51
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
52
|
Dampier W, Berman R, Nonnemacher MR, Wigdahl B. Computational analysis of cas proteins unlocks new potential in HIV-1 targeted gene therapy. Front Genome Ed 2024; 5:1248982. [PMID: 38239625 PMCID: PMC10794619 DOI: 10.3389/fgeed.2023.1248982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: The human immunodeficiency virus type 1 (HIV-1) pandemic has been slowed with the advent of anti-retroviral therapy (ART). However, ART is not a cure and as such has pushed the disease into a chronic infection. One potential cure strategy that has shown promise is the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing system. It has recently been shown to successfully edit and/or excise the integrated provirus from infected cells and inhibit HIV-1 in vitro, ex vivo, and in vivo. These studies have primarily been conducted with SpCas9 or SaCas9. However, additional Cas proteins are discovered regularly and modifications to these known proteins are being engineered. The alternative Cas molecules have different requirements for protospacer adjacent motifs (PAMs) which impact the possible targetable regions of HIV-1. Other modifications to the Cas protein or gRNA handle impact the tolerance for mismatches between gRNA and the target. While reducing off-target risk, this impacts the ability to fully account for HIV-1 genetic variability. Methods: This manuscript strives to examine these parameter choices using a computational approach for surveying the suitability of a Cas editor for HIV-1 gene editing. The Nominate, Diversify, Narrow, Filter (NDNF) pipeline measures the safety, broadness, and effectiveness of a pool of potential gRNAs for any PAM. This technique was used to evaluate 46 different potential Cas editors for their HIV therapeutic potential. Results: Our examination revealed that broader PAMs that improve the targeting potential of editors like SaCas9 and LbCas12a have larger pools of useful gRNAs, while broader PAMs reduced the pool of useful SpCas9 gRNAs yet increased the breadth of targetable locations. Investigation of the mismatch tolerance of Cas editors indicates a 2-missmatch tolerance is an ideal balance between on-target sensitivity and off-target specificity. Of all of the Cas editors examined, SpCas-NG and SPRY-Cas9 had the highest number of overall safe, broad, and effective gRNAs against HIV. Discussion: Currently, larger proteins and wider PAMs lead to better targeting capacity. This implies that research should either be targeted towards delivering longer payloads or towards increasing the breadth of currently available small Cas editors. With the discovery and adoption of additional Cas editors, it is important for researchers in the HIV-1 gene editing field to explore the wider world of Cas editors.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
53
|
Gruntman AM, Xue W, Flotte TR. Approaches to Therapeutic Gene Editing in Alpha-1 Antitrypsin Deficiency. Methods Mol Biol 2024; 2750:11-17. [PMID: 38108963 DOI: 10.1007/978-1-0716-3605-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Five distinct gene therapy approaches have been developed for treating AATD. These approaches include knockout of the mutant (PiZ) allele by introduction of double-strand breaks (DSBs) and subsequent creation of insertions and deletions (indels) by DSB repair, homology-directed repair (HDR) targeted to the mutation site, base editing, prime editing, and alternatively targeted knock-in techniques. Each approach will be discussed and a brief summary of a standard CRISPR-Cas9 targeting method will be presented.
Collapse
Affiliation(s)
- Alisha M Gruntman
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wen Xue
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Terence R Flotte
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
54
|
Lee Y, Oh Y, Lee SH. Recent advances in genome engineering by CRISPR technology. BMB Rep 2024; 57:12-18. [PMID: 38053294 PMCID: PMC10828434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 12/07/2023] Open
Abstract
Due to the development of CRISPR technology, the era of effective editing of target genes has arrived. However, the offtarget problem that occurs when recognizing target DNA due to the inherent nature of CRISPR components remains the biggest task to be overcome in the future. In this review, the principle of inducing such unintended off-target editing is analyzed from the structural aspect of CRISPR, and the methodology that has been developed to reduce off-target editing until now is summarized. [BMB Reports 2024; 57(1): 12-18].
Collapse
Affiliation(s)
- Youngsik Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Yeounsun Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
55
|
Yu X, Huo G, Yu J, Li H, Li J. Prime editing: Its systematic optimization and current applications in disease treatment and agricultural breeding. Int J Biol Macromol 2023; 253:127025. [PMID: 37769783 DOI: 10.1016/j.ijbiomac.2023.127025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
CRISPR/Cas-mediated genome-editing technology has accelerated the development of the life sciences. Prime editing has raised genome editing to a new level because it allows for all 12 types of base substitutions, targeted insertions and deletions, large DNA fragment integration, and even combinations of these edits without generating DNA double-strand breaks. This versatile and game-changing technology has successfully been applied to human cells and plants, and it currently plays important roles in basic research, gene therapy, and crop breeding. Although prime editing has substantially expanded the range of possibilities for genome editing, its efficiency requires improvement. In this review, we briefly introduce prime editing and highlight recent optimizations that have improved the efficiency of prime editors. We also describe how the dual-pegRNA strategy has expanded current editing capabilities, and we summarize the potential of prime editing in treating mammalian diseases and improving crop breeding. Finally, we discuss the limitations of current prime editors and future prospects for optimizing these editors.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Guanzhong Huo
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jintai Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China; College of Modern Science and Technology, Hebei Agricultural University, Baoding, China
| | - Huiyuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
56
|
Fu Y, He X, Gao XD, Li F, Ge S, Yang Z, Fan X. Prime editing: current advances and therapeutic opportunities in human diseases. Sci Bull (Beijing) 2023; 68:3278-3291. [PMID: 37973465 DOI: 10.1016/j.scib.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Gene editing ushers in a new era of disease treatment since many genetic diseases are caused by base-pair mutations in genomic DNA. With the rapid development of genome editing technology, novel editing tools such as base editing and prime editing (PE) have attracted public attention, heralding a great leap forward in this field. PE, in particular, is characterized by no need for double-strand breaks (DSBs) or homology sequence templates with variable application scenarios, including point mutations as well as insertions or deletions. With higher editing efficiency and fewer byproducts than traditional editing tools, PE holds great promise as a therapeutic strategy for human diseases. Subsequently, a growing demand for the standard construction of PE system has spawned numerous easy-to-access internet resources and tools for personalized prime editing guide RNA (pegRNA) design and off-target site prediction. In this review, we mainly introduce the innovation and evolutionary strategy of PE systems and the auxiliary tools for PE design and analysis. Additionally, its application and future potential in the clinical field have been summarized and envisaged.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge MA 02141, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge MA 02138, USA
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
57
|
Godbout K, Rousseau J, Tremblay JP. Successful Correction by Prime Editing of a Mutation in the RYR1 Gene Responsible for a Myopathy. Cells 2023; 13:31. [PMID: 38201236 PMCID: PMC10777931 DOI: 10.3390/cells13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
We report the first correction from prime editing a mutation in the RYR1 gene, paving the way to gene therapies for RYR1-related myopathies. The RYR1 gene codes for a calcium channel named Ryanodine receptor 1, which is expressed in skeletal muscle fibers. The failure of this channel causes muscle weakness in patients, which leads to motor disabilities. Currently, there are no effective treatments for these diseases, which are mainly caused by point mutations. Prime editing allows for the modification of precise nucleotides in the DNA. Our results showed a 59% correction rate of the T4709M mutation in the RYR1 gene in human myoblasts by RNA delivery of the prime editing components. It is to be noted that T4709M is recessive and, thus, persons having a heterozygous mutation are healthy. These results are the first demonstration that correcting mutations in the RYR1 gene is possible.
Collapse
Affiliation(s)
- Kelly Godbout
- Molecular Biology Department, Laval University, Quebec, QC G1V 0A6, Canada;
- CHU de Québec Research Center, Laval University, Quebec, QC G1V 4G2, Canada;
| | - Joël Rousseau
- CHU de Québec Research Center, Laval University, Quebec, QC G1V 4G2, Canada;
| | - Jacques P. Tremblay
- Molecular Biology Department, Laval University, Quebec, QC G1V 0A6, Canada;
- CHU de Québec Research Center, Laval University, Quebec, QC G1V 4G2, Canada;
| |
Collapse
|
58
|
Tou CJ, Kleinstiver BP. Recent Advances in Double-Strand Break-Free Kilobase-Scale Genome Editing Technologies. Biochemistry 2023; 62:3493-3499. [PMID: 36049184 PMCID: PMC10239562 DOI: 10.1021/acs.biochem.2c00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genome editing approaches have transformed the ability to make user-defined changes to genomes in both ex vivo and in vivo contexts. Despite the abundant development of technologies that permit the installation of nucleotide-level changes, until recently, larger-scale sequence edits via technologies independent of DNA double-strand breaks (DSBs) had remained less explored. Here, we review recent advances toward DSB-free technologies that enable kilobase-scale modifications including insertions, deletions, inversions, replacements, and others. These technologies provide new capabilities for users, while offering hope for the simplification of putative therapeutic strategies by moving away from small mutation-specific edits and toward more generalizable kilobase-scale approaches.
