51
|
Chu Y, Gui S, Zheng Y, Zhao J, Zhao Y, Li Y, Chen X. The natural compounds, Magnolol or Honokiol, promote adipose tissue browning and resist obesity through modulating PPARα/γ activity. Eur J Pharmacol 2024; 969:176438. [PMID: 38402928 DOI: 10.1016/j.ejphar.2024.176438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with the body's energy metabolism. A potential strategy to regulate energy metabolism, combat obesity, and reduce NAFLD is by enhancing adipocyte thermogenesis and increasing energy expenditure. In this study, our objective was to examine the effects of phenolic extracts derived from Magnolia officinalis on the regulation of NAFLD. Specifically, we investigated the impact of Magnolol or Honokiol treatment on high-fat diet (HFD)-induced obese C57BL6/J male mice. Firstly, we monitored energy metabolism, dissected tissues, and analyzed tissue sections. Additionally, we conducted experiments on HepG2 and primary adipocytes to gain insights into the roles of Magnolol or Honokiol. To further understand the effects of these compounds on related signaling pathways and marker genes, we performed molecular docking, dual-luciferase assays, and interfered with target genes. Our findings revealed that Magnolol or Honokiol activate the peroxisome proliferator activated receptor alpha (PPARα) signaling pathway, leading to the alleviation of NAFLD. This activation promotes fatty acid oxidation, reduces lipogenesis, and enhances the expression and secretion of FGF21. Notably, Fibroblast growth factor 21 (FGF21), secreted by the liver, plays a crucial role in improving communication between the liver and adipocytes while also promoting the browning of adipose tissue. Additionally, Magnolol or Honokiol activate the peroxisome proliferator activated receptor gamma (PPARγ) signaling pathway, resulting in increased uncoupling protein 1 (UCP1) expression, heightened heat production in adipose tissue, and anti-obesity. Therefore, Magnolol or Honokiol alleviate NAFLD, promote adipose tissue browning and resist obesity through dual activation of PPARα/γ.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sisi Gui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yazhen Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
52
|
Zhengdong A, Xiaoying X, Shuhui F, Rui L, Zehui T, Guanbin S, Li Y, Xi T, Wanqian L. Identification of fatty acids synthesis and metabolism-related gene signature and prediction of prognostic model in hepatocellular carcinoma. Cancer Cell Int 2024; 24:130. [PMID: 38584256 PMCID: PMC11000322 DOI: 10.1186/s12935-024-03306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Fatty acids synthesis and metabolism (FASM)-driven lipid mobilization is essential for energy production during nutrient shortages. However, the molecular characteristics, physiological function and clinical prognosis value of FASM-associated gene signatures in hepatocellular carcinoma (HCC) remain elusive. METHODS The Gene Expression Omnibus database (GEO), the Cancer Genome Atlas (TCGA), and International Cancer Genome Consortium (ICGC) database were utilized to acquire transcriptome data and clinical information of HCC patients. The ConsensusClusterPlus was employed for unsupervised clustering. Subsequently, immune cell infiltration, stemness index and therapeutic response among distinct clusters were decoded. The tumor immune dysfunction and exclusion (TIDE) algorithm was utilized to anticipate the response of patients towards immunotherapy, and the genomics of drug sensitivity in cancer (GDSC) tool was employed to predict their response to antineoplastic medications. Least absolute shrinkage and selection operator (LASSO) regression analysis and protein-protein interaction (PPI) network were employed to construct prognostic model and identity hub gene. Single cell RNA sequencing (scRNA-seq) and CellChat were used to analyze cellular interactions. The hub gene of FASM effect on promoting tumor progression was confirmed through a series of functional experiments. RESULTS Twenty-six FASM-related genes showed differential expression in HCC. Based on these FASM-related differential genes, two molecular subtypes were established, including Cluster1 and Cluster2 subtype. Compared with cluster2, Cluster1 subtype exhibited a worse prognosis, higher risk, higher immunosuppressive cells infiltrations, higher immune escape, higher cancer stemness and enhanced treatment-resistant. PPI network identified Acetyl-CoA carboxylase1 (ACACA) as central gene of FASM and predicted a poor prognosis. A strong interaction between cancer stem cells (CSCs) with high expression of ACACA and macrophages through CD74 molecule (CD74) and integrin subunit beta 1 (ITGB1) signaling was identified. Finally, increased ACACA expression was observed in HCC cells and patients, whereas depleted ACACA inhibited the stemness straits and drug resistance of HCC cells. CONCLUSIONS This study provides a resource for understanding FASM heterogeneity in HCC. Evaluating the FASM patterns can help predict the prognosis and provide new insights into treatment response in HCC patients.
