitability of putative dopamine (pDA) neurons in the ventral tegmental area (VTA) and long-lasting expression of GluA2-lacking AMPARs at excitatory inputs onto pDA neurons that project to the prefrontal cortex (PFC). Social isolation-dependent behavioral deficits and changes in neural activity and synaptic plasticity were reversed by chemogenetic inhibition of oxytocin neurons in the paraventricular nucleus (PVN) of the hypothalamus. These results demonstrate that social isolation in male mice has acute and long-lasting effects on social interaction and suggest that homeostatic adaptations mediate these effects within the reward circuit.
Collapse
Affiliation(s)
- Stefano Musardo
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | | | - Marit Knoop
- Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
| | - Olivier Baud
- Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
| | - Camilla Bellone
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
62
|
Wang AL, Chao OY, Nikolaus S, Lamounier-Zepter V, Hollenberg CP, Lubec G, Trossbach SV, Korth C, Huston JP. Disrupted-in-schizophrenia 1 Protein Misassembly Impairs Cognitive Flexibility and Social Behaviors in a Transgenic Rat Model. Neuroscience 2022; 493:41-51. [PMID: 35461978 DOI: 10.1016/j.neuroscience.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Alterations in cognitive functions, social behaviors and stress reactions are commonly diagnosed in chronic mental illnesses (CMI). Animal models expressing mutant genes associated to CMI represent either rare mutations or those contributing only minimally to genetic risk. Non-genetic causes of CMI can be modeled by disturbing downstream signaling pathways, for example through inducing protein misassembly or aggregation. The Disrupted-in-Schizophrenia 1 (DISC1) gene was identified to be disrupted and thereby haploinsufficient in a large pedigree where it associated to CMI. The DISC1 protein misassembles to an insoluble protein in a subset of CMI patients and this has been modeled in a rat (tgDISC1 rat) where the full-length, non mutant human transgene was overexpressed and cognitive impairments were observed. Here, we investigated the scope of effects of DISC1 protein misassembly by investigating spatial memory, social behavior and stress resilience. In water maze tasks, the tgDISC1 rats showed intact spatial learning and memory, but were deficient in flexible adaptation to spatial reversal learning compared to littermate controls. They also displayed less social interaction. Additionally, there was a trend towards increased corticosterone levels after restraint stress in the tgDISC1 rats. Our findings suggest that DISC1 protein misassembly leads to disturbances of cognitive flexibility and social behaviors, and might also be involved in stress sensitization. Since the observed behavioral features resemble symptoms of CMI, the tgDISC1 rat may be a valuable model for the investigation of cognitive, social and - possibly - also stress-related symptoms of major mental illnesses.
Collapse
Affiliation(s)
- An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA.
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany.
| | | | - Cornelis P Hollenberg
- Institute of Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria.
| | - Svenja V Trossbach
- Department of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Carsten Korth
- Department of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
63
|
Chen SY, Yao J, Hu YD, Chen HY, Liu PC, Wang WF, Zeng YH, Zhuang CW, Zeng SX, Li YP, Yang LY, Huang ZX, Huang KQ, Lai ZT, Hu YH, Cai P, Chen L, Wu S. Control of Behavioral Arousal and Defense by a Glutamatergic Midbrain-Amygdala Pathway in Mice. Front Neurosci 2022; 16:850193. [PMID: 35527820 PMCID: PMC9070111 DOI: 10.3389/fnins.2022.850193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
In response to external threatening signals, animals evolve a series of defensive behaviors that depend on heightened arousal. It is believed that arousal and defensive behaviors are coordinately regulated by specific neurocircuits in the central nervous system. The ventral tegmental area (VTA) is a key structure located in the ventral midbrain of mice. The activity of VTA glutamatergic neurons has recently been shown to be closely related to sleep–wake behavior. However, the specific role of VTA glutamatergic neurons in sleep–wake regulation, associated physiological functions, and underlying neural circuits remain unclear. In the current study, using an optogenetic approach and synchronous polysomnographic recording, we demonstrated that selective activation of VTA glutamatergic neurons induced immediate transition from sleep to wakefulness and obviously increased the amount of wakefulness in mice. Furthermore, optogenetic activation of VTA glutamatergic neurons induced multiple defensive behaviors, including burrowing, fleeing, avoidance and hiding. Finally, viral-mediated anterograde activation revealed that projections from the VTA to the central nucleus of the amygdala (CeA) mediated the wake- and defense-promoting effects of VTA glutamatergic neurons. Collectively, our results illustrate that the glutamatergic VTA is a key neural substrate regulating wakefulness and defensive behaviors that controls these behaviors through its projection into the CeA. We further discuss the possibility that the glutamatergic VTA-CeA pathway may be involved in psychiatric diseases featuring with excessive defense.
Collapse
Affiliation(s)
- Shang-Yi Chen
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jing Yao
- Fujian Province Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yu-Duan Hu
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Hui-Yun Chen
- Fujian Province Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
| | - Pei-Chang Liu
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen-Feng Wang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Yu-Hang Zeng
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Cong-Wen Zhuang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Shun-Xing Zeng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yue-Ping Li
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Liu-Yun Yang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zi-Xuan Huang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Kai-Qi Huang
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Zhen-Ting Lai
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Yong-Huai Hu
- School of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, The School of Public Health, Fujian Medical University, Fuzhou, China
- *Correspondence: Ping Cai,
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Li Chen,
| | - Siying Wu
- Department of Epidemiology and Health Statistics, The School of Public Health, Fujian Medical University, Fuzhou, China
- Siying Wu,
| |
Collapse
|
64
|
Adiletta A, Pross A, Taricco N, Sgadò P. Embryonic Valproate Exposure Alters Mesencephalic Dopaminergic Neurons Distribution and Septal Dopaminergic Gene Expression in Domestic Chicks. Front Integr Neurosci 2022; 16:804881. [PMID: 35369647 PMCID: PMC8966611 DOI: 10.3389/fnint.2022.804881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/07/2022] [Indexed: 11/15/2022] Open
Abstract
In recent years, the role of the dopaminergic system in the regulation of social behavior is being progressively outlined, and dysfunctions of the dopaminergic system are increasingly associated with neurodevelopmental disorders, including autism spectrum disorder (ASD). To study the role of the dopaminergic (DA) system in an animal model of ASD, we investigated the effects of embryonic exposure to valproic acid (VPA) on the postnatal development of the mesencephalic DA system in the domestic chick. We found that VPA affected the rostro-caudal distribution of DA neurons, without changing the expression levels of several dopaminergic markers in the mesencephalon. We also investigated a potential consequence of this altered DA neuronal distribution in the septum, a social brain area previously associated to social behavior in several vertebrate species, describing alterations in the expression of genes linked to DA neurotransmission. These findings support the emerging hypothesis of a role of DA dysfunction in ASD pathogenesis. Together with previous studies showing impairments of early social orienting behavior, these data also support the use of the domestic chick model to investigate the neurobiological mechanisms potentially involved in early ASD symptoms.
Collapse
Affiliation(s)
- Alice Adiletta
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Alessandra Pross
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Lleida’s Institute for Biomedical Research Dr. Pifarre Foundation (IRBLleida), Lleida, Spain
| | - Nicolò Taricco
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- *Correspondence: Paola Sgadò,
| |
Collapse
|
65
|
Solié C, Contestabile A, Espinosa P, Musardo S, Bariselli S, Huber C, Carleton A, Bellone C. Superior Colliculus to VTA pathway controls orienting response and influences social interaction in mice. Nat Commun 2022; 13:817. [PMID: 35145124 PMCID: PMC8831635 DOI: 10.1038/s41467-022-28512-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Social behaviours characterize cooperative, mutualistic, aggressive or parental interactions that occur among conspecifics. Although the Ventral Tegmental Area (VTA) has been identified as a key substrate for social behaviours, the input and output pathways dedicated to specific aspects of conspecific interaction remain understudied. Here, in male mice, we investigated the activity and function of two distinct VTA inputs from superior colliculus (SC-VTA) and medial prefrontal cortex (mPFC-VTA). We observed that SC-VTA neurons display social interaction anticipatory calcium activity, which correlates with orienting responses towards an unfamiliar conspecific. In contrast, mPFC-VTA neuron population activity increases after initiation of the social contact. While protracted phasic stimulation of SC-VTA pathway promotes head/body movements and decreases social interaction, inhibition of this pathway increases social interaction. Here, we found that SC afferents mainly target a subpopulation of dorsolateral striatum (DLS)-projecting VTA dopamine (DA) neurons (VTADA-DLS). While, VTADA-DLS pathway stimulation decreases social interaction, VTADA-Nucleus Accumbens stimulation promotes it. Altogether, these data support a model by which at least two largely anatomically distinct VTA sub-circuits oppositely control distinct aspects of social behaviour. Solié, Contestabile et al. show that the superior colliculus to ventral tegmental area (VTA) pathway encodes orienting behavior toward conspecifics, and modulates VTA dopamine neurons projecting onto dorsolateral striatum perturbing social interaction.
