51
|
Sarisoy A, Acosta S, Rodríguez-Cabello JC, Czichowski P, Kopp A, Jockenhoevel S, Fernández-Colino A. Bioglues Based on an Elastin-Like Recombinamer: Effect of Tannic Acid as an Additive on Tissue Adhesion and Cytocompatibility. Int J Mol Sci 2023; 24:ijms24076776. [PMID: 37047749 PMCID: PMC10095112 DOI: 10.3390/ijms24076776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
More than 260 million surgical procedures are performed worldwide each year. Although sutures and staples are widely used to reconnect tissues, they can cause further damage and increase the risk of infection. Bioadhesives have been proposed as an alternative to reconnect tissues. However, clinical adhesives that combine strong adhesion with cytocompatibility have yet to be developed. In this study, we explored the production of adhesives based on protein-engineered polymers bioinspired by the sequence of elastin (i.e., elastin-like recombinamers, ELRs). We hypothesized that the combination of polyphenols (i.e., tannic acid, TA) and ELRs would produce an adhesive coacervate (ELR+TA), as reported for other protein polymers such as silk fibroin (SF). Notably, the adhesion of ELR alone surpassed that of ELR+TA. Indeed, ELR alone achieved adhesive strengths of 88.8 ± 33.2 kPa and 17.0 ± 2.0 kPa on porcine bone and skin tissues, respectively. This surprising result led us to explore a multicomponent bioadhesive to encompass the complementary roles of elastin (mimicked here by ELR) and silk fibroin (SF), and subsequently mirror more closely the multicomponent nature of the extracellular matrix. Tensile testing showed that ELR+SF achieved an adhesive strength of 123.3 ± 60.2 kPa on porcine bone and excellent cytocompatibility. To express this in a more visual and intuitive way, a small surface of only 2.5 cm2 was able to lift at least 2 kg of weight. This opens the door for further studies focusing on the ability of protein-engineered polymers to adhere to biological tissues without further chemical modification for applications in tissue engineering.
Collapse
Affiliation(s)
- Alp Sarisoy
- Department of Biohybrid & Medical Textiles (BioTex), AME–Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sergio Acosta
- Department of Biohybrid & Medical Textiles (BioTex), AME–Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab, Group for Advanced Materials and Nanobiotechnology, Biomedical Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, 47011 Valladolid, Spain
| | | | | | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME–Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany
- AMIBM-Aachen-Maastricht-Institute for Biobased Materials, Faculty of Science and Engineering, Brightlands Chemelot Campus, Maastricht University, 6167 RD Geleen, The Netherlands
| | - Alicia Fernández-Colino
- Department of Biohybrid & Medical Textiles (BioTex), AME–Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
52
|
Zhou Y, Centeno SP, Zhang K, Zheng L, Göstl R, Herrmann A. Fracture Detection in Bio-Glues with Fluorescent-Protein-Based Optical Force Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210052. [PMID: 36740969 DOI: 10.1002/adma.202210052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Glues are being used to bond, seal, and repair in industry and biomedicine. The improvement of gluing performance is hence important for the development of new glues with better and balanced property spaces, which in turn necessitates a mechanistic understanding of their mechanical failure. Optical force probes (OFPs) allow the observation of mechanical material damage in polymers from the macro- down to the microscale, yet have never been employed in glues. Here, the development of a series of ratiometric OFPs based on fluorescent-protein-dye and protein-protein conjugates and their incorporation into genetically engineered bio-glues is reported. The OFPs are designed to efficiently modulate Förster resonance energy transfer upon force application thereby reporting on force-induced molecular alterations independent of concentration and fluorescence intensity both spectrally and through their fluorescence lifetime. By fluorescence spectroscopy in solution and in the solid state and by fluorescence lifetime imaging microscopy, stress concentrations are visualized and adhesive and cohesive failure in the fracture zone is differentiated.
Collapse
Affiliation(s)
- Yu Zhou
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Silvia P Centeno
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kuan Zhang
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Lifei Zheng
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
53
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
54
|
Topical Delivery of Cell-Penetrating Peptide-Modified Human Growth Hormone for Enhanced Wound Healing. Pharmaceuticals (Basel) 2023; 16:ph16030394. [PMID: 36986493 PMCID: PMC10053240 DOI: 10.3390/ph16030394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Protein drugs have been emerging as a class of promising therapeutics. However, their topical application has been limited by their high molecular weight and poor permeability to the cell membrane. In this study, we aimed to enhance human growth hormone (hGH) permeability for topical application by conjugation of TAT peptide, a cell-penetrating peptide, to hGH via crosslinker. After TAT was conjugated to hGH, TAT-hGH was purified by affinity chromatography. TAT-hGH significantly increased cell proliferation compared with the control. Interestingly, the effect of TAT-hGH was higher than hGH at the same concentration. Furthermore, the conjugation of TAT to hGH enhanced the permeability of TAT-hGH across the cell membrane without affecting its biological activity in vitro. In vivo, the topical application of TAT-hGH into scar tissue markedly accelerated wound healing. Histological results showed that TAT-hGH dramatically promoted the re-epithelialization of wounds in the initial stage. These results demonstrate TAT-hGH as a new therapeutic potential drug for wound healing treatment. This study also provides a new method for topical protein application via enhancement of their permeability.
Collapse
|
55
|
Liu Y, Zhang Z, Zhang Y, Luo B, Liu X, Cao Y, Pei R. Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury. Acta Biomater 2023; 158:178-189. [PMID: 36584800 DOI: 10.1016/j.actbio.2022.12.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Spinal cord injury (SCI) often causes severe and permanent disabilities due to the complexity of injury progression. The promising methods are generally based on tissue engineering technology using biocompatible hydrogels to achieve SCI repair. However, hydrogels are commonly incapable of close contact with the damaged spinal cord stumps and fail to support neural regeneration in SCI. Therefore, it is still a challenge to achieve stable contact with the transected nerve stumps and accelerate neural regeneration in the lesion microenvironment. Here, an in situ forming glycidyl methacrylated silk fibroin/ laminin-acrylate (SF-GMA/LM-AC) hydrogel was fabricated for SCI repair. The polymer chains formed a network quickly after ultraviolet (UV)-light trigger, in topological entanglement with the spinal cord, stitching the hydrogel and wet tissues together like a suture at the molecular scale. The SF-GMA/LM-AC hydrogel also provided a favorable environment for the growth of cells due to the incorporation of LM-AC. Compared with physical entrapment of LM, LM-AC immobilized in the hydrogel by covalent technology provided better microenvironments for neural stem cells (NSCs) growth. The repair of complete transection SCI in rats demonstrated that this hydrogel guided and promoted neural regeneration over 8 weeks, leading to hind limb locomotion recovery. This adhesive and bioactive SF-GMA/LM-AC hydrogel may open many opportunities in various therapeutic indications, including SCI. STATEMENT OF SIGNIFICANCE: Many materials have been developed for building transplanted scaffolds, but it is still a challenge to fabricate bioactive scaffolds and adhesion to wet tissues. In this study, we successfully developed an in situ forming SF-GMA/LM-AC hydrogel for SCI repair. This in situ forming hydrogel formed significant adhesion to the native spinal cord, stitching hydrogel and tissue together like a suture at the molecular scale. In addition, covalent immobilized LM-AC was used as the contact guidance biochemical cues for axonal outgrowth and had much better bioactive effects than physically entangled LM. Moreover, this universal strategy would open an avenue to fabricate adhesive and bioactive hydrogel for various disease treatments including SCI.
