51
|
Papiris SA, Kannengiesser C, Borie R, Kolilekas L, Kallieri M, Apollonatou V, Ba I, Nathan N, Bush A, Griese M, Dieude P, Crestani B, Manali ED. Genetics in Idiopathic Pulmonary Fibrosis: A Clinical Perspective. Diagnostics (Basel) 2022; 12:2928. [PMID: 36552935 PMCID: PMC9777433 DOI: 10.3390/diagnostics12122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Unraveling the genetic background in a significant proportion of patients with both sporadic and familial IPF provided new insights into the pathogenic pathways of pulmonary fibrosis. AIM The aim of the present study is to overview the clinical significance of genetics in IPF. PERSPECTIVE It is fascinating to realize the so-far underestimated but dynamically increasing impact that genetics has on aspects related to the pathophysiology, accurate and early diagnosis, and treatment and prevention of this devastating disease. Genetics in IPF have contributed as no other in unchaining the disease from the dogma of a "a sporadic entity of the elderly, limited to the lungs" and allowed all scientists, but mostly clinicians, all over the world to consider its many aspects and "faces" in all age groups, including its co-existence with several extra pulmonary conditions from cutaneous albinism to bone-marrow and liver failure. CONCLUSION By providing additional evidence for unsuspected characteristics such as immunodeficiency, impaired mucus, and surfactant and telomere maintenance that very often co-exist through the interaction of common and rare genetic variants in the same patient, genetics have created a generous and pluralistic yet unifying platform that could lead to the understanding of the injurious and pro-fibrotic effects of many seemingly unrelated extrinsic and intrinsic offending factors. The same platform constantly instructs us about our limitations as well as about the heritability, the knowledge and the wisdom that is still missing.
Collapse
Affiliation(s)
- Spyros A. Papiris
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Caroline Kannengiesser
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
- INSERM UMR 1152, Université de Paris, 75018 Paris, France
| | - Raphael Borie
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Lykourgos Kolilekas
- 7th Pulmonary Department, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece
| | - Maria Kallieri
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Apollonatou
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ibrahima Ba
- Département de Génétique, APHP Hôpital Bichat, Université de Paris, 75018 Paris, France
| | - Nadia Nathan
- Peditric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, INSERM UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Sorbonne University and APHP, 75012 Paris, France
| | - Andrew Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, 80337 Munich, Germany
| | - Philippe Dieude
- Department of Rheumatology, INSERM U1152, APHP Hôpital Bichat-Claude Bernard, Université de Paris, 75018 Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, INSERM UMR_1152, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, APHP Hôpital Bichat, Sorbonne Université, 75018 Paris, France
| | - Effrosyni D. Manali
- 2nd Pulmonary Medicine Department, General University Hospital “Attikon”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
52
|
Schwartz DA, Blumhagen RZ, Fingerlin TE. Evolution of the Gain-of-Function MUC5B Promoter Variant. Am J Respir Crit Care Med 2022; 206:1189-1191. [PMID: 35830265 PMCID: PMC9746841 DOI: 10.1164/rccm.202207-1300ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- David A Schwartz
- Department of Medicine.,Department of Immunology University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Rachel Z Blumhagen
- Center for Genes, Environment and Health National Jewish Health Denver, Colorado
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health National Jewish Health Denver, Colorado
| |
Collapse
|
53
|
Borie R, Cardwell J, Konigsberg IR, Moore CM, Zhang W, Sasse SK, Gally F, Dobrinskikh E, Walts A, Powers J, Brancato J, Rojas M, Wolters PJ, Brown KK, Blackwell TS, Nakanishi T, Richards JB, Gerber AN, Fingerlin TE, Sachs N, Pulit SL, Zappala Z, Schwartz DA, Yang IV. Colocalization of Gene Expression and DNA Methylation with Genetic Risk Variants Supports Functional Roles of MUC5B and DSP in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:1259-1270. [PMID: 35816432 PMCID: PMC9746850 DOI: 10.1164/rccm.202110-2308oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.
Collapse
Affiliation(s)
| | | | | | - Camille M. Moore
- Department of Biostatistics and Bioinformatics and
- Center for Genes, Environment, and Health
| | | | | | - Fabienne Gally
- Department of Medicine
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | | | | | | | | | - Mauricio Rojas
- Department of Internal Medicine, Ohio State College of Medicine, The Ohio State University, Columbus, Ohio
| | - Paul J. Wolters
- Department of Medicine, University of California, San Francisco, California
| | | | - Timothy S. Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tomoko Nakanishi
- Department of Human Genetics, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - J. Brent Richards
- Department of Human Genetics, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - Anthony N. Gerber
- Department of Medicine
- Department of Medicine, and
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Tasha E. Fingerlin
- Department of Biostatistics and Bioinformatics and
- Center for Genes, Environment, and Health
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Norman Sachs
- Cell Biology, Vertex Pharmaceuticals, San Diego, California; and
| | - Sara L. Pulit
- Computational Genomics, Vertex Pharmaceuticals, Boston, Massachusetts
| | - Zachary Zappala
- Computational Genomics, Vertex Pharmaceuticals, Boston, Massachusetts
| | - David A. Schwartz
- Department of Medicine
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus; Aurora, Colorado
| | - Ivana V. Yang
- Department of Medicine
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| |
Collapse
|
54
|
Kurche JS, Stancil IT, Michalski JE, Yang IV, Schwartz DA. Dysregulated Cell-Cell Communication Characterizes Pulmonary Fibrosis. Cells 2022; 11:3319. [PMID: 36291184 PMCID: PMC9600037 DOI: 10.3390/cells11203319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease of older adults characterized by fibrotic replacement of functional gas exchange units in the lung. The strongest risk factor for IPF is a genetic variantin the promoter region of the gel-forming mucin, MUC5B. To better understand how the MUC5B variant influences development of fibrosis, we used the NicheNet R package and leveraged publicly available single-cell RNA sequencing data to identify and evaluate how epithelia participating in gas exchange are influenced by ligands expressed in control, MUC5B variant, and fibrotic environments. We observed that loss of type-I alveolar epithelia (AECI) characterizes the single-cell RNA transcriptome in fibrotic lung and validated the pattern of AECI loss using single nuclear RNA sequencing. Examining AECI transcriptomes, we found enrichment of transcriptional signatures for IL6 and AREG, which we have previously shown to mediate aberrant epithelial fluidization in IPF and murine bleomycin models. Moreover, we found that the protease ADAM17, which is upstream of IL6 trans-signaling, was enriched in control MUC5B variant donors. We used immunofluorescence to validate a role for enhanced expression of ADAM17 among MUC5B variants, suggesting involvement in IPF pathogenesis and maintenance.
Collapse
Affiliation(s)
- Jonathan S. Kurche
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Ian T. Stancil
- Program in Cellular Biology and Biophysics, Graduate School, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E. Michalski
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ivana V. Yang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David A. Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
55
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
56
|
Kwon M, Rubio G, Wang H, Riedlinger G, Adem A, Zhong H, Slegowski D, Post-Zwicker L, Chidananda A, Schrump DS, Pine SR, Libutti SK. Smoking-associated Downregulation of FILIP1L Enhances Lung Adenocarcinoma Progression Through Mucin Production, Inflammation, and Fibrosis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1197-1213. [PMID: 36860703 PMCID: PMC9973389 DOI: 10.1158/2767-9764.crc-22-0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Lung adenocarcinoma (LUAD) is the major subtype in lung cancer, and cigarette smoking is essentially linked to its pathogenesis. We show that downregulation of Filamin A interacting protein 1-like (FILIP1L) is a driver of LUAD progression. Cigarette smoking causes its downregulation by promoter methylation in LUAD. Loss of FILIP1L increases xenograft growth, and, in lung-specific knockout mice, induces lung adenoma formation and mucin secretion. In syngeneic allograft tumors, reduction of FILIP1L and subsequent increase in its binding partner, prefoldin 1 (PFDN1) increases mucin secretion, proliferation, inflammation, and fibrosis. Importantly, from the RNA-sequencing analysis of these tumors, reduction of FILIP1L is associated with upregulated Wnt/β-catenin signaling, which has been implicated in proliferation of cancer cells as well as inflammation and fibrosis within the tumor microenvironment. Overall, these findings suggest that down-regulation of FILIP1L is clinically relevant in LUAD, and warrant further efforts to evaluate pharmacologic regimens that either directly or indirectly restore FILIP1L-mediated gene regulation for the treatment of these neoplasms. Significance This study identifies FILIP1L as a tumor suppressor in LUADs and demonstrates that downregulation of FILIP1L is a clinically relevant event in the pathogenesis and clinical course of these neoplasms.
