51
|
Long-term effect of neonatal antagonism of ionotropic glutamate receptors on dendritic spines and cognitive function in rats. J Chem Neuroanat 2021; 119:102054. [PMID: 34839003 DOI: 10.1016/j.jchemneu.2021.102054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the hippocampus where mediates its actions by activating glutamate receptors. The activation of these receptors is essential for the maintenance and dynamics of dendritic spines and plasticity that correlate with learning and memory processes during neurodevelopment and adulthood. We studied in adults the effect of blocking ionotropic glutamate receptors (NMDAR, AMPAR, and KAR) functions at neonatal age (PD1-PD15) with their respective antagonists D-AP5, GYKI-53655 and UBP-302. We first evaluated memory using a new object recognition test in adults. Second, we evaluated the levels of glial fibrillary acidic protein, synaptophysin and actin with immunohistochemistry in the CA1, CA3, and dentate gyrus regions of the hippocampus and, finally, the number of dendritic spines and their dynamics using Golgi-Cox staining. We found that ionotropic glutamate receptor function blockade at neonatal age causes a reduction in short and long-term memory in adulthood and a reduction in the expression of synaptophysin and actin protein levels in the hippocampus regions studied. This blockade also reduced the number of dendritic spines and modified dendritic dynamics in the CA1 region. The antagonism of the three types of ionotropic glutamate receptors reduced the mushrooms and bifurcated types of spines and increased the thin spines. The number of stubby spines was reduced by D-AP5, increased by UPB-302, and not affected by GYKI-53655. Our results indicate that the blockade of neonatal ionotropic glutamate receptors produces alterations that persist until adulthood.
Collapse
|
52
|
Noriega-Prieto JA, Araque A. Sensing and Regulating Synaptic Activity by Astrocytes at Tripartite Synapse. Neurochem Res 2021; 46:2580-2585. [PMID: 33837868 PMCID: PMC10159683 DOI: 10.1007/s11064-021-03317-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Astrocytes are recognized as more important cells than historically thought in synaptic function through the reciprocal exchange of signaling with the neuronal synaptic elements. The idea that astrocytes are active elements in synaptic physiology is conceptualized in the Tripartite Synapse concept. This review article presents and discusses recent representative examples that highlight the heterogeneity of signaling in tripartite synapse function and its consequences on neural network function and animal behavior.
Collapse
Affiliation(s)
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
53
|
Martins-Macedo J, Salgado AJ, Gomes ED, Pinto L. Adult brain cytogenesis in the context of mood disorders: From neurogenesis to the emergent role of gliogenesis. Neurosci Biobehav Rev 2021; 131:411-428. [PMID: 34555383 DOI: 10.1016/j.neubiorev.2021.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Psychiatric disorders severely impact patients' lives. Motivational, cognitive and emotional deficits are the most common symptoms observed in these patients and no effective treatment is still available, either due to the adverse side effects or the low rate of efficacy of currently available drugs. Neurogenesis recovery has been one important focus in the treatment of psychiatric disorders, which undeniably contributes to the therapeutic action of antidepressants. However, glial plasticity is emerging as a new strategy to explore the deficits observed in mood disorders and the efficacy of therapeutic interventions. Thus, it is crucial to understand the mechanisms behind glio- and neurogenesis to better define treatments and preventive therapies, once adult cytogenesis is of pivotal importance to cognitive and emotional components of behavior, both in healthy and pathological contexts, including in psychiatric disorders. Here, we review the concepts and history of neuro- and gliogenesis, providing as well a reflection on the functional importance of cytogenesis in the context of disease.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
54
|
Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses. Cells 2021; 10:cells10082055. [PMID: 34440823 PMCID: PMC8391609 DOI: 10.3390/cells10082055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Long-term synaptic plasticity is shaped by the controlled reorganization of the synaptic proteome. A key component of this process is local proteolysis performed by the family of extracellular matrix metalloproteinases (MMPs). In recent years, considerable progress was achieved in identifying extracellular proteases involved in neuroplasticity phenomena and their protein substrates. Perisynaptic metalloproteinases regulate plastic changes at synapses through the processing of extracellular and membrane proteins. MMP9 was found to play a crucial role in excitatory synapses by controlling the NMDA-dependent LTP component. In addition, MMP3 regulates the L-type calcium channel-dependent form of LTP as well as the plasticity of neuronal excitability. Both MMP9 and MMP3 were implicated in memory and learning. Moreover, altered expression or mutations of different MMPs are associated with learning deficits and psychiatric disorders, including schizophrenia, addiction, or stress response. Contrary to excitatory drive, the investigation into the role of extracellular proteolysis in inhibitory synapses is only just beginning. Herein, we review the principal mechanisms of MMP involvement in the plasticity of excitatory transmission and the recently discovered role of proteolysis in inhibitory synapses. We discuss how different matrix metalloproteinases shape dynamics and turnover of synaptic adhesome and signal transduction pathways in neurons. Finally, we discuss future challenges in exploring synapse- and plasticity-specific functions of different metalloproteinases.