Collapse
Affiliation(s)
- Ai Zhengdong
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Xing Xiaoying
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Fu Shuhui
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Liang Rui
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Tang Zehui
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Song Guanbin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Yang Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China
| | - Tang Xi
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400000, People's Republic of China.
| | - Liu Wanqian
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Chongqing, 400000, People's Republic of China.
| |
Collapse
|
53
|
Gao Y, Gong Y, Lu J, Hao H, Shi X. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: mechanism and strategy. Front Immunol 2024; 15:1377722. [PMID: 38550587 PMCID: PMC10972981 DOI: 10.3389/fimmu.2024.1377722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Liver cancer is the third leading of tumor death, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Immune checkpoint inhibitors (ICIs) are yielding much for sufferers to hope for patients, but only some patients with advanced liver tumor respond. Recent research showed that tumor microenvironment (TME) is critical for the effectiveness of ICIs in advanced liver tumor. Meanwhile, metabolic reprogramming of liver tumor leads to immunosuppression in TME. These suggest that regulating the abnormal metabolism of liver tumor cells and firing up TME to turn "cold tumor" into "hot tumor" are potential strategies to improve the therapeutic effect of ICIs in liver tumor. Previous studies have found that YAP1 is a potential target to improve the efficacy of anti-PD-1 in HCC. Here, we review that YAP1 promotes immunosuppression of TME, mainly due to the overstimulation of cytokines in TME by YAP1. Subsequently, we studied the effects of YAP1 on metabolic reprogramming in liver tumor cells, including glycolysis, gluconeogenesis, lipid metabolism, arachidonic acid metabolism, and amino acid metabolism. Lastly, we summarized the existing drugs targeting YAP1 in the treatment of liver tumor, including some medicines from natural sources, which have the potential to improve the efficacy of ICIs in the treatment of liver tumor. This review contributed to the application of targeted YAP1 for combined therapy with ICIs in liver tumor patients.
Collapse
Affiliation(s)
- Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
- Basic Laboratory of Integrated Traditional Chinese and Western, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
54
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
55
|
Zhao Y, Tan H, Zhang X, Zhu J. Roles of peroxisome proliferator-activated receptors in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18042. [PMID: 37987033 PMCID: PMC10902579 DOI: 10.1111/jcmm.18042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is linked to risk factors such as viral hepatitis, alcohol intake and non-alcoholic fatty liver disease (NAFLD). Recent advances have greatly improved our understanding that NAFLD is playing a major risk factor for HCC. Peroxisome proliferator-activated receptors (PPARs) are a class of transcription factors divided into three subtypes: PPARα (PPARA), PPARδ/β (PPARD) and PPARγ (PPARG). As important nuclear receptors, PPARs are involved in many physiological processes, and PPARs can improve NAFLD by regulating lipid metabolism, accelerating fatty acid oxidation and inhibiting inflammation. In recent years, some studies have shown that PPARs can participate in the occurrence and development of HCC by regulating metabolic pathways. In addition, PPAR modulators have been reported to inhibit the proliferation and metastasis of HCC cells and can enhance the curative effect of conventional treatments. This article reviews the role of PPARs in the occurrence and development of HCC, as well as its value in the diagnosis, treatment and prognosis of HCC, in order to provide directions for future research.