Collapse
Affiliation(s)
- Mijung Kwon
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Genesaret Rubio
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Haitao Wang
- Thoracic Surgery Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Gregory Riedlinger
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Asha Adem
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Hua Zhong
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Daniel Slegowski
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | | | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Sharon R. Pine
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | | |
Collapse
|
57
|
Bhattacharya SS, Yadav B, Yadav E, Hus A, Yadav N, Kaur P, Rosen L, Jandarov R, Yadav JS. Differential modulation of lung aquaporins among other pathophysiological markers in acute (Cl2 gas) and chronic (carbon nanoparticles, cigarette smoke) respiratory toxicity mouse models. Front Physiol 2022; 13:880815. [PMID: 36246134 PMCID: PMC9554232 DOI: 10.3389/fphys.2022.880815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Inhaled toxic chemicals and particulates are known to disrupt lung homeostasis causing pulmonary toxicity and tissue injury. However, biomarkers of such exposures and their underlying mechanisms are poorly understood, especially for emerging toxicants such as engineered nanoparticles and chemical threat agents such as chlorine gas (Cl2). Aquaporins (AQPs), commonly referred to as water channels, are known to play roles in lung homeostasis and pathophysiology. However, little is known on their regulation in toxicant-induced lung injuries. Here, we compared four lung toxicity models namely, acute chemical exposure (Cl2)-, chronic particulate exposure (carbon nanotubes/CNT)-, chronic chemical exposure (cigarette smoke extract/CSE)-, and a chronic co-exposure (CNT + CSE)- model, for modulation of lung aquaporins (AQPs 1, 3, 4, and 5) in relation to other pathophysiological endpoints. These included markers of compromised state of lung mucosal lining [mucin 5b (MUC5B) and surfactant protein A (SP-A)] and lung-blood barrier [protein content in bronchoalveolar lavage (BAL) fluid and, cell tight junction proteins occludin and zona-occludens]. The results showed toxicity model-specific regulation of AQPs measured in terms of mRNA abundance. A differential upregulation was observed for AQP1 in acute Cl2 exposure model (14.71-fold; p = 0.002) and AQP3 in chronic CNT exposure model (3.83-fold; p = 0.044). In contrast, AQP4 was downregulated in chronic CSE model whereas AQP5 showed no significant change in any of the models. SP-A and MUC5B expression showed a decreasing pattern across all toxicity models except the acute Cl2 toxicity model, which showed a highly significant upregulation of MUC5B (25.95-fold; p = 0.003). This was consistent with other significant pathophysiological changes observed in this acute model, particularly a compromised lung epithelial-endothelial barrier indicated by significantly increased protein infiltration and expression of tight junction proteins, and more severe histopathological (structural and immunological) changes. To our knowledge, this is the first report on lung AQPs as molecular targets of the study toxicants. The differentially regulated AQPs, AQP1 in acute Cl2 exposure versus AQP3 in chronic CNT nanoparticle exposure, in conjunction with the corresponding differentially impacted pathophysiological endpoints (particularly MUC5B) could potentially serve as predictive markers of toxicant type-specific pulmonary injury and as candidates for future investigation for clinical intervention.
Collapse
Affiliation(s)
- Sukanta S. Bhattacharya
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brijesh Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ekta Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Niket Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Perminder Kaur
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lauren Rosen
- Department of Pathology and Laboratory Medicine, University of Cincinnati, UC Health University Hospital Laboratory Medicine Building, Cincinnati, OH, United States
| | - Roman Jandarov
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jagjit S. Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Jagjit S. Yadav,
| |
Collapse
|
58
|
Okamoto T, Dobrinskikh E, Hennessy CE, Liu N, Schwarz MI, Evans CM, Fontenot AP, Yang IV, Schwartz DA. Muc5b plays a role in the development of inflammation and fibrosis in hypersensitivity pneumonitis induced by Saccharopolyspora rectivirgula. Am J Physiol Lung Cell Mol Physiol 2022; 323:L329-L337. [PMID: 35881171 PMCID: PMC9423777 DOI: 10.1152/ajplung.00061.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Previously we have shown that a gain-of-function MUC5B promoter variant (rs35705950) is the strongest risk factor for the development of idiopathic pulmonary fibrosis. We have also found that Muc5b overexpression reduces mucociliary clearance in mice, potentially leading to recurrent injury to the bronchoalveolar epithelia. Hypersensitivity pneumonitis (HP) is induced by inhalation of numerous causative antigens that may be affected by mucociliary clearance. We conducted this study to determine the role of Muc5b in a mouse model of HP induced by Saccharopolyspora rectivirgula (SR) antigen. We used Muc5b-deficient and wild-type (WT) mice to determine whether Muc5b plays a role in inflammation and fibrosis at 3 and 6 wk in an SR model of HP. We measured cell concentrations and MUC5B expression in whole lung lavage (WLL) and quantified fibrosis using hydroxyproline assay and second harmonic generation. Muc5b expression in WLL fluid was significantly increased in SR-exposed WT mice compared with saline controls. WT mice challenged with SR developed more inflammation and lung fibrosis at 6 wk compared with 3 wk postexposure. Moreover, we found that 6 wk following challenge with SR, Muc5b-deficient mice had less lung inflammation and less lung fibrosis than Muc5b WT mice. Furthermore, Muc5b-deficient mice had significantly lower concentrations of TGF-β1 in the WLL compared with Muc5b WT mice at 6 wk of exposure. Muc5b appears to play a role in fibrosis in the animal model of HP and this may have implications for HP in humans.
Collapse
Affiliation(s)
- Tsukasa Okamoto
- Department of Medicine, University of Colorado, Aurora, Colorado
- Department of Pulmonary Immunotherapeutics, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | | | - Naoko Liu
- Department of Medicine, University of Colorado, Aurora, Colorado
| | - Marvin I Schwarz
- Department of Medicine, University of Colorado, Aurora, Colorado
| | | | | | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, Colorado
| | - David A Schwartz
- Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
59
|
Abstract
Human genetics can inform the biology and epidemiology of coronavirus disease 2019 (COVID-19) by pinpointing causal mechanisms that explain why some individuals become more severely affected by the disease upon infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Large-scale genetic association studies, encompassing both rare and common genetic variants, have used different study designs and multiple disease phenotype definitions to identify several genomic regions associated with COVID-19. Along with a multitude of follow-up studies, these findings have increased our understanding of disease aetiology and provided routes for management of COVID-19. Important emergent opportunities include the clinical translatability of genetic risk prediction, the repurposing of existing drugs, exploration of variable host effects of different viral strains, study of inter-individual variability in vaccination response and understanding the long-term consequences of SARS-CoV-2 infection. Beyond the current pandemic, these transferrable opportunities are likely to affect the study of many infectious diseases.
Collapse
Affiliation(s)
- Mari E K Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
- Broad Institute, Cambridge, MA, USA.
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
60
|
Stancil IT, Michalski JE, Schwartz DA. An Airway-Centric View of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:410-416. [PMID: 35446237 DOI: 10.1164/rccm.202109-2219pp] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - David A Schwartz
- Department of Medicine and
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
61
|
Towards Treatable Traits for Pulmonary Fibrosis. J Pers Med 2022; 12:jpm12081275. [PMID: 36013224 PMCID: PMC9410230 DOI: 10.3390/jpm12081275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Interstitial lung diseases (ILD) are a heterogeneous group of disorders, of which many have the potential to lead to progressive pulmonary fibrosis. A distinction is usually made between primarily inflammatory ILD and primarily fibrotic ILD. As recent studies show that anti-fibrotic drugs can be beneficial in patients with primarily inflammatory ILD that is characterized by progressive pulmonary fibrosis, treatment decisions have become more complicated. In this perspective, we propose that the ‘treatable trait’ concept, which is based on the recognition of relevant exposures, various treatable phenotypes (disease manifestations) or endotypes (shared molecular mechanisms) within a group of diseases, can be applied to progressive pulmonary fibrosis. These targets for medical intervention can be identified through validated biomarkers and are not necessarily related to specific diagnostic labels. Proposed treatable traits are: cigarette smoking, occupational, allergen or drug exposures, excessive (profibrotic) auto- or alloimmunity, progressive pulmonary fibrosis, pulmonary hypertension, obstructive sleep apnea, tuberculosis, exercise intolerance, exertional hypoxia, and anxiety and depression. There are also several potential traits that have not been associated with relevant outcomes or for which no effective treatment is available at present: air pollution, mechanical stress, viral infections, bacterial burden in the lungs, surfactant-related pulmonary fibrosis, telomere-related pulmonary fibrosis, the rs35705950 MUC5B promoter polymorphism, acute exacerbations, gastro-esophageal reflux, dyspnea, and nocturnal hypoxia. The ‘treatable traits’ concept can be applied in new clinical trials for patients with progressive pulmonary fibrosis and could be used for developing new treatment strategies.