Collapse
Affiliation(s)
- Clément Solié
- Department of Basic Neuroscience, University of Geneva, 1 Rue Michel-Servet, 1205, Genève, Switzerland.,Brain Plasticity Unit, CNRS UMR 8249, ESPCI, PSL Research University, Paris, France
| | - Alessandro Contestabile
- Department of Basic Neuroscience, University of Geneva, 1 Rue Michel-Servet, 1205, Genève, Switzerland
| | - Pedro Espinosa
- Department of Basic Neuroscience, University of Geneva, 1 Rue Michel-Servet, 1205, Genève, Switzerland
| | - Stefano Musardo
- Department of Basic Neuroscience, University of Geneva, 1 Rue Michel-Servet, 1205, Genève, Switzerland
| | - Sebastiano Bariselli
- Department of Basic Neuroscience, University of Geneva, 1 Rue Michel-Servet, 1205, Genève, Switzerland
| | - Chieko Huber
- Department of Basic Neuroscience, University of Geneva, 1 Rue Michel-Servet, 1205, Genève, Switzerland
| | - Alan Carleton
- Department of Basic Neuroscience, University of Geneva, 1 Rue Michel-Servet, 1205, Genève, Switzerland
| | - Camilla Bellone
- Department of Basic Neuroscience, University of Geneva, 1 Rue Michel-Servet, 1205, Genève, Switzerland.
| |
Collapse
|
66
|
A glutamatergic basal forebrain to midbrain circuit mediates wakefulness and defensive behavior. Neuropharmacology 2022; 208:108979. [DOI: 10.1016/j.neuropharm.2022.108979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/29/2021] [Accepted: 01/30/2022] [Indexed: 11/24/2022]
|
67
|
Qi G, Zhang P, Li T, Li M, Zhang Q, He F, Zhang L, Cai H, Lv X, Qiao H, Chen X, Ming J, Tian B. NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model. Nat Commun 2022; 13:577. [PMID: 35102141 PMCID: PMC8804001 DOI: 10.1038/s41467-022-28190-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/07/2022] [Indexed: 01/07/2023] Open
Abstract
Emotional stress is considered a severe pathogenetic factor of psychiatric disorders. However, the circuit mechanisms remain largely unclear. Using a three-chamber vicarious social defeat stress (3C-VSDS) model in mice, we here show that chronic emotional stress (CES) induces anxiety-like behavior and transient social interaction changes. Dopaminergic neurons of ventral tegmental area (VTA) are required to control this behavioral deficit. VTA dopaminergic neuron hyperactivity induced by CES is involved in the anxiety-like behavior in the innate anxiogenic environment. Chemogenetic activation of VTA dopaminergic neurons directly triggers anxiety-like behavior, while chemogenetic inhibition of these neurons promotes resilience to the CES-induced anxiety-like behavior. Moreover, VTA dopaminergic neurons receiving nucleus accumbens (NAc) projections are activated in CES mice. Bidirectional modulation of the NAc-VTA circuit mimics or reverses the CES-induced anxiety-like behavior. In conclusion, we propose that a NAc-VTA circuit critically establishes and regulates the CES-induced anxiety-like behavior. This study not only characterizes a preclinical model that is representative of the nuanced aspect of CES, but also provides insight to the circuit-level neuronal processes that underlie empathy-like behavior.
Collapse
Affiliation(s)
- Guangjian Qi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
- Key Laboratory of Acupuncture & Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, P. R. China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Qian Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Feng He
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Lijun Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Hongwei Cai
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Xinyuan Lv
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
- Key Laboratory of Acupuncture & Medicine of Shaanxi Province, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province, 712046, P. R. China
| | - Xiaoqian Chen
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, P. R. China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, P. R. China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China.
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, P. R. China.
| |
Collapse
|
68
|
Tzanoulinou S, Musardo S, Contestabile A, Bariselli S, Casarotto G, Magrinelli E, Jiang YH, Jabaudon D, Bellone C. Inhibition of Trpv4 rescues circuit and social deficits unmasked by acute inflammatory response in a Shank3 mouse model of Autism. Mol Psychiatry 2022; 27:2080-2094. [PMID: 35022531 PMCID: PMC9126815 DOI: 10.1038/s41380-021-01427-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Mutations in the SHANK3 gene have been recognized as a genetic risk factor for Autism Spectrum Disorder (ASD), a neurodevelopmental disease characterized by social deficits and repetitive behaviors. While heterozygous SHANK3 mutations are usually the types of mutations associated with idiopathic autism in patients, heterozygous deletion of Shank3 gene in mice does not commonly induce ASD-related behavioral deficit. Here, we used in-vivo and ex-vivo approaches to demonstrate that region-specific neonatal downregulation of Shank3 in the Nucleus Accumbens promotes D1R-medium spiny neurons (D1R-MSNs) hyperexcitability and upregulates Transient Receptor Potential Vanilloid 4 (Trpv4) to impair social behavior. Interestingly, genetically vulnerable Shank3+/- mice, when challenged with Lipopolysaccharide to induce an acute inflammatory response, showed similar circuit and behavioral alterations that were rescued by acute Trpv4 inhibition. Altogether our data demonstrate shared molecular and circuit mechanisms between ASD-relevant genetic alterations and environmental insults, which ultimately lead to sociability dysfunctions.
Collapse
Affiliation(s)
- Stamatina Tzanoulinou
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland ,grid.9851.50000 0001 2165 4204Present Address: Department of Biomedical Sciences (DSB), FBM, University of Lausanne, Lausanne, Switzerland
| | - Stefano Musardo
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Alessandro Contestabile
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Sebastiano Bariselli
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Giulia Casarotto
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Elia Magrinelli
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Yong-hui Jiang
- grid.47100.320000000419368710Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Denis Jabaudon
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Camilla Bellone
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
69
|
Ibrahim MK, Aboelsaad M, Tony F, Sayed M. Garcinia cambogia extract alters anxiety, sociability, and dopamine turnover in male Swiss albino mice. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04902-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Obesity is a global concern, closely allied with somatic and psychosomatic disorders. Herbal drugs are available in modern medicine to treat obesity. Garcinia camobogia being used by so many people trying to lose weight produces various systemic side effects. The study was conducted to assess its effect on anxiety, sociability, and dopamine turnover in male mice. Twenty-one male Swiss albino mice of either were divided into three groups with seven mice in each group. Control group was given distilled water (0.5 ml p.o.) and the other two groups received Garcinia cambogia extract at two different doses, a low and a higher dose (100 mg/kg and 500 mg/kg. p.o.) Each animal received a single oral dose daily, which was administered using an oral gavage for fourteen consecutive days. Effect of test drugs on anxiety was evaluated using open field test. Sociability and social novelty were evaluated using three chambers test. Results (mean ± SD) were analyzed using one-way ANOVA test followed by Tukey’s test. Garcinia cambogia extract significantly increased the time spent in the corners in the open field test, significantly reduced sociability and social novelty in the three-chamber test, significantly reduced dopamine turnover in the brain with a significant decrease in dopamine metabolite homovanillic acid (HVA) and increased D2 receptor expression in ventral tegmental area. Garcinia cambogia extract have significant anxiogenic effect along with reduced sociability and social novelty in male mice. Moreover, these effects could be related to the altered dopamine turnover and D2 receptor expression in mice brain.
Article Highlights
Chronic used of alcoholic extract of Garcinia campbogia lead to a significant increase in anxiety that was manifested by the reduced time in the center zone and increased immobility in the open field test.
Garcinia camobogia chronic administration has a profound impact on sociability and social novelty with a significant decrease in both behavioral patterns compared to the control group.
These effects could be attributed to the noticed change in the dopamine turnover in the brain with a significant decrease in dopamine metabolite (HVA) and an upward expression of D2 receptors in return.