Collapse
Affiliation(s)
- Connor J. Tou
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
59
|
Lu Y, Godbout K, Lamothe G, Tremblay JP. CRISPR-Cas9 delivery strategies with engineered extracellular vesicles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102040. [PMID: 37842166 PMCID: PMC10571031 DOI: 10.1016/j.omtn.2023.102040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Therapeutic genome editing has the potential to cure diseases by directly correcting genetic mutations in tissues and cells. Recent progress in the CRISPR-Cas9 systems has led to breakthroughs in gene editing tools because of its high orthogonality, versatility, and efficiency. However, its safe and effective administration to target organs in patients is a major hurdle. Extracellular vesicles (EVs) are endogenous membranous particles secreted spontaneously by all cells. They are key actors in cell-to-cell communication, allowing the exchange of select molecules such as proteins, lipids, and RNAs to induce functional changes in the recipient cells. Recently, EVs have displayed their potential for trafficking the CRISPR-Cas9 system during or after their formation. In this review, we highlight recent developments in EV loading, surface functionalization, and strategies for increasing the efficiency of delivering CRISPR-Cas9 to tissues, organs, and cells for eventual use in gene therapies.
Collapse
Affiliation(s)
- Yaoyao Lu
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Kelly Godbout
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Gabriel Lamothe
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| |
Collapse
|
60
|
Petrova IO, Smirnikhina SA. The Development, Optimization and Future of Prime Editing. Int J Mol Sci 2023; 24:17045. [PMID: 38069367 PMCID: PMC10707272 DOI: 10.3390/ijms242317045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Prime editing is a rapidly developing method of CRISPR/Cas-based genome editing. The increasing number of novel PE applications and improved versions demands constant analysis and evaluation. The present review covers the mechanism of prime editing, the optimization of the method and the possible next step in the evolution of CRISPR/Cas9-associated genome editing. The basic components of a prime editing system are a prime editor fusion protein, consisting of nickase and reverse transcriptase, and prime editing guide RNA, consisting of a protospacer, scaffold, primer binding site and reverse transcription template. Some prime editing systems include other parts, such as additional RNA molecules. All of these components were optimized to achieve better efficiency for different target organisms and/or compactization for viral delivery. Insights into prime editing mechanisms allowed us to increase the efficiency by recruiting mismatch repair inhibitors. However, the next step in prime editing evolution requires the incorporation of new mechanisms. Prime editors combined with integrases allow us to combine the precision of prime editing with the target insertion of large, several-kilobase-long DNA fragments.
Collapse
Affiliation(s)
- Irina O. Petrova
- Laboratory of Genome Editing, Research Center for Medical Genetics, Moskvorechye 1, 115478 Moscow, Russia
| | | |
Collapse
|
61
|
Qi Y, Zhang Y, Tian S, Zong R, Yan X, Wang Y, Wang Y, Zhao J. An optimized prime editing system for efficient modification of the pig genome. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2851-2861. [PMID: 37505431 DOI: 10.1007/s11427-022-2334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/22/2023] [Indexed: 07/29/2023]
Abstract
Prime editing (PE) is a recent gene editing technology that can mediate insertions or deletions and all twelve types of base-to-base conversions. However, its low efficiency hampers the application in creating novel breeds and biomedical models, especially in pigs and other important farm animals. Here, we demonstrate that the pig genome is editable using the PE system, but the editing efficiency was quite low as expected. Therefore, we aimed to enhance PE efficiency by modulating both exogenous PE tools and endogenous pathways in porcine embryonic fibroblasts (PEFs). First, we modified the pegRNA by extending the duplex length and mutating the fourth thymine in a continuous sequence of thymine bases to cytosine, which significantly enhanced PE efficiency by improving the expression of pegRNA and targeted cleavage. Then, we targeted SAMHD1, a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) that impedes the reverse transcription process in retroviruses, and found that treatment with its inhibitor, cephalosporin C zinc salt (CPC), increased PE efficiency up to 29-fold (4-fold on average), presumably by improving the reverse transcription process of Moloney murine leukemia virus reverse transcriptase (M-MLV RT) in the PE system. Moreover, PE efficiency was obviously improved by treatment with a panel of histone deacetylase inhibitors (HDACis). Among the four HDACis tested, panobinostat was the most efficient, with an efficiency up to 122-fold (7-fold on average), partly due to the considerable HDACi-mediated increase in transgene expression. In addition, the synergistic use of the three strategies further enhanced PE efficiency in PEFs. Our study provides novel approaches for optimization of the PE system and broadens the application scope of PE in agriculture and biomedicine.
Collapse
Affiliation(s)
- Yanan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuangjie Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruojun Zong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinghui Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
62
|
Chen Z, Kelly K, Cheng H, Dong X, Hedger AK, Li L, Sontheimer EJ, Watts JK. In Vivo Prime Editing by Lipid Nanoparticle Co-delivery of Chemically Modified pegRNA and Prime Editor mRNA. GEN BIOTECHNOLOGY 2023; 2:490-502. [PMID: 39850578 PMCID: PMC11756591 DOI: 10.1089/genbio.2023.0045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Prime editing has gained significant attention as a next-generation gene editing technology, owing to its unique advantages. However, realizing its potential in vivo requires effective delivery strategies. While adeno-associated virus (AAV) has been employed for in vivo delivery of prime editors in research settings, it presents inherent limitations related to vector size, ongoing expression, and inability to re-dose patients. Conversely, lipid nanoparticles (LNPs) do not face these limitations and are emerging as a leading non-viral approach for the delivery of gene editors. In this study, we demonstrate successful co-delivery of chemically modified pegRNA and prime editor mRNA using LNPs for in vivo prime editing. We investigate the impact of pegRNA chemical modifications on editing efficiency and explore different re-dosing regimens. In a daily-repeat dose regimen, we saw striking liver toxicity and no increase in editing; by contrast, weekly-repeat dosing was well tolerated and enabled 1.8-fold increase in editing efficacy. Furthermore, in the NSG immunodeficient mouse model, the efficacy of LNP-delivered prime editing was enhanced by 2.8-fold. In addition, the nature of the ionizable lipids and phospholipids strongly influenced prime editing efficiency in vivo. Overall, these findings will greatly contribute to the future development of LNPs as a robust platform for delivering prime editors in vivo, fostering progress in prime editing research and therapeutic applications.
Collapse
Affiliation(s)
- Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaolong Dong
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Present address: Tessera Therapeutics, Somerville, MA, USA
| | - Adam K Hedger
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Li Li
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
63
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
64
|
Haldrup J, Andersen S, Labial AR, Wolff JH, Frandsen F, Skov T, Rovsing A, Nielsen I, Jakobsen TS, Askou A, Thomsen M, Corydon T, Thomsen E, Mikkelsen J. Engineered lentivirus-derived nanoparticles (LVNPs) for delivery of CRISPR/Cas ribonucleoprotein complexes supporting base editing, prime editing and in vivo gene modification. Nucleic Acids Res 2023; 51:10059-10074. [PMID: 37678882 PMCID: PMC10570023 DOI: 10.1093/nar/gkad676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Implementation of therapeutic in vivo gene editing using CRISPR/Cas relies on potent delivery of gene editing tools. Administration of ribonucleoprotein (RNP) complexes consisting of Cas protein and single guide RNA (sgRNA) offers short-lived editing activity and safety advantages over conventional viral and non-viral gene and RNA delivery approaches. By engineering lentivirus-derived nanoparticles (LVNPs) to facilitate RNP delivery, we demonstrate effective administration of SpCas9 as well as SpCas9-derived base and prime editors (BE/PE) leading to gene editing in recipient cells. Unique Gag/GagPol protein fusion strategies facilitate RNP packaging in LVNPs, and refinement of LVNP stoichiometry supports optimized LVNP yield and incorporation of therapeutic payload. We demonstrate near instantaneous target DNA cleavage and complete RNP turnover within 4 days. As a result, LVNPs provide high on-target DNA cleavage and lower levels of off-target cleavage activity compared to standard RNP nucleofection in cultured cells. LVNPs accommodate BE/sgRNA and PE/epegRNA RNPs leading to base editing with reduced bystander editing and prime editing without detectable indel formation. Notably, in the mouse eye, we provide the first proof-of-concept for LVNP-directed in vivo gene disruption. Our findings establish LVNPs as promising vehicles for delivery of RNPs facilitating donor-free base and prime editing without formation of double-stranded DNA breaks.