Collapse
|
62
|
Axelsson GT, Gudmundsson G, Pratte KA, Aspelund T, Putman RK, Sanders JL, Gudmundsson EF, Hatabu H, Gudmundsdottir V, Gudjonsson A, Hino T, Hida T, Hobbs BD, Cho MH, Silverman EK, Bowler RP, Launer LJ, Jennings LL, Hunninghake GM, Emilsson V, Gudnason V. The Proteomic Profile of Interstitial Lung Abnormalities. Am J Respir Crit Care Med 2022; 206:337-346. [PMID: 35438610 PMCID: PMC9890263 DOI: 10.1164/rccm.202110-2296oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rationale: Knowledge on biomarkers of interstitial lung disease is incomplete. Interstitial lung abnormalities (ILAs) are radiologic changes that may present in its early stages. Objectives: To uncover blood proteins associated with ILAs using large-scale proteomics methods. Methods: Data from two prospective cohort studies, the AGES-Reykjavik (Age, Gene/Environment Susceptibility-Reykjavik) study (N = 5,259) for biomarker discovery and the COPDGene (Genetic Epidemiology of COPD) study (N = 4,899) for replication, were used. Blood proteins were measured using DNA aptamers, targeting more than 4,700 protein analytes. The association of proteins with ILAs and ILA progression was assessed with regression modeling, as were associations with genetic risk factors. Adaptive Least Absolute Shrinkage and Selection Operator models were applied to bootstrap data samples to discover sets of proteins predictive of ILAs and their progression. Measurements and Main Results: Of 287 associations, SFTPB (surfactant protein B) (odds ratio [OR], 3.71 [95% confidence interval (CI), 3.20-4.30]; P = 4.28 × 10-67), SCGB3A1 (Secretoglobin family 3A member 1) (OR, 2.43 [95% CI, 2.13-2.77]; P = 8.01 × 10-40), and WFDC2 (WAP four-disulfide core domain protein 2) (OR, 2.42 [95% CI, 2.11-2.78]; P = 4.01 × 10-36) were most significantly associated with ILA in AGES-Reykjavik and were replicated in COPDGene. In AGES-Reykjavik, concentrations of SFTPB were associated with the rs35705950 MUC5B (mucin 5B) promoter polymorphism, and SFTPB and WFDC2 had the strongest associations with ILA progression. Multivariate models of ILAs in AGES-Reykjavik, ILAs in COPDGene, and ILA progression in AGES-Reykjavik had validated areas under the receiver operating characteristic curve of 0.880, 0.826, and 0.824, respectively. Conclusions: Novel, replicated associations of ILA, its progression, and genetic risk factors with numerous blood proteins are demonstrated as well as machine-learning-based models with favorable predictive potential. Several proteins are revealed as potential markers of early fibrotic lung disease.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Department of Respiratory Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Thor Aspelund
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| | | | | | | | - Hiroto Hatabu
- Department of Radiology, and,Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| | | | - Takuya Hino
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tomoyuki Hida
- Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Brian D. Hobbs
- Pulmonary and Critical Care Division,,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Michael H. Cho
- Pulmonary and Critical Care Division,,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Edwin K. Silverman
- Pulmonary and Critical Care Division,,Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Russell P. Bowler
- National Jewish Health, Denver, Colorado;,School of Medicine, University of Colorado, Aurora, Colorado
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, Maryland; and
| | - Lori L. Jennings
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Gary M. Hunninghake
- Pulmonary and Critical Care Division,,Center for Pulmonary Functional Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland;,Icelandic Heart Association, Kopavogur, Iceland
| |
Collapse
|
63
|
Kim E, Mathai SK, Stancil IT, Ma X, Hernandez-Gutierrez A, Becerra JN, Marrero-Torres E, Hennessy CE, Hatakka K, Wartchow EP, Estrella A, Huber JP, Cardwell JH, Burnham EL, Zhang Y, Evans CM, Vladar EK, Schwartz DA, Dobrinskikh E, Yang IV. Aberrant Multiciliogenesis in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 67:188-200. [PMID: 35608953 PMCID: PMC9348560 DOI: 10.1165/rcmb.2021-0554oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
We previously identified a novel molecular subtype of idiopathic pulmonary fibrosis (IPF) defined by increased expression of cilium-associated genes, airway mucin gene MUC5B, and KRT5 marker of basal cell airway progenitors. Here we show the association of MUC5B and cilia gene expression in human IPF airway epithelial cells, providing further rationale for examining the role of cilium genes in the pathogenesis of IPF. We demonstrate increased multiciliogenesis and changes in motile cilia structure of multiciliated cells both in IPF and bleomycin lung fibrosis models. Importantly, conditional deletion of a cilium gene, Ift88 (intraflagellar transport 88), in Krt5 basal cells reduces Krt5 pod formation and lung fibrosis, whereas no changes are observed in Ift88 conditional deletion in club cell progenitors. Our findings indicate that aberrant injury-activated primary ciliogenesis and Hedgehog signaling may play a causative role in Krt5 pod formation, which leads to aberrant multiciliogenesis and lung fibrosis. This implies that modulating cilium gene expression in Krt5 cell progenitors is a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Eunjoo Kim
- Department of Medicine, School of Medicine and
| | | | | | - Xiaoqian Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Centre for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | | | | | - Emilette Marrero-Torres
- Department of Medicine-M.D. Program, San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | | | | | - Eric P. Wartchow
- Department of Pathology, Children's Hospital Colorado, Aurora, Colorado
| | | | | | | | | | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | | | | | | | - Evgenia Dobrinskikh
- Department of Medicine, School of Medicine and
- Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Ivana V. Yang
- Department of Medicine, School of Medicine and
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| |
Collapse
|
64
|
Wang JY, Young LR. Insights into the Pathogenesis of Pulmonary Fibrosis from Genetic Diseases. Am J Respir Cell Mol Biol 2022; 67:20-35. [PMID: 35294321 PMCID: PMC9273221 DOI: 10.1165/rcmb.2021-0557tr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary fibrosis is a disease process associated with significant morbidity and mortality, with limited therapeutic options owing to an incomplete understanding of the underlying pathophysiology. Mechanisms driving the fibrotic cascade have been elucidated through studies of rare and common variants in surfactant-related and telomere-related genes in familial and sporadic forms of pulmonary fibrosis, as well as in multisystem Mendelian genetic disorders that present with pulmonary fibrosis. In this translational review, we outline insights into the pathophysiology of pulmonary fibrosis derived from genetic forms of the disease, with a focus on model systems, shared cellular and molecular mechanisms, and potential targets for therapy.
Collapse
Affiliation(s)
- Joanna Y. Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lisa R. Young
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
65
|
Mikami S, Miura Y, Kondo S, Sakai K, Nishimura H, Kyoyama H, Moriyama G, Koyama N, Noguchi H, Ohkubo H, Kanazawa S, Uematsu K. Nintedanib induces gene expression changes in the lung of induced-rheumatoid arthritis–associated interstitial lung disease mice. PLoS One 2022; 17:e0270056. [PMID: 35714115 PMCID: PMC9205484 DOI: 10.1371/journal.pone.0270056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Nintedanib is a multi-tyrosine kinase inhibitor widely used to treat progressive fibrosing interstitial lung diseases because it slows the reduction in forced vital capacity. However, the prognosis for patients treated with nintedanib remains poor. To improve nintedanib treatment, we examined the effects of nintedanib on gene expression in the lungs of induced-rheumatoid arthritis–associated interstitial lung disease model mice, which develop rheumatoid arthritis and subsequent pulmonary fibrosis. Using next-generation sequencing, we identified 27 upregulated and 130 downregulated genes in the lungs of these mice after treatment with nintedanib. The differentially expressed genes included mucin 5B and heat shock protein 70 family genes, which are related to interstitial lung diseases, as well as genes associated with extracellular components, particularly the myocardial architecture, suggesting unanticipated effects of nintedanib. Of the genes upregulated in the nintedanib-treated lung, expression of regulatory factor X2, which is suspected to be involved in cilia movement, and bone morphogenetic protein receptor type 2, which is involved in the pathology of pulmonary hypertension, was detected by immunohistochemistry and RNA in situ hybridization in peripheral airway epithelium and alveolar cells. Thus, the present findings indicate a set of genes whose expression alteration potentially underlies the effects of nintedanib on pulmonary fibrosis. It is expected that these findings will contribute to the development of improved nintedanib strategies for the treatment of progressive fibrosing interstitial lung diseases.
Collapse
Affiliation(s)
- Shintaro Mikami
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Yoko Miura
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shinji Kondo
- Center for Genome Informatics, Joint Support Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Kosuke Sakai
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hiroaki Nishimura
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hiroyuki Kyoyama
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Gaku Moriyama
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Nobuyuki Koyama
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Satoshi Kanazawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kazutsugu Uematsu
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
- * E-mail:
| |
Collapse
|
66
|
Molyneaux PL, Fahy WA, Byrne AJ, Braybrooke R, Saunders P, Toshner R, Albers G, Chua F, Renzoni EA, Wells AU, Karkera Y, Oballa E, Saini G, Nicholson AG, Jenkins RG, Maher TM. CYFRA 21-1 Predicts Progression in Idiopathic Pulmonary Fibrosis: A Prospective Longitudinal Analysis of the PROFILE Cohort. Am J Respir Crit Care Med 2022; 205:1440-1448. [PMID: 35363592 PMCID: PMC9875897 DOI: 10.1164/rccm.202107-1769oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/01/2022] [Indexed: 01/29/2023] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive and inevitably fatal condition for which there are a lack of effective biomarkers to guide therapeutic decision making. Objectives: To determine the relationship between serum concentrations of the cytokeratin fragment CYFRA 21-1 and disease progression and mortality in individuals with IPF enrolled in the Prospective Observation of Fibrosis in the Lung Clinical Endpoints (PROFILE) study. Methods: CYFRA 21-1 was identified by immunohistochemistry in samples of human lung obtained at surgery. Concentrations of CYFRA 21-1 were measured using an ELISA-based assay in serum samples collected at baseline, 1 month, and 3 months from 491 individuals with an incident diagnosis of IPF who were enrolled in the PROFILE study and from 100 control subjects at baseline. Study subjects were followed for a minimum of 3 years after their first blood draw. Measurements and Main Results: CYFRA 21-1 localizes to hyperplastic epithelium in IPF lung tissue. Peripheral CYFRA 21-1 concentrations were significantly higher in subjects with IPF than in healthy control subjects in both the discovery (n = 132) (control: 0.96 ± 0.81 ng/ml; vs. IPF: 2.34 ± 2.15 ng/ml; P < 0.0001) and validation (n = 359) (control: 2.21 ± 1.54 ng/ml; and IPF: 4.13 ± 2.77 ng/ml; P < 0.0001) cohorts. Baseline concentrations of CYFRA 21-1 were able to distinguish individuals at risk of 12-month disease progression (C-statistic, 0.70; 95% confidence interval, 0.61-0.79; P < 0.0001) and were predictive of overall mortality (hazard ratio, 1.12 [95% confidence interval, 1.06-1.19] per 1 ng/ml increase in CYFRA 21-1; P = 0.0001). Furthermore, 3-month change in concentrations of CYFRA 21-1 separately predicted 12-month and overall survival in both the discovery and validation cohorts. Conclusions: CYFRA 21-1, a marker of epithelial damage and turnover, has the potential to be an important prognostic and therapeutic biomarker in individuals with IPF.