Collapse
|
70
|
VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error. Nat Neurosci 2021; 25:86-97. [PMID: 34857949 PMCID: PMC7612196 DOI: 10.1038/s41593-021-00972-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2021] [Indexed: 11/13/2022]
Abstract
Social interactions are motivated behaviors that in many species facilitate learning. However, how the brain encodes the reinforcing properties of social interactions remains elusive. Here, using in vivo recording in freely moving mice, we show that dopamine (DA) neurons of the ventral tegmental area (VTA) increase their activity during interactions with an unfamiliar conspecific and display heterogeneous responses. Using a social instrumental task (SIT), we then show that VTA DA neuron activity encodes social prediction error and drives social reinforcement learning. Thus, our findings suggest that VTA DA neurons are a neural substrate for a social learning signal that drives motivated behavior.
Collapse
|
71
|
Neuroligin-3 Regulates Excitatory Synaptic Transmission and EPSP-Spike Coupling in the Dentate Gyrus In Vivo. Mol Neurobiol 2021; 59:1098-1111. [PMID: 34845591 PMCID: PMC8857112 DOI: 10.1007/s12035-021-02663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022]
Abstract
Neuroligin-3 (Nlgn3), a neuronal adhesion protein implicated in autism spectrum disorder (ASD), is expressed at excitatory and inhibitory postsynapses and hence may regulate neuronal excitation/inhibition balance. To test this hypothesis, we recorded field excitatory postsynaptic potentials (fEPSPs) in the dentate gyrus of Nlgn3 knockout (KO) and wild-type mice. Synaptic transmission evoked by perforant path stimulation was reduced in KO mice, but coupling of the fEPSP to the population spike was increased, suggesting a compensatory change in granule cell excitability. These findings closely resemble those in neuroligin-1 (Nlgn1) KO mice and could be partially explained by the reduction in Nlgn1 levels we observed in hippocampal synaptosomes from Nlgn3 KO mice. However, unlike Nlgn1, Nlgn3 is not necessary for long-term potentiation. We conclude that while Nlgn1 and Nlgn3 have distinct functions, both are required for intact synaptic transmission in the mouse dentate gyrus. Our results indicate that interactions between neuroligins may play an important role in regulating synaptic transmission and that ASD-related neuroligin mutations may also affect the synaptic availability of other neuroligins.
Collapse
|
72
|
Seif A, Shea C, Schmid S, Stevenson RA. A Systematic Review of Brainstem Contributions to Autism Spectrum Disorder. Front Integr Neurosci 2021; 15:760116. [PMID: 34790102 PMCID: PMC8591260 DOI: 10.3389/fnint.2021.760116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects one in 66 children in Canada. The contributions of changes in the cortex and cerebellum to autism have been studied for decades. However, our understanding of brainstem contributions has only started to emerge more recently. Disruptions of sensory processing, startle response, sensory filtering, sensorimotor gating, multisensory integration and sleep are all features of ASD and are processes in which the brainstem is involved. In addition, preliminary research into brainstem contribution emphasizes the importance of the developmental timeline rather than just the mature brainstem. Therefore, the purpose of this systematic review is to compile histological, behavioral, neuroimaging, and electrophysiological evidence from human and animal studies about brainstem contributions and their functional implications in autism. Moreover, due to the developmental nature of autism, the review pays attention to the atypical brainstem development and compares findings based on age. Overall, there is evidence of an important role of brainstem disruptions in ASD, but there is still the need to examine the brainstem across the life span, from infancy to adulthood which could lead the way for early diagnosis and possibly treatment of ASD.
Collapse
Affiliation(s)
- Ala Seif
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Carly Shea
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Ryan A Stevenson
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
73
|
Cai H, Zhang P, Qi G, Zhang L, Li T, Li M, Lv X, Lei J, Ming J, Tian B. Systematic Input-Output Mapping Reveals Structural Plasticity of VTA Dopamine Neurons-Zona Incerta Loop Underlying the Social Buffering Effects in Learned Helplessness. Mol Neurobiol 2021; 59:856-871. [PMID: 34796463 DOI: 10.1007/s12035-021-02614-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
A common phenomenon called social buffering (SB), communication within conspecific animals is a benefit for a stressed individual to better recover from aversive events, is crucial to all mammals. Although the dopamine reward system has been implicated in SB, it is not clear which neuronal populations are relevant and how they contribute. Here, we adopted a learned helplessness (LH) animal model of depression and found that LH subjects housed with a conspecific partner show better performance in the shuttle box test, showing that SB improves the stress-coping abilities to deal with stress. Bidirectional manipulation of ventral tegmental area (VTA) dopamine neurons by chemogenetic tools can mimic or block the SB effect in LH mice. To screen for SB-induced structure plasticity of VTA dopamine neurons, we employed viral genetic tools for mapping input and output architecture and found LH- and SB-triggered circuit-level changes in neuronal ensembles. Zona incerta (ZI), an overlapping brain region, was significantly changed in both anterograde and retrograde tracing during LH and SB. These results reveal a neural loop with structural plasticity between VTA dopamine neurons and ZI underlies the SB effects in LH and lays a foundation for studying how VTA dopamine neurons regulate SB-related neural circuits.
Collapse
Affiliation(s)
- Hongwei Cai
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Guangjian Qi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Lijun Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Xinyuan Lv
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People's Republic of China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China.
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, People's Republic of China.
| |
Collapse
|
74
|
Poisson CL, Engel L, Saunders BT. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits 2021; 15:752420. [PMID: 34858143 PMCID: PMC8631198 DOI: 10.3389/fncir.2021.752420] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Addiction is a complex disease that impacts millions of people around the world. Clinically, addiction is formalized as substance use disorder (SUD), with three primary symptom categories: exaggerated substance use, social or lifestyle impairment, and risky substance use. Considerable efforts have been made to model features of these criteria in non-human animal research subjects, for insight into the underlying neurobiological mechanisms. Here we review evidence from rodent models of SUD-inspired criteria, focusing on the role of the striatal dopamine system. We identify distinct mesostriatal and nigrostriatal dopamine circuit functions in behavioral outcomes that are relevant to addictions and SUDs. This work suggests that striatal dopamine is essential for not only positive symptom features of SUDs, such as elevated intake and craving, but also for impairments in decision making that underlie compulsive behavior, reduced sociality, and risk taking. Understanding the functional heterogeneity of the dopamine system and related networks can offer insight into this complex symptomatology and may lead to more targeted treatments.
Collapse
Affiliation(s)
- Carli L. Poisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Liv Engel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
75
|
Autism-associated mutations in K V7 channels induce gating pore current. Proc Natl Acad Sci U S A 2021; 118:2112666118. [PMID: 34728568 PMCID: PMC8609342 DOI: 10.1073/pnas.2112666118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) adversely impacts >1% of children in the United States, causing social interaction deficits, repetitive behaviors, and communication disorders. Genetic analysis of ASD has advanced dramatically through genome sequencing, which has identified >500 genes with mutations in ASD. Mutations that alter arginine gating charges in the voltage sensor of the voltage-gated potassium (KV) channel KV7 (KCNQ) are among those frequently associated with ASD. We hypothesized that these gating charge mutations would induce gating pore current (also termed ω-current) by causing an ionic leak through the mutant voltage sensor. Unexpectedly, we found that wild-type KV7 conducts outward gating pore current through its native voltage sensor at positive membrane potentials, owing to a glutamine in the third gating charge position. In bacterial and human KV7 channels, gating charge mutations at the R1 and R2 positions cause inward gating pore current through the resting voltage sensor at negative membrane potentials, whereas mutation at R4 causes outward gating pore current through the activated voltage sensor at positive potentials. Remarkably, expression of the KV7.3/R2C ASD-associated mutation in vivo in midbrain dopamine neurons of mice disrupts action potential generation and repetitive firing. Overall, our results reveal native and mutant gating pore current in KV7 channels and implicate altered control of action potential generation by gating pore current through mutant KV7 channels as a potential pathogenic mechanism in autism.