Collapse
Affiliation(s)
- Yaqin Zhao
- Department of Abdominal Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin HospitalHubei University of MedicineShiyanHubeiChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General SurgeryThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Jing Zhu
- Nanjing Drum Tower HospitalNanjingChina
| |
Collapse
|
56
|
Shi Q, Zeng Y, Xue C, Chu Q, Yuan X, Li L. Development of a promising PPAR signaling pathway-related prognostic prediction model for hepatocellular carcinoma. Sci Rep 2024; 14:4926. [PMID: 38418897 PMCID: PMC10902383 DOI: 10.1038/s41598-024-55086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) signaling pathway plays a crucial role in systemic cell metabolism, energy homeostasis and immune response inhibition. However, its significance in hepatocellular carcinoma (HCC) has not been well documented. In our study, based on the RNA sequencing data of HCC, consensus clustering analyses were performed to identify PPAR signaling pathway-related molecular subtypes, each of which displaying varying survival probabilities and immune infiltration status. Following, a prognostic prediction model of HCC was developed by using the random survival forest method and Cox regression analysis. Significant difference in survival outcome, immune landscape, drug sensitivity and pathological features were observed between patients with different prognosis. Additionally, decision tree and nomogram models were adopted to optimize the prognostic prediction model. Furthermore, the robustness of the model was verified through single-cell RNA-sequencing data. Collectively, this study systematically elucidated that the PPAR signaling pathway-related prognostic model has good predictive efficacy for patients with HCC. These findings provide valuable insights for further research on personalized treatment approaches for HCC.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| |
Collapse
|
57
|
Xie SY, Liu SQ, Zhang T, Shi WK, Xing Y, Fang WX, Zhang M, Chen MY, Xu SC, Fan MQ, Li LL, Zhang H, Zhao N, Zeng ZX, Chen S, Zeng XF, Deng W, Tang QZ. USP28 Serves as a Key Suppressor of Mitochondrial Morphofunctional Defects and Cardiac Dysfunction in the Diabetic Heart. Circulation 2024; 149:684-706. [PMID: 37994595 DOI: 10.1161/circulationaha.123.065603] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct diabetic cardiomyopathy progression. Herein, we assessed the potential role and therapeutic value of USP28 (ubiquitin-specific protease 28) on the metabolic vulnerability of diabetic cardiomyopathy. METHODS The type 2 diabetes mouse model was established using db/db leptin receptor-deficient mice and high-fat diet/streptozotocin-induced mice. Cardiac-specific knockout of USP28 in the db/db background mice was generated by crossbreeding db/m and Myh6-Cre+/USP28fl/fl mice. Recombinant adeno-associated virus serotype 9 carrying USP28 under cardiac troponin T promoter was injected into db/db mice. High glucose plus palmitic acid-incubated neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing, immunoprecipitation and mass spectrometry analysis, protein pull-down, chromatin immunoprecipitation sequencing, and chromatin immunoprecipitation assay. RESULTS Microarray profiling of the UPS (ubiquitin-proteasome system) on the basis of db/db mouse hearts and diabetic patients' hearts demonstrated that the diabetic ventricle presented a significant reduction in USP28 expression. Diabetic Myh6-Cre+/USP28fl/fl mice exhibited more severe progressive cardiac dysfunction, lipid accumulation, and mitochondrial disarrangement, compared with