Collapse
Affiliation(s)
- Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Clinical Group, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - William A. Fahy
- Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | - Adam J. Byrne
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rebecca Braybrooke
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Peter Saunders
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Richard Toshner
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gesa Albers
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Felix Chua
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Clinical Group, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Elisabetta A. Renzoni
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Clinical Group, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Athol U. Wells
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Clinical Group, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | | | - Eunice Oballa
- Discovery Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | - Gauri Saini
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Andrew G. Nicholson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Clinical Group, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Toby M. Maher
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton and Harefield Clinical Group, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
- Hastings Centre for Pulmonary Research and
- Division of Pulmonary, Critical Care, and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
67
|
Sheng YH, Hasnain SZ. Mucus and Mucins: The Underappreciated Host Defence System. Front Cell Infect Microbiol 2022; 12:856962. [PMID: 35774401 PMCID: PMC9238349 DOI: 10.3389/fcimb.2022.856962] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The mucosal surfaces that form the boundary between the external environment and the underlying tissue are protected by a mucus barrier. Mucin glycoproteins, both secreted and cell surface mucins, are the major components of the barrier. They can exclude pathogens and toxins while hosting the commensal bacteria. In this review, we highlight the dynamic function of the mucins and mucus during infection, how this mucosal barrier is regulated, and how pathogens have evolved mechanisms to evade this defence system.
Collapse
Affiliation(s)
- Yong Hua Sheng
- Immunopathology Group, Mater Research Institute−The University of Queensland, Translational Research Institute, Brisbane, Qld, Australia
| | - Sumaira Z. Hasnain
- Immunopathology Group, Mater Research Institute−The University of Queensland, Translational Research Institute, Brisbane, Qld, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld, Australia
- *Correspondence: Sumaira Z. Hasnain,
| |
Collapse
|
68
|
Ma Y, Gu Y, Zhang X, Gu W, Wang T, Sun H, Dai Y, Yan Y, Wang Y, Wang M, Sun H, Hao C, Fan L, Chen Z. High Expression of MUC5AC, MUC5B, and Layilin Plays an Essential Role in Prediction in the Development of Plastic Bronchitis Caused by MPP. Front Microbiol 2022; 13:911228. [PMID: 35770160 PMCID: PMC9234514 DOI: 10.3389/fmicb.2022.911228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Plastic bronchitis (PB) is a rare respiratory condition which can result in severe respiratory complications such as respiratory failure and death. Mycoplasma pneumoniae infection is a main etiology cause of plastic bronchitis. However, the pathogenesis of plastic bronchitis complicated by Mycoplasma pneumoniae pneumonia (MPP) has not yet been fully elucidated. Our article aims to explore biomarkers for early prediction of MPP cases complicated with plastic bronchitis. We utilized a protein chip to screen for significantly different proteins among the groups of healthy, general Mycoplasma pneumoniae pneumonia (GMPP) and refractory Mycoplasma pneumoniae pneumonia (RMPP) patients, where layilin exhibited a potent change across biology information technology. Next, we demonstrated the high expression of MUC5AC, MUC5B, and layilin in bronchoalveolar lavage fluid (BALF) of MPP cases complicated with plastic bronchitis. Further study suggested that the level of layilin had a positive correlation with both MUC5AC and MUC5B. A receiver operating characteristic (ROC) analysis was performed to assess the diagnostic values of MUC5AC, MUC5B, and layilin in MPP cases with PB. Data show that the three indicators have similar diagnostic ability for MPP children with plastic bronchitis. Then, we used different concentrations of community-acquired respiratory distress syndrome (CARDS) toxin or lipid-associated membrane proteins (LAMPs) to simulate an in vitro experiment. The in vitro assay revealed that CARDS toxin or LAMPs induced A549 cells to secrete MUC5AC, MUC5B, layilin, and proinflammatory factors. These findings suggest that MUC5AC, MUC5B, and layilin are correlated with MPP. The high expression of MUC5AC, MUC5B, and layilin play an essential role in prediction in the development of plastic bronchitis caused by MPP. The high expression of MUC5AC, MUC5B, and layilin may be relevant to the severity of illness.
Collapse
Affiliation(s)
- Yu Ma
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yeqi Gu
- Department of Pediatrics, Changzhou Wujin People's Hospital, Changzhou, China
| | - Xinxing Zhang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Wenjing Gu
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Ting Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Huiming Sun
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yinfang Dai
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yuqing Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Meijuan Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Huiquan Sun
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Liping Fan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
- Liping Fan
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
- *Correspondence: Zhengrong Chen
| |
Collapse
|
69
|
Heinzelmann K, Hu Q, Hu Y, Dobrinskikh E, Ansari M, Melo-Narváez MC, Ulke HM, Leavitt C, Mirita C, Trudeau T, Saal ML, Rice P, Gao B, Janssen WJ, Yang IV, Schiller HB, Vladar EK, Lehmann M, Königshoff M. Single-cell RNA sequencing identifies G-protein coupled receptor 87 as a basal cell marker expressed in distal honeycomb cysts in idiopathic pulmonary fibrosis. Eur Respir J 2022; 59:2102373. [PMID: 35604813 PMCID: PMC9203838 DOI: 10.1183/13993003.02373-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating and life-threatening lung disease characterised by epithelial reprogramming and increased extracellular matrix deposition leading to loss of lung function. Prominent histopathological structures in the distal IPF lung include honeycomb cysts in the alveolar space [1]. These are heterogeneous bronchiolised areas that feature clusters of simple epithelium with keratin (KRT)5+ basal-like cells interspersed with pseudostratified epithelium containing differentiated, hyperplastic epithelial cells, as well as aberrant ciliated cells [2–5]. Recent single-cell RNA sequencing studies of whole lungs from IPF and donor tissue revealed cellular subtypes unique to IPF, including basaloid KRT5−/KRT17+ cells present in the distal lung [6–10]. Bronchiolisation and honeycombing are features of IPF. ScRNA sequencing identified GPR87 as a novel marker of basal cells in IPF, enriched in honeycomb cysts. GPR87 overexpression resulted in aberrant airway cell differentiation. https://bit.ly/3i4dXeT
Collapse
Affiliation(s)
- Katharina Heinzelmann
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- K. Heinzelmann and Q. Hu contributed equally
| | - Qianjiang Hu
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- K. Heinzelmann and Q. Hu contributed equally
| | - Yan Hu
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Evgenia Dobrinskikh
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Meshal Ansari
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - M Camila Melo-Narváez
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Henrik M Ulke
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Colton Leavitt
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Carol Mirita
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Tammy Trudeau
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maxwell L Saal
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pamela Rice
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Bifeng Gao
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - William J Janssen
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Ivana V Yang
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Herbert B Schiller
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Eszter K Vladar
- Dept of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Dept of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mareike Lehmann
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center Munich, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- M. Lehmann and M. Königshoff contributed equally to this article as lead authors and supervised the work
| | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- M. Lehmann and M. Königshoff contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
70
|
Ling H, Song C, Fang Y, Yin Y, Wu Z, Wang Y, Xu Z, Gao S, Li A, Liu G. TH5487, a small molecule inhibitor of OGG1, attenuates pulmonary fibrosis by NEDD4L-mediated OGG1 degradation. Chem Biol Interact 2022; 362:109999. [PMID: 35654123 DOI: 10.1016/j.cbi.2022.109999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
Pulmonary fibrosis is a highly aggressive and lethal disease that currently lacks effective targeting therapies. Herein, we established a mouse model of pulmonary fibrosis induced by intratracheal instillation of bleomycin (BLM) in wild-type (WT) and 8-oxoguanine DNA glycosylase-1 (OGG1) knockout (Ogg1-/-) mice. TH5487, a specific small-molecule inhibitor of OGG1, was found to ameliorate BLM-induced pulmonary fibrosis in WT mice. Concomitantly, TH5487 treatment markedly suppressed the BLM-mediated alveolar epithelial-mesenchymal transition (EMT) and increase in OGG1 protein level in the lungs of WT mice. However, administration of TH5487 did not further improve this fibrotic transformation in Ogg1-/- mice. More importantly, adeno-associated virus-mediated lung-specific OGG1 overexpression accelerated alveolar EMT and the resultant fibrosis progression antagonized by TH5487 in the fibrotic lungs of WT mice, suggesting that the down-regulation of OGG1 protein level could be essential for TH5487 to exert its anti-fibrogenic function. Mechanism study in alveolar epithelial cells demonstrated that TH5487 treatment canceled TGF-β1-mediated suppression of NEDD4-like E3 ubiquitin ligase (NEDD4L), which ubiquitinated OGG1 and targeted it for proteasomal degradation. Furthermore, TH5487-mediated suppression of alveolar EMT and the fibrotic processes was counteracted by silencing OGG1 in TGF-β1-induced alveolar epithelial cells. Collectively, these data underline the potential of TH5487 as an effective anti-fibrotic agent for pulmonary fibrosis.
Collapse
Affiliation(s)
- Huayu Ling
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chuge Song
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yaowei Fang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yu Yin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zijun Wu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; Department of Cardiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhiliang Xu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Shenglan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Ao Li
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
71
|
Ghanem M, Mailleux AA. Aberrant Multiciliogenesis in Pulmonary Fibrosis: Bystander or Driver of Disease Progression? Am J Respir Cell Mol Biol 2022; 67:142-144. [PMID: 35612966 PMCID: PMC9348563 DOI: 10.1165/rcmb.2022-0201ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mada Ghanem
- Université Paris Cité, Inserm, PHERE, Paris, France
| | | |
Collapse
|
72
|
Korfei M, Mahavadi P, Guenther A. Targeting Histone Deacetylases in Idiopathic Pulmonary Fibrosis: A Future Therapeutic Option. Cells 2022; 11:1626. [PMID: 35626663 PMCID: PMC9139813 DOI: 10.3390/cells11101626] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited therapeutic options, and there is a huge unmet need for new therapies. A growing body of evidence suggests that the histone deacetylase (HDAC) family of transcriptional corepressors has emerged as crucial mediators of IPF pathogenesis. HDACs deacetylate histones and result in chromatin condensation and epigenetic repression of gene transcription. HDACs also catalyse the deacetylation of many non-histone proteins, including transcription factors, thus also leading to changes in the transcriptome and cellular signalling. Increased HDAC expression is associated with cell proliferation, cell growth and anti-apoptosis and is, thus, a salient feature of many cancers. In IPF, induction and abnormal upregulation of Class I and Class II HDAC enzymes in myofibroblast foci, as well as aberrant bronchiolar epithelium, is an eminent observation, whereas type-II alveolar epithelial cells (AECII) of IPF lungs indicate a significant depletion of many HDACs. We thus suggest that the significant imbalance of HDAC activity in IPF lungs, with a "cancer-like" increase in fibroblastic and bronchial cells versus a lack in AECII, promotes and perpetuates fibrosis. This review focuses on the mechanisms by which Class I and Class II HDACs mediate fibrogenesis and on the mechanisms by which various HDAC inhibitors reverse the deregulated epigenetic responses in IPF, supporting HDAC inhibition as promising IPF therapy.