Collapse
|
55
|
Watkins JC, Evans RH, Bayés À, Booker SA, Gibb A, Mabb AM, Mayer M, Mellor JR, Molnár E, Niu L, Ortega A, Pankratov Y, Ramos-Vicente D, Rodríguez-Campuzano A, Rodríguez-Moreno A, Wang LY, Wang YT, Wollmuth L, Wyllie DJA, Zhuo M, Frenguelli BG. 21st century excitatory amino acid research: A Q & A with Jeff Watkins and Dick Evans. Neuropharmacology 2021; 198:108743. [PMID: 34363811 DOI: 10.1016/j.neuropharm.2021.108743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.
Collapse
Affiliation(s)
| | | | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sam A Booker
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Alasdair Gibb
- Research Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Angela M Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Mark Mayer
- Bldg 35A, Room 3D-904, 35A Convent Drive, NINDS, NIH, Bethesda, MD, 20892, USA
| | - Jack R Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Li Niu
- Chemistry Department, University at Albany, SUNY, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Arturo Ortega
- Department of Toxicology, Cinvestav, Mexico City, Mexico
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain and Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, 555 University Ave, Toronto, Ontario, M5G 1X8, Canada
| | - Yu Tian Wang
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Lonnie Wollmuth
- Depts. of Neurobiology & Behavior and Biochemistry & Cell Biology, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, 266000, China
| | | |
Collapse
|
56
|
Durkee C, Kofuji P, Navarrete M, Araque A. Astrocyte and neuron cooperation in long-term depression. Trends Neurosci 2021; 44:837-848. [PMID: 34334233 DOI: 10.1016/j.tins.2021.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/28/2023]
Abstract
Activity-dependent long-term changes in synaptic transmission known as synaptic plasticity are fundamental processes in brain function and are recognized as the cellular basis of learning and memory. While the neuronal mechanisms underlying synaptic plasticity have been largely identified, the involvement of astrocytes in these processes has been less recognized. However, astrocytes are emerging as important cells that regulate synaptic function by interacting with neurons at tripartite synapses. In this review, we discuss recent evidence suggesting that astrocytes are necessary elements in long-term synaptic depression (LTD). We highlight the mechanistic heterogeneity of astrocyte contribution to this form of synaptic plasticity and propose that astrocytes are integral participants in LTD.
Collapse
Affiliation(s)
- Caitlin Durkee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
57
|
Falcón-Moya R, Martínez-Gallego I, Rodríguez-Moreno A. Kainate receptor modulation of glutamatergic synaptic transmission in the CA2 region of the hippocampus. J Neurochem 2021; 158:1083-1093. [PMID: 34293825 DOI: 10.1111/jnc.15481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Kainate (KA) receptors (KARs) are important modulators of synaptic transmission. We studied here the role of KARs on glutamatergic synaptic transmission in the CA2 region of the hippocampus where the actions of these receptors are unknown. We observed that KA depresses glutamatergic synaptic transmission at Schaffer collateral-CA2 synapses; an effect that was antagonized by NBQX (a KA/AMPA receptors antagonist) under condition where AMPA receptors were previously blocked. The study of paired-pulse facilitation ratio, miniature responses, and fluctuation analysis indicated a presynaptic locus of action for KAR. Additionally, we determined the action mechanism for this depression of glutamate release mediated by the activation of KARs. We found that inhibition of protein kinase A suppressed the effect of KAR activation on evoked excitatory post-synaptic current, an effect that was not suppressed by protein kinase C inhibitors. Furthermore, in the presence of Pertussis toxin, the depression of glutamate release mediated by KAR activation was not present, invoking the participation of a Gi/o protein in this modulation. Finally, the KAR-mediated depression of glutamate release was not suppressed by treatments that affect calcium entry trough voltage-dependent calcium channels or calcium release from intracellular stores. We conclude that KARs present at these synapses mediate a depression of glutamate release through a mechanism that involves the activation of G protein and protein kinase A.