their controls. On the other hand, USP28 overexpression improved systolic and diastolic dysfunction and ameliorated cardiac hypertrophy and fibrosis in the diabetic heart. Adeno-associated virus serotype 9-USP28 diabetic mice also exhibited less lipid storage, reduced reactive oxygen species formation, and mitochondrial impairment in heart tissues than adeno-associated virus serotype 9-null diabetic mice. As a result, USP28 overexpression attenuated cardiac remodeling and dysfunction, lipid accumulation, and mitochondrial impairment in high-fat diet/streptozotocin-induced type 2 diabetes mice. These results were also confirmed in neonatal rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. RNA sequencing, immunoprecipitation and mass spectrometry analysis, chromatin immunoprecipitation assays, chromatin immunoprecipitation sequencing, and protein pull-down assay mechanistically revealed that USP28 directly interacted with PPARα (peroxisome proliferator-activated receptor α), deubiquitinating and stabilizing PPARα (Lys152) to promote Mfn2 (mitofusin 2) transcription, thereby impeding mitochondrial morphofunctional defects. However, such cardioprotective benefits of USP28 were largely abrogated in db/db mice with PPARα deletion and conditional loss-of-function of Mfn2. CONCLUSIONS Our findings provide a USP28-modulated mitochondria homeostasis mechanism that involves the PPARα-Mfn2 axis in diabetic hearts, suggesting that USP28 activation or adeno-associated virus therapy targeting USP28 represents a potential therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Shi-Qiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Ke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Wen-Xi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Meng-Ya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Si-Chi Xu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China (S.-c.X.)
| | - Meng-Qi Fan
- College of Life Sciences, Wuhan University, P.R. China (M.-q.F.)
| | - Lan-Lan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Zhao-Xiang Zeng
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiaotong University, P.R. China (Z.-x.Z)
- Department of Cardiac Surgery, Changhai Hospital, Navy Medical University, Shanghai, P.R. China (Z.-x.Z)
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Xiao-Feng Zeng
- Cardiovascular Research Institute of Wuhan University, P.R. China (S.C., X.-f.Z.)
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, P.R. China (S.-y.X, S.-q.L., T.Z., W.-k.S., Y.X., W.-x.F., M.Z., M.-Y.C., L.-l.L., H.Z., N.Z., W.D., Q.z.T.)
| |
Collapse
|
58
|
Wu K, Lin F. Lipid Metabolism as a Potential Target of Liver Cancer. J Hepatocell Carcinoma 2024; 11:327-346. [PMID: 38375401 PMCID: PMC10875169 DOI: 10.2147/jhc.s450423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a severe malignant tumor with a profound impact on overall health, often accompanied by an unfavorable prognosis. Despite some advancements in the diagnosis and treatment of this disease, improving the prognosis of HCC remains a formidable challenge. It is noteworthy that lipid metabolism plays a pivotal role in the onset, development, and progression of tumor cells. Existing research indicates the potential application of targeting lipid metabolism in the treatment of HCC. This review aims to thoroughly explore the alterations in lipid metabolism in HCC, offering a detailed account of the potential advantages associated with innovative therapeutic strategies targeting lipid metabolism. Targeting lipid metabolism holds promise for potentially enhancing the prognosis of HCC.