Collapse
|
76
|
Uchigashima M, Cheung A, Futai K. Neuroligin-3: A Circuit-Specific Synapse Organizer That Shapes Normal Function and Autism Spectrum Disorder-Associated Dysfunction. Front Mol Neurosci 2021; 14:749164. [PMID: 34690695 PMCID: PMC8526735 DOI: 10.3389/fnmol.2021.749164] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
Chemical synapses provide a vital foundation for neuron-neuron communication and overall brain function. By tethering closely apposed molecular machinery for presynaptic neurotransmitter release and postsynaptic signal transduction, circuit- and context- specific synaptic properties can drive neuronal computations for animal behavior. Trans-synaptic signaling via synaptic cell adhesion molecules (CAMs) serves as a promising mechanism to generate the molecular diversity of chemical synapses. Neuroligins (Nlgns) were discovered as postsynaptic CAMs that can bind to presynaptic CAMs like Neurexins (Nrxns) at the synaptic cleft. Among the four (Nlgn1-4) or five (Nlgn1-3, Nlgn4X, and Nlgn4Y) isoforms in rodents or humans, respectively, Nlgn3 has a heterogeneous expression and function at particular subsets of chemical synapses and strong association with non-syndromic autism spectrum disorder (ASD). Several lines of evidence have suggested that the unique expression and function of Nlgn3 protein underlie circuit-specific dysfunction characteristic of non-syndromic ASD caused by the disruption of Nlgn3 gene. Furthermore, recent studies have uncovered the molecular mechanism underlying input cell-dependent expression of Nlgn3 protein at hippocampal inhibitory synapses, in which trans-synaptic signaling of specific alternatively spliced isoforms of Nlgn3 and Nrxn plays a critical role. In this review article, we overview the molecular, anatomical, and physiological knowledge about Nlgn3, focusing on the circuit-specific function of mammalian Nlgn3 and its underlying molecular mechanism. This will provide not only new insight into specific Nlgn3-mediated trans-synaptic interactions as molecular codes for synapse specification but also a better understanding of the pathophysiological basis for non-syndromic ASD associated with functional impairment in Nlgn3 gene.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Amy Cheung
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
77
|
Wu X, Morishita W, Beier KT, Heifets BD, Malenka RC. 5-HT modulation of a medial septal circuit tunes social memory stability. Nature 2021; 599:96-101. [PMID: 34616037 DOI: 10.1038/s41586-021-03956-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Social memory-the ability to recognize and remember familiar conspecifics-is critical for the survival of an animal in its social group1,2. The dorsal CA2 (dCA2)3-5 and ventral CA1 (vCA1)6 subregions of the hippocampus, and their projection targets6,7, have important roles in social memory. However, the relevant extrahippocampal input regions remain poorly defined. Here we identify the medial septum (MS) as a dCA2 input region that is critical for social memory and reveal that modulation of the MS by serotonin (5-HT) bidirectionally controls social memory formation, thereby affecting memory stability. Novel social interactions increase activity in dCA2-projecting MS neurons and induce plasticity at glutamatergic synapses from MS neurons onto dCA2 pyramidal neurons. The activity of dCA2-projecting MS cells is enhanced by the neuromodulator 5-HT acting on 5-HT1B receptors. Moreover, optogenetic manipulation of median raphe 5-HT terminals in the MS bidirectionally regulates social memory stability. This work expands our understanding of the neural mechanisms by which social interactions lead to social memory and provides evidence that 5-HT has a critical role in promoting not only prosocial behaviours8,9, but also social memory, by influencing distinct target structures.
Collapse
Affiliation(s)
- Xiaoting Wu
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Wade Morishita
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
78
|
Bermudez-Martin P, Becker JAJ, Caramello N, Fernandez SP, Costa-Campos R, Canaguier J, Barbosa S, Martinez-Gili L, Myridakis A, Dumas ME, Bruneau A, Cherbuy C, Langella P, Callebert J, Launay JM, Chabry J, Barik J, Le Merrer J, Glaichenhaus N, Davidovic L. The microbial metabolite p-Cresol induces autistic-like behaviors in mice by remodeling the gut microbiota. MICROBIOME 2021; 9:157. [PMID: 34238386 PMCID: PMC8268286 DOI: 10.1186/s40168-021-01103-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are associated with dysregulation of the microbiota-gut-brain axis, changes in microbiota composition as well as in the fecal, serum, and urine levels of microbial metabolites. Yet a causal relationship between dysregulation of the microbiota-gut-brain axis and ASD remains to be demonstrated. Here, we hypothesized that the microbial metabolite p-Cresol, which is more abundant in ASD patients compared to neurotypical individuals, could induce ASD-like behavior in mice. RESULTS Mice exposed to p-Cresol for 4 weeks in drinking water presented social behavior deficits, stereotypies, and perseverative behaviors, but no changes in anxiety, locomotion, or cognition. Abnormal social behavior induced by p-Cresol was associated with decreased activity of central dopamine neurons involved in the social reward circuit. Further, p-Cresol induced changes in microbiota composition and social behavior deficits could be transferred from p-Cresol-treated mice to control mice by fecal microbiota transplantation (FMT). We also showed that mice transplanted with the microbiota of p-Cresol-treated mice exhibited increased fecal p-Cresol excretion, compared to mice transplanted with the microbiota of control mice. In addition, we identified possible p-Cresol bacterial producers. Lastly, the microbiota of control mice rescued social interactions, dopamine neurons excitability, and fecal p-Cresol levels when transplanted to p-Cresol-treated mice. CONCLUSIONS The microbial metabolite p-Cresol induces selectively ASD core behavioral symptoms in mice. Social behavior deficits induced by p-Cresol are dependant on changes in microbiota composition. Our study paves the way for therapeutic interventions targeting the microbiota and p-Cresol production to treat patients with ASD. Video abstract.
Collapse
Affiliation(s)
- Patricia Bermudez-Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, UMR0075 INRAE, UMR7247 CNRS, IFCE, Inserm, Université François Rabelais, 37380, Nouzilly, France
- UMR 1253, iBrain, Université de Tours, Inserm, CNRS, Tours, 37200, France
| | - Nicolas Caramello
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
- Current address: Structural Biology, Radiation Facility, European Synchrotron, Grenoble, France
| | - Sebastian P Fernandez
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Renan Costa-Campos
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Juliette Canaguier
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Susana Barbosa
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Laura Martinez-Gili
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Antonis Myridakis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Marc-Emmanuel Dumas
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Genomic and Environmental Medicine, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, SW3 6KY, UK
- European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital, University of Lille, 59045, Lille, France
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montréal, QC, H3A 0G1, Canada
| | - Aurélia Bruneau
- AgroParisTech, INRAE, Institut Micalis, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Cherbuy
- AgroParisTech, INRAE, Institut Micalis, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- AgroParisTech, INRAE, Institut Micalis, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jacques Callebert
- UMR-S 942, INSERM, Department of Biochemistry, Lariboisière Hospital, Paris, France
- Centre for Biological Resources, BB-0033-00064, Lariboisière Hospital, Paris, France
| | - Jean-Marie Launay
- UMR-S 942, INSERM, Department of Biochemistry, Lariboisière Hospital, Paris, France
- Centre for Biological Resources, BB-0033-00064, Lariboisière Hospital, Paris, France
| | - Joëlle Chabry
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Jacques Barik
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, UMR0075 INRAE, UMR7247 CNRS, IFCE, Inserm, Université François Rabelais, 37380, Nouzilly, France
- UMR 1253, iBrain, Université de Tours, Inserm, CNRS, Tours, 37200, France
| | - Nicolas Glaichenhaus
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France
- Fondation FondaMental, Créteil, France
| | - Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, 660 route des Lucioles, 06560, Valbonne, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
79
|
De Risi M, Tufano M, Alvino FG, Ferraro MG, Torromino G, Gigante Y, Monfregola J, Marrocco E, Pulcrano S, Tunisi L, Lubrano C, Papy-Garcia D, Tuchman Y, Salleo A, Santoro F, Bellenchi GC, Cristino L, Ballabio A, Fraldi A, De Leonibus E. Altered heparan sulfate metabolism during development triggers dopamine-dependent autistic-behaviours in models of lysosomal storage disorders. Nat Commun 2021; 12:3495. [PMID: 34108486 PMCID: PMC8190083 DOI: 10.1038/s41467-021-23903-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.