Collapse
Affiliation(s)
- Jakob Haldrup
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Sofie Andersen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | | | | | | | - Ian Nielsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Thomas Stax Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | | | | |
Collapse
|
65
|
Koeppel J, Weller J, Peets EM, Pallaseni A, Kuzmin I, Raudvere U, Peterson H, Liberante FG, Parts L. Prediction of prime editing insertion efficiencies using sequence features and DNA repair determinants. Nat Biotechnol 2023; 41:1446-1456. [PMID: 36797492 PMCID: PMC10567557 DOI: 10.1038/s41587-023-01678-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2023] [Indexed: 02/18/2023]
Abstract
Most short sequences can be precisely written into a selected genomic target using prime editing; however, it remains unclear what factors govern insertion. We design a library of 3,604 sequences of various lengths and measure the frequency of their insertion into four genomic sites in three human cell lines, using different prime editor systems in varying DNA repair contexts. We find that length, nucleotide composition and secondary structure of the insertion sequence all affect insertion rates. We also discover that the 3' flap nucleases TREX1 and TREX2 suppress the insertion of longer sequences. Combining the sequence and repair features into a machine learning model, we can predict relative frequency of insertions into a site with R = 0.70. Finally, we demonstrate how our accurate prediction and user-friendly software help choose codon variants of common fusion tags that insert at high efficiency, and provide a catalog of empirically determined insertion rates for over a hundred useful sequences.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Kuzmin
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Uku Raudvere
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Hedi Peterson
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | | | - Leopold Parts
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
66
|
Murugesan R, Karuppusamy KV, Marepally S, Thangavel S. Current approaches and potential challenges in the delivery of gene editing cargos into hematopoietic stem and progenitor cells. Front Genome Ed 2023; 5:1148693. [PMID: 37780116 PMCID: PMC10540692 DOI: 10.3389/fgeed.2023.1148693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Advancements in gene delivery and editing have expanded the applications of autologous hematopoietic stem and progenitor cells (HSPCs) for the treatment of monogenic and acquired diseases. The gene editing toolbox is growing, and the ability to achieve gene editing with mRNA or protein delivered intracellularly by vehicles, such as electroporation and nanoparticles, has highlighted the potential of gene editing in HSPCs. Ongoing phase I/II clinical trials with gene-edited HSPCs for β-hemoglobinopathies provide hope for treating monogenic diseases. The development of safe and efficient gene editing reagents and their delivery into hard-to-transfect HSPCs have been critical drivers in the rapid translation of HSPC gene editing into clinical studies. This review article summarizes the available payloads and delivery vehicles for gene editing HSPCs and their potential impact on therapeutic applications.
Collapse
Affiliation(s)
- Ramya Murugesan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karthik V. Karuppusamy
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| |
Collapse
|
67
|
Wang M, Chen M, Wu X, Huang X, Yu B. CRISPR applications in cancer diagnosis and treatment. Cell Mol Biol Lett 2023; 28:73. [PMID: 37674114 PMCID: PMC10481571 DOI: 10.1186/s11658-023-00483-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Cancer remains a significant global health challenge, necessitating the exploration of novel and more precise therapeutic options beyond conventional treatments. In this regard, clustered regularly interspaced short palindromic repeats (CRISPR) systems have emerged as highly promising tools for clinical gene editing applications. The CRISPR family encompasses diverse CRISPR-associated (Cas) proteins that possess the ability to recognize specific target sequences. The initial CRISPR system consisted of the Cas9 protein and a single-guide RNA, which guide Cas9 to the desired target sequence, facilitating precise double-stranded cleavage. In addition to the traditional cis-cleavage activity, the more recently discovered Cas12 and Cas13 proteins exhibit trans-cleavage activity, which expands their potential applications in cancer diagnosis. In this review, we provide an overview of the functional characteristics of Cas9, Cas12, and Cas13. Furthermore, we highlight the latest advancements and applications of these CRISPR systems in cancer gene therapy and molecular diagnosis. We also emphasize the importance of understanding the strengths and limitations of each CRISPR system to maximize their clinical utility. By providing a comprehensive overview of the current state of CRISPR technology in cancer research, we aim to inspire further exploration and innovation in this rapidly evolving field.
Collapse
Affiliation(s)
- Mingxia Wang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Menghui Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xia Wu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xinbo Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
68
|
Doman JL, Pandey S, Neugebauer ME, An M, Davis JR, Randolph PB, McElroy A, Gao XD, Raguram A, Richter MF, Everette KA, Banskota S, Tian K, Tao YA, Tolar J, Osborn MJ, Liu DR. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 2023; 186:3983-4002.e26. [PMID: 37657419 PMCID: PMC10482982 DOI: 10.1016/j.cell.2023.07.039] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/07/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023]
Abstract
Prime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax. We discovered that different reverse transcriptases specialize in different types of edits and used this insight to generate reverse transcriptases that outperform PEmax and PEmaxΔRNaseH, the truncated editor used in dual-AAV delivery systems. Finally, we generated Cas9 domains that improve prime editing. These resulting editors (PE6a-g) enhance therapeutically relevant editing in patient-derived fibroblasts and primary human T-cells. PE6 variants also enable longer insertions to be installed in vivo following dual-AAV delivery, achieving 40% loxP insertion in the cortex of the murine brain, a 24-fold improvement compared to previous state-of-the-art prime editors.
Collapse
Affiliation(s)
- Jordan L Doman
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Smriti Pandey
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Monica E Neugebauer
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Meirui An
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Peyton B Randolph
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Amber McElroy
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Michelle F Richter
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Kelcee A Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Samagya Banskota
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Kathryn Tian
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Y Allen Tao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark J Osborn
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
69
|
Zhang W, Petri K, Ma J, Lee H, Tsai CL, Joung JK, Yeh JRJ. Enhancing CRISPR prime editing by reducing misfolded pegRNA interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553324. [PMID: 37645936 PMCID: PMC10462064 DOI: 10.1101/2023.08.14.553324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
CRISPR prime editing (PE) requires a Cas9 nickase-reverse transcriptase fusion protein (known as PE2) and a prime editing guide RNA (pegRNA), an extended version of a standard guide RNA (gRNA) that both specifies the intended target genomic sequence and encodes the desired genetic edit. Here we show that sequence complementarity between the 5' and the 3' regions of a pegRNA can negatively impact its ability to complex with Cas9, thereby potentially reducing PE efficiency. We demonstrate this limitation can be overcome by a simple pegRNA refolding procedure, which improved ribonucleoprotein-mediated PE efficiencies in zebrafish embryos by up to nearly 25-fold. Further gains in PE efficiencies of as much as 6-fold could also be achieved by introducing point mutations designed to disrupt internal interactions within the pegRNA. Our work defines simple strategies that can be implemented to improve the efficiency of PE.