Collapse
Affiliation(s)
- Kangze Wu
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Feizhuan Lin
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| |
Collapse
|
59
|
Wang WP, Shi D, Yun D, Hu J, Wang JF, Liu J, Yang YP, Li MR, Wang JF, Kong DL. Role of deubiquitinase JOSD2 in the pathogenesis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:565-578. [PMID: 38463028 PMCID: PMC10921146 DOI: 10.3748/wjg.v30.i6.565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with limited treatment options. Deubiquitinases (DUBs) have been confirmed to play a crucial role in the development of malignant tumors. JOSD2 is a DUB involved in controlling protein deubiquitination and influencing critical cellular processes in cancer. AIM To investigate the impact of JOSD2 on the progression of ESCC. METHODS Bioinformatic analyses were employed to explore the expression, prognosis, and enriched pathways associated with JOSD2 in ESCC. Lentiviral transduction was utilized to manipulate JOSD2 expression in ESCC cell lines (KYSE30 and KYSE150). Functional assays, including cell proliferation, colony formation, drug sensitivity, migration, and invasion, were performed, revealing the impact of JOSD2 on ESCC cell lines. JOSD2's role in xenograft tumor growth and drug sensitivity in vivo was also assessed. The proteins that interacted with JOSD2 were identified using mass spectrometry. RESULTS Preliminary research indicated that JOSD2 was highly expressed in ESCC tissues, which was associated with poor prognosis. Further analysis demonstrated that JOSD2 was upregulated in ESCC cell lines compared to normal esophageal cells. JOSD2 knockdown inhibited ESCC cell activity, including proliferation and colony-forming ability. Moreover, JOSD2 knockdown decreased the drug resistance and migration of ESCC cells, while JOSD2 overexpression enhanced these phenotypes. In vivo xenograft assays further confirmed that JOSD2 promoted tumor proliferation and drug resistance in ESCC. Mechanistically, JOSD2 appears to activate the MAPK/ERK and PI3K/AKT signaling pathways. Mass spectrometry was used to identify crucial substrate proteins that interact with JOSD2, which identified the four primary proteins that bind to JOSD2, namely USP47, IGKV2D-29, HSP90AB1, and PRMT5. CONCLUSION JOSD2 plays a crucial role in enhancing the proliferation, migration, and drug resistance of ESCC, suggesting that JOSD2 is a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Wen-Peng Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dan Shi
- Department of Gastrointestinal Surgery, Tianjin Nan Kai Hospital, Tianjin Medical University, Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China
| | - Duo Yun
- Department of Oncology, The First Hospital of Hohhot, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Jun Hu
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jie-Fu Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jia Liu
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yan-Peng Yang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Ming-Rui Li
- Department of Endocrinology, Dazhou Central Hospital, Dazhou 635000, Sichuan Province, China
| | - Jun-Feng Wang
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Da-Lu Kong
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
60
|
Zhang M, Wei T, Guo D. The role of abnormal ubiquitination in hepatocellular carcinoma pathology. Cell Signal 2024; 114:110994. [PMID: 38036196 DOI: 10.1016/j.cellsig.2023.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Primary liver cancer is known for its high incidence and fatality rate. Over the years, therapeutic strategies for primary liver cancer have advanced significantly. Nonetheless, a substantial number of patients have not benefited from these methods, underscoring the pressing need for new and effective treatments for primary liver cancer. Ubiquitination is a critical post-translational modification that enables proteins to fulfill their normal biological functions and maintain their expression stability within cells. Importantly, increasing evidence suggests that the progression of liver cancer cells is often accompanied by disruptions in protein ubiquitination and deubiquitination processes. In this comprehensive review, we have compiled pertinent research about dysregulated ubiquitination in hepatocellular carcinoma (HCC) to broaden our understanding in this field. We elucidate the connections between the ubiquitination proteasome system, deubiquitination, and HCC. Furthermore, we shed light on the role of ubiquitination in cells situated within the tumor microenvironment of HCC including its involvement in mediating the activation of oncogenic pathways, reprogramming metabolic processes, and perturbing normal cellular functions. In conclusion, targeting the dysregulation of ubiquitination in HCC holds promise as a prospective and complementary therapeutic approach to existing treatments.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
61
|
Liu J, Wang Y, Zhang S, Sun L, Shi Y. ADAM9 deubiquitination induced by USP22 suppresses proliferation, migration, invasion, and epithelial-mesenchymal transition of trophoblast cells in preeclampsia. Placenta 2024; 146:50-57. [PMID: 38176298 DOI: 10.1016/j.placenta.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION The dysregulation of deubiquitination has been shown to affect the development of pre-eclampsia (PE). A disintegrin and metalloprotease 9 (ADAM9) plays roles in diverse physiological contexts, including PE. Here, this study aimed to investigate whether ADAM9 regulated trophoblast cell dysfunction through ubiquitin-specific protease 22 (USP22) deubiquitinase-mediated deubiquitination during PE. METHODS Levels of genes and proteins were tested via qRT-PCR and western blotting assays. Cell proliferation, migration, and invasion were detected using cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell and wound healing assays, respectively. Epithelial-mesenchymal transition related markers were assayed using western blotting. Proteins between USP22 and ADAM9 were identified by co-immunoprecipitation assay. RESULTS ADAM9 was highly expressed in PE patients, functionally, ADAM9 overexpression weakened the proliferation, migration, invasion, and EMT progression in trophoblast cells. Mechanistically, the deubiquitinase USP22 removed ubiquitination on ADAM9 and maintained its stability. Forced expression of USP22 also suppressed the proliferation and mobility in trophoblast cells. Moreover, the regulatory effects of USP22 on trophoblast cells were reversed by ADAM9 silencing. In addition, USP22 interacted with ADAM9 to regulate the activation of Wnt/β-catenin pathway. DISCUSSION ADAM9 was deubiquitinated and stabilized by USP22 and then suppressed the proliferation, migration, invasion, and EMT progression in trophoblast cells, indicating a new pathway of USP10/RUNX1 axis in PE process.