Collapse
Affiliation(s)
- Maria De Risi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy
| | - Michele Tufano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | | | - Giulia Torromino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy
| | - Ylenia Gigante
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Lea Tunisi
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Naples, Italy
| | - Claudia Lubrano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Yaakov Tuchman
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | | | - Luigia Cristino
- Institute of Biomolecular Chemistry, CNR, Pozzuoli, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Alessandro Fraldi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
80
|
Pavăl D, Micluția IV. The Dopamine Hypothesis of Autism Spectrum Disorder Revisited: Current Status and Future Prospects. Dev Neurosci 2021; 43:73-83. [PMID: 34010842 DOI: 10.1159/000515751] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. Despite intensive research, its etiopathogenesis remains largely unclear. Although studies consistently reported dopaminergic anomalies, a coherent dopaminergic model of ASD was lacking until recently. In 2017, we provided a theoretical framework for a "dopamine hypothesis of ASD" which proposed that autistic behavior arises from a dysfunctional midbrain dopaminergic system. Namely, we hypothesized that malfunction of 2 critical circuits originating in the midbrain, that is, the mesocorticolimbic and nigrostriatal pathways, generates the core behavioral features of ASD. Moreover, we provided key predictions of our model along with testing means. Since then, a notable number of studies referenced our work and numerous others provided support for our model. To account for these developments, we review all these recent data and discuss their implications. Furthermore, in the light of these new insights, we further refine and reconceptualize our model, debating on the possibility that various etiologies of ASD converge upon a dysfunctional midbrain dopaminergic system. In addition, we discuss future prospects, providing new means of testing our hypothesis, as well as its limitations. Along these lines, we aimed to provide a model which, if confirmed, could provide a better understanding of the etiopathogenesis of ASD along with new therapeutic strategies.
Collapse
Affiliation(s)
- Denis Pavăl
- Psychiatry Clinic, Emergency County Hospital, Cluj-Napoca, Romania
| | - Ioana Valentina Micluția
- Department of Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
81
|
Abstract
In a recent publication in Cell, Buffington et al. provide a fascinating example of hologenomic behavioral regulation in an autism mouse model.1 The authors report that gut bacteria from wild-type mice rescue the social deficit of Cntnap2 knockout mice.
Collapse
|
82
|
Drug-Evoked Synaptic Plasticity of Excitatory Transmission in the Ventral Tegmental Area. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039701. [PMID: 32341062 DOI: 10.1101/cshperspect.a039701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cocaine leads to a strong euphoria, which is at the origin of its recreational use. Past the acute effects, the drug leaves traces in the brain that persist long after it has been cleared from the body. These traces eventually shape behavior such that drug use may become compulsive, and addiction develops. Here, we discuss cocaine-evoked synaptic plasticity of glutamatergic transmission onto dopamine (DA) neurons of the ventral tegmental area (VTA) as one of the earliest traces after a first injection of cocaine. We review the literature that has examined the induction requirements, as well as the expression mechanism of this form of plasticity, and ask the question about its functional significance.
Collapse
|
83
|
Buffington SA, Dooling SW, Sgritta M, Noecker C, Murillo OD, Felice DF, Turnbaugh PJ, Costa-Mattioli M. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell 2021; 184:1740-1756.e16. [PMID: 33705688 PMCID: PMC8996745 DOI: 10.1016/j.cell.2021.02.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
The core symptoms of many neurological disorders have traditionally been thought to be caused by genetic variants affecting brain development and function. However, the gut microbiome, another important source of variation, can also influence specific behaviors. Thus, it is critical to unravel the contributions of host genetic variation, the microbiome, and their interactions to complex behaviors. Unexpectedly, we discovered that different maladaptive behaviors are interdependently regulated by the microbiome and host genes in the Cntnap2-/- model for neurodevelopmental disorders. The hyperactivity phenotype of Cntnap2-/- mice is caused by host genetics, whereas the social-behavior phenotype is mediated by the gut microbiome. Interestingly, specific microbial intervention selectively rescued the social deficits in Cntnap2-/- mice through upregulation of metabolites in the tetrahydrobiopterin synthesis pathway. Our findings that behavioral abnormalities could have distinct origins (host genetic versus microbial) may change the way we think about neurological disorders and how to treat them.
Collapse
Affiliation(s)
- Shelly A Buffington
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean W Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cecilia Noecker
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Oscar D Murillo
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela F Felice
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
84
|
Contestabile A, Casarotto G, Girard B, Tzanoulinou S, Bellone C. Deconstructing the contribution of sensory cues in social approach. Eur J Neurosci 2021; 53:3199-3211. [PMID: 33751673 PMCID: PMC8251867 DOI: 10.1111/ejn.15179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 01/23/2023]
Abstract
Social interaction is a complex and highly conserved behavior that safeguards survival and reproductive success. Although considerable progress has been made regarding our understanding of same-sex conspecific and non-aggressive interactions, questions regarding the precise contribution of sensory cues in social approach and their specific neurobiological correlates remain open. Here, by designing a series of experiments with diverse social and object stimuli manipulations in custom-made enclosures, we first sought to deconstruct key elements of social preference as assessed by the three-chamber task. Our results highlight the importance of social olfactory cues in approach behavior. Subsequently, we interrogated whether a social odor would activate dopaminergic neurons of the Ventral Tegmental Area in the same way as a juvenile conspecific would. Employing in vivo recordings in freely behaving mice, we observed an increase of the firing only during the transition toward the juvenile mouse and not during the transition toward the object impregnated with social odor, suggesting that these two experiences are distinct and can be differentiated at the neuronal level. Moreover, using a four-choice task, we further showed that mice prefer to explore complex social stimuli compared to isolated sensory cues. Our findings offer insights toward understanding how different sensory modalities contribute to the neurobiological basis of social behavior which can be essential when studying social deficits observed in autism-, depression-, anxiety-, or schizophrenia-related mouse models.
Collapse
Affiliation(s)
| | - Giulia Casarotto
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Benoit Girard
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Stamatina Tzanoulinou
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Camilla Bellone
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
85
|
Henderson HJM, Etem G, Bjorni M, Belnap MA, Rosellini B, Halladay LR. Sex-dependent and ontogenetic effects of low dose ethanol on social behavioral deficits induced by mouse maternal separation. Behav Brain Res 2021; 406:113241. [PMID: 33727047 DOI: 10.1016/j.bbr.2021.113241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/06/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Early life stress can induce lifelong emotional and social behavioral deficits that may in some cases be alleviated by drugs or alcohol. A model for early life stress, rodent maternal separation, recapitulates these behavioral sequelae, which are not limited to potentiated anxiety-like behavior, attenuated social motivation, and altered reward-seeking. Here we employed mouse maternal separation with early weaning (MSEW), consisting of pup-dam separation lasting 4-8 hours on postnatal days (PD) 2-16, with early weaning on PD 17. Prior MSEW studies have limited subjects by age or sex, so we more comprehensively investigated MSEW effects in both sexes, during adolescence and adulthood. We found universal effects of MSEW to include lifelong enhancement of anxiety-like and despair behavior, as well as deficits in social motivation. We also observed some sex-dependent effects of MSEW, namely that female MSEW mice exhibited social habituation to a greater degree than their male counterparts. Low dose ethanol administration had no major effects on the social behavior of non-stressed mice. But interestingly, MSEW-induced social habituation was counteracted by low dose ethanol in adolescent female mice, and potentiated in adolescent male mice. These effects were absent in adult animals, suggesting that ethanol may exert differential effects on the developing brain in such a manner to produce age-, sex-, and stress-dependent effects upon social behavior. Together, results indicate that MSEW reliably produces long-lasting impairments in emotional and social behaviors in both sexes and across the lifespan, but may exert more salient social behavioral effects on female animals.
Collapse
Affiliation(s)
- Hannah J M Henderson
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Gabrielle Etem
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Max Bjorni
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Malia A Belnap
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Bryce Rosellini
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA
| | - Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| |
Collapse
|
86
|
Manduca A, Carbone E, Schiavi S, Cacchione C, Buzzelli V, Campolongo P, Trezza V. The neurochemistry of social reward during development: What have we learned from rodent models? J Neurochem 2021; 157:1408-1435. [PMID: 33569830 DOI: 10.1111/jnc.15321] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022]
Abstract
Social rewards are fundamental to survival and overall health. Several studies suggest that adequate social stimuli during early life are critical for developing appropriate socioemotional and cognitive skills, whereas adverse social experiences negatively affect the proper development of brain and behavior, by increasing the susceptibility to develop neuropsychiatric conditions. Therefore, a better understanding of the neural mechanisms underlying social interactions, and their rewarding components in particular, is an important challenge of current neuroscience research. In this context, preclinical research has a crucial role: Animal models allow to investigate the neurobiological aspects of social reward in order to shed light on possible neurochemical alterations causing aberrant social reward processing in neuropsychiatric diseases, and they allow to test the validity and safety of innovative therapeutic strategies. Here, we discuss preclinical research that has investigated the rewarding properties of two forms of social interaction that occur in different phases of the lifespan of mammals, that is, mother-infant interaction and social interactions with peers, by focusing on the main neurotransmitter systems mediating their rewarding components. Together, the research performed so far helped to elucidate the mechanisms of social reward and its psychobiological components throughout development, thus increasing our understanding of the neurobiological substrates sustaining social functioning in health conditions and social dysfunction in major psychiatric disorders.