Collapse
Affiliation(s)
- Weiting Zhang
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Karl Petri
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Junyan Ma
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Medical College, Dalian University, Dalian 116622, China
| | - Hyunho Lee
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Chia-Lun Tsai
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - J. Keith Joung
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
70
|
Song Z, Zhang G, Huang S, Liu Y, Li G, Zhou X, Sun J, Gao P, Chen Y, Huang X, Liu J, Wang X. PE-STOP: A versatile tool for installing nonsense substitutions amenable for precise reversion. J Biol Chem 2023; 299:104942. [PMID: 37343700 PMCID: PMC10365944 DOI: 10.1016/j.jbc.2023.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023] Open
Abstract
The rapid advances in genome editing technologies have revolutionized the study of gene functions in cell or animal models. The recent generation of double-stranded DNA cleavage-independent base editors has been suitably adapted for interrogation of protein-coding genes on the basis of introducing premature stop codons or disabling the start codons. However, such versions of stop/start codon-oriented genetic tools still present limitations on their versatility, base-level precision, and target specificity. Here, we exploit a newly developed prime editor (PE) that differs from base editors by its adoption of a reverse transcriptase activity, which enables incorporation of various types of precise edits templated by a specialized prime editing guide RNA. Based on such a versatile platform, we established a prime editing-empowered method (PE-STOP) for installation of nonsense substitutions, providing a complementary approach to the present gene-targeting tools. PE-STOP is bioinformatically predicted to feature substantially expanded coverage in the genome space. In practice, PE-STOP introduces stop codons with good efficiencies in human embryonic kidney 293T and N2a cells (with medians of 29% [ten sites] and 25% [four sites] editing efficiencies, respectively), while exhibiting minimal off-target effects and high on-target precision. Furthermore, given the fact that PE installs prime editing guide RNA-templated mutations, we introduce a unique strategy for precise genetic rescue of PE-STOP-dependent nonsense mutation via the same PE platform. Altogether, the present work demonstrates a versatile and specific tool for gene inactivation and for functional interrogation of nonsense mutations.
Collapse
Affiliation(s)
- Ziguo Song
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiquan Zhang
- Zhejiang Lab, Hangzhou, Zhejiang, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Liu
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xianhui Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayuan Sun
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Gao
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou, Zhejiang, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, China.
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
71
|
Zhao Z, Shang P, Mohanraju P, Geijsen N. Prime editing: advances and therapeutic applications. Trends Biotechnol 2023; 41:1000-1012. [PMID: 37002157 DOI: 10.1016/j.tibtech.2023.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas)-mediated genome editing has revolutionized biomedical research and will likely change the therapeutic and diagnostic landscape. However, CRISPR-Cas9, which edits DNA by activating DNA double-strand break (DSB) repair pathways, is not always sufficient for gene therapy applications where precise mutation repair is required. Prime editing, the latest revolution in genome-editing technologies, can achieve any possible base substitution, insertion, or deletion without the requirement for DSBs. However, prime editing is still in its infancy, and further development is needed to improve editing efficiency and delivery strategies for therapeutic applications. We summarize latest developments in the optimization of prime editor (PE) variants with improved editing efficiency and precision. Moreover, we highlight some potential therapeutic applications.
Collapse
Affiliation(s)
- Zhihan Zhao
- Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, The Netherlands
| | - Peng Shang
- Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, The Netherlands
| | - Prarthana Mohanraju
- Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, The Netherlands.
| | - Niels Geijsen
- Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden node, The Netherlands.
| |
Collapse
|
72
|
Ponnienselvan K, Liu P, Nyalile T, Oikemus S, Maitland S, Lawson N, Luban J, Wolfe S. Reducing the inherent auto-inhibitory interaction within the pegRNA enhances prime editing efficiency. Nucleic Acids Res 2023; 51:6966-6980. [PMID: 37246708 PMCID: PMC10359601 DOI: 10.1093/nar/gkad456] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023] Open
Abstract
Prime editing systems have enabled the incorporation of precise edits within a genome without introducing double strand breaks. Previous studies defined an optimal primer binding site (PBS) length for the pegRNA of ∼13 nucleotides depending on the sequence composition. However, optimal PBS length characterization has been based on prime editing outcomes using plasmid or lentiviral expression systems. In this study, we demonstrate that for prime editor (PE) ribonucleoprotein complexes, the auto-inhibitory interaction between the PBS and the spacer sequence affects pegRNA binding efficiency and target recognition. Destabilizing this auto-inhibitory interaction by reducing the complementarity between the PBS-spacer region enhances prime editing efficiency in multiple prime editing formats. In the case of end-protected pegRNAs, a shorter PBS length with a PBS-target strand melting temperature near 37°C is optimal in mammalian cells. Additionally, a transient cold shock treatment of the cells post PE-pegRNA delivery further increases prime editing outcomes for pegRNAs with optimized PBS lengths. Finally, we show that prime editor ribonucleoprotein complexes programmed with pegRNAs designed using these refined parameters efficiently correct disease-related genetic mutations in patient-derived fibroblasts and efficiently install precise edits in primary human T cells and zebrafish.
Collapse
Affiliation(s)
- Karthikeyan Ponnienselvan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Thomas Nyalile
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sarah Oikemus
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Stacy A Maitland
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
73
|
Lue NZ, Liau BB. Base editor screens for in situ mutational scanning at scale. Mol Cell 2023; 83:2167-2187. [PMID: 37390819 PMCID: PMC10330937 DOI: 10.1016/j.molcel.2023.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Abstract
A fundamental challenge in biology is understanding the molecular details of protein function. How mutations alter protein activity, regulation, and response to drugs is of critical importance to human health. Recent years have seen the emergence of pooled base editor screens for in situ mutational scanning: the interrogation of protein sequence-function relationships by directly perturbing endogenous proteins in live cells. These studies have revealed the effects of disease-associated mutations, discovered novel drug resistance mechanisms, and generated biochemical insights into protein function. Here, we discuss how this "base editor scanning" approach has been applied to diverse biological questions, compare it with alternative techniques, and describe the emerging challenges that must be addressed to maximize its utility. Given its broad applicability toward profiling mutations across the proteome, base editor scanning promises to revolutionize the investigation of proteins in their native contexts.
Collapse
Affiliation(s)
- Nicholas Z Lue
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
74
|
Ni P, Zhao Y, Zhou X, Liu Z, Huang Z, Ni Z, Sun Q, Zong Y. Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biol 2023; 24:156. [PMID: 37386475 PMCID: PMC10308706 DOI: 10.1186/s13059-023-02990-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Prime editing is limited by low efficiency in plants. Here, we develop an upgraded engineered plant prime editor in hexaploid wheat, ePPEplus, by introducing a V223A substitution into reverse transcriptase in the ePPEmax* architecture. ePPEplus enhances the efficiency by an average 33.0-fold and 6.4-fold compared to the original PPE and ePPE, respectively. Importantly, a robust multiplex prime editing platform is established for simultaneous editing of four to ten genes in protoplasts and up to eight genes in regenerated wheat plants at frequencies up to 74.5%, thus expanding the applicability of prime editors for stacking of multiple agronomic traits.
Collapse
Affiliation(s)
- Pei Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zehua Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengwei Huang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
75
|
Kim S, Yuan JB, Woods WS, Newton DA, Perez-Pinera P, Song JS. Chromatin structure and context-dependent sequence features control prime editing efficiency. Front Genet 2023; 14:1222112. [PMID: 37456665 PMCID: PMC10344898 DOI: 10.3389/fgene.2023.1222112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Prime editing (PE) is a highly versatile CRISPR-Cas9 genome editing technique. The current constructs, however, have variable efficiency and may require laborious experimental optimization. This study presents statistical models for learning the salient epigenomic and sequence features of target sites modulating the editing efficiency and provides guidelines for designing optimal PEs. We found that both regional constitutive heterochromatin and local nucleosome occlusion of target sites impede editing, while position-specific G/C nucleotides in the primer-binding site (PBS) and reverse transcription (RT) template regions of PE guide RNA (pegRNA) yield high editing efficiency, especially for short PBS designs. The presence of G/C nucleotides was most critical immediately 5' to the protospacer adjacent motif (PAM) site for all designs. The effects of different last templated nucleotides were quantified and observed to depend on the length of both PBS and RT templates. Our models found AGG to be the preferred PAM and detected a guanine nucleotide four bases downstream of the PAM to facilitate editing, suggesting a hitherto-unrecognized interaction with Cas9. A neural network interpretation method based on nonextensive statistical mechanics further revealed multi-nucleotide preferences, indicating dependency among several bases across pegRNA. Our work clarifies previous conflicting observations and uncovers context-dependent features important for optimizing PE designs.