Collapse
Affiliation(s)
- Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhuangzhuang Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Bingqing Luo
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
56
|
Wei Q, Zhao Y, Wei Y, Wang Y, Jin Z, Ma G, Jiang Y, Zhang W, Hu Z. Facile preparation of polyphenol-crosslinked chitosan-based hydrogels for cutaneous wound repair. Int J Biol Macromol 2023; 228:99-110. [PMID: 36565830 DOI: 10.1016/j.ijbiomac.2022.12.215] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The design and facile preparation of the smart hydrogel wound dressings with inherent excellent antioxidant and antibacterial capacity to effectively promote wound healing processes is highly desirable in clinical applications. Herein, a series of multifunctional hydrogels were prepared by the dynamic Schiff base and boronate ester crosslinking among phenylboronic acid (PBA) grafted carboxymethyl chitosan (CMCS), polyphenols and Cu2+-crosslinked polyphenol nanoparticles (CuNPs). The dynamic crosslinking bonds endowed hydrogels with excellent self-healing and degradable properties. Three polyphenols including tannic acid (TA), oligomeric proanthocyanidins (OPC) and (-)-epigallocatechin-3-O-gallate (EGCG) contributed to the outstanding antibacterial and antioxidant abilities of these hydrogels. The tissue adhesive capacity of hydrogels gave them good hemostatic effect. Through a full-thickness skin defect model of mice, these biocompatible hydrogels could accelerate wound healing processes by promoting granulation tissue formation, collagen deposition, M2 macrophage polarization and cytokine secretion, demonstrating that these natural-derived hydrogels with inherent physiological properties and low-cost preparation approaches could be promising dressing materials.
Collapse
Affiliation(s)
- Qingcong Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Yanfei Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yixing Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yaxing Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ziming Jin
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guanglei Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
57
|
Wan X, Zhang F, Zhang K, Liu X, Xu X, Liu M, Jiang L, Wang S. Interfacial Instability-Induced (3I) Adhesives through "Mediator" Solvent Diffusion for Robust Underoil Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208413. [PMID: 36428268 DOI: 10.1002/adma.202208413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Underoil adhesives are intensively needed in case of oil spill caused by pipeline rupture, but remain a challenge owing to the obstruction of oil layer or their swelling in oil. Herein, a general solvent diffusion principle is demonstrated by introducing dual-soluble "mediator" solvents to develop a new type of interfacial instability-induced (3I) adhesives, achieving effective underoil adhesion on various substrates and blocking the oil leakage within seconds. Microscopic characterization reveals a fast and dynamic solvent exchange process that destroys the oil layer by liquid-liquid interfacial diffusion between the "mediator" solvent and oil, enabling 3I adhesives to contact the solid surfaces directly. The principle of interfacial instability-induced liquid replacement is quite different from typical immiscible liquid replacement and is not restricted by the surface tension of solvents, surface energy, and roughness of solid surfaces, successfully directing the construction of a series of effective 3I adhesives with commercially available feedstocks. This study provides a unique clue for the design of next-generation adhesives in complex environments.
Collapse
Affiliation(s)
- Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Feilong Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ke Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuetao Xu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
58
|
Zhao Z, Pan M, Qiao C, Xiang L, Liu X, Yang W, Chen XZ, Zeng H. Bionic Engineered Protein Coating Boosting Anti-Biofouling in Complex Biological Fluids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208824. [PMID: 36367362 DOI: 10.1002/adma.202208824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Implantable medical devices have been widely applied in diagnostics, therapeutics, organ restoration, and other biomedical areas, but often suffer from dysfunction and infections due to irreversible biofouling. Inspired by the self-defensive "vine-thorn" structure of climbing thorny plants, a zwitterion-conjugated protein is engineered via grafting sulfobetaine methacrylate (SBMA) segments on native bovine serum albumin (BSA) protein molecules for surface coating and antifouling applications in complex biological fluids. Unlike traditional synthetic polymers of which the coating operation requires arduous surface pretreatments, the engineered protein BSA@PSBMA (PolySBMA conjugated BSA) can achieve facile and surface-independent coating on various substrates through a simple dipping/spraying method. Interfacial molecular force measurements and adsorption tests demonstrate that the substrate-foulant attraction is significantly suppressed due to strong interfacial hydration and steric repulsion of the bionic structure of BSA@PSBMA, enabling coating surfaces to exhibit superior resistance to biofouling for a broad spectrum of species including proteins, metabolites, cells, and biofluids under various biological conditions. This work provides an innovative paradigm of using native proteins to generate engineered proteins with extraordinary antifouling capability and desired surface properties for bioengineering applications.
Collapse
Affiliation(s)
- Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xiong Liu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing-Zhen Chen
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
59
|
Jin M, Tao C, Hu X, Liu B, Ma C, Wu Z, Yao H, Wang DA. An Instant Underwater Tissue Adhesive Composed of Catechin-Chondroitin Sulfate and Cholesterol-Polyethyleneimine. Adv Healthc Mater 2023; 12:e2202814. [PMID: 36707970 DOI: 10.1002/adhm.202202814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/28/2022] [Indexed: 01/29/2023]
Abstract
Due to the safety issue and poor underwater adhesion of current commercially available bioadhesives, they are hard to apply to in vivo physiological environments and more diverse medical use conditions. In this study, a novel and facile bioadhesive for underwater medical applications are designed based on the coacervation of electrostatic interactions and hydrophobic interactions, with the introduction of catechin as a provider of catechol moieties for adhesion to surrounding tissues. The orange-colored bio-adhesive, named PcC, is generated within seconds by mixing catechin-modified chondroitin sulfate and cholesterol chloroformate-modified polyethyleneimine with agitation. In vitro mechanical measurements prove that this novel PcC bio-adhesive is superior in underwater adhesion performance when applied to cartilage. Animal experiments in a rat mastectomy model and rat cartilage graft implantation model demonstrate its potential for diverse medical purposes, such as closing surgical incisions, reducing the formation of seroma, and tissue adhesive applied in orthopedic or cartilage surgery.
Collapse
Affiliation(s)
- Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Chao Tao
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Xu Hu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Bangheng Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Cheng Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China
| | - Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China.,Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR, P. R. China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
60
|
Sun J, Monreal Santiago G, Zhou W, Portale G, Kamperman M. Water-Processable, Stretchable, and Ion-Conducting Coacervate Fibers from Keratin Associations with Polyelectrolytes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:15968-15977. [PMID: 36507097 PMCID: PMC9727776 DOI: 10.1021/acssuschemeng.2c05411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Keratin is one of the most abundant biopolymers, produced on a scale of millions of tons per year but often simply discarded as waste. Due to its abundance, biocompatibility, and excellent mechanical properties, there is an extremely high interest in developing protocols for the recycling of keratin and its conversion into protein-based materials. In this work, we describe a novel protocol for the conversion of keratin from wool into hybrid fibers. Our protocol uses a synthetic polyanion, which undergoes complex coacervation with keratin, leading to a viscous liquid phase that can be used directly as a dope for dry-spinning. The use of polyelectrolyte complexation allows us to use all of the extracted keratin, unlike previous works that were limited to the fraction with the highest molecular weight. The fibers prepared by this protocol show excellent mechanical properties, humidity responsiveness, and ion conductivity, which makes them promising candidates for applications as a strain sensor.