Collapse
Affiliation(s)
- Martina Korfei
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Poornima Mahavadi
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
| | - Andreas Guenther
- Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, D-35392 Giessen, Germany; (P.M.); (A.G.)
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), D-35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, D-35398 Giessen, Germany
- European IPF Registry and Biobank, D-35392 Giessen, Germany
| |
Collapse
|
73
|
McCarthy C, Keane MP. Contemporary Concise Review 2021: Interstitial lung disease. Respirology 2022; 27:539-548. [PMID: 35513341 PMCID: PMC9320947 DOI: 10.1111/resp.14278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
The last 2 years have presented previously unforeseen challenges in pulmonary medicine. Despite the significant impact of the SARS‐CoV‐2 pandemic on patients, clinicians and communities, advances in the care and understanding of interstitial lung disease (ILD) continued unabated. Recent studies have led to improved guidelines, better understanding of the role for antifibrotics in fibrosing ILDs, prognostic indicators and novel biomarkers. In this concise contemporary review, we summarize many of the important studies published in 2021, highlighting their relevance and impact to the management and knowledge of ILD.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Michael P Keane
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
74
|
Syed ZA, Zhang L, Ten Hagen KG. In vivo models of mucin biosynthesis and function. Adv Drug Deliv Rev 2022; 184:114182. [PMID: 35278522 PMCID: PMC9068269 DOI: 10.1016/j.addr.2022.114182] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
The secreted mucus layer that lines and protects epithelial cells is conserved across diverse species. While the exact composition of this protective layer varies between organisms, certain elements are conserved, including proteins that are heavily decorated with N-acetylgalactosamine-based sugars linked to serines or threonines (O-linked glycosylation). These heavily O-glycosylated proteins, known as mucins, exist in many forms and are able to form hydrated gel-like structures that coat epithelial surfaces. In vivo studies in diverse organisms have highlighted the importance of both the mucin proteins as well as their constituent O-glycans in the protection and health of internal epithelia. Here, we summarize in vivo approaches that have shed light on the synthesis and function of these essential components of mucus.
Collapse
Affiliation(s)
- Zulfeqhar A Syed
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Liping Zhang
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States.
| |
Collapse
|
75
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
76
|
Wykoff JA, Shaffer KM, Araba KC, Markovetz MR, Patarin J, Robert de Saint Vincent M, Donaldson SH, Ehre C. Rapid Viscoelastic Characterization of Airway Mucus Using a Benchtop Rheometer. J Vis Exp 2022. [PMID: 35532240 PMCID: PMC11234324 DOI: 10.3791/63876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In muco-obstructive lung diseases (e.g., asthma, chronic obstructive pulmonary disease, cystic fibrosis) and other respiratory conditions (e.g., viral/bacterial infections), mucus biophysical properties are altered by goblet cell hypersecretion, airway dehydration, oxidative stress, and the presence of extracellular DNA. Previous studies showed that sputum viscoelasticity correlated with pulmonary function and that treatments affecting sputum rheology (e.g., mucolytics) can result in remarkable clinical benefits. In general, rheological measurements of non-Newtonian fluids employ elaborate, time-consuming approaches (e.g., parallel/cone-plate rheometers and/or microbead particle tracking) that require extensive training to perform the assay and interpret the data. This study tested the reliability, reproducibility, and sensitivity of Rheomuco, a user-friendly benchtop device that is designed to perform rapid measurements using dynamic oscillation with a shear-strain sweep to provide linear viscoelastic moduli (G', G", G*, and tan δ) and gel point characteristics (γc and σc) for clinical samples within 5 min. Device performance was validated using different concentrations of a mucus simulant, 8 MDa polyethylene oxide (PEO), and against traditional bulk rheology measurements. A clinical isolate harvested from an intubated patient with status asthmaticus (SA) was then assessed in triplicate measurements and the coefficient of variation between measurements is <10%. Ex vivo use of a potent mucus reducing agent, TCEP, on SA mucus resulted in a five-fold decrease in elastic modulus and a change toward a more "liquid-like" behavior overall (e.g., higher tan δ). Together, these results demonstrate that the tested benchtop rheometer can make reliable measures of mucus viscoelasticity in clinical and research settings. In summary, the described protocol could be used to explore the effects of mucoactive drugs (e.g., rhDNase, N-acetyl cysteine) onsite to adapt treatment on a case-by-case basis, or in preclinical studies of novel compounds.
Collapse
Affiliation(s)
- Jason A Wykoff
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Kendall M Shaffer
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Kenza C Araba
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | - Matthew R Markovetz
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill
| | | | | | - Scott H Donaldson
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill; Department of Pulmonary and Critical Care Medicine, The University of North Carolina at Chapel Hill
| | - Camille Ehre
- Marsico Lung Institute / CF Center, The University of North Carolina at Chapel Hill; Department of Pediatric, Pediatric Pulmonology Division, The University of North Carolina at Chapel Hill;
| |
Collapse
|
77
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
78
|
Pino-Argumedo MI, Fischer AJ, Hilkin BM, Gansemer ND, Allen PD, Hoffman EA, Stoltz DA, Welsh MJ, Abou Alaiwa MH. Elastic mucus strands impair mucociliary clearance in cystic fibrosis pigs. Proc Natl Acad Sci U S A 2022; 119:e2121731119. [PMID: 35324331 PMCID: PMC9060506 DOI: 10.1073/pnas.2121731119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 01/18/2023] Open
Abstract
SignificanceIn many lung diseases, increased amounts of and/or abnormal mucus impair mucociliary clearance, a key defense against inhaled and aspirated material. Submucosal glands lining cartilaginous airways secrete mucus strands that are pulled by cilia until they break free from the duct and sweep upward toward the larynx, carrying particulates. In cystic fibrosis (CF) pigs, progressive clearance of insufflated microdisks was repeatedly interrupted as microdisks abruptly recoiled. Aerosolizing a reducing agent to break disulfide bonds linking mucins ruptured mucus strands, freeing them from submucosal gland ducts and allowing cilia to propel them up the airways. These findings highlight the abnormally increased elasticity of CF mucus and suggest that agents that break disulfide bonds might have value in lung diseases with increased mucus.
Collapse
Affiliation(s)
- Maria I. Pino-Argumedo
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Anthony J. Fischer
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Brieanna M. Hilkin
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Patrick D. Allen
- Department of Pediatrics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Eric A. Hoffman
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| | - David A. Stoltz
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- HHMI, University of Iowa, Iowa City, IA 52242
| | - Mahmoud H. Abou Alaiwa
- Department of Internal Medicine, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
79
|
RNA Sequencing of Epithelial Cell/Fibroblastic Foci Sandwich in Idiopathic Pulmonary Fibrosis: New Insights on the Signaling Pathway. Int J Mol Sci 2022; 23:ijms23063323. [PMID: 35328744 PMCID: PMC8954546 DOI: 10.3390/ijms23063323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by irreversible scarring of the distal lung. IPF is best described by its histopathological pattern of usual interstitial pneumonia (UIP), characterized by spatial heterogeneity with alternating interstitial fibrosis and areas of normal lung, and temporal heterogeneity of fibrosis characterized by scattered fibroblastic foci (FF), dense acellular collagen and honeycomb changes. FF, comprising aggregated fibroblasts/myofibroblasts surrounded by metaplastic epithelial cells (EC), are the cardinal pathological lesion and their presence strongly correlates with disease progression and mortality. We hypothesized that the EC/FF sandwich from patients with UIP/IPF has a distinct molecular signature which could offer new insights into the crosstalk of these two crucial actors in the disease. Laser capture microdissection with RNAseq was used to investigate the transcriptome of the EC/FF sandwich from IPF patients versus controls (primary spontaneous pneumothorax). Differentially expressed gene analysis identified 23 up-regulated genes mainly related to epithelial dysfunction. Gene ontology analysis highlighted the activation of different pathways, mainly related to EC, immune response and programmed cell death. This study provides novel insights into the IPF pathogenetic pathways and suggests that targeting some of these up-regulated pathways (particularly those related to secreto-protein/mucin dysfunction) may be beneficial in IPF. Further studies in a larger number of lung samples, ideally from patients with early and advanced disease, are needed to validate these findings.