Collapse
Affiliation(s)
- Antonia Manduca
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy.,Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Emilia Carbone
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| | - Claudia Cacchione
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| | - Valeria Buzzelli
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| |
Collapse
|
87
|
Cosi C, Martel JC, Auclair AL, Collo G, Cavalleri L, Heusler P, Leriche L, Gaudoux F, Sokoloff P, Moser PC, Gatti-McArthur S. Pharmacology profile of F17464, a dopamine D 3 receptor preferential antagonist. Eur J Pharmacol 2021; 890:173635. [PMID: 33065094 DOI: 10.1016/j.ejphar.2020.173635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
F17464 (N-(3-{4-[4-(8-Oxo-8H-[1,3]-dioxolo-[4,5-g]-chromen-7-yl)-butyl]-piperazin-1-yl}-phenyl)-methanesulfonamide, hydrochloride) is a new potential antipsychotic with a unique profile. The compound exhibits high affinity for the human dopamine receptor subtype 3 (hD3) (Ki = 0.17 nM) and the serotonin receptor subtype 1a (5-HT1a) (Ki = 0.16 nM) and a >50 fold lower affinity for the human dopamine receptor subtype 2 short and long form (hD2s/l) (Ki = 8.9 and 12.1 nM, respectively). [14C]F17464 dynamic studies show a slower dissociation rate from hD3 receptor (t1/2 = 110 min) than from hD2s receptor (t1/2 = 1.4 min) and functional studies demonstrate that F17464 is a D3 receptor antagonist, 5-HT1a receptor partial agonist. In human dopaminergic neurons F17464 blocks ketamine induced morphological changes, an effect D3 receptor mediated. In vivo F17464 target engagement of both D2 and 5-HT1a receptors is demonstrated in displacement studies in the mouse brain. F17464 increases dopamine release in the rat prefrontal cortex and mouse lateral forebrain - dorsal striatum and seems to reduce the effect of MK801 on % c-fos mRNA medium expressing neurons in cortical and subcortical regions. F17464 also rescues valproate induced impairment in a rat social interaction model of autism. All the neurochemistry and behavioural effects of F17464 are observed in the dose range 0.32-2.5 mg/kg i.p. in both rats and mice. The in vitro - in vivo pharmacology profile of F17464 in preclinical models is discussed in support of a therapeutic use of the compound in schizophrenia and autism.
Collapse
Affiliation(s)
- Cristina Cosi
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Jean-Claude Martel
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Agnès L Auclair
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Ginetta Collo
- Dept of Molecular and Translational Medicine University of Brescia, Viale Europa 11, Brescia, Italy
| | - Laura Cavalleri
- Dept of Molecular and Translational Medicine University of Brescia, Viale Europa 11, Brescia, Italy
| | - Peter Heusler
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Ludovic Leriche
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Florence Gaudoux
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Pierre Sokoloff
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Paul C Moser
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France
| | - Silvia Gatti-McArthur
- Innovation Unit CNS, CEPC Pierre Fabre Laboratories, Bel Air de Campans, 81106, Castres, France.
| |
Collapse
|
88
|
RAB39B-mediated trafficking of the GluA2-AMPAR subunit controls dendritic spine maturation and intellectual disability-related behaviour. Mol Psychiatry 2021; 26:6531-6549. [PMID: 34035473 PMCID: PMC8760075 DOI: 10.1038/s41380-021-01155-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Mutations in the RAB39B gene cause X-linked intellectual disability (XLID), comorbid with autism spectrum disorders or early Parkinson's disease. One of the functions of the neuronal small GTPase RAB39B is to drive GluA2/GluA3 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) maturation and trafficking, determining AMPAR subunit composition at glutamatergic postsynaptic neuronal terminals. Taking advantage of the Rab39b knockout murine model, we show that a lack of RAB39B affects neuronal dendritic spine refinement, prompting a more Ca2+-permeable and excitable synaptic network, which correlates with an immature spine arrangement and behavioural and cognitive alterations in adult mice. The persistence of immature circuits is triggered by increased hypermobility of the spine, which is restored by the Ca2+-permeable AMPAR antagonist NASPM. Together, these data confirm that RAB39B controls AMPAR trafficking, which in turn plays a pivotal role in neuronal dendritic spine remodelling and that targeting Ca2+-permeable AMPARs may highlight future pharmaceutical interventions for RAB39B-associated disease conditions.
Collapse
|
89
|
Ueda D, Yonemochi N, Kamata T, Shibasaki M, Kamei J, Waddington JL, Ikeda H. Increase in neuropeptide Y activity impairs social behaviour in association with glutamatergic dysregulation in diabetic mice. Br J Pharmacol 2020; 178:726-740. [PMID: 33197050 DOI: 10.1111/bph.15326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with diabetes mellitus are reported to show a raised prevalence of mental disorders, which may be reflected in impaired social interaction. However, the mechanisms underlying such impairment in diabetes are unknown. EXPERIMENTAL APPROACH The present study investigated whether social interaction is impaired in diabetic mice and whether central neuropeptide Y (NPY) and glutamatergic function are involved in such impairment. KEY RESULTS In the three-chamber test, social novelty preference, but not sociability, was impaired in streptozotocin (STZ)-induced diabetic mice. The mRNA level of NPY in the hypothalamus was increased in STZ-induced diabetic mice. Injection of the NPY Y2 receptor agonist NPY 13-36 into naïve mice impaired social novelty preference, but not sociability, and this effect was inhibited by the Y2 receptor antagonist BIIE 0246. BIIE 0246 also reversed the impairment of social novelty preference in STZ-induced diabetic mice. Similarly, injection of the AMPA receptor agonist AMPA into naïve mice impaired social novelty preference, but not sociability, and this effect was inhibited by the AMPA receptor antagonist NBQX. Impairment of social novelty preference induced by NPY 13-36 was inhibited by NBQX, whereas impairment of social novelty preference induced by AMPA was not inhibited by BIIE 0246. Finally, impairment of social novelty preference in STZ-induced diabetic mice was reversed by NBQX. CONCLUSION AND IMPLICATIONS These findings suggest that NPY neurons are activated in diabetic mice and that this may impair social novelty preference by promoting glutamatergic function through Y2 receptors.
Collapse
Affiliation(s)
- Daiki Ueda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Naomi Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Tomohiro Kamata
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Masahiro Shibasaki
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
90
|
Fóthi Á, Soorya L, Lőrincz A. The Autism Palette: Combinations of Impairments Explain the Heterogeneity in ASD. Front Psychiatry 2020; 11:503462. [PMID: 33343403 PMCID: PMC7738611 DOI: 10.3389/fpsyt.2020.503462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric condition traditionally defined by core symptoms in social behavior, speech/communication, repetitive behavior, and restricted interests. Beyond the core symptoms, autism has strong association with other disorders such as intellectual disability (ID), epilepsy, schizophrenia among many others. This paper outlines a theory of ASD with capacity to connect heterogeneous "core" symptoms, medical and psychiatric comorbidities as well as other etiological theories of autism in a unifying cognitive framework rooted in neuroscience and genetics. Cognition is embedded into an ever-developing structure modified by experiences, including the outcomes of environment influencing behaviors. The key constraint of cognition is that the brain can handle only 7±2 relevant variables at a time, whereas sensory variables, i.e., the number of sensory neurons is orders of magnitude larger. As a result, (a) the extraction, (b) the encoding, and (c) the capability for the efficient cognitive manipulation of the relevant variables, and (d) the compensatory mechanisms that counteract computational delays of the distributed components are critical. We outline our theoretical model to describe a Cartesian Factor (CF) forming, autoencoder-like cognitive mechanism which breaks combinatorial explosion and is accelerated by internal reinforcing machineries and discuss the neural processes that support CF formation. Impairments in any of these aspects may disrupt learning, cognitive manipulation, decisions on interactions, and execution of decisions. We suggest that social interactions are the most susceptible to combinations of diverse small impairments and can be spoiled in many ways that pile up. Comorbidity is experienced, if any of the many potential impairments is relatively strong. We consider component spoiling impairments as the basic colors of autism, whereas the combinations of individual impairments make the palette of autism. We put forth arguments on the possibility of dissociating the different main elements of the impairments that can appear together. For example, impairments of generalization (domain general learning) and impairments of dealing with many variable problems, such as social situations may appear independently and may mutually enhance their impacts. We also consider mechanisms that may lead to protection.