Collapse
Affiliation(s)
- Jianwu Sun
- Polymer
Science, Zernike Institute for Advanced
Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Guillermo Monreal Santiago
- Polymer
Science, Zernike Institute for Advanced
Materials, University of Groningen, Groningen 9747 AG, The
Netherlands
| | - Wen Zhou
- Products
and Processes for Biotechnology, Engineering
and Technology Institute Groningen, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Giuseppe Portale
- Macromolecular
Chemistry and New Polymeric Material, Zernike
Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced
Materials, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
61
|
Liu Y, Huang T, Qian Z, Chen W. Extensible and swellable hydrogel-forming microneedles for deep point-of-care sampling and drug deployment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
62
|
Ganguly K, Espinal MM, Dutta SD, Patel DK, Patil TV, Luthfikasari R, Lim* KT. Multifunctional 3D platforms for rapid hemostasis and wound healing: Structural and functional prospects at biointerfaces. Int J Bioprint 2022; 9:648. [PMID: 36844240 PMCID: PMC9947489 DOI: 10.18063/ijb.v9i1.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
354Fabrication of multifunctional hemostats is indispensable against chronic blood loss and accelerated wound healing. Various hemostatic materials that aid wound repair or rapid tissue regeneration has been developed in the last 5 years. This review provides an overview of the three-dimensional (3D) hemostatic platforms designed through the latest technologies like electrospinning, 3D printing, and lithography, solely or in combination, for application in rapid wound healing. We critically discuss the pivotal role of micro/nano-3D topography and biomaterial properties in mediating rapid blood clots and healing at the hemostat-biointerface. We also highlight the advantages and limitations of the designed 3D hemostats. We anticipate that this review will guide the fabrication of smart hemostats of the future for tissue engineering applications.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Maria Mercedes Espinal
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K. Patel
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim*
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
63
|
Wang Z, Gu X, Li B, Li J, Wang F, Sun J, Zhang H, Liu K, Guo W. Molecularly Engineered Protein Glues with Superior Adhesion Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204590. [PMID: 36006846 DOI: 10.1002/adma.202204590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Naturally inspired proteins are investigated for the development of bioglues that combine adhesion performance and biocompatibility for biomedical applications. However, engineering such adhesives by rational design of the proteins at the molecular level is rarely reported. Herein, it is shown that a new generation of protein-based glues is generated by supramolecular assembly through de novo designed structural proteins in which arginine triggers robust liquid-liquid phase separation. The encoded arginine moieties significantly strengthen multiple molecular interactions in the complex, leading to ultrastrong adhesion on various surfaces, outperforming many chemically reacted and biomimetic glues. Such adhesive materials enable quick visceral hemostasis in 10 s and outstanding tissue regeneration due to their robust adhesion, good biocompatibility, and superior antibacterial capacity. Remarkably, their minimum inhibitory concentrations are orders of magnitude lower than clinical antibiotics. These advances offer insights into molecular engineering of de novo designed protein glues and outline a general strategy to fabricate mechanically strong protein-based materials for surgical applications.
Collapse
Affiliation(s)
- Zili Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200062, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weisheng Guo
- State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| |
Collapse
|
64
|
Zeng Q, Wang F, Hu R, Ding X, Lu Y, Shi G, Haick H, Zhang M. Debonding-On-Demand Polymeric Wound Patches for Minimal Adhesion and Clinical Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202635. [PMID: 35988152 PMCID: PMC9561782 DOI: 10.1002/advs.202202635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Indexed: 06/06/2023]
Abstract
Herein, a multifunctional bilayer wound patch is developed by integrating a debonding-on-demand polymeric tissue adhesive (DDPTA) with an ionic conducting elastomer (ICE). As a skin adhesive layer, the DDPTA is soft and adherent at skin temperature but hard and non-tacky when cooled, so it provides unique temperature-triggered quick adhesion and non-forced detachment from the skin. During use, the dense surface of the DDPTA prevents blood infiltration and reduces unnecessary blood loss with gentle pressing. Moreover, its hydrophobic matrix helps to repel blood and prevents the formation of clots, thus precluding wound tearing during its removal. This unique feature enables the DDPTA to avoid the severe deficiencies of hydrophilic adhesives, providing a reliable solution for a wide range of secondary wound injuries. The DDPTA is versatile in that it can be covered with ICE to configure a DDPTA@ICE patch for initiating non-verbal communication systems by the fingers, leading toward sign language recognition and a remote clinical alarm system. This multifunctional wound patch with debonding-on-demand can promote a new style of tissue sealant for convenient clinical communication.
Collapse
Affiliation(s)
- Qiankun Zeng
- School of Chemistry and Molecular EngineeringShanghai Key Laboratory for Urban Ecological Processes and Eco‐RestorationShanghai Key Laboratory of Multidimensional Information ProcessingEngineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education)East China Normal UniversityShanghai200241China
| | - Fangbing Wang
- School of Chemistry and Molecular EngineeringShanghai Key Laboratory for Urban Ecological Processes and Eco‐RestorationShanghai Key Laboratory of Multidimensional Information ProcessingEngineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education)East China Normal UniversityShanghai200241China
| | - Ruixuan Hu
- School of Chemistry and Molecular EngineeringShanghai Key Laboratory for Urban Ecological Processes and Eco‐RestorationShanghai Key Laboratory of Multidimensional Information ProcessingEngineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education)East China Normal UniversityShanghai200241China
| | - Xuyin Ding
- School of Chemistry and Molecular EngineeringShanghai Key Laboratory for Urban Ecological Processes and Eco‐RestorationShanghai Key Laboratory of Multidimensional Information ProcessingEngineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education)East China Normal UniversityShanghai200241China
| | - Yifan Lu
- School of Chemistry and Molecular EngineeringShanghai Key Laboratory for Urban Ecological Processes and Eco‐RestorationShanghai Key Laboratory of Multidimensional Information ProcessingEngineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education)East China Normal UniversityShanghai200241China
| | - Guoyue Shi
- School of Chemistry and Molecular EngineeringShanghai Key Laboratory for Urban Ecological Processes and Eco‐RestorationShanghai Key Laboratory of Multidimensional Information ProcessingEngineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education)East China Normal UniversityShanghai200241China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa320003Israel
| | - Min Zhang
- School of Chemistry and Molecular EngineeringShanghai Key Laboratory for Urban Ecological Processes and Eco‐RestorationShanghai Key Laboratory of Multidimensional Information ProcessingEngineering Research Centre for Nanophotonics and Advanced Instrument (Ministry of Education)East China Normal UniversityShanghai200241China
| |
Collapse
|
65
|
Mecwan M, Li J, Falcone N, Ermis M, Torres E, Morales R, Hassani A, Haghniaz R, Mandal K, Sharma S, Maity S, Zehtabi F, Zamanian B, Herculano R, Akbari M, V. John J, Khademhosseini A. Recent advances in biopolymer-based hemostatic materials. Regen Biomater 2022; 9:rbac063. [PMID: 36196294 PMCID: PMC9522468 DOI: 10.1093/rb/rbac063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hemorrhage is the leading cause of trauma-related deaths, in hospital and prehospital settings. Hemostasis is a complex mechanism that involves a cascade of clotting factors and proteins that result in the formation of a strong clot. In certain surgical and emergency situations, hemostatic agents are needed to achieve faster blood coagulation to prevent the patient from experiencing a severe hemorrhagic shock. Therefore, it is critical to consider appropriate materials and designs for hemostatic agents. Many materials have been fabricated as hemostatic agents, including synthetic and naturally derived polymers. Compared to synthetic polymers, natural polymers or biopolymers, which include polysaccharides and polypeptides, have greater biocompatibility, biodegradability and processibility. Thus, in this review, we focus on biopolymer-based hemostatic agents of different forms, such as powder, particles, sponges and hydrogels. Finally, we discuss biopolymer-based hemostatic materials currently in clinical trials and offer insight into next-generation hemostats for clinical translation.