Collapse
|
80
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
81
|
Multi-omics evaluation of SARS-CoV-2 infected mouse lungs reveals dynamics of host responses. iScience 2022; 25:103967. [PMID: 35224468 PMCID: PMC8863311 DOI: 10.1016/j.isci.2022.103967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19) throughout the world has caused millions of death, while the dynamics of host responses and the underlying regulation mechanisms during SARS-CoV-2 infection are not well depicted. Lung tissues from a mouse model sensitized to SARS-CoV-2 infection were serially collected at different time points for evaluation of transcriptome, proteome, and phosphoproteome. We showed the ebb and flow of several host responses in the lung across the viral infection. The signaling pathways and kinases regulating networks were alternated at different phases of infection. This multiplex evaluation also revealed that many kinases of the CDK and MAPK family were interactive and served as functional hubs in mediating the signal transduction during SARS-CoV-2 infection. Our study not only revealed the dynamics of lung pathophysiology and their underlying molecular mechanisms during SARS-CoV-2 infection, but also highlighted some molecules and signaling pathways that might guide future investigations on COVID-19 therapies. Multi-omics analysis profiles temporal host responses in SARS-CoV-2 infected lungs Signaling pathways and kinase regulating networks are dynamically altered The CDK and MAPK family are interactive and involved in regulating host responses
Collapse
|
82
|
Abstract
In this review article, we will first provide a brief overview of the ErbB receptor-ligand system and its importance in developmental and physiological processes. We will then review the literature regarding the role of ErbB receptors and their ligands in the maladaptive remodeling of lung tissue, with special emphasis on idiopathic pulmonary fibrosis (IPF). Here we will focus on the pathways and cellular processes contributing to epithelial-mesenchymal miscommunication seen in this pathology. We will also provide an overview of the in vivo studies addressing the efficacy of different ErbB signaling inhibitors in experimental models of lung injury and highlight how such studies may contribute to our understanding of ErbB biology in the lung. Finally, we will discuss what we learned from clinical applications of the ErbB1 signaling inhibitors in cancer in order to advance clinical trials in IPF.
Collapse
|
83
|
Rogers TD, Button B, Kelada SNP, Ostrowski LE, Livraghi-Butrico A, Gutay MI, Esther CR, Grubb BR. Regional Differences in Mucociliary Clearance in the Upper and Lower Airways. Front Physiol 2022; 13:842592. [PMID: 35356083 PMCID: PMC8959816 DOI: 10.3389/fphys.2022.842592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As the nasal cavity is the portal of entry for inspired air in mammals, this region is exposed to the highest concentration of inhaled particulate matter and pathogens, which must be removed to keep the lower airways sterile. Thus, one might expect vigorous removal of these substances via mucociliary clearance (MCC) in this region. We have investigated the rate of MCC in the murine nasal cavity compared to the more distal airways (trachea). The rate of MCC in the nasal cavity (posterior nasopharynx, PNP) was ∼3-4× greater than on the tracheal wall. This appeared to be due to a more abundant population of ciliated cells in the nasal cavity (∼80%) compared to the more sparsely ciliated trachea (∼40%). Interestingly, the tracheal ventral wall exhibited a significantly lower rate of MCC than the tracheal posterior membrane. The trachealis muscle underlying the ciliated epithelium on the posterior membrane appeared to control the surface architecture and likely in part the rate of MCC in this tracheal region. In one of our mouse models (Bpifb1 KO) exhibiting a 3-fold increase in MUC5B protein in lavage fluid, MCC particle transport on the tracheal walls was severely compromised, yet normal MCC occurred on the tracheal posterior membrane. While a blanket of mucus covered the surface of both the PNP and trachea, this mucus appeared to be transported as a blanket by MCC only in the PNP. In contrast, particles appeared to be transported as discrete patches or streams of mucus in the trachea. In addition, particle transport in the PNP was fairly linear, in contrast transport of particles in the trachea often followed a more non-linear route. The thick, viscoelastic mucus blanket that covered the PNP, which exhibited ∼10-fold greater mass of mucus than did the blanket covering the surface of the trachea, could be transported over large areas completely devoid of cells (made by a breach in the epithelial layer). In contrast, particles could not be transported over even a small epithelial breach in the trachea. The thick mucus blanket in the PNP likely aids in particle transport over the non-ciliated olfactory cells in the nasal cavity and likely contributes to humidification and more efficient particle trapping in this upper airway region.
Collapse
Affiliation(s)
- Troy D. Rogers
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Brian Button
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Samir N. P. Kelada
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lawrence E. Ostrowski
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | | | - Mark I. Gutay
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Charles R. Esther
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Barbara R. Grubb
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
84
|
Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl Res 2022; 241:13-24. [PMID: 34547499 PMCID: PMC8452088 DOI: 10.1016/j.trsl.2021.09.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Abstract
While the coronavirus disease 19 (COVID-19) pandemic has transformed the medical and scientific communites since it was first reported in late 2019, we are only beginning to understand the chronic health burdens associated with this disease. Although COVID-19 is a multi-systemic disease, the lungs are the primary source of infection and injury, resulting in pneumonia and, in severe cases, acute respiratory distress syndrome (ARDS). Given that pulmonary fibrosis is a well-recognized sequela of ARDS, many have questioned whether COVID-19 survivors will face long-term pulmonary consequences. This review is aimed at integrating our understanding of the pathophysiologic mechanisms underlying fibroproliferative ARDS with our current knowledge of the pulmonary consequences of COVID-19 disease.
Collapse
Affiliation(s)
- Jacob E Michalski
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Medicine Service, Pulmonary Section, Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
85
|
Peng Y, Wang ZN, Xu AR, Fang ZF, Chen SY, Hou XT, Zhou ZQ, Lin HM, Xie JX, Tang XX, Wang DY, Zhong NS. Mucus Hypersecretion and Ciliary Impairment in Conducting Airway Contribute to Alveolar Mucus Plugging in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2022; 9:810842. [PMID: 35174169 PMCID: PMC8842394 DOI: 10.3389/fcell.2021.810842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease attributed to the complex interplay of genetic and environmental risks. The muco-ciliary clearance (MCC) system plays a critical role in maintaining the conduit for air to and from the alveoli, but it remains poorly understood whether the MCC abnormalities in conducting airway are involved in IPF pathogenesis. In this study, we obtained the surgically resected bronchi and peripheral lung tissues from 31 IPF patients and 39 control subjects, and we sought to explore the morphologic characteristics of MCC in conducting airway by using immunostaining and scanning and transmission electron microscopy. In the submucosal regions of the bronchi, we found that the areas of mucus glands (MUC5B+) were significantly larger in IPF patients as compared with control subjects (p < 0.05). In the surface epithelium of three airway regions (bronchi, proximal bronchioles, and distal bronchioles), increased MUC5B and MUC5AC expression of secretory cells, decreased number of ciliated cells, and increased ciliary length were observed in IPF patients than control subjects (all p < 0.05). In addition, the mRNA expression levels of MUC5B were up-regulated in both the bronchi and peripheral lung of IPF patients than those of control subjects (p < 0.05), accompanied with 93.55% IPF subjects who had obvious MUC5B+ mucus plugs in alveolar regions. No MUC5B rs35705950 single-nucleotide polymorphism allele was detected in both IPF patients and control subjects. Our study shows that mucus hypersecretion and ciliary impairment in conducting airway are major causes of mucus plugs in alveolar regions and may be closely related to the alveolar injuries in IPF patients.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhao-Ni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ai-Ru Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhang-Fu Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Tao Hou
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Zi-Qing Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hui-Min Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jia-Xing Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
86
|
Shi Y, Zeida A, Edwards CE, Mallory ML, Sastre S, Machado MR, Pickles RJ, Fu L, Liu K, Yang J, Baric RS, Boucher RC, Radi R, Carroll KS. Thiol-based chemical probes exhibit antiviral activity against SARS-CoV-2 via allosteric disulfide disruption in the spike glycoprotein. Proc Natl Acad Sci U S A 2022; 119:e2120419119. [PMID: 35074895 PMCID: PMC8833197 DOI: 10.1073/pnas.2120419119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023] Open
Abstract
The development of small-molecules targeting different components of SARS-CoV-2 is a key strategy to complement antibody-based treatments and vaccination campaigns in managing the COVID-19 pandemic. Here, we show that two thiol-based chemical probes that act as reducing agents, P2119 and P2165, inhibit infection by human coronaviruses, including SARS-CoV-2, and decrease the binding of spike glycoprotein to its receptor, the angiotensin-converting enzyme 2 (ACE2). Proteomics and reactive cysteine profiling link the antiviral activity to the reduction of key disulfides, specifically by disruption of the Cys379-Cys432 and Cys391-Cys525 pairs distal to the receptor binding motif in the receptor binding domain (RBD) of the spike glycoprotein. Computational analyses provide insight into conformation changes that occur when these disulfides break or form, consistent with an allosteric role, and indicate that P2119/P2165 target a conserved hydrophobic binding pocket in the RBD with the benzyl thiol-reducing moiety pointed directly toward Cys432. These collective findings establish the vulnerability of human coronaviruses to thiol-based chemical probes and lay the groundwork for developing compounds of this class, as a strategy to inhibit the SARS-CoV-2 infection by shifting the spike glycoprotein redox scaffold.
Collapse
MESH Headings
- Allosteric Regulation
- Amino Alcohols/chemistry
- Amino Alcohols/pharmacology
- Angiotensin-Converting Enzyme 2/antagonists & inhibitors
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Binding Sites
- COVID-19/virology
- Cell Line
- Disulfides/antagonists & inhibitors
- Disulfides/chemistry
- Disulfides/metabolism
- Dose-Response Relationship, Drug
- Humans
- Molecular Docking Simulation
- Nasal Mucosa/drug effects
- Nasal Mucosa/metabolism
- Nasal Mucosa/virology
- Oxidation-Reduction
- Phenyl Ethers/chemistry
- Phenyl Ethers/pharmacology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- SARS-CoV-2/drug effects
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/antagonists & inhibitors
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Sulfhydryl Compounds/chemistry
- Sulfhydryl Compounds/pharmacology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Yunlong Shi
- Department of Chemistry, Scripps Research, Jupiter, FL 33458
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Santiago Sastre
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Matías R Machado
- Protein Engineering Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Raymond J Pickles
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Keke Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay;
| | - Kate S Carroll
- Department of Chemistry, Scripps Research, Jupiter, FL 33458;
| |
Collapse
|
87
|
Planté-Bordeneuve T, Bertrand Y, Pilette C, Froidure A. Implications potentielles du système IgA-pIgR dans la fibrose pulmonaire idiopathique. Rev Mal Respir 2022; 39:75-78. [DOI: 10.1016/j.rmr.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
|
88
|
Abstract
Pulmonary fibrosis, a kind of terminal pathological changes in the lung, is caused by aberrant wound healing, deposition of extracellular matrix (ECM), and eventually replacement of lung parenchyma by ECM. Pulmonary fibrosis induced by acute lung injury and some diseases is reversible under treatment. While idiopathic pulmonary fibrosis is persistent and irreversible even after treatment. Currently, the pathogenesis of irreversible pulmonary fibrosis is not fully elucidated. The known factors associated with the development of irreversible fibrosis include apoptosis resistance of (myo)fibroblasts, dysfunction of pulmonary vessel, cell mitochondria and autophagy, aberrant epithelia hyperplasia and lipid metabolism disorder. In this review, other than a brief introduction of reversible pulmonary fibrosis, we focus on the underlying pathogenesis of irreversible pulmonary fibrosis from the above aspects as well as preclinical disease models, and also suggest directions for future studies.