Collapse
Affiliation(s)
- Jie Liu
- Department of Gynecology and Obstetrics, Yantaishan Hospital, Yantai City, 264001, Shandong, China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Yantaishan Hospital, Yantai City, 264001, Shandong, China
| | - Suqin Zhang
- Department of Gynecology and Obstetrics, Yantaishan Hospital, Yantai City, 264001, Shandong, China
| | - Liyan Sun
- Department of Pharmacy, Yantaishan Hospital, Yantai City, 264001, Shandong, China
| | - Yanmei Shi
- Department of Gynecology and Obstetrics, Yantaishan Hospital, Yantai City, 264001, Shandong, China.
| |
Collapse
|
62
|
Li Y, Pan Y, Zhao X, Wu S, Li F, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H. Peroxisome proliferator-activated receptors: A key link between lipid metabolism and cancer progression. Clin Nutr 2024; 43:332-345. [PMID: 38142478 DOI: 10.1016/j.clnu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yujie Pan
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
63
|
Ai J, Ma W, Pan Z, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Ameliorative effect of Lactobacillus plantarum CCFM8661 on oleic acid-induced acne: integrated gut microbiota link to acne pathogenesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:328-339. [PMID: 37574818 DOI: 10.1002/jsfa.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Acne vulgaris is an inflammatory disease of the pilosebaceous unit of the skin that has serious adverse effects on the physical and mental health of patients. Probiotics are extensively employed in dermatology and could be an alternative option for acne therapy. Here, we evaluated the effect of oral ingestion of live and inactivated Lactobacillus plantarum CCFM8661 on oleic acid-induced acne using a mouse model. RESULTS Results indicated that live L. plantarum CCFM8661 suppressed skin inflammation and serum hormone (insulin and testosterone) production in acne mice. Parallelly, live L. plantarum CCFM8661 effectively reduced the formation of skin lipids (triglycerides and non-esterified free fatty acids), and normalized the expression of skin lipid metabolism-related genes (PPAR-γ, SREBP-1c, ACCα, FASN, PPAR-α, ACOX1, HSL and ATGL). In comparison, inactivated L. plantarum CCFM8661 had no effect on skin inflammation or serum hormone secretion, but decreased skin triglycerides and normalized the expression of skin lipid metabolism-related genes (PPAR-γ, SREBP-1c, FASN and ATGL) in acne mice. Both live and inactivated L. plantarum CCFM8661 raised the richness of gut microbiota, reduced the ratio of Bacteroidetes to Firmicutes and decreased the relative abundance of Staphylococcus in the feces of acne mice. CONCLUSION Oral ingestion of L. plantarum CCFM8661, particularly live cells, could alleviate acne by suppressing skin inflammation, normalizing the metabolism of hormones and skin lipids, which may be achieved by improving the gut microbial ecosystem. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Ai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weiwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhenghao Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
64
|
Pei W, Jiang M, Liu H, Song J, Hu J. The prognostic and antitumor roles of key genes of ferroptosis in liver hepatocellular cancer and stomach adenocarcinoma. Cancer Biomark 2024; 39:335-347. [PMID: 38393890 DOI: 10.3233/cbm-230114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND Liver hepatocellular cancer (LIHC) and stomach adenocarcinoma (STAD) are common malignancies with high lethal ratios worldwide. Great progress has been achieved by using diverse therapeutic strategies; however, these diseases still have an unfavourable prognosis. Ferroptosis inducer drugs, unlike apoptosis-related drugs, can overcome the resistance to cancer therapy caused by traditional chemicals. However, the relationship between overall survival (OS) and ferroptosis-related genes, as well as the mechanisms involved, are largely unclear. METHODS The expression levels of AIFM2, GPX4, ACSL4, FTH1, NOS1, and PTGS2 in LIHC and STAD were obtained from UALCAN. The correlations of OS with these gene expression levels were obtained using the Kaplan-Meier Plotter