Collapse
Affiliation(s)
- Ábel Fóthi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
| | - Latha Soorya
- Department of Psychiatry and Behavioral Sciences, Rush Medical College, Chicago, IL, United States
| | - András Lőrincz
- Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
91
|
Altered baseline and amphetamine-mediated behavioral profiles in dopamine transporter Cre (DAT-Ires-Cre) mice compared to tyrosine hydroxylase Cre (TH-Cre) mice. Psychopharmacology (Berl) 2020; 237:3553-3568. [PMID: 32778904 PMCID: PMC10120402 DOI: 10.1007/s00213-020-05635-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Transgenic mouse lines expressing Cre-recombinase under the regulation of either dopamine transporter (DAT) or tyrosine hydroxylase (TH) promoters are commonly used to study the dopamine (DA) system. While use of the TH promoter appears to have less liability to changes in native gene expression, transgene insertion in the DAT locus results in reduced DAT expression and function. This confound is sometimes overlooked in genetically targeted behavioral experiments. OBJECTIVES We sought to evaluate the suitability of DAT-Ires-Cre and TH-Cre transgenic lines for behavioral pharmacology experiments with DA agonists. We hypothesized that DAT-Ires-Cre expression would impact DAT-mediated behaviors, but no impact of TH-Cre expression would be observed. METHODS DAT-Ires-Cre and TH-Cre mice bred on mixed 129S6/C57BL/6 and pure C57BL/6 backgrounds were evaluated for novelty-induced, baseline, and amphetamine (AMPH)-induced locomotion, and for AMPH and D1 agonist (SKF-38393)-induced preservative behaviors. RESULTS DAT-Ires-Cre mice on both mixed 129S6/C57BL/6 and pure C57BL/6 backgrounds displayed increased novelty-induced activity and decreased AMPH-induced locomotion, with mixed results for AMPH-induced stereotypy. TH-Cre mice on both backgrounds showed typical baseline activity and AMPH-induced stereotypy, with a difference in AMPH-induced locomotion observed only on the mixed background. Both transgenic lines displayed unaltered SKF-38393-induced grooming behavior. CONCLUSIONS Our findings indicate that the DAT-Ires-Cre transgenic line may lead to confounds for experiments that are dependent on DAT expression. The TH-Cre transgenic line studied here may be a more useful option, depending on background strain, because of its lack of baseline and drug-induced phenotypes. These data highlight the importance of appropriate controls in studies employing transgenic mice.
Collapse
|
92
|
Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, Watanabe M, Uesaka N, Kano M. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun 2020; 11:5140. [PMID: 33046712 PMCID: PMC7552417 DOI: 10.1038/s41467-020-18861-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is thought to result from deviation from normal development of neural circuits and synaptic function. Many genes with mutation in ASD patients have been identified. Here we report that two molecules associated with ASD susceptibility, contactin associated protein-like 2 (CNTNAP2) and Abelson helper integration site-1 (AHI1), are required for synaptic function and ASD-related behavior in mice. Knockdown of CNTNAP2 or AHI1 in layer 2/3 pyramidal neurons of the developing mouse prefrontal cortex (PFC) reduced excitatory synaptic transmission, impaired social interaction and induced mild vocalization abnormality. Although the causes of reduced excitatory transmission were different, pharmacological enhancement of AMPA receptor function effectively restored impaired social behavior in both CNTNAP2- and AHI1-knockdown mice. We conclude that reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons of the PFC leads to impaired social interaction and mild vocalization abnormality in mice. CNTNAP2 or AHI1 are autism-associated genes. Here the authors show using knockdown of the genes that this results in reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons in the prefrontal cortex and is associated with impaired social interaction in mice.
Collapse
Affiliation(s)
- Hiroaki Sacai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Honoka Suzuki
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
93
|
Midbrain circuits of novelty processing. Neurobiol Learn Mem 2020; 176:107323. [PMID: 33053429 DOI: 10.1016/j.nlm.2020.107323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Novelty triggers an increase in orienting behavior that is critical to evaluate the potential salience of unknown events. As novelty becomes familiar upon repeated encounters, this increase in response rapidly habituates as a form of behavioral adaptation underlying goal-directed behaviors. Many neurodevelopmental, psychiatric and neurodegenerative disorders are associated with abnormal responses to novelty and/or familiarity, although the neuronal circuits and cellular/molecular mechanisms underlying these natural behaviors in the healthy brain are largely unknown, as is the maladaptive processes that occur to induce impairment of novelty signaling in diseased brains. In rodents, the development of cutting-edge tools that allow for measurements of real time activity dynamics in selectively identified neuronal ensembles by gene expression signatures is beginning to provide advances in understanding the neural bases of the novelty response. Accumulating evidence indicate that midbrain circuits, the majority of which linked to dopamine transmission, promote exploratory assessments and guide approach/avoidance behaviors to different types of novelty via specific projection sites. The present review article focuses on midbrain circuit analysis relevant to novelty processing and habituation with familiarity.
Collapse
|
94
|
Taylor SC, Ferri SL, Grewal M, Smernoff Z, Bucan M, Weiner JA, Abel T, Brodkin ES. The Role of Synaptic Cell Adhesion Molecules and Associated Scaffolding Proteins in Social Affiliative Behaviors. Biol Psychiatry 2020; 88:442-451. [PMID: 32305215 PMCID: PMC7442706 DOI: 10.1016/j.biopsych.2020.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Social affiliative behaviors-engagement in positive (i.e., nonaggressive) social approach and reciprocal social interactions with a conspecific-comprise a construct within the National Institute of Mental Health Research Domain Criteria Social Processes Domain. These behaviors are disrupted in multiple human neurodevelopmental and neuropsychiatric disorders, such as autism, schizophrenia, social phobia, and others. Human genetic studies have strongly implicated synaptic cell adhesion molecules (sCAMs) in several such disorders that involve marked reductions, or other dysregulations, of social affiliative behaviors. Here, we review the literature on the role of sCAMs in social affiliative behaviors. We integrate findings pertaining to synapse structure and morphology, neurotransmission, postsynaptic signaling pathways, and neural circuitry to propose a multilevel model that addresses the impact of a diverse group of sCAMs, including neurexins, neuroligins, protocadherins, immunoglobulin superfamily proteins, and leucine-rich repeat proteins, as well as their associated scaffolding proteins, including SHANKs and others, on social affiliative behaviors. This review finds that the disruption of sCAMs often manifests in changes in social affiliative behaviors, likely through alterations in synaptic maturity, pruning, and specificity, leading to excitation/inhibition imbalance in several key regions, namely the medial prefrontal cortex, basolateral amygdala, hippocampus, anterior cingulate cortex, and ventral tegmental area. Unraveling the complex network of interacting sCAMs in glutamatergic synapses will be an important strategy for elucidating the mechanisms of social affiliative behaviors and the alteration of these behaviors in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara C Taylor
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah L Ferri
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Mahip Grewal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zoe Smernoff
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maja Bucan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua A Weiner
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Biology, University of Iowa, Iowa City, Iowa
| | - Ted Abel
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
95
|
Complex Interactions between Genes and Social Environment Cause Phenotypes Associated with Autism Spectrum Disorders in Mice. eNeuro 2020; 7:ENEURO.0124-20.2020. [PMID: 32669345 PMCID: PMC7418534 DOI: 10.1523/eneuro.0124-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
The etiology of autism spectrum disorders (ASDs) is a complex combination of genetic and environmental factors. Neuroligin3, a synaptic adhesion protein, and cytoplasmic FMR1 interacting protein 1 (CYFIP1), a regulator of protein translation and actin polymerization, are two proteins associated with ASDs that interact in neurons in vivo Here, we investigated the role of the Neuroligin3/CYFIP1 pathway in behavioral functioning and synapse formation in mice and found that it contributes to motor learning and synapse formation in males. Similar investigation in female mice revealed an absence of such phenotypes, suggesting that females are protected against mutations affecting this pathway. Previously, we showed that the social environment influences the behavior of male mice. We extended this finding and found that the transcriptome of wild-type mice housed with their mutant littermates, lacking Neuroligin3, differed from the transcriptome of wild-type mice housed together. Altogether, these results identify the role of the Neuroligin3/CYFIP1 pathway in male mouse behavior and highlight its sensitivity to social environment.