Collapse
Affiliation(s)
- Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ramon Morales
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Alireza Hassani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Behnam Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Rondinelli Herculano
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
66
|
Huang J, Wang S, Wang X, Zhu J, Wang Z, Zhang X, Cai K, Zhang J. Combination wound healing using polymer entangled porous nanoadhesive hybrids with robust ROS scavenging and angiogenesis properties. Acta Biomater 2022; 152:171-185. [PMID: 36084921 DOI: 10.1016/j.actbio.2022.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Nanoadhesives can achieve tight wound closure by connecting biomacromolecules from both sides. However, previously developed adhesive systems suffered from suboptimal wound healing efficiency due to the lack of interparticle cohesion, sufficient reactive oxygen species (ROS)-scavenging sites, and angiogenesis consideration. Herein, we developed a polymer entangled porous nanoadhesive system to address the above challenge by synergy of three functional components. Firstly, hybrid mesoporous silica nanoparticles with highly integrated polydopamine (MS-PDA) were prepared by templated synthesis. The entangling between PVA polymer and MS-PDA contributed to much stronger cohesion between nanoparticles, which led to 75% larger adhesion strength. As confirmed by in vitro and in vivo evaluations, the highly exposed catechol groups boosted the scavenging activity of ROS (1.8-4.1 fold enhancement as compared with nonporous counterpart). Consequently, more macrophages exhibited anti-inflammatory phenotype, leading to 2-2.6 fold lower pro-inflammatory cytokine levels. Moreover, the sustained release of bioactive SiO44- by the disintegration of nanoparticles contributed to ∼3-fold higher expression of VEGF and enhanced new blood vessel formation, as well as better wound repair. This platform can provide a new paradigm for developing multifunctional nanoadhesive systems in treating skin wounds. STATEMENT OF SIGNIFICANCE: PVA polymer entangled mesoporous nanoadhesives of polydopamine (PDA)/silica hybrids with the combination of excellent wound closure effect, boosted ROS-scavenging activity, and significant angiogenesis ability were developed for improving the suboptimal skin wound healing efficiency. This strategy not only greatly advances our ability to rationally integrate repairing elements in nanoadhesives for manipulating combined processes of interfacial events during wound healing, but also offers general implications toward application of polymers to reinforce the adhesion strength in nanoadhesive systems. In addition, our findings on the impacts of pore effects mediated ROS species conversion and polymer entanglement may also trigger great interests and facilitate the development/broad application of therapeutic adhesives.
Collapse
Affiliation(s)
- Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Shuai Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| |
Collapse
|
67
|
Zhao L, Gu X, Jiang F, Li B, Lu S, Wang F, Sun Y, Liu K, Li J. Long-Lasting Proteinaceous Nanoformulation for Tumor Imaging and Therapy. ACS OMEGA 2022; 7:31299-31308. [PMID: 36092568 PMCID: PMC9453795 DOI: 10.1021/acsomega.2c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Nanodrugs have attracted increasing interest in drug delivery and disease treatment. However, the cumbersome preparation process and the poor biocompatibility of nanodrugs obstruct their clinical translation. In this study, we utilized a self-assembly strategy to develop a low-toxicity, long-lasting nanodrug for the effective treatment and real-time monitoring of bladder tumors. The accurate self-assembly of compatible raw materials allowed for an encapsulation rate of 43.7% for insoluble erdafitinib. Interestingly, robust therapeutic effects and reduced side effects could be realized simultaneously using this nanodrug, enabling broader scenarios for the clinical application of erdafitinib. Furthermore, the nanodrug exhibited a significantly prolonged in vivo half-life (14.4 h) and increased bioavailability (8.0 μg/mL·h), which were 8.3 times and 5.0 times higher than those of its nonformulated counterpart. Also, it is worth mentioning that the introduction of a fluorescent protein module into the nanodrug brought up a novel possibility for real-time feedback on the therapeutic response. In conclusion, this research revealed a versatile technique for developing low-toxicity, long-acting, and multifunctional nanoformulations, paving the way for multidimensional therapy of malignant tumors.
Collapse
Affiliation(s)
- Lai Zhao
- Department
of Urology, China-Japan Union Hospital of
Jilin University, Changchun 130033, China
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| | - Xinquan Gu
- Department
of Urology, China-Japan Union Hospital of
Jilin University, Changchun 130033, China
| | - Fuquan Jiang
- Department
of Urology, China-Japan Union Hospital of
Jilin University, Changchun 130033, China
| | - Bo Li
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuang Lu
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| | - Fan Wang
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| | - Yao Sun
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingjing Li
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, China
| |
Collapse
|
68
|
Zhang J, Wang W, Zhang Y, Wei Q, Han F, Dong S, Liu D, Zhang S. Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction. Nat Commun 2022; 13:5214. [PMID: 36064871 PMCID: PMC9445047 DOI: 10.1038/s41467-022-32997-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Low-molecular-weight adhesives (LMWAs) possess many unique features compared to polymer adhesives. However, fabricating LMWAs with adhesion strengths higher than those of polymeric materials is a significant challenge, mainly because of the relatively weak and unbalanced cohesion and interfacial adhesion. Herein, an ionic liquid (IL)-based adhesive with high adhesion strength is demonstrated by introducing an IL moiety into a Y-shaped molecule replete with hydrogen bonding (H-bonding) interactions. The IL moieties not only destroyed the rigid and ordered H-bonding networks, releasing more free groups to form hydrogen bonds (H-bonds) at the substrate/adhesive interface, but also provided electrostatic interactions that improved the cohesion energy. The synthesized IL-based adhesive, Tri-HT, could directly form thin coatings on various substrates, with high adhesion strengths of up to 12.20 MPa. Advanced adhesives with electrical conductivity, self-healing behavior, and electrically-controlled adhesion could also be fabricated by combining Tri-HT with carbon nanotubes.
Collapse
Affiliation(s)
- Jun Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Wenxiang Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Qiang Wei
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Fei Han
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dongqing Liu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
69
|
Chen C, Wang Y, Zhang H, Zhang H, Dong W, Sun W, Zhao Y. Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioact Mater 2022; 15:194-202. [PMID: 35386338 PMCID: PMC8940762 DOI: 10.1016/j.bioactmat.2021.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment of diabetic wounds remains a great challenge for medical community. Here, we present a novel structural color supramolecular hydrogel patch for diabetic wound treatment. This hydrogel patch was created by using N-acryloyl glycinamide (NAGA) and 1-vinyl-1,2,4-triazole (VTZ) mixed supramolecular hydrogel as the inverse opal scaffold, and temperature responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel loaded with vascular endothelial cell growth factor (VEGF) as a filler. Supramolecular hydrogel renders hydrogel patch with superior mechanical properties, in which NAGA and VTZ also provide self-healing and antibacterial properties, respectively. Besides, as the existence of PNIPAM, the hydrogel patch was endowed with thermal-responsiveness property, which could release actives in response to temperature stimulus. Given these excellent performances, we have demonstrated that the supramolecular hydrogel patch could significantly enhance the wound healing process in diabetes rats by downregulating the expression of inflammatory factors, promoting collagen deposition and angiogenesis. Attractively, due to responsive optical property of inverse opal scaffold, the hydrogel patch could display color-sensing behavior that was suitable for the wound monitoring and management as well as guidance of clinical treatment. These distinctive features indicate that the presented hydrogel patches have huge potential values in biomedical fields.