Collapse
Affiliation(s)
- Qing Yang Yu
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,2Guangzhou Laboratory, Bio-island, Guangzhou, China
| |
Collapse
|
89
|
Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Front Pharmacol 2022; 12:797292. [PMID: 35126134 PMCID: PMC8807692 DOI: 10.3389/fphar.2021.797292] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal fibrotic lung disease that occurs primarily in middle-aged and elderly adults. It is a major cause of morbidity and mortality. With an increase in life expectancy, the economic burden of IPF is expected to continuously rise in the near future. Although the exact pathophysiological mechanisms underlying IPF remain not known. Significant progress has been made in our understanding of the pathogenesis of this devastating disease in last decade. The current paradigm assumes that IPF results from sustained or repetitive lung epithelial injury and subsequent activation of fibroblasts and myofibroblast differentiation. Persistent myofibroblast phenotype contributes to excessive deposition of the extracellular matrix (ECM) and aberrant lung repair, leading to tissue scar formation, distortion of the alveolar structure, and irreversible loss of lung function. Treatments of patients with IPF by pirfenidone and nintedanib have shown significant reduction of lung function decline and slowing of disease progression in patients with IPF. However, these drugs do not cure the disease. In this review, we discuss recent advances on the pathogenesis of IPF and highlight the development of novel therapeutic strategies against the disease.
Collapse
Affiliation(s)
| | | | | | | | - Jing Qu
- *Correspondence: Zhenhua Yang, ; Jing Qu,
| |
Collapse
|
90
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
91
|
Aging Diminishes Mucociliary Clearance of the Lung. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2022; 4. [PMID: 36066919 PMCID: PMC9435381 DOI: 10.20900/agmr20220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
92
|
van Moorsel CHM, van der Vis JJ, Duckworth A, Scotton CJ, Benschop C, Ellinghaus D, Ruven HJT, Quanjel MJR, Grutters JC. The MUC5B Promoter Polymorphism Associates With Severe COVID-19 in the European Population. Front Med (Lausanne) 2021; 8:668024. [PMID: 34888316 PMCID: PMC8650310 DOI: 10.3389/fmed.2021.668024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/22/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Diversity in response on exposure to severe acute respiratory syndrome coronavirus 2 may be related to the innate immune response in the elderly. The mucin MUC5B is an important component of the innate immune response and expression levels are associated with the MUC5B promoter polymorphism, rs35705950. The high expressing T-allele is a risk allele for the non-infectious aging lung disease idiopathic pulmonary fibrosis (IPF). We investigated if MUC5B rs35705950 associates with severe COVID-19. Methods: In this retrospective candidate gene case-control study we recruited 108 Dutch patients (69% male, median age 66 years, 77% white) requiring hospitalization for COVID-19 (22% ICU stay, 24% died). For validation, genotypes were obtained from the UK-Biobank (n = 436, 57% male, median age 70 years, 27% died), for replication data from the severe COVID-19 GWAS group from Italy (n = 835) and Spain (n = 775) was used, each with a control cohort (n = 356,735, n = 1,255, n = 950, respectively). MUC5B association analysis was performed including adjustment for age and sex. Results: The rs35705950 T-allele frequency was significantly lower in Dutch white patients (n = 83) than in controls (0.04 vs. 0.10; p = 0.02). This was validated in the UK biobank cohort (0.08 vs. 0.11; p = 0.001). While age and sex differed significantly between cases and control, comparable results were obtained with age and sex as confounding variables in a multivariate analysis. The association was replicated in the Italian (p = 0.04), and Spanish (p = 0.03) case-control cohorts. Meta-analysis showed a negative association for the T-allele with COVID-19 (OR = 0.75 (CI: 0.67–0.85); p = 6.63 × 10−6). Conclusions: This study shows that carriage of the T-allele of MUC5B rs35705950 confers protection from development of severe COVID-19. Because the T-allele is a known risk allele for IPF, this study provides further evidence for the existence of trade-offs between optimal mucin expression levels in the aging lung.
Collapse
Affiliation(s)
- Coline H M van Moorsel
- Department of Pulmonology, St Antonius ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joanne J van der Vis
- Department of Pulmonology, St Antonius ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands.,Department of Clinical Chemistry, St Antonius ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Anna Duckworth
- College of Medicine & Health, Institute of Biomedical & Clinical Science, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- College of Medicine & Health, Institute of Biomedical & Clinical Science, University of Exeter, Exeter, United Kingdom
| | - Claudia Benschop
- Department of Pulmonology, St Antonius ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands.,Department of Medical Microbiology and Immunology, St Antonius ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands
| | - David Ellinghaus
- Genetics and Bioinformatics Group, Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany.,Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henk J T Ruven
- Department of Clinical Chemistry, St Antonius ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Marian J R Quanjel
- Department of Pulmonology, St Antonius ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Jan C Grutters
- Department of Pulmonology, St Antonius ILD Center of Excellence, St. Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
93
|
Yasutomo K. Genetics and animal models of familial pulmonary fibrosis. Int Immunol 2021; 33:653-657. [PMID: 34049386 PMCID: PMC8633634 DOI: 10.1093/intimm/dxab026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 11/14/2022] Open
Abstract
Pulmonary fibrosis is caused by the interplay between genetic and environmental factors. Recent studies have revealed various genes associated with idiopathic pulmonary fibrosis, as well as the causative genes for familial pulmonary fibrosis. Although increased death or dysfunction of type 2 alveolar epithelial (AT2) cells has been detected in lung specimens from pulmonary fibrosis patients, it remains unclear whether and how AT2 cell death or dysfunction is responsible for the progression of pulmonary fibrosis. A recent study showed that increased AT2 cell necroptosis is the initial event in pulmonary fibrosis by analyzing patients with familial pulmonary fibrosis and an animal model that harbors the same mutation as patients. The contribution of AT2 cell necroptosis to the pathogenesis of pulmonary fibrosis has not been identified in animal model studies, which validates the effectiveness of genetic analysis of familial diseases to uncover unknown pathogeneses. Thus, further extensive genetic studies of pulmonary fibrosis along with functional studies based on genetic analysis will be crucial not only in elucidating the precise disease process but also, ultimately, in identifying novel treatment strategies for both familial and non-familial pulmonary fibrosis.
Collapse
Affiliation(s)
- Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
- The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
94
|
DRP1-Mediated Mitochondrial Fission Regulates Lung Epithelial Response to Allergen. Int J Mol Sci 2021; 22:ijms222011125. [PMID: 34681784 PMCID: PMC8540036 DOI: 10.3390/ijms222011125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria regulate a myriad of cellular functions. Dysregulation of mitochondrial control within airway epithelial cells has been implicated in the pro-inflammatory response to allergens in asthma patients. Because of their multifaceted nature, mitochondrial structure must be tightly regulated through fission and fusion. Dynamin Related Protein 1 (DRP1) is a key driver of mitochondrial fission. During allergic asthma, airway epithelial mitochondria appear smaller and structurally altered. The role of DRP1-mediated mitochondrial fission, however, has not been fully elucidated in epithelial response to allergens. We used a Human Bronchial Epithelial Cell line (HBECs), primary Mouse Tracheal Epithelial Cells (MTECs), and conditional DRP1 ablation in lung epithelial cells to investigate the impact of mitochondrial fission on the pro-inflammatory response to house dust mite (HDM) in vitro and in vivo. Our data suggest that, following HDM challenge, mitochondrial fission is rapidly upregulated in airway epithelial cells and precedes production of pro-inflammatory cytokines and chemokines. Further, deletion of Drp1 in lung epithelial cells leads to decreased fission and enhanced pro-inflammatory signaling in response to HDM in vitro, as well as enhanced airway hyper-responsiveness (AHR), inflammation, differential mucin transcription, and epithelial cell death in vivo. Mitochondrial fission, therefore, regulates the lung epithelial pro-inflammatory response to HDM.