database. The OS associated with genetic mutations of those genes compared to that of unchanged genes was analysed using the TIMER website. GO and KEGG enrichment analyses of ferroptosis-related genes and their coexpressed genes in LIHC and STAD were conducted using the STRING and DAVID databases. The relationship of PTGS2 and ACSL4 to immune cell infiltration was analysed using the TIMER website. The viability and GPX5 expression levels in LIHC cells treated with RSL3 and As2O3 were detected by MTT methods and western blotting, respectively. RESULTS Our results showed that GPX4, FTH1 and AIFM2 were overexpressed in LIHC and STAD. High levels of GPX4, FTH1 and AIFM2 were prominently correlated with better prognosis in LIHC. However, GPX and FTH1 in STAD did not show significant correlations with OS. AIFM2 in STAD had the opposite trend with OS compared with that in LIHC. Moreover, a high mutation rate of these genes (35.74%) was also observed in LIHC patients, and genetic mutation of these genes was correlated with shorter OS. In contrast, the genetic mutation of these genes did not change OS in STAD. Enrichment analysis showed that the respiratory electron transport chain, cell chemotaxis and T-cell migration were related to ferroptosis. ASCL4 and PTGS2 coexpressed with cytokines associated with immune cell infiltration. Compared to RSL3 or As2O3 alone, As2O3 plus RSL3 significantly inhibited the growth of Huh7 cells. GPX4 was downregulated to an undetectable level when in combination with RSL3. CONCLUSIONS Our results indicated that ferroptosis-related genes might play an important role in LIHC and STAD and might be risk factors for overall survival in LIHC and STAD.
Collapse
Affiliation(s)
- Wenceng Pei
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Department of Gastroenterology, Civil Aviation Hospital of Shanghai, Shanghai, China
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Department of Gastroenterology, Civil Aviation Hospital of Shanghai, Shanghai, China
| | - Minren Jiang
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Department of Gastroenterology, Civil Aviation Hospital of Shanghai, Shanghai, China
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Department of Gastroenterology, Civil Aviation Hospital of Shanghai, Shanghai, China
| | - Haiyan Liu
- Gastroenterology Department of Binzhou Medical University Hospital, Shandong, China
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Department of Gastroenterology, Civil Aviation Hospital of Shanghai, Shanghai, China
| | - Jiahong Song
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Department of Gastroenterology, Civil Aviation Hospital of Shanghai, Shanghai, China
| | - Jian Hu
- Shenzhen People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
65
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
66
|
Qiu Y, Gan M, Wang X, Liao T, Chen Q, Lei Y, Chen L, Wang J, Zhao Y, Niu L, Wang Y, Zhang S, Zhu L, Shen L. The global perspective on peroxisome proliferator-activated receptor γ (PPARγ) in ectopic fat deposition: A review. Int J Biol Macromol 2023; 253:127042. [PMID: 37742894 DOI: 10.1016/j.ijbiomac.2023.127042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Excessive expansion of adipocytes can have unhealthy consequences as excess free fatty acids enter other tissues and cause ectopic fat deposition by resynthesizing triglycerides. This lipid accumulation in various tissues is harmful and can increase the risk of related metabolic diseases such as type II diabetes, cardiovascular disease, and insulin resistance. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that play a key role in energy metabolism as fatty acid metabolism sensors, and peroxisome proliferator-activated receptor γ (PPARγ) is the main subtype responsible for fat cell differentiation and adipogenesis. In this paper, we introduce the main structure and function of PPARγ and its regulatory role in the process of lipogenesis in the liver, kidney, skeletal muscle, and pancreas. This information can serve as a reference for further understanding the regulatory mechanisms and measures of the PPAR family in the process of ectopic fat deposition.