Collapse
Affiliation(s)
- Canwen Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
70
|
Zhao K, Liu Y, Ren Y, Li B, Li J, Wang F, Ma C, Ye F, Sun J, Zhang H, Liu K. Molecular Engineered Crown‐Ether‐Protein with Strong Adhesion over a Wide Temperature Range from −196 to 200 °C. Angew Chem Int Ed Engl 2022; 61:e202207425. [DOI: 10.1002/anie.202207425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
- University of Science and Technology of China 230026 Hefei China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Yubin Ren
- Department of Chemistry Tsinghua University 100084 Beijing China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
| | - Chao Ma
- Department of Chemistry Tsinghua University 100084 Beijing China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
| | - Jing Sun
- East China Normal University China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
- University of Science and Technology of China 230026 Hefei China
- Department of Chemistry Tsinghua University 100084 Beijing China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences 130022 Changchun China
- University of Science and Technology of China 230026 Hefei China
- Department of Chemistry Tsinghua University 100084 Beijing China
| |
Collapse
|
71
|
Hou C, Chang YF, Yao X. Supramolecular Adhesive Materials with Antimicrobial Activity for Emerging Biomedical Applications. Pharmaceutics 2022; 14:1616. [PMID: 36015240 PMCID: PMC9414438 DOI: 10.3390/pharmaceutics14081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Traditional adhesives or glues such as cyanoacrylates, fibrin glue, polyethylene glycol, and their derivatives have been widely used in biomedical fields. However, they still suffer from numerous limitations, including the mechanical mismatch with biological tissues, weak adhesion on wet surfaces, biological incompatibility, and incapability of integrating desired multifunction. In addition to adaptive mechanical and adhesion properties, adhesive biomaterials should be able to integrate multiple functions such as stimuli-responsiveness, control-releasing of small or macromolecular therapeutic molecules, hosting of various cells, and programmable degradation to fulfill the requirements in the specific biological systems. Therefore, rational molecular engineering and structural designs are required to facilitate the development of functional adhesive materials. This review summarizes and analyzes the current supramolecular design strategies of representative adhesive materials, serving as a general guide for researchers seeking to develop novel adhesive materials for biomedical applications.
Collapse
Affiliation(s)
- Changshun Hou
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China;
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR 999077, China;
| |
Collapse
|
72
|
A Glycosylated and Catechol-crosslinked ε-Polylysine Hydrogel: Simple Preparation and Excellent Wound Hemostasis and Healing Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
Zhao K, Liu Y, Ren Y, Li B, Li J, Wang F, Ma C, Ye F, Sun J, Zhang H, Liu K. Molecular Engineered Crown‐Ether–Protein with Strong Adhesion over a Wide Temperature Range from ‐196 to 200°C. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kelu Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Yawei Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Yubin Ren
- Tsinghua University Department of Chemistry Department of Chemistry CHINA
| | - Bo Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jingjing Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Fan Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization 5625 Renmin St, Guilin Road, Chaoyang District 130022 Changchun CHINA
| | - Chao Ma
- Tsinghua University Department of Chemistry CHINA
| | - Fangfu Ye
- Chinese Academy of Sciences Institute of Physics Institute of Physics CHINA
| | - Jing Sun
- Ulm University: Universitat Ulm Institute of Organic Chemistry GERMANY
| | | | - Kai Liu
- Tsinghua University Department of Chemistry qinghua yuan 100084 Beijing CHINA
| |
Collapse
|
74
|
Zhang C, Cai Y, Zhao Q. Coacervation between two positively charged poly(ionic liquid)s. Macromol Rapid Commun 2022; 43:e2200191. [PMID: 35632991 DOI: 10.1002/marc.202200191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Complex coacervates are usually formed through electrostatic attraction between oppositely charged polyelectrolytes, with a few of exceptions such as coacervates of like-charge proteins and polyelectrolytes, both in vivo and in vitro. Understanding of the preparation and mechanism of these coacervates is limited. Here we design a positively charged poly(ionic liquid) poly(1-vinyl-3-benzylimidazolium chloride) (PILben) that bears benzene rings in repeating units. Fluidic coacervates were prepared by mixing the PILben aqueous solution with a like-charge poly(ionic liquid) named poly(dimethyl diallyl ammonium chloride) (PDDA). The effects of polymer concentration, temperature and ionic strength in the PILben-PDDA coacervate were studied. Raman spectroscopy and two-dimensional 1 H-13 C heteronuclear single quantum coherence (1 H-13 C HSQC) characterizations verify that the coacervate formation benefits from the cation-π interaction between PILben and PDDA. This work provides principles and understandings of designing coacervates derived from like-charge poly(ionic liquids) with high charge density. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chongrui Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yinmin Cai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
75
|
Hintzen KW, Simons C, Schaffrath K, Roessler G, Johnen S, Jakob F, Walter P, Schwaneberg U, Lohmann T. BioAdhere: tailor-made bioadhesives for epiretinal visual prostheses. Biomater Sci 2022; 10:3282-3295. [PMID: 35583519 DOI: 10.1039/d1bm01946e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Visual prostheses, i.e. epiretinal stimulating arrays, are a promising therapy in treating retinal dystrophies and degenerations. In the wake of a new generation of devices, an innovative method for epiretinal fixation of stimulator arrays is required. We present the development of tailor-made bioadhesive peptides (peptesives) for fixating epiretinal stimulating arrays omitting the use of traumatic retinal tacks. Materials and methods: Binding motifs on the stimulating array (poly[chloro-p-xylylene] (Parylene C)) and in the extracellular matrix of the retinal surface (collagens I and IV, laminin, fibronectin) were identified. The anchor peptides cecropin A (CecA), KH1, KH2 (author's initials) and osteopontin (OPN) were genetically fused to reporter proteins to assess their binding behavior to coated microtiter plates via fluorescence-based assays. Domain Z (DZ) of staphylococcal protein A was used as a separator to generate a bioadhesive peptide. Following ISO 10993 "biological evaluation of medical materials", direct and non-direct cytotoxicity testing (L-929 and R28 retinal progenitor cells) was performed. Lastly, the fixating capabilities of the peptesives were tested in proof-of-principle experiments. Results: The generation of the bioadhesive peptide required evaluation of the N- and C-anchoring of investigated APs. The YmPh-CecA construct showed the highest activity on Parylene C in comparison with the wildtype phytase without the anchor peptide. eGFP-OPN was binding to all four investigated ECM proteins (collagen I, laminin > collagen IV, fibronectin). The strongest binding to collagen I was observed for eGFP-KH1, while the strongest binding to fibronectin was observed for eGFP-KH2. The selectivity of binding was checked by incubating eGFP-CecA and eGFP-OPN on ECM proteins and on Parylene C, respectively. Direct and non-direct cytotoxicity testing of the peptide cecropin-A-DZ-OPN using L-929 and R28 cells showed good biocompatibility properties. Proof-of-concept experiments in post-mortem rabbit eyes suggested an increased adhesion of CecA-DZ-OPN-coated stimulating arrays. Conclusion: This is the first study to prove the applicability and biocompatibility of peptesives for the fixation of macroscopic objects.