Collapse
|
96
|
Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature 2020; 584:252-256. [PMID: 32760004 PMCID: PMC7116741 DOI: 10.1038/s41586-020-2563-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
One of the most fundamental challenges in developing treatments for autism-spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of autism cases1–3. Subsets of risk genes can be grouped into functionally-related pathways, most prominently synaptic proteins, translational regulation, and chromatin modifications. To possibly circumvent this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4–6 which regulate aspects of social behavior in mammals7. However, whether genetic risk factors might predispose to autism due to modification of oxytocinergic signaling remains largely unknown. Here, we report that an autism-associated mutation in the synaptic adhesion molecule neuroligin-3 (Nlgn3) results in impaired oxytocin signaling in dopaminergic neurons and in altered social novelty responses in mice. Surprisingly, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3KO mice with a novel, highly specific, brain-penetrant inhibitor of MAP-kinase interacting kinases resets mRNA translation and restores oxytocin and social novelty responses. Thus, this work identifies an unexpected convergence between the genetic autism risk factor Nlgn3, translational regulation, and oxytocinergic signaling. Focus on such common core plasticity elements might provide a pragmatic approach to reduce the heterogeneity of autism. Ultimately, this would allow for mechanism-based stratification of patient populations to increase the success of therapeutic interventions.
Collapse
|
97
|
Emmons R, Sadok T, Rovero NG, Belnap MA, Henderson HJM, Quan AJ, Del Toro NJ, Halladay LR. Chemogenetic manipulation of the bed nucleus of the stria terminalis counteracts social behavioral deficits induced by early life stress in C57BL/6J mice. J Neurosci Res 2020; 99:90-109. [PMID: 32476178 DOI: 10.1002/jnr.24644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
Trauma during critical periods of development can induce long-lasting adverse effects. To study neural aberrations resulting from early life stress (ELS), many studies utilize rodent maternal separation, whereby pups are intermittently deprived of maternal care necessary for proper development. This can produce adulthood behavioral deficits related to anxiety, reward, and social behavior. The bed nucleus of the stria terminalis (BNST) encodes aspects of anxiety-like and social behaviors, and also undergoes developmental maturation during the early postnatal period, rendering it vulnerable to effects of ELS. Mice underwent maternal separation (separation 4 hr/day during postnatal day (PD)2-5 and 8 hr/day on PD6-16) with early weaning on PD17, which induced behavioral deficits in adulthood performance on two-part social interaction task designed to test social motivation (choice between a same-sex novel conspecific or an empty cup) and social novelty preference (choice between the original-novel conspecific vs. a new-novel conspecific). We used chemogenetics to non-selectively silence or activate neurons in the BNST to examine its role in social motivation and social novelty preference, in mice with or without the history of ELS. Manipulation of BNST produced differing social behavior effects in non-stressed versus ELS mice; social motivation was decreased in non-stressed mice following BNST activation, but unchanged following BNST silencing, while ELS mice showed no change in social behavior after BNST activation, but exhibited enhancement of social motivation-for which they were deficient prior-following BNST silencing. Findings emphasize the BNST as a potential therapeutic target for social anxiety disorders instigated by childhood trauma.
Collapse
Affiliation(s)
- Randi Emmons
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Tasneem Sadok
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Natalie G Rovero
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Malia A Belnap
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | | | - Alex J Quan
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | - Noël J Del Toro
- Department of Psychology, Santa Clara University, Santa Clara, CA, USA
| | | |
Collapse
|
98
|
Rincón-Cortés M, Grace AA. Postpartum changes in affect-related behavior and VTA dopamine neuron activity in rats. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109768. [PMID: 31655159 PMCID: PMC6910715 DOI: 10.1016/j.pnpbp.2019.109768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Abstract
The onset of motherhood is accompanied by alterations in emotional and affective behaviors. Many new mothers experience transient and mild depressive symptoms that typically resolve spontaneously (i.e. postpartum blues) but increase the risk for postpartum depression (PPD). There is little data regarding the neural adaptations occurring in response to parturition and shortly after birth that may be associated with these affective changes. Although the dopamine (DA) system is involved in affect, maternal motivation and PPD, little is known about postpartum DA function. We compared affective behavior in virgin and postpartum adult female rats at early and late time points. In vivo extracellular recordings of VTA DA neurons were performed to evaluate 3 parameters: number of active DA neurons (i.e. population activity), firing rate, and firing pattern. Compared with virgins, postpartum rats exhibited increased anxiety-like behavior in the elevated plus maze at 1-day postpartum; reduced social motivation at 1- and 3-days postpartum, reduced anxiety-like behavior in the novelty suppressed feeding test throughout the first week postpartum and increased forced swim test immobility at 1-day postpartum. 1- and 3-day postpartum females exhibited attenuated VTA population activity without changes in firing rate or pattern. None of these effects were observed in late postpartum females when compared with virgins. These data suggest that parturition induces time-dependent changes in a subset of affect-related behaviors and DA function during the postpartum period in rodents, with early postpartum females exhibiting depression-related phenotypes (i.e. low social motivation, higher immobility, blunted DA activity).
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| | | |
Collapse
|
99
|
Kim K, Shin W, Kang M, Lee S, Kim D, Kang R, Jung Y, Cho Y, Yang E, Kim H, Bae YC, Kim E. Presynaptic PTPσ regulates postsynaptic NMDA receptor function through direct adhesion-independent mechanisms. eLife 2020; 9:54224. [PMID: 32142410 PMCID: PMC7069723 DOI: 10.7554/elife.54224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Synaptic adhesion molecules regulate synapse development and function. However, whether and how presynaptic adhesion molecules regulate postsynaptic NMDAR function remains largely unclear. Presynaptic LAR family receptor tyrosine phosphatases (LAR-RPTPs) regulate synapse development through mechanisms that include trans-synaptic adhesion; however, whether they regulate postsynaptic receptor functions remains unknown. Here we report that presynaptic PTPσ, a LAR-RPTP, enhances postsynaptic NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity in the hippocampus. This regulation does not involve trans-synaptic adhesions of PTPσ, suggesting that the cytoplasmic domains of PTPσ, known to have tyrosine phosphatase activity and mediate protein-protein interactions, are important. In line with this, phosphotyrosine levels of presynaptic proteins, including neurexin-1, are strongly increased in PTPσ-mutant mice. Behaviorally, PTPσ-dependent NMDAR regulation is important for social and reward-related novelty recognition. These results suggest that presynaptic PTPσ regulates postsynaptic NMDAR function through trans-synaptic and direct adhesion-independent mechanisms and novelty recognition in social and reward contexts.
Collapse
Affiliation(s)
- Kyungdeok Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Wangyong Shin
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Muwon Kang
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Ryeonghwa Kang
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Yewon Jung
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Eunjoon Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| |
Collapse
|
100
|
Kim Y, Noh YW, Kim K, Yang E, Kim H, Kim E. IRSp53 Deletion in Glutamatergic and GABAergic Neurons and in Male and Female Mice Leads to Distinct Electrophysiological and Behavioral Phenotypes. Front Cell Neurosci 2020; 14:23. [PMID: 32116566 PMCID: PMC7026675 DOI: 10.3389/fncel.2020.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
IRSp53 (also known as BAIAP2) is an abundant excitatory postsynaptic scaffolding protein implicated in autism spectrum disorders (ASD), schizophrenia, and attention-deficit/hyperactivity disorder (ADHD). IRSp53 is expressed in different cell types across different brain regions, although it remains unclear how IRSp53 deletion in different cell types affects brain functions and behaviors in mice. Here, we deleted IRSp53 in excitatory and inhibitory neurons in mice and compared resulting phenotypes in males and females. IRSp53 deletion in excitatory neurons driven by Emx1 leads to strong social deficits and hyperactivity without affecting anxiety-like behavior, whereas IRSp53 deletion in inhibitory neurons driven by Viaat has minimal impacts on these behaviors in male mice. In female mice, excitatory neuronal IRSp53 deletion induces hyperactivity but moderate social deficits. Excitatory neuronal IRSp53 deletion in male mice induces an increased ratio of evoked excitatory and inhibitory synaptic transmission (E/I ratio) in layer V pyramidal neurons in the prelimbic region of the medial prefrontal cortex (mPFC), whereas the same mutation does not alter the E/I ratio in female neurons. These results suggest that IRSp53 deletion in excitatory and inhibitory neurons and in male and female mice has distinct impacts on behaviors and synaptic transmission.
Collapse
Affiliation(s)
- Yangsik Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Young Woo Noh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|