Collapse
Affiliation(s)
- Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Irene Martínez-Gallego
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
58
|
Metabotropic actions of kainate receptors modulating glutamate release. Neuropharmacology 2021; 197:108696. [PMID: 34274351 DOI: 10.1016/j.neuropharm.2021.108696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/06/2022]
Abstract
Presynaptic kainate (KA) receptors (KARs) modulate GABA and glutamate release in the central nervous system of mammals. While some of the actions of KARs are ionotropic, metabotropic actions for these receptors have also been seen to modulate both GABA and glutamate release. In general, presynaptic KARs modulate glutamate release through their metabotropic actions in a biphasic manner, with low KA concentrations producing an increase in glutamate release and higher concentrations of KA driving weaker release of this neurotransmitter. Different molecular mechanisms are involved in this modulation of glutamate release, with a G-protein independent, Ca2+-calmodulin adenylate cyclase (AC) and protein kinase A (PKA) dependent mechanism facilitating glutamate release, and a G-protein, AC and PKA dependent mechanism mediating the decrease in neurotransmitter release. Here, we describe the events underlying the KAR modulation of glutamatergic transmission in different brain regions, addressing the possible functions of this modulation and proposing future research lines in this field.
Collapse
|
59
|
Andrade-Talavera Y, Rodríguez-Moreno A. Synaptic Plasticity and Oscillations in Alzheimer's Disease: A Complex Picture of a Multifaceted Disease. Front Mol Neurosci 2021; 14:696476. [PMID: 34220451 PMCID: PMC8248350 DOI: 10.3389/fnmol.2021.696476] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Brain plasticity is widely accepted as the core neurophysiological basis of memory and is generally defined by activity-dependent changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). By using diverse induction protocols like high-frequency stimulation (HFS) or spike-timing dependent plasticity (STDP), such crucial cognition-relevant plastic processes are shown to be impaired in Alzheimer’s disease (AD). In AD, the severity of the cognitive impairment also correlates with the level of disruption of neuronal network dynamics. Currently under debate, the named amyloid hypothesis points to amyloid-beta peptide 1–42 (Aβ42) as the trigger of the functional deviations underlying cognitive impairment in AD. However, there are missing functional mechanistic data that comprehensively dissect the early subtle changes that lead to synaptic dysfunction and subsequent neuronal network collapse in AD. The convergence of the study of both, mechanisms underlying brain plasticity, and neuronal network dynamics, may represent the most efficient approach to address the early triggering and aberrant mechanisms underlying the progressive clinical cognitive impairment in AD. Here we comment on the emerging integrative roles of brain plasticity and network oscillations in AD research and on the future perspectives of research in this field.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
60
|
Louth EL, Jørgensen RL, Korshoej AR, Sørensen JCH, Capogna M. Dopaminergic Neuromodulation of Spike Timing Dependent Plasticity in Mature Adult Rodent and Human Cortical Neurons. Front Cell Neurosci 2021; 15:668980. [PMID: 33967700 PMCID: PMC8102156 DOI: 10.3389/fncel.2021.668980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
Synapses in the cerebral cortex constantly change and this dynamic property regulated by the action of neuromodulators such as dopamine (DA), is essential for reward learning and memory. DA modulates spike-timing-dependent plasticity (STDP), a cellular model of learning and memory, in juvenile rodent cortical neurons. However, it is unknown whether this neuromodulation also occurs at excitatory synapses of cortical neurons in mature adult mice or in humans. Cortical layer V pyramidal neurons were recorded with whole cell patch clamp electrophysiology and an extracellular stimulating electrode was used to induce STDP. DA was either bath-applied or optogenetically released in slices from mice. Classical STDP induction protocols triggered non-hebbian excitatory synaptic depression in the mouse or no plasticity at human cortical synapses. DA reverted long term synaptic depression to baseline in mouse via dopamine 2 type receptors or elicited long term synaptic potentiation in human cortical synapses. Furthermore, when DA was applied during an STDP protocol it depressed presynaptic inhibition in the mouse but not in the human cortex. Thus, DA modulates excitatory synaptic plasticity differently in human vs. mouse cortex. The data strengthens the importance of DA in gating cognition in humans, and may inform on therapeutic interventions to recover brain function from diseases.