Collapse
Affiliation(s)
- Kai-Wolfgang Hintzen
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Christian Simons
- DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Kim Schaffrath
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Gernot Roessler
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Sandra Johnen
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Felix Jakob
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Aachen, Germany
| | - Tibor Lohmann
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
76
|
Meng F, Ju B, Wang Z, Han R, Zhang Y, Zhang S, Wu P, Tang B. Bioinspired Polypeptide Photonic Films with Tunable Structural Color. J Am Chem Soc 2022; 144:7610-7615. [PMID: 35446030 DOI: 10.1021/jacs.2c02894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a new synthetic strategy of combining N-carboxyanhydride (NCA) chemistry and photonic crystals for the fabrication of polypeptide structural color films. Driven by surface-initiated ring-opening polymerization, the di-NCA derivative of l-cystine (Cys) is introduced to replicate the functionalized colloidal crystal templates and construct freestanding P(Cys) films with tunable structural color. Furthermore, the feasibility of preparing patterned polypeptide photonic films is demonstrated via template microfabrication. Because of the incorporation of l-glutamate (Glu) components, the P(Cys-co-Glu) co-polypeptide films are endowed with a visual color responsiveness toward pH changes. Additionally, the polypeptide photonic films show on-demand degradability. Given the large family of amino acid building blocks, this powerful and versatile approach paves the way for chemical derivatization of multifunctional peptide-based optical platforms.
Collapse
Affiliation(s)
- Fantao Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Zhenzhi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Ronghui Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yuang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| | - Ping Wu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
77
|
Su J, Liu B, He H, Ma C, Wei B, Li M, Li J, Wang F, Sun J, Liu K, Zhang H. Engineering High Strength and Super-Toughness of Unfolded Structural Proteins and their Extraordinary Anti-Adhesion Performance for Abdominal Hernia Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200842. [PMID: 35262209 DOI: 10.1002/adma.202200842] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The utility of unfolded structural proteins with diverse sequences offers multiple potentials to create functional biomaterials. However, it is challenging to overcome their structural defects for the development of biological fibers with a combination of high strength and high toughness. Herein, robust fibers from a recombinant unfolded protein consisting of resilin and supercharged polypeptide are fabricated via wet-spinning approaches. Particularly, the highly ordered structures induced by supramolecular complexation significantly improve the fiber's mechanical performance. In contrast to chemical fibers with high strength and low toughness (or vice versa), the present fibers demonstrate exceptional high strength and super-toughness, showing a breaking strength of ≈550 MPa and a toughness of ≈250 MJ m-3 , respectively, surpassing many polymers and artificial protein fibers. Remarkably, the outstanding biocompatibility and superior mechanical properties allow application of the constructed fiber patches for efficient abdominal hernia repair in rat models. In stark contrast to clinical patches, there is no observed tissue adhesion by this treatment. Therefore, this work provides a new type of engineered protein material for surgical applications.
Collapse
Affiliation(s)
- Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baimei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Haonan He
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center of PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, China
| | - Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
78
|
Liu Y, Wang P, Su X, Xu L, Tian Z, Wang H, Ji G, Huang J. Electrically Programmable Interfacial Adhesion for Ultrastrong Hydrogel Bonding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108820. [PMID: 35102625 DOI: 10.1002/adma.202108820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Adjustable interfacial adhesion is of great significance in smart-hydrogel-related engineering fields. This study presents an electroadhesion strategy for universal and ultrastrong hydrogel bonding with electrically programmable strength. An ionic hydrogel containing lithium ions is designed to achieve hydrated-ion-diffusion-mediated interfacial adhesion, where external electric fields are employed to precisely control spatiotemporal dynamics of the ion diffusion across ionic adhesion region (IAR). The hydrogel can realize a universal, ultrastrong, efficient, tough, reversible, and environmentally tolerant electroadhesion to diverse hydrogels, whose peak adhesion strength and interfacial adhesion toughness are as high as 1.2 MPa and 3750 J m-2 , respectively. With a mechanoelectric coupling model, the dominant role of the hydrated ions in IAR played in the interfacial electroadhesion is further quantitatively revealed. The proposed strategy opens a door for developing high-performance adhesion hydrogels with electrically programmable functions, which are indispensable for various emerging fields like flexible electronics and soft robotics.
Collapse
Affiliation(s)
- Yaqian Liu
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
- College of Engineering, Peking University, Beijing, 100871, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory, Wenzhou, Zhejiang, 325000, China
| | - Pudi Wang
- College of Engineering, Peking University, Beijing, 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| | - Xing Su
- College of Engineering, Peking University, Beijing, 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| | - Liang Xu
- College of Engineering, Peking University, Beijing, 100871, China
| | - Zhuoling Tian
- College of Engineering, Peking University, Beijing, 100871, China
| | - Hao Wang
- College of Engineering, Peking University, Beijing, 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| | - Guojun Ji
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Jianyong Huang
- College of Engineering, Peking University, Beijing, 100871, China
- Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
79
|
Mao Y, Xu Z, He Z, Wang J, Zhu Z. Wet-adhesive materials of oral and maxillofacial region: From design to application. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
80
|
Li K, Zan X, Tang C, Liu Z, Fan J, Qin G, Yang J, Cui W, Zhu L, Chen Q. Tough, Instant, and Repeatable Adhesion of Self-Healable Elastomers to Diverse Soft and Hard Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105742. [PMID: 35187853 PMCID: PMC9036032 DOI: 10.1002/advs.202105742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Repeatability and high adhesion toughness are usually contradictory for common polymer adhesives. Repeatability requires temporary interactions between the adhesive and the substrate, while high adhesion toughness is usually achieved by permanent bonding. Integrating these two features into one adhesive system is still a daunting challenge. Here, the development of a series of viscoelastic elastomers composed of a soft and hard segment is reported, which exhibit tough, instant, yet repeatable adhesion to a variety of soft and hard surfaces. Such a combination of mutually exclusive properties is attributed to the synergy of high mobility of polymer chains and massive viscoelastic dissipation of the elastomers around the interface. By optimizing the relaxation time and mechanical dissipation, the resulting adhesives can achieve a tough yet repeatable adhesion toughness above 2000 J m-2 , superior to the best-in-class commercial adhesives. Numerous acrylate monomers are proven applicable to the preparation of such adhesives, validating the universality of the fabrication method. The application of these elastomers as adhesive and protective layers in soft electronics by virtue of their universal and tough adhesion to various soft and hard substrates is also demonstrated.
Collapse
Affiliation(s)
- Ke Li
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou352001China
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454000China
| | - Xingjie Zan
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou352001China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou352001China
| | - Chen Tang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou352001China
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454000China
| | - Zhuangzhuang Liu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou352001China
| | - Jianghuan Fan
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou352001China
| | - Gang Qin
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454000China
| | - Jia Yang
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454000China
| | - Wei Cui
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Lin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou352001China
| | - Qiang Chen
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou352001China
- School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuo454000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou352001China
| |
Collapse
|
81
|
Wei Z, Sun J, Lu S, Liu Y, Wang B, Zhao L, Wang Z, Liu K, Li J, Su J, Wang F, Zhang H, Yang Y. An Engineered Protein-Au Bioplaster for Efficient Skin Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110062. [PMID: 35176187 DOI: 10.1002/adma.202110062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Melanoma is the most lethal malignancy in skin cancer and may occur at any site and express melanocytes. Due to malignant melanoma's invasion and migration nature, conventional therapies make it challenging to remove the whole tumor tissue while undertaking the high risks of tumor recurrence. Regarding the emerging targeted therapies and immunotherapy, drug resistance and low immunotherapeutic activity remain significant challenges. It is thus becoming urgently important to develop alternative strategies for melanoma therapy. Herein, a novel bifunctional protein-based photothermal bioplaster (PPTB) is developed for non-invasive tumor therapy and skin tissue regeneration. The complexation of adhesive protein and gold nanorods (GNRs) endow the obtained PPTB with good biocompatibility, controllable near-infrared (NIR) light-mediated adhesion performance, and high photothermal performance. Therefore, the PPTB bioagent facilitates skin adhesion and effectively transfers heat from skin to tumor. This behavior endows PPTB capability to eradicate skin tumors conveniently. Thus, the assembly strategy enables this hybrid bioplaster to hold great potential for skin-related tumor treatment.