Collapse
Affiliation(s)
- Somang Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jimmy B. Yuan
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wendy S. Woods
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Destry A. Newton
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pablo Perez-Pinera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jun S. Song
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Statistics, Harvard University, Cambridge, MA, United States
| |
Collapse
|
76
|
Herrera-Barrera M, Gautam M, Lokras A, Vlasova K, Foged C, Sahay G. Lipid Nanoparticle-Enabled Intracellular Delivery of Prime Editors. AAPS J 2023; 25:65. [PMID: 37380935 DOI: 10.1208/s12248-023-00833-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Prime editing is an advanced gene editing platform with potential to correct almost any disease-causing mutation. As genome editors have evolved, their size and complexity have increased, hindering delivery technologies with low-carrying capacity and endosomal escape. We formulated an array of lipid nanoparticles (LNPs) containing prime editors (PEs). We were able to encapsulate PEs in LNPs and confirmed the presence of PE mRNA and two different guide RNAs using HPLC. In addition, we developed a novel reporter cell line for rapid identification of LNPs suited for prime editing. A 54% prime editing rate was observed with enhanced LNPs (eLNPs) containing the cholesterol analog β-sitosterol at optimal ratios of RNA cargoes. eLNPs displayed a polyhedral morphology and a more fluid membrane state that led to improved endosomal escape, eventually causing onset of editing within 9 h and reaching maximum efficiency after 24 h. Hence, PEs delivered using LNPs can propel a new wave of therapies for many additional targets potentially enabling a range of new applications.
Collapse
Affiliation(s)
- Marco Herrera-Barrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, 97201, USA
| | - Milan Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, 97201, USA
| | - Abhijeet Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, 97201, USA
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, 97201, USA.
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA.
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97201, USA.
| |
Collapse
|
77
|
Fichter KM, Setayesh T, Malik P. Strategies for precise gene edits in mammalian cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:536-552. [PMID: 37215153 PMCID: PMC10192336 DOI: 10.1016/j.omtn.2023.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CRISPR-Cas technologies have the potential to revolutionize genetic medicine. However, work is still needed to make this technology clinically efficient for gene correction. A barrier to making precise genetic edits in the human genome is controlling how CRISPR-Cas-induced DNA breaks are repaired by the cell. Since error-prone non-homologous end-joining is often the preferred cellular repair pathway, CRISPR-Cas-induced breaks often result in gene disruption. Homology-directed repair (HDR) makes precise genetic changes and is the clinically desired pathway, but this repair pathway requires a homology donor template and cycling cells. Newer editing strategies, such as base and prime editing, can affect precise repair for relatively small edits without requiring HDR and circumvent cell cycle dependence. However, these technologies have limitations in the extent of genetic editing and require the delivery of bulky cargo. Here, we discuss the pros and cons of precise gene correction using CRISPR-Cas-induced HDR, as well as base and prime editing for repairing small mutations. Finally, we consider emerging new technologies, such as recombination and transposases, which can circumvent both cell cycle and cellular DNA repair dependence for editing the genome.
Collapse
Affiliation(s)
- Katye M. Fichter
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tahereh Setayesh
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Hematology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
78
|
Zheng C, Liu B, Dong X, Gaston N, Sontheimer EJ, Xue W. Template-jumping prime editing enables large insertion and exon rewriting in vivo. Nat Commun 2023; 14:3369. [PMID: 37291100 PMCID: PMC10250319 DOI: 10.1038/s41467-023-39137-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Targeted insertion of large DNA fragments holds promise for genome engineering and gene therapy. Prime editing (PE) effectively inserts short (<50 bp) sequences. Employing paired prime editing guide RNAs (pegRNAs) has enabled PE to better mediate relatively large insertions in vitro, but the efficiency of larger insertions (>400 bp) remains low and in vivo application has not been demonstrated. Inspired by the efficient genomic insertion mechanism of retrotransposons, we develop a template-jumping (TJ) PE approach for the insertion of large DNA fragments using a single pegRNA. TJ-pegRNA harbors the insertion sequence as well as two primer binding sites (PBSs), with one PBS matching a nicking sgRNA site. TJ-PE precisely inserts 200 bp and 500 bp fragments with up to 50.5 and 11.4% efficiency, respectively, and enables GFP (~800 bp) insertion and expression in cells. We transcribe split circular TJ-petRNA in vitro via a permuted group I catalytic intron for non-viral delivery in cells. Finally, we demonstrate that TJ-PE can rewrite an exon in the liver of tyrosinemia I mice to reverse the disease phenotype. TJ-PE has the potential to insert large DNA fragments without double-stranded DNA breaks and facilitate mutation hotspot exon rewriting in vivo.
Collapse
Affiliation(s)
- Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Bin Liu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Xiaolong Dong
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
79
|
Liang SQ, Liu P, Ponnienselvan K, Suresh S, Chen Z, Kramme C, Chatterjee P, Zhu LJ, Sontheimer EJ, Xue W, Wolfe SA. Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat Methods 2023; 20:898-907. [PMID: 37156841 PMCID: PMC11708963 DOI: 10.1038/s41592-023-01859-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
Prime editors have a broad range of potential research and clinical applications. However, methods to delineate their genome-wide editing activities have generally relied on indirect genome-wide editing assessments or the computational prediction of near-cognate sequences. Here we describe a genome-wide approach for the identification of potential prime editor off-target sites, which we call PE-tag. This method relies on the attachment or insertion of an amplification tag at sites of prime editor activity to allow their identification. PE-tag enables genome-wide profiling of off-target sites in vitro using extracted genomic DNA, in mammalian cell lines and in the adult mouse liver. PE-tag components can be delivered in a variety of formats for off-target site detection. Our studies are consistent with the high specificity previously described for prime editor systems, but we find that off-target editing rates are influenced by prime editing guide RNA design. PE-tag represents an accessible, rapid and sensitive approach for the genome-wide identification of prime editor activity and the evaluation of prime editor safety.
Collapse
Affiliation(s)
- Shun-Qing Liang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Karthikeyan Ponnienselvan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sneha Suresh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Pranam Chatterjee
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
80
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
81
|
Yang X, Zhang B. A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment. Funct Integr Genomics 2023; 23:182. [PMID: 37231285 DOI: 10.1007/s10142-023-01117-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Cancer is one of the leading causes of death worldwide and it has the trend of increase incidence. However, in the past decades, as quickly developed new technologies and modified old techniques for cancer screening, diagnosis, and treatment, the cancer-caused mortality rates dropped quickly, and the survival times of cancer patients are enhanced. However, the current death rate is still about 50% and the survival patients always suffer from the side effect of current cancer treatments. Recently developed Nobel Prize-winning CRISPR/Cas technology provides new hope on cancer screening, early diagnosis, and clinic treatment as well as new drug development. Currently, four major CRISPR/Cas9-derived genome editors, CRISPR/Cas9 nucleotide sequence editor, CRISPR/Cas base editor (BE), CRISPR prime editor (PE), and CRISPR interference (CRISPRi) (including both CRISPRa and CRISPRr), were well developed and used to various research and applications, including cancer biology study and cancer screening, diagnosis, and treatment. Additionally, CRISPR/Cas12 and CRISPR/Cas13 genome editors were also widely used in cancer-related basic and applied research as well as treatment. Cancer-associated SNPs and genetic mutations as well as both oncogenes and tumor suppressor genes are perfect targets for CRISPR/Cas-based gene therapy for cancer treatment. CRISPR/Cas is also employed to modify and generate new Chimeric antigen receptor (CAR) T-cells for improving its safety, efficiency, and longer-time last for treating various cancers. Currently, there are many clinic trails of CRISPR-based gene therapy for cancer treatments. Although all CRISPR/Cas-derived genome and epigenome tools are promising methods for cancer biology study and treatment, the efficiency and long term-safety are still the major concerns for CRISPR-based gene therapy. Developing new CRISPR/Cas delivery methods and reducing the potential side effects, including off-target impacts, will enhance CRISPR/Cas application in cancer-related research, diagnosis, and therapeutical treatment.
Collapse
Affiliation(s)
- Xianguang Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
82
|
Bu W, Creighton CJ, Heavener KS, Gutierrez C, Dou Y, Ku AT, Zhang Y, Jiang W, Urrutia J, Jiang W, Yue F, Jia L, Ibrahim AA, Zhang B, Huang S, Li Y. Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice. SCIENCE ADVANCES 2023; 9:eade0059. [PMID: 37172086 PMCID: PMC10181191 DOI: 10.1126/sciadv.ade0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.