Collapse
Affiliation(s)
- Emma Louise Louth
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | | | | | | | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Center for Proteins in Memory-PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| |
Collapse
|
61
|
New insights on nitric oxide: Focus on animal models of schizophrenia. Behav Brain Res 2021; 409:113304. [PMID: 33865887 DOI: 10.1016/j.bbr.2021.113304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a devastating complex disorder characterised by a constellation of behavioral deficits with the underlying mechanisms not fully known. Nitric oxide (NO) has emerged as a key signaling molecule implicated in schizophrenia. Three nitric oxide sinthases (NOS), endothelial, neuronal, and inducible, release NO within the cell. Animal models of schizophrenia are grouped in four groups, neurovedelopmental, glutamatergic, dopaminergic and genetic. In this review, we aim to evaluate changes in NO levels in animal models of schizophrenia and the resulting long-lasting behavioral and neural consequences. In particular, NO levels are substantially modified, region-specific, in various neurodevelopmental models, e.g. bilateral excitotoxic lesion of the ventral hippocampus (nVHL), maternal immune activation and direct NO manipulations early in development, among others. In regards to glutamatergic models of schizophrenia, phencyclidine (PCP) administration increases NO levels in the prefrontal cortex (PFC) and ventral hippocampus. As far as genetic models are concerned, neuronal NOS knock-out mice display schizophrenia-related behaviors. Administration of NO donors can reverse schizophrenia-related behavioral deficits. While most modifications in NO are derived from neuronal NOS, recent evidence indicates that PCP treatment increases NO from the inducible NOS isoform. From a pharmacological perspective, treatment with various antipsychotics including clozapine, haloperidol and risperidone normalize NO levels in the PFC as well as improve behavioral deficits in nVHL rats. NO induced from the neuronal and inducible NOS is relevant to schizophrenia and warrants further research.
Collapse
|
62
|
Input-selective adenosine A 1 receptor-mediated synaptic depression of excitatory transmission in dorsal striatum. Sci Rep 2021; 11:6345. [PMID: 33737568 PMCID: PMC7973535 DOI: 10.1038/s41598-021-85513-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
The medial (DMS) and lateral (DLS) dorsal striatum differentially drive goal-directed and habitual/compulsive behaviors, respectively, and are implicated in a variety of neuropsychiatric disorders. These subregions receive distinct inputs from cortical and thalamic regions which uniquely determine dorsal striatal activity and function. Adenosine A1 receptors (A1Rs) are prolific within striatum and regulate excitatory glutamate transmission. Thus, A1Rs may have regionally-specific effects on neuroadaptive processes which may ultimately influence striatally-mediated behaviors. The occurrence of A1R-driven plasticity at specific excitatory inputs to dorsal striatum is currently unknown. To better understand how A1Rs may influence these behaviors, we first sought to understand how A1Rs modulate these distinct inputs. We evaluated A1R-mediated inhibition of cortico- and thalamostriatal transmission using in vitro whole-cell, patch clamp slice electrophysiology recordings in medium spiny neurons from both the DLS and DMS of C57BL/6J mice in conjunction with optogenetic approaches. In addition, conditional A1R KO mice lacking A1Rs at specific striatal inputs to DMS and DLS were generated to directly determine the role of these presynaptic A1Rs on the measured electrophysiological responses. Activation of presynaptic A1Rs produced significant and prolonged synaptic depression (A1R-SD) of excitatory transmission in the both the DLS and DMS of male and female animals. Our findings indicate that A1R-SD at corticostriatal and thalamostriatal inputs to DLS can be additive and that A1R-SD in DMS occurs primarily at thalamostriatal inputs. These findings advance the field's understanding of the functional roles of A1Rs in striatum and implicate their potential contribution to neuropsychiatric diseases.