Collapse
Affiliation(s)
- Zheng Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jing Sun
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Shuang Lu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zili Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
82
|
Su J, Zhao K, Ren Y, Zhao L, Wei B, Liu B, Zhang Y, Wang F, Li J, Liu Y, Liu K, Zhang H. Biosynthetic Structural Proteins with Super Plasticity, Extraordinary Mechanical Performance, Biodegradability, Biocompatibility and Information Storage Ability. Angew Chem Int Ed Engl 2022; 61:e202117538. [PMID: 35072331 DOI: 10.1002/anie.202117538] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/09/2023]
Abstract
Degradable bioplastics have attracted growing interest worldwide. However, it is challenging to develop bioplastics with a simple processing procedure, strong mechanical performance, good biocompatibility, and adjustable physicochemical properties. Herein, we introduced structural proteins as building blocks and developed a simple environmentally friendly approach to fabricate diverse protein-based plastics. A cost-effective and high-level production approach was developed through batch fermentation of Escherichia coli to produce the biomaterials. These bioplastics possess super plasticity, biocompatibility, biodegradability, and high resistance to organic solvents. Their structural and mechanical properties can be precisely controlled. Besides, high density information storage and hemostatic applications were realized in the bioplastic system. The customizable bioplastics have great potential for applications in numerous fields and are capable to scale up to the industrial level.
Collapse
Affiliation(s)
- Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yubin Ren
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Bin Liu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
83
|
Li Q, Song W, Li J, Ma C, Zhao X, Jiao J, Mrowczynski O, Webb BS, Rizk EB, Lu D, Liu C. Bioinspired Super-Strong Aqueous Synthetic Tissue Adhesives. MATTER 2022; 5:933-956. [PMID: 35252844 PMCID: PMC8896806 DOI: 10.1016/j.matt.2021.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Existing tissue adhesives and sealants are far from satisfactory when applied on wet and dynamic tissues. Herein, we report a strategy for designing biodegradable super-strong aqueous glue (B-Seal) for surgical uses inspired by an English ivy adhesion strategy and a cement particle packing theory. B-Seal is a fast-gelling, super-strong, and elastic adhesive sealant composed of injectable water-borne biodegradable polyurethane (WPU) nanodispersions with mismatched particle sizes and counterions in its A-B formulation. B-Seal showed 24-fold greater burst pressure than DuraSeal®, 138-fold greater T-pull adhesive strength than fibrin glue, and 16-fold greater lap shear strength than fibrin glue. In vivo evaluation on a rat cerebrospinal fluid (CSF) rhinorrhea model and a porcine craniotomy model validated the safety and efficacy of B-Seal for effective CSF leak prevention and dura repair. The plant-inspired adhesion strategy combined with particle packing theory represents a new direction of designing the next-generation wet tissue adhesives for surgeries.
Collapse
Affiliation(s)
- Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Wei Song
- Aleo BME, Inc., State College, PA 16803, USA
| | - Jinghui Li
- Department of Neurosurgery, The First Affiliated Hospital, Kunming Medical University, Kunming, 650031, China
| | - Chuying Ma
- Aleo BME, Inc., State College, PA 16803, USA
| | - Xinxiang Zhao
- Department of Radiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Jianlin Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Oliver Mrowczynski
- Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Becky S. Webb
- Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Elias B. Rizk
- Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Chao Liu
- Aleo BME, Inc., State College, PA 16803, USA
| |
Collapse
|
84
|
Bai Q, Teng L, Zhang X, Dong C. Multifunctional Single-Component Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Adv Healthc Mater 2022; 11:e2101809. [PMID: 34865324 DOI: 10.1002/adhm.202101809] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Polymeric hydrogels have been increasingly studied for wound sealants, adhesives, hemostats, and dressings, however, multi-component gelation, adhesion-causing tissue damage, inefficient hemostasis, and skin scarring in wound healing hamper their advances. So it is urgent to develop multifunctional single-component polymeric hydrogels with benign tissue detachment, high performance hemostasis, and scarless wound healing attributes. Herein, a dopamine-modified poly(l-glutamate) hydrogel at an ultralow concentration of 0.1 wt% is serendipitously constructed by physical treatments, in which a gelation mechanism is disclosed via oxidative catechol-crosslinking and sequential dicatechol-carboxyl hydrogen-bonding interactions. The covalent/H-bonding co-crosslinked and highly negative-charged networks enable the polypeptide hydrogels thermo-, salt-, urea-resistant, self-healing, injectable, and adhesive yet detachable. In vitro and in vivo assays demonstrate they have superior biocompatibility with ≈0.5% hemolysis and negligible inflammation. The polypeptide/graphene oxide hybrid hydrogel performs fast and efficient hemostasis of 12 s and 1.4% blood loss, surpassing some hydrogels and commercial counterparts. Remarkably, the polypeptide hydrogels achieve scarless and full wound healing and regenerate thick dermis with some embedded hair follicles within 14 days, presenting superior full-thickness wound healing and skin scar-preventing capabilities. This work provides a simple and practicable method to construct multifunctional polypeptide hemostatic and healing hydrogels that overcome some above-mentioned hurdles.
Collapse
Affiliation(s)
- Qian Bai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Teng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chang‐Ming Dong
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
85
|
Liu H, Geng H, Zhang X, Wang X, Hao J, Cui J. Hot Melt Super Glue: Multi-Recyclable Polyphenol-Based Supramolecular Adhesives. Macromol Rapid Commun 2022; 43:e2100830. [PMID: 35106862 DOI: 10.1002/marc.202100830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Indexed: 11/11/2022]
Abstract
We report the rapid and facile synthesis of hot melt super glue (HMSG) via the formation of adhesive supramolecular networks between catechol or pyrogallol hydroxyl groups (-OH) of polyphenols and repeat units (-CH2 CH2 O-) of poly(ethylene glycol) (PEG) based on hydrogen bonds. The adhesion strength of HMSG, processed by heating-cooling of polyphenols and PEG without additional solvents, can be tuned up to 8.8 MPa via changing the molecular weight of PEG and the ratio of hydrogen bonding donors and receptors. The advantages of the reported HMSG lie in the ease and scalability of the assembly process, rapid adhesion on various substrates with excellent processability, resistance of low temperature and organic solvents, and recyclable adhesion strength. The solvent-free HMSG represents a promising adhesive supramolecular network to expand the versatility and application of polyphenol-based materials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanru Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaohui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
86
|
Su J, Zhao K, Ren Y, Zhao L, Wei B, Liu B, Zhang Y, Wang F, Li J, Liu Y, Liu K, Zhang H. Biosynthetic structural proteins with super plasticity, extraordinary mechanical performance, biodegradability, biocompatibility and information storage ability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juanjuan Su
- Chinese Academy of Sciences College of Materials Science and Opto-Electronic Technology CHINA
| | - Kelu Zhao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Yubin Ren
- Qinghua University: Tsinghua University Department of Chemistry CHINA
| | - Lai Zhao
- China-Japan Union Hospital of Jilin University Department of urology CHINA
| | - Bo Wei
- The First Medical Center of PLA General Hospital Department of General Surgery CHINA
| | - Bin Liu
- China-Japan Union Hospital of Jilin University Department of Urology CHINA
| | - Yi Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Fan Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Jingjing Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Yawei Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization No. 5625 Renmin Rd. 130022 Changchun CHINA
| | - Kai Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Hongjie Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| |
Collapse
|
87
|
Zhang X, Wan H, Lan W, Miao F, Qin M, Wei Y, Hu Y, Liang Z, Huang D. Fabrication of adhesive hydrogels based on poly (acrylic acid) and modified hyaluronic acid. J Mech Behav Biomed Mater 2021; 126:105044. [PMID: 34915359 DOI: 10.1016/j.jmbbm.2021.105044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Hydrogel wound dressings with good flexibility and adhesiveness to resist deformation during wound movement are urgently needed in clinical application. In this work, the hydrogels based on poly (acrylic acid) and N-hydroxysuccinimide grafted hyaluronic acid (PAA/HA-NHS) with good elasticity and adhesiveness were prepared by chemical cross-linking and hydrogen bonding. The elastic and adhesive properties within the PAA hydrogels could reach a balance by adjusting the concentration of potassium persulfate (KPS) and N, N'-methylenebisacrylamide (MBA). Subsequently, HA-NHS was incorporated into the PAA hydrogel system. The mechanical test revealed that the elongation at break and interfacial toughness of the PAA/HA-NHS hydrogels could reach 265.79 ± 21.93% and 52.88 ± 3.51 J/m2, respectively. In addition, the hydrogels possess a connected porous network and well water absorption ability (with porosity of 51.90 ± 0.11% and swelling ratio in wet state of 122.17 ± 2.78%). In vitro experiment demonstrates that the PAA/HA-NHS hydrogels exhibit nontoxic and cell in-adhesive properties. The PAA/HA-NHS hydrogels could cover the wound spots directly, stretch with the skin movement and gently remove from the wound tissue due to the suitable adhesiveness and poor cell adhesion. In conclusion, the PAA/HA-NHS hydrogels show great application value in the field of wound dressing.