Collapse
Affiliation(s)
- Wen Bu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey S. Heavener
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Amy T. Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jazmin Urrutia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Wen Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luyu Jia
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Atef Ibrahim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shixia Huang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
83
|
Yan AL, Du SW, Palczewski K. Genome editing, a superior therapy for inherited retinal diseases. Vision Res 2023; 206:108192. [PMID: 36804635 PMCID: PMC10460145 DOI: 10.1016/j.visres.2023.108192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/17/2023]
Abstract
Gene augmentation and genome editing are promising strategies for the treatment of monogenic inherited retinal diseases. Although gene augmentation treatments are commercially available for inherited retinal diseases, there are many shortcomings that need to be addressed, like progressive retinal degeneration and diminishing efficacy over time. Innovative CRISPR-Cas9-based genome editing technologies have broadened the proportion of treatable genetic disorders and can greatly improve or complement treatment outcomes from gene augmentation. Progress in this relatively new field involves the development of therapeutics including gene disruption, ablate-and-replace strategies, and precision gene correction techniques, such as base editing and prime editing. By making direct edits to endogenous DNA, genome editing theoretically guarantees permanent gene correction and long-lasting treatment effects. Improvements to delivery modalities aimed at limiting persistent gene editor activity have displayed an improved safety profile and minimal off-target editing. Continued progress to advance precise gene correction and associated delivery strategies will establish genome editing as the preferred treatment for genetic retinal disorders. This commentary describes the applications, strengths, and drawbacks of conventional gene augmentation approaches, recent advances in precise genome editing in the retina, and promising preclinical strategies to facilitate the use of robust genome editing therapies in human patients.
Collapse
Affiliation(s)
- Alexander L Yan
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Program in Neuroscience, Amherst College, Amherst, MA 01002, USA
| | - Samuel W Du
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
84
|
Kyriakopoulou E, Monnikhof T, van Rooij E. Gene editing innovations and their applications in cardiomyopathy research. Dis Model Mech 2023; 16:dmm050088. [PMID: 37222281 PMCID: PMC10233723 DOI: 10.1242/dmm.050088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Cardiomyopathies are among the major triggers of heart failure, but their clinical and genetic complexity have hampered our understanding of these disorders and delayed the development of effective treatments. Alongside the recent identification of multiple cardiomyopathy-associated genetic variants, advances in genome editing are providing new opportunities for cardiac disease modeling and therapeutic intervention, both in vitro and in vivo. Two recent innovations in this field, prime and base editors, have improved editing precision and efficiency, and are opening up new possibilities for gene editing of postmitotic tissues, such as the heart. Here, we review recent advances in prime and base editors, the methods to optimize their delivery and targeting efficiency, their strengths and limitations, and the challenges that remain to be addressed to improve the application of these tools to the heart and their translation to the clinic.
Collapse
Affiliation(s)
- Eirini Kyriakopoulou
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
| | - Thomas Monnikhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, 3584CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
85
|
Major L, McClements ME, MacLaren RE. A Review of CRISPR Tools for Treating Usher Syndrome: Applicability, Safety, Efficiency, and In Vivo Delivery. Int J Mol Sci 2023; 24:ijms24087603. [PMID: 37108761 PMCID: PMC10146473 DOI: 10.3390/ijms24087603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This review considers research into the treatment of Usher syndrome, a deaf-blindness syndrome inherited in an autosomal recessive manner. Usher syndrome mutations are markedly heterogeneous, involving many different genes, and research grants are limited due to minimal patient populations. Furthermore, gene augmentation therapies are impossible in all but three Usher syndromes as the cDNA sequence exceeds the 4.7 kb AAV packaging limit. It is, therefore, vital to focus research efforts on alternative tools with the broadest applicability. The CRISPR field took off in recent years following the discovery of the DNA editing activity of Cas9 in 2012. New generations of CRISPR tools have succeeded the original CRISPR/Cas9 model to enable more sophisticated genomic amendments such as epigenetic modification and precise sequence alterations. This review will evaluate the most popular CRISPR tools to date: CRISPR/Cas9, base editing, and prime editing. It will consider these tools in terms of applicability (in relation to the ten most prevalent USH2A mutations), safety, efficiency, and in vivo delivery potential with the intention of guiding future research investment.
Collapse
Affiliation(s)
- Lauren Major
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
86
|
Bamidele N, Zhang H, Dong X, Gaston N, Cheng H, Kelly K, Watts JK, Xie J, Gao G, Sontheimer EJ. Engineering Nme2Cas9 Adenine Base Editors with Improved Activity and Targeting Scope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536905. [PMID: 37131611 PMCID: PMC10153126 DOI: 10.1101/2023.04.14.536905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nme2Cas9 has been established as a genome editing platform with compact size, high accuracy, and broad targeting range, including single-AAV-deliverable adenine base editors. Here, we have engineered Nme2Cas9 to further increase the activity and targeting scope of compact Nme2Cas9 base editors. We first used domain insertion to position the deaminase domain nearer the displaced DNA strand in the target-bound complex. These domain-inlaid Nme2Cas9 variants exhibited shifted editing windows and increased activity in comparison to the N-terminally fused Nme2-ABE. We next expanded the editing scope by swapping the Nme2Cas9 PAM-interacting domain with that of SmuCas9, which we had previously defined as recognizing a single-cytidine PAM. We used these enhancements to correct two common MECP2 mutations associated with Rett syndrome with little or no bystander editing. Finally, we validated domain-inlaid Nme2-ABEs for single-AAV delivery in vivo.
Collapse
Affiliation(s)
- Nathan Bamidele
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Han Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | | | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jonathan K. Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| |
Collapse
|
87
|
Farzanehpour M, Miri A, Ghorbani Alvanegh A, Esmaeili Gouvarchinghaleh H. Viral Vectors, Exosomes, and Vexosomes: Potential Armamentarium for Delivering CRISPR/Cas to Cancer Cells. Biochem Pharmacol 2023; 212:115555. [PMID: 37075815 DOI: 10.1016/j.bcp.2023.115555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The underlying cause of cancer is genetic disruption, so gene editing technologies, particularly CRISPR/Cas systems can be used to go against cancer. The field of gene therapy has undergone many transitions over its 40-year history. Despite its many successes, it has also suffered many failures in the battle against malignancies, causing really adverse effects instead of therapeutic outcomes. At the tip of this double-edged sword are viral and non-viral-based vectors, which have profoundly transformed the way scientists and clinicians develop therapeutic platforms. Viruses such as lentivirus, adenovirus, and adeno-associated viruses are the most common viral vectors used for delivering the CRISPR/Cas system into human cells. In addition, among non-viral vectors, exosomes, especially tumor-derived exosomes (TDEs), have proven to be quite effective at delivering this gene editing tool. The combined use of viral vectors and exosomes, called vexosomes, seems to be a solution to overcoming the obstacles of both delivery systems.
Collapse
Affiliation(s)
- Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
88
|
Kim S, Yuan JB, Woods WS, Newton DA, Perez-Pinera P, Song JS. Chromatin structure and context-dependent sequence features control prime editing efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536944. [PMID: 37162994 PMCID: PMC10168420 DOI: 10.1101/2023.04.15.536944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Prime editor (PE) is a highly versatile CRISPR-Cas9 genome editing technique. The current constructs, however, have variable efficiency and may require laborious experimental optimization. This study presents statistical models for learning the salient epigenomic and sequence features of target sites modulating the editing efficiency and provides guidelines for designing optimal PEs. We found that both regional constitutive heterochromatin and local nucleosome occlusion of target sites impede editing, while position-specific G/C nucleotides in the primer binding site (PBS) and reverse transcription (RT) template regions of PE guide-RNA (pegRNA) yield high editing efficiency, especially for short PBS designs. The presence of G/C nucleotides was most critical immediately 5' to the protospacer adjacent motif (PAM) site for all designs. The effects of different last templated nucleotides were quantified and seen to depend on both PBS and RT template lengths. Our models found AGG to be the preferred PAM and detected a guanine nucleotide four bases downstream of PAM to facilitate editing, suggesting a hitherto-unrecognized interaction with Cas9. A neural network interpretation method based on nonextensive statistical mechanics further revealed multi-nucleotide preferences, indicating dependency among several bases across pegRNA. Our work clarifies previous conflicting observations and uncovers context-dependent features important for optimizing PE designs.