Collapse
|
63
|
Perez-Catalan NA, Doe CQ, Ackerman SD. The role of astrocyte-mediated plasticity in neural circuit development and function. Neural Dev 2021; 16:1. [PMID: 33413602 PMCID: PMC7789420 DOI: 10.1186/s13064-020-00151-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/26/2020] [Indexed: 02/03/2023] Open
Abstract
Neuronal networks are capable of undergoing rapid structural and functional changes called plasticity, which are essential for shaping circuit function during nervous system development. These changes range from short-term modifications on the order of milliseconds, to long-term rearrangement of neural architecture that could last for the lifetime of the organism. Neural plasticity is most prominent during development, yet also plays a critical role during memory formation, behavior, and disease. Therefore, it is essential to define and characterize the mechanisms underlying the onset, duration, and form of plasticity. Astrocytes, the most numerous glial cell type in the human nervous system, are integral elements of synapses and are components of a glial network that can coordinate neural activity at a circuit-wide level. Moreover, their arrival to the CNS during late embryogenesis correlates to the onset of sensory-evoked activity, making them an interesting target for circuit plasticity studies. Technological advancements in the last decade have uncovered astrocytes as prominent regulators of circuit assembly and function. Here, we provide a brief historical perspective on our understanding of astrocytes in the nervous system, and review the latest advances on the role of astroglia in regulating circuit plasticity and function during nervous system development and homeostasis.
Collapse
Affiliation(s)
- Nelson A Perez-Catalan
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
- Kennedy Center, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
| | - Sarah D Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
64
|
Tendilla-Beltrán H, Sanchez-Islas NDC, Marina-Ramos M, Leza JC, Flores G. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models. Prog Neurobiol 2020; 199:101967. [PMID: 33271238 DOI: 10.1016/j.pneurobio.2020.101967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Prefrontal cortex (PFC) inflammatory imbalance, oxidative/nitrosative stress (O/NS) and impaired neuroplasticity in schizophrenia are thought to have neurodevelopmental origins. Animal models are not only useful to test this hypothesis, they are also effective to establish a relationship among brain disturbances and behavior with the atypical antipsychotics (AAPs) effects. Here we review data of PFC post-mortem and in vivo neuroimaging, human induced pluripotent stem cells (hiPSC), and peripheral blood studies of inflammatory, O/NS, and neuroplasticity alterations in the disease as well as about their modulation by AAPs. Moreover, we reviewed the PFC alterations and the AAP mechanisms beyond their canonical antipsychotic action in four neurodevelopmental animal models relevant to the study of schizophrenia with a distinct approach in the generation of schizophrenia-like phenotypes, but all converge in O/NS and altered neuroplasticity in the PFC. These animal models not only reinforce the neurodevelopmental risk factor model of schizophrenia but also arouse some novel potential therapeutic targets for the disease including the reestablishment of the antioxidant response by the perineuronal nets (PNNs) and the nuclear factor erythroid 2-related factor (Nrf2) pathway, as well as the dendritic spine dynamics in the PFC pyramidal cells.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Mauricio Marina-Ramos
- Departamento de Ciencias de la Salud, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital, 12 de Octubre (Imas12), Madrid, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
65
|
Manninen T, Saudargiene A, Linne ML. Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex. PLoS Comput Biol 2020; 16:e1008360. [PMID: 33170856 PMCID: PMC7654831 DOI: 10.1371/journal.pcbi.1008360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Astrocytes have been shown to modulate synaptic transmission and plasticity in specific cortical synapses, but our understanding of the underlying molecular and cellular mechanisms remains limited. Here we present a new biophysicochemical model of a somatosensory cortical layer 4 to layer 2/3 synapse to study the role of astrocytes in spike-timing-dependent long-term depression (t-LTD) in vivo. By applying the synapse model and electrophysiological data recorded from rodent somatosensory cortex, we show that a signal from a postsynaptic neuron, orchestrated by endocannabinoids, astrocytic calcium signaling, and presynaptic N-methyl-D-aspartate receptors coupled with calcineurin signaling, induces t-LTD which is sensitive to the temporal difference between post- and presynaptic firing. We predict for the first time the dynamics of astrocyte-mediated molecular mechanisms underlying t-LTD and link complex biochemical networks at presynaptic, postsynaptic, and astrocytic sites to the time window of t-LTD induction. During t-LTD a single astrocyte acts as a delay factor for fast neuronal activity and integrates fast neuronal sensory processing with slow non-neuronal processing to modulate synaptic properties in the brain. Our results suggest that astrocytes play a critical role in synaptic computation during postnatal development and are of paramount importance in guiding the development of brain circuit functions, learning and memory.
Collapse
Affiliation(s)
- Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Ausra Saudargiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|