Collapse
Affiliation(s)
- Xiumei Zhang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Huining Wan
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Weiwei Lan
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Fenyan Miao
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Miao Qin
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China.
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, PR China.
| |
Collapse
|
88
|
Du N, Ye F, Sun J, Liu K. Stimuli-Responsive Natural Proteins and Their Applications. Chembiochem 2021; 23:e202100416. [PMID: 34773331 DOI: 10.1002/cbic.202100416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Natural proteins are essential biomacromolecules that fulfill versatile functions in the living organism, such as their usage as cytoskeleton, nutriment transporter, homeostasis controller, catalyzer, or immune guarder. Due to the excellent mechanical properties and good biocompatibility/biodegradability, natural protein-based biomaterials are well equipped for prospective applications in various fields. Among these natural proteins, stimuli-responsive proteins can be reversibly and precisely manipulated on demand, rendering the protein-based biomaterials promising candidates for numerous applications, including disease detection, drug delivery, bio-sensing, and regenerative medicine. Therefore, we present some typical natural proteins with diverse physical stimuli-responsive properties, including temperature, light, force, electrical, and magnetic sensing in this review. The structure-function mechanism of these proteins is discussed in detail. Finally, we give a summary and perspective for the development of stimuli-responsive proteins.
Collapse
Affiliation(s)
- Na Du
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
89
|
Tao C, Jin M, Yao H, Wang DA. Dopamine based adhesive nano-coatings on extracellular matrix (ECM) based grafts for enhanced host-graft interfacing affinity. NANOSCALE 2021; 13:18148-18159. [PMID: 34709280 DOI: 10.1039/d1nr06284k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interfacing affinity between grafts and host tissues is an urgent issue that needs to be addressed for the clinical translation of tissue engineered extracellular matrix (ECM) based grafts. Dopamine is known as a universal adhesive, the catechol groups on which could form chelating bonds with metal ions. Herein we developed an adhesive nano-coating on ECM based grafts which could crosslink in situ with ferric ions for fixation with surrounding tissues after implantation without affecting the porous structures of the grafts. Therefore, decellularized living hyaline cartilage graft (dLhCG), a model ECM-based graft, with dopamine based natural biological material adhesive coatings was manufactured to address the interfacing affinity issue between ECM-based grafts and cartilage. A macromolecule backbone was needed for the coating material to avoid the formation of a rigid crosslinking system and adverse effects caused by small molecules of dopamine. Chondroitin sulfate (CS), a cartilage derived sulfated GAG, was chosen as the backbone to fabricate dopamine modified CS (CSD) with no impurities introduced to the joint. Dopamine modified serum albumin (BCD) was also chosen for the favorable biocompatibility of albumin. Both dLhCG coated with CSD and dLhCG coated with BCD showed enhanced adhesive strength with cartilage after chelating with ferric ions in situ compared to dLhCG and further potential in improving the interfacing affinity of dLhCG with cartilage.
Collapse
Affiliation(s)
- Chao Tao
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR.
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China.
| | - Dong-An Wang
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR.
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P. R. China
| |
Collapse
|
90
|
Sun J, Han J, Wang F, Liu K, Zhang H. Bioengineered Protein-based Adhesives for Biomedical Applications. Chemistry 2021; 28:e202102902. [PMID: 34622998 DOI: 10.1002/chem.202102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Protein-based adhesives with their robust adhesion performance and excellent biocompatibility have been extensively explored over years. In particular, the unique adhesion behaviours of mussel and sandcastle worm inspired the development of synthetic adhesives. However, the chemical synthesized adhesives often demonstrate weak underwater adhesion performance and poor biocompatibility/biodegradability, limiting their further biomedical applications. In sharp contrast, genetically engineering endows the protein-based adhesives the ability to maintain underwater adhesion property as well as biocompatibility/biodegradability. Herein, we outline recent advances in the design and development of protein-based adhesives by genetic engineering. We summarize the fabrication and adhesion performance of elastin-like polypeptide-based adhesives, followed by mussel foot protein (mfp) based adhesives and other sources protein-based adhesives, such as, spider silk spidroin and suckerin. In addition, the biomedical applications of these bioengineered protein-based adhesives are presented. Finally, we give a brief summary and perspective on the future development of bioengineered protein-based adhesives.
Collapse
Affiliation(s)
- Jing Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jiaying Han
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
91
|
Cai C, Chen Z, Chen Y, Li H, Yang Z, Liu H. Mechanisms and applications of bioinspired underwater/wet adhesives. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chao Cai
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Zhen Chen
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Hua Li
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Zhi Yang
- Department of Oral and Cranio‐maxillofacial Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology National Clinical Research Center of Stomatology Shanghai China
| | - Hezhou Liu
- State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
92
|
Gu S, Liu J, Zheng J, Wang H, Wu J. Robust Antiwater and Anti-oil-fouling Double-Sided Tape Enabled by SiO 2 Reinforcement and a Liquefied Surface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43404-43413. [PMID: 34478274 DOI: 10.1021/acsami.1c12505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Realizing simultaneous antiwater and anti-oil-fouling adhesion is extremely challenging owing to the solvated overlayer on the surface of substrates. Herein, we develop a supertough polyacrylate-based tape bearing SiO2 as a reinforcing filler and a solvent to liquefy the surface. The SiO2 reinforcement enhances the cohesion strength, while the liquefied surface not only expels the solvated overlayer but also improves the interfacial wettability and interaction. This material design imparts the double-sided tape with admirable antiwater and anti-oil-fouling adhesion performance, which far exceeds that of commercial tapes, as well as high transparency and long-term stability. In addition, we carry out an in-depth study on the adhesive mechanism for the tape and clarify the role of the solvent and the interaction between SiO2 and a polymer matrix. This work provides a novel strategy for designing antiwater and anti-oil-fouling adhesives with wide applications in various fields such as leakage repair, antiseep, underwater adhesion, building materials, and biological adhesives.
Collapse
Affiliation(s)
- Shiyu Gu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiayi Liu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Zheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|