Collapse
|
95
|
Speca S, Dubuquoy C, Rousseaux C, Chavatte P, Desreumaux P, Spagnolo P. GED-0507 attenuates lung fibrosis by counteracting myofibroblast transdifferentiation in vivo and in vitro. PLoS One 2021; 16:e0257281. [PMID: 34529707 PMCID: PMC8445472 DOI: 10.1371/journal.pone.0257281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The development of more effective, better tolerated drug treatments for progressive pulmonary fibrosis (of which idiopathic pulmonary fibrosis is the most common and severe form) is a research priority. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a key regulator of inflammation and fibrosis and therefore represents a potential therapeutic target. However, the use of synthetic PPAR-γ agonists may be limited by their potentially severe adverse effects. In a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, we have demonstrated that the non-racemic selective PPAR-γ modulator GED-0507 is able to reduce body weight loss, ameliorate clinical and histological features of pulmonary fibrosis, and increase survival rate without any safety concerns. Here, we focused on the biomolecular effects of GED-0507 on various inflammatory/fibrotic pathways. We demonstrated that preventive and therapeutic administration of GED-0507 reduced the BLM-induced mRNA expression of several markers of fibrosis, including transforming growth factor (TGF)-β, alpha-smooth muscle actin, collagen and fibronectin as well as epithelial-to-mesenchymal transition (EMT) and expression of mucin 5B. The beneficial effect of GED-0507 on pulmonary fibrosis was confirmed in vitro by its ability to control TGFβ-induced myofibroblast activation in the A549 human alveolar epithelial cell line, the MRC-5 lung fibroblast line, and primary human lung fibroblasts. Compared with the US Food and Drug Administration-approved antifibrotic drugs pirfenidone and nintedanib, GED-0507 displayed greater antifibrotic activity by controlling alveolar epithelial cell dysfunction, EMT, and extracellular matrix remodeling. In conclusion, GED-0507 demonstrated potent antifibrotic properties and might be a promising drug candidate for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Silvia Speca
- Univ. Lille, INSERM, U1286 –Infinite–Institute for Translational Research in Inflammation, Lille, France
- * E-mail: (PS); (SS)
| | | | | | - Philippe Chavatte
- Univ. Lille, INSERM, U1286 –Infinite–Institute for Translational Research in Inflammation, Lille, France
- Laboratoire de Pharmacie Clinique, Faculté des Sciences Pharmaceutiques et Biologiques, Lille, France
| | - Pierre Desreumaux
- Univ. Lille, INSERM, U1286 –Infinite–Institute for Translational Research in Inflammation, Lille, France
- Hepato-Gastroenterology Department, CHU Lille, Lille, France
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- * E-mail: (PS); (SS)
| |
Collapse
|
96
|
Sparks JA. Towards clinical significance of the MUC5B promoter variant and risk of rheumatoid arthritis-associated interstitial lung disease. Ann Rheum Dis 2021; 80:1503-1504. [PMID: 34344705 DOI: 10.1136/annrheumdis-2021-220856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Jeffrey A Sparks
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA .,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
97
|
Stancil IT, Michalski JE, Davis-Hall D, Chu HW, Park JA, Magin CM, Yang IV, Smith BJ, Dobrinskikh E, Schwartz DA. Pulmonary fibrosis distal airway epithelia are dynamically and structurally dysfunctional. Nat Commun 2021; 12:4566. [PMID: 34315881 PMCID: PMC8316442 DOI: 10.1038/s41467-021-24853-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/06/2021] [Indexed: 01/06/2023] Open
Abstract
The airway epithelium serves as the interface between the host and external environment. In many chronic lung diseases, the airway is the site of substantial remodeling after injury. While, idiopathic pulmonary fibrosis (IPF) has traditionally been considered a disease of the alveolus and lung matrix, the dominant environmental (cigarette smoking) and genetic (gain of function MUC5B promoter variant) risk factor primarily affect the distal airway epithelium. Moreover, airway-specific pathogenic features of IPF include bronchiolization of the distal airspace with abnormal airway cell-types and honeycomb cystic terminal airway-like structures with concurrent loss of terminal bronchioles in regions of minimal fibrosis. However, the pathogenic role of the airway epithelium in IPF is unknown. Combining biophysical, genetic, and signaling analyses of primary airway epithelial cells, we demonstrate that healthy and IPF airway epithelia are biophysically distinct, identifying pathologic activation of the ERBB-YAP axis as a specific and modifiable driver of prolongation of the unjammed-to-jammed transition in IPF epithelia. Furthermore, we demonstrate that this biophysical state and signaling axis correlates with epithelial-driven activation of the underlying mesenchyme. Our data illustrate the active mechanisms regulating airway epithelial-driven fibrosis and identify targets to modulate disease progression.
Collapse
Affiliation(s)
- Ian T Stancil
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob E Michalski
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Duncan Davis-Hall
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Hong Wei Chu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
98
|
Linking Fibrotic Remodeling and Ultrastructural Alterations of Alveolar Epithelial Cells after Deletion of Nedd4-2. Int J Mol Sci 2021; 22:ijms22147607. [PMID: 34299227 PMCID: PMC8306112 DOI: 10.3390/ijms22147607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022] Open
Abstract
Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood–gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.
Collapse
|
99
|
Samarelli AV, Tonelli R, Heijink I, Martin Medina A, Marchioni A, Bruzzi G, Castaniere I, Andrisani D, Gozzi F, Manicardi L, Moretti A, Cerri S, Fantini R, Tabbì L, Nani C, Mastrolia I, Weiss DJ, Dominici M, Clini E. Dissecting the Role of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis: Cause or Solution. Front Pharmacol 2021; 12:692551. [PMID: 34290610 PMCID: PMC8287856 DOI: 10.3389/fphar.2021.692551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of idiopathic interstitial pneumonias, characterized by chronic and progressive fibrosis subverting the lung's architecture, pulmonary functional decline, progressive respiratory failure, and high mortality (median survival 3 years after diagnosis). Among the mechanisms associated with disease onset and progression, it has been hypothesized that IPF lungs might be affected either by a regenerative deficit of the alveolar epithelium or by a dysregulation of repair mechanisms in response to alveolar and vascular damage. This latter might be related to the progressive dysfunction and exhaustion of the resident stem cells together with a process of cellular and tissue senescence. The role of endogenous mesenchymal stromal/stem cells (MSCs) resident in the lung in the homeostasis of these mechanisms is still a matter of debate. Although endogenous MSCs may play a critical role in lung repair, they are also involved in cellular senescence and tissue ageing processes with loss of lung regenerative potential. In addition, MSCs have immunomodulatory properties and can secrete anti-fibrotic factors. Thus, MSCs obtained from other sources administered systemically or directly into the lung have been investigated for lung epithelial repair and have been explored as a potential therapy for the treatment of lung diseases including IPF. Given these multiple potential roles of MSCs, this review aims both at elucidating the role of resident lung MSCs in IPF pathogenesis and the role of administered MSCs from other sources for potential IPF therapies.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Irene Heijink
- University of Groningen, Departments of Pathology & Medical Biology and Pulmonology, GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands
| | - Aina Martin Medina
- IdISBa (Institut d’Investigacio Sanitaria Illes Balears), Palma de Mallorca, Spain
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Riccardo Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Luca Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Chiara Nani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Massimo Dominici
- Oncology Unit, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| |
Collapse
|
100
|
Khan MM, Poeckel D, Halavatyi A, Zukowska-Kasprzyk J, Stein F, Vappiani J, Sevin DC, Tischer C, Zinn N, Eley JD, Gudmann NS, Muley T, Winter H, Fisher AJ, Nanthakumar CB, Bergamini G, Pepperkok R. An integrated multiomic and quantitative label-free microscopy-based approach to study pro-fibrotic signalling in ex vivo human precision-cut lung slices. Eur Respir J 2021; 58:2000221. [PMID: 33361096 PMCID: PMC8318569 DOI: 10.1183/13993003.00221-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
Fibrosis can affect any organ, resulting in the loss of tissue architecture and function with often life-threatening consequences. Pathologically, fibrosis is characterised by the expansion of connective tissue due to excessive deposition of extracellular matrix (ECM) proteins, including the fibrillar forms of collagen. A significant limitation for discovering cures for fibrosis is the availability of suitable human models and techniques to quantify mature fibrillar collagen deposition as close as possible to human physiological conditions.Here we have extensively characterised an ex vivo cultured human lung tissue-derived, precision-cut lung slices (hPCLS) model using label-free second harmonic generation (SHG) light microscopy to quantify fibrillar collagen deposition and mass spectrometry-based techniques to obtain a proteomic and metabolomic fingerprint of hPCLS in ex vivo culture.We demonstrate that hPCLS are viable and metabolically active, with mesenchymal, epithelial, endothelial and immune cell types surviving for at least 2 weeks in ex vivo culture. Analysis of hPCLS-conditioned supernatants showed a strong induction of pulmonary fibrosis-related ECM proteins upon transforming growth factor-β1 (TGF-β1) stimulation. This upregulation of ECM proteins was not translated into an increased deposition of fibrillar collagen. In support of this observation, we revealed the presence of a pro-ECM degradation activity in our ex vivo cultures of hPCLS, inhibition of which by a metalloproteinase inhibitor resulted in increased collagen deposition in response to TGF-β1 stimulation.Together the data show that an integrated approach of measuring soluble pro-fibrotic markers alongside quantitative SHG-based analysis of fibrillar collagen is a valuable tool for studying pro-fibrotic signalling and testing anti-fibrotic agents.
Collapse
Affiliation(s)
- Muzamil Majid Khan
- European Molecular Biology Laboratory, Heidelberg, Germany
- Discovery Biology, Cellzome GmbH, GSK, Heidelberg, Germany
- Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Daniel Poeckel
- Discovery Biology, Cellzome GmbH, GSK, Heidelberg, Germany
| | - Aliaksandr Halavatyi
- European Molecular Biology Laboratory, Heidelberg, Germany
- Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | | | - Frank Stein
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Daniel C Sevin
- Discovery Biology, Cellzome GmbH, GSK, Heidelberg, Germany
| | | | - Nico Zinn
- Discovery Biology, Cellzome GmbH, GSK, Heidelberg, Germany
| | | | | | - Thomas Muley
- Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Biobank Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Hauke Winter
- Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Biobank Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute and Institute of Transplantation, Newcastle upon Tyne Hospitals, Newcastle upon Tyne, UK
| | | | - Giovanna Bergamini
- Discovery Biology, Cellzome GmbH, GSK, Heidelberg, Germany
- G. Bergamini and R. Pepperkok contributed equally to this article as lead authors and supervised the work
| | - Rainer Pepperkok
- European Molecular Biology Laboratory, Heidelberg, Germany
- Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- G. Bergamini and R. Pepperkok contributed equally to this article as lead authors and supervised the work
| |
Collapse
|