Collapse
Affiliation(s)
- Somang Kim
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jimmy B. Yuan
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wendy S. Woods
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Destry A. Newton
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pablo Perez-Pinera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun S. Song
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
89
|
Lee J, Lim K, Kim A, Mok YG, Chung E, Cho SI, Lee JM, Kim JS. Prime editing with genuine Cas9 nickases minimizes unwanted indels. Nat Commun 2023; 14:1786. [PMID: 36997524 PMCID: PMC10063541 DOI: 10.1038/s41467-023-37507-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Unlike CRISPR-Cas9 nucleases, which yield DNA double-strand breaks (DSBs), Cas9 nickases (nCas9s), which are created by replacing key catalytic amino-acid residues in one of the two nuclease domains of S. pyogenesis Cas9 (SpCas9), produce nicks or single-strand breaks. Two SpCas9 variants, namely, nCas9 (D10A) and nCas9 (H840A), which cleave target (guide RNA-pairing) and non-target DNA strands, respectively, are widely used for various purposes, including paired nicking, homology-directed repair, base editing, and prime editing. In an effort to define the off-target nicks caused by these nickases, we perform Digenome-seq, a method based on whole genome sequencing of genomic DNA treated with a nuclease or nickase of interest, and find that nCas9 (H840A) but not nCas9 (D10A) can cleave both strands, producing unwanted DSBs, albeit less efficiently than wild-type Cas9. To inactivate the HNH nuclease domain further, we incorporate additional mutations into nCas9 (H840A). Double-mutant nCas9 (H840A + N863A) does not exhibit the DSB-inducing behavior in vitro and, either alone or in fusion with the M-MLV reverse transcriptase (prime editor, PE2 or PE3), induces a lower frequency of unwanted indels, compared to nCas9 (H840A), caused by error-prone repair of DSBs. When incorporated into prime editor and used with engineered pegRNAs (ePE3), we find that the nCas9 variant (H840A + N854A) dramatically increases the frequency of correct edits, but not unwanted indels, yielding the highest purity of editing outcomes compared to nCas9 (H840A).
Collapse
Affiliation(s)
- Jaesuk Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Kayeong Lim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Annie Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Young Geun Mok
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- GreenGene Inc, Seoul, Republic of Korea
| | - Eugene Chung
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sung-Ik Cho
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Min Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea.
- Department of Biochemistry and NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
90
|
Wolff JH, Mikkelsen JG. Prime editing in hematopoietic stem cells—From ex vivo to in vivo CRISPR-based treatment of blood disorders. Front Genome Ed 2023; 5:1148650. [PMID: 36969373 PMCID: PMC10036844 DOI: 10.3389/fgeed.2023.1148650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Prime editing of human hematopoietic stem cells has the potential to become a safe and efficient way of treating diseases of the blood directly in patients. By allowing site-targeted gene intervention without homology-directed repair donor templates and DNA double-stranded breaks, the invention of prime editing fuels the exploration of alternatives to conventional recombination-based ex vivo genome editing of hematopoietic stem cells. Prime editing is as close as we get today to a true genome editing drug that does not require a separate DNA donor. However, to adapt the technology to perform in vivo gene correction, key challenges remain to be solved, such as identifying effective prime editing guide RNAs for clinical targets as well as developing efficient vehicles to deliver prime editors to stem cells in vivo. In this review, we summarize the current progress in delivery of prime editors both in vitro and in vivo and discuss future challenges that need to be adressed to allow in vivo prime editing as a cure for blood disorders.
Collapse
|
91
|
Liu S, Duan X, Peng F, Wang Y, Liu Y, Wan X, Zhang J, Li X, Sun X. A tunable genome editing system of the prime editor mediated by dihydrofolate reductase. J Genet Genomics 2023; 50:204-207. [PMID: 36055523 DOI: 10.1016/j.jgg.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Shu Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200043, China
| | - Xiaoyue Duan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Feng Peng
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yafang Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yang Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Shanghai Key Laboratory of Ocular Fundus Diseases, 100 Haining Road, Shanghai 200080, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Shanghai Key Laboratory of Ocular Fundus Diseases, 100 Haining Road, Shanghai 200080, China
| | - Xiaosa Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Shanghai Key Laboratory of Ocular Fundus Diseases, 100 Haining Road, Shanghai 200080, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Shanghai Key Laboratory of Ocular Fundus Diseases, 100 Haining Road, Shanghai 200080, China
| |
Collapse
|
92
|
Jin S, Lin Q, Gao Q, Gao C. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs). Nat Protoc 2023; 18:831-853. [PMID: 36434096 DOI: 10.1038/s41596-022-00773-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
Prime editors (PEs), which can install desired base edits without donor DNA or double-strand breaks, have been used in plants and can, in principle, accelerate crop improvement and breeding. However, their editing efficiency in plants is generally low. Optimizing the prime editing guide RNA (pegRNA) by designing the sequence on the basis of melting temperature, using dual-pegRNAs and engineering PEs have all been shown to enhance PE efficiency. In addition, an automated pegRNA design platform, PlantPegDesigner, has been developed on the basis of rice prime editing experimental data. In this protocol, we present detailed protocols for designing and optimizing pegRNAs using PlantPegDesigner, constructing engineered plant PE vectors with enhanced editing efficiency for prime editing, evaluating prime editing efficiencies using a reporter system and comparing the effectiveness and byproducts of PEs by deep amplicon sequencing. Using this protocol, researchers can construct optimized pegRNAs for prime editing in 4-7 d and obtain prime-edited rice or wheat plants within 3 months.
Collapse
Affiliation(s)
- Shuai Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiupeng Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- Qi Biodesign, Life Science Park, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
93
|
Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 2023; 24:161-177. [PMID: 36344749 PMCID: PMC10989687 DOI: 10.1038/s41576-022-00541-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Programmable gene-editing tools have transformed the life sciences and have shown potential for the treatment of genetic disease. Among the CRISPR-Cas technologies that can currently make targeted DNA changes in mammalian cells, prime editors offer an unusual combination of versatility, specificity and precision. Prime editors do not require double-strand DNA breaks and can make virtually any substitution, small insertion and small deletion within the DNA of living cells. Prime editing minimally requires a programmable nickase fused to a polymerase enzyme, and an extended guide RNA that both specifies the target site and templates the desired genome edit. In this Review, we summarize prime editing strategies to generate programmed genomic changes, highlight their limitations and recent developments that circumvent some of these bottlenecks, and discuss applications and future directions.
Collapse
Affiliation(s)
- Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
94
|
Grünewald J, Miller BR, Szalay RN, Cabeceiras PK, Woodilla CJ, Holtz EJB, Petri K, Joung JK. Engineered CRISPR prime editors with compact, untethered reverse transcriptases. Nat Biotechnol 2023; 41:337-343. [PMID: 36163548 PMCID: PMC10023297 DOI: 10.1038/s41587-022-01473-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 08/15/2022] [Indexed: 12/16/2022]
Abstract
The CRISPR prime editor PE2 consists of a Streptococcus pyogenes Cas9 nickase (nSpCas9) fused at its C-terminus to a Moloney murine leukemia virus reverse transcriptase (MMLV-RT). Here we show that separated nSpCas9 and MMLV-RT proteins function as efficiently as intact PE2 in human cells. We use this Split-PE system to rapidly identify and engineer more compact prime editor architectures that also broaden the types of RTs used for prime editing.
Collapse
Affiliation(s)
- Julian Grünewald
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.
- Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
- First Department of Medicine, Cardiology, Angiology, Pneumology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany.
- Center for Organoid Systems and Tissue Engineering (COS), Garching, Germany.
- TranslaTUM - Organoid Hub, Munich, Germany.
- DZHK (German Center of Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
| | - Bret R Miller
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Regan N Szalay
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Peter K Cabeceiras
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Christopher J Woodilla
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eliza Jane B Holtz
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Karl Petri
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA.
- Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
95
|
Pires Ferreira D, Gruntman AM, Flotte TR. Gene therapy for alpha-1 antitrypsin deficiency: an update. Expert Opin Biol Ther 2023; 23:283-291. [PMID: 36825473 DOI: 10.1080/14712598.2023.2183771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Altering the human genetic code has been explored since the early 1990s as a definitive answer for the treatment of monogenic and acquired diseases which do not respond to conventional therapies. In Alpha-1 antitrypsin deficiency (AATD) the proper synthesis and secretion of alpha-1 antitrypsin (AAT) protein is impaired, leading to its toxic hepatic accumulation along with its pulmonary insufficiency, which is associated with parenchymal proteolytic destruction. Because AATD is caused by mutations in a single gene whose correction alone would normalize the mutant phenotype, it has become a popular target for both augmentation gene therapy and gene editing. Although gene therapy products are already a reality for the treatment of some pathologies, such as inherited retinal dystrophy and spinal muscular atrophy, AATD-related pulmonary and, especially, liver diseases still lack effective therapeutic options. AREAS COVERED Here, we review the course, challenges, and achievements of AATD gene therapy as well as update on new strategies being developed. EXPERT OPINION Reaching safe and clinically effective expression of the AAT is currently the greatest challenge for AATD gene therapy. The improvement and emergence of technologies that use gene introduction, silencing and correction hold promise for the treatment of AATD.
Collapse
Affiliation(s)
- Debora Pires Ferreira
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Alisha M Gruntman
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Terence R Flotte
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
96
|
Ahmadi SE, Soleymani M, Shahriyary F, Amirzargar MR, Ofoghi M, Fattahi MD, Safa M. Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Ther 2023:10.1038/s41417-023-00597-z. [PMID: 36854897 PMCID: PMC9971689 DOI: 10.1038/s41417-023-00597-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Gene editing-based therapeutic strategies grant the power to override cell machinery and alter faulty genes contributing to disease development like cancer. Nowadays, the principal tool for gene editing is the clustered regularly interspaced short palindromic repeats-associated nuclease 9 (CRISPR/Cas9) system. In order to bring this gene-editing system from the bench to the bedside, a significant hurdle remains, and that is the delivery of CRISPR/Cas to various target cells in vivo and in vitro. The CRISPR-Cas system can be delivered into mammalian cells using various strategies; among all, we have reviewed recent research around two natural gene delivery systems that have been proven to be compatible with human cells. Herein, we have discussed the advantages and limitations of viral vectors, and extracellular vesicles (EVs) in delivering the CRISPR/Cas system for cancer therapy purposes.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- grid.411230.50000 0000 9296 6873School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fahimeh Shahriyary
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amirzargar
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahya Ofoghi
- Division of Clinical Laboratory, Tehran Hospital of Petroleum Industry, Tehran, Iran ,grid.411600.2Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Davood Fattahi
- grid.411600.2Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
97
|
Godbout K, Tremblay JP. Prime Editing for Human Gene Therapy: Where Are We Now? Cells 2023; 12:536. [PMID: 36831203 PMCID: PMC9954691 DOI: 10.3390/cells12040536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy holds tremendous potential in the treatment of inherited diseases. Unlike traditional medicines, which only treat the symptoms, gene therapy has the potential to cure the disease by addressing the root of the problem: genetic mutations. The discovery of CRISPR/Cas9 in 2012 paved the way for the development of those therapies. Improvement of this system led to the recent development of an outstanding technology called prime editing. This system can introduce targeted insertions, deletions, and all 12 possible base-to-base conversions in the human genome. Since the first publication on prime editing in 2019, groups all around the world have worked on this promising technology to develop a treatment for genetic diseases. To date, prime editing has been attempted in preclinical studies for liver, eye, skin, muscular, and neurodegenerative hereditary diseases, in addition to cystic fibrosis, beta-thalassemia, X-linked severe combined immunodeficiency, and cancer. In this review, we portrayed where we are now on prime editing for human gene therapy and outlined the best strategies for correcting pathogenic mutations by prime editing.
Collapse
Affiliation(s)
- Kelly Godbout
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
98
|
She K, Liu Y, Zhao Q, Jin X, Yang Y, Su J, Li R, Song L, Xiao J, Yao S, Lu F, Wei Y, Yang Y. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduct Target Ther 2023; 8:57. [PMID: 36740702 PMCID: PMC9899767 DOI: 10.1038/s41392-022-01234-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 02/07/2023] Open
Abstract
The prime editor (PE) can edit genomes with almost any intended changes, including all 12 possible types of base substitutions, small insertions and deletions, and their combinations, without the requirement for double strand breaks or exogenous donor templates. PE demonstrates the possibility of correcting a variety of disease-causing mutations and might expand the therapeutic application of gene editing. In this study, PE was optimized based on a dual-adeno-associated virus (AAV) split-intein system in vitro by screening different split sites and split inteins. We found that splitting PE before amino acid 1105(Ser) of SpCas9 with Rma intein resulted in the highest on-target editing. The orientations of pegRNA and nicking sgRNA in the AAV vector were further optimized. To test the in vivo performance of the optimized dual-AAV split-PE3, it was delivered by subretinal injection in rd12 mice with inherited retinal disease Leber congenital amaurosis. The prime editors corrected the pathogenic mutation with up to 16% efficiency in a precise way, with no detectable off-target edits, restored RPE65 expression, rescued retinal and visual function, and preserved photoceptors. Our findings establish a framework for the preclinical development of PE and motivate further testing of PE for the treatment of inherited retinal diseases caused by various mutations.
Collapse
Affiliation(s)
- Kaiqin She
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Qinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Xiu Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Yiliu Yang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Ruiting Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Li Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jianlu Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China.
| |
Collapse
|
99
|
Mingarro G, Del Olmo ML. Improvements in the genetic editing technologies: CRISPR-Cas and beyond. Gene 2023; 852:147064. [PMID: 36435506 DOI: 10.1016/j.gene.2022.147064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Gene editing is a great hope not only for the scientific community, but also for society in general. This is due to its potential therapeutic applications that would allow curing diseases of genetic origin. The first realistic approach to achieve this goal was the development of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tools. This review deals with some of the improvements that have been designed to obtain more efficient and safer genome editing. Initial CRISPR-Cas (CRISPR associated) editing systems yield low efficiency and undesired editing products. To solve these problems, new approaches emerged, such as the creation of base editors. Recent discoveries have led to the development of many interesting alternatives, such as the CRISPR-associated transposable systems, which open the range by generating guided insertions, or the discovery of other programmable nucleases like the IscB family, which greatly increase the range of proteins available for editing uses. Also, to address the limitations of base editors, prime editors were created; this novel system, despite having some disadvantages compared to base editor systems, has the potential to generate all the possible point mutations. On the other hand, dual prime editing systems (like twin and homologous 3' extension-mediated prime editors) have been developed to create targeted insertions and enhance the editing outcomes, respectively. Furthermore, advances in gene editing do not reside solely in CRISPR-dependent systems, as we will discuss when treating the Replication Interrupted Template-Driven DNA Modification technique.
Collapse
Affiliation(s)
- Gerard Mingarro
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València. Burjassot (València), Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València. Burjassot (València), Spain.
| |
Collapse
|
100
|
Hansen S, McClements ME, Corydon TJ, MacLaren RE. Future Perspectives of Prime Editing for the Treatment of Inherited Retinal Diseases. Cells 2023; 12:440. [PMID: 36766782 PMCID: PMC9913839 DOI: 10.3390/cells12030440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Inherited retinal diseases (IRD) are a clinically and genetically heterogenous group of diseases and a leading cause of blindness in the working-age population. Even though gene augmentation therapies have shown promising results, they are only feasible to treat a small number of autosomal recessive IRDs, because the size of the gene is limited by the vector used. DNA editing however could potentially correct errors regardless of the overall size of the gene and might also be used to correct dominant mutations. Prime editing is a novel CRISPR/Cas9 based gene editing tool that enables precise correction of point mutations, insertions, and deletions without causing double strand DNA breaks. Due to its versatility and precision this technology may be a potential treatment option for virtually all genetic causes of IRD. Since its initial description, the prime editing technology has been further improved, resulting in higher efficacy and a larger target scope. Additionally, progress has been achieved concerning the size-related delivery issue of the prime editor components. This review aims to give an overview of these recent advancements and discusses prime editing as a potential treatment for IRDs.
Collapse
Affiliation(s)
- Silja Hansen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|