Collapse
Affiliation(s)
- Yanhao Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyu Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuyang Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
67
|
Fan HN, Zhao ZM, Huang K, Wang XN, Dai YK, Liu CH. Serum metabolomics characteristics and fatty-acid-related mechanism of cirrhosis with histological response in chronic hepatitis B. Front Pharmacol 2023; 14:1329266. [PMID: 38178856 PMCID: PMC10764421 DOI: 10.3389/fphar.2023.1329266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Background and aims: The serum metabolites changes in patients with hepatitis B virus (HBV)-related cirrhosis as progression. Peroxisome proliferator-activated receptor gamma (PPARγ) is closely related to lipid metabolism in cirrhotic liver. However, the relationship between fatty acids and the expression of hepatic PPARγ during cirrhosis regression remains unknown. In this study, we explored the serum metabolic characteristics and expression of PPARγ in patients with histological response to treatment with entecavir. Methods: Sixty patients with HBV-related cirrhosis were selected as the training cohort with thirty patients each in the regression (R) group and non-regression (NR) group based on their pathological changes after 48-week treatment with entecavir. Another 72 patients with HBV-related cirrhosis and treated with entecavir were collected as the validation cohort. All of the serum samples were tested using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Data were processed through principal component analysis and orthogonal partial least square discriminant analysis. Hepatic PPARγ expression was observed using immunohistochemistry. The relationship between serum fatty acids and PPARγ was calculated using Pearson's or Spearman's correlation analysis. Results: A total of 189 metabolites were identified and 13 differential metabolites were screened. Compared to the non-regression group, the serum level of fatty acids was higher in the R group. At baseline, the expression of PPARγ in hepatic stellate cells was positively correlated with adrenic acid (r 2 = 0.451, p = 0.046). The expression of PPARγ in both groups increased after treatment, and the expression of PPARγ in the R group was restored in HSCs much more than that in the NR group (p = 0.042). The adrenic acid and arachidonic acid (AA) in the R group also upgraded more than the NR group after treatment (p = 0.037 and 0.014). Conclusion: Baseline serum differential metabolites, especially fatty acids, were identified in patients with HBV-related cirrhosis patients who achieved cirrhosis regression. Upregulation of adrenic acid and arachidonic acid in serum and re-expression of PPARγ in HSCs may play a crucial role in liver fibrosis improvement.
Collapse
Affiliation(s)
- Hai-Na Fan
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Min Zhao
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| | - Kai Huang
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| | - Xiao-Ning Wang
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Kai Dai
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng-Hai Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| |
Collapse
|
68
|
Wang F, Song H, Xu F, Xu J, Wang L, Yang F, Zhu Y, Tan G. Role of hepatitis B virus non-structural protein HBx on HBV replication, interferon signaling, and hepatocarcinogenesis. Front Microbiol 2023; 14:1322892. [PMID: 38188582 PMCID: PMC10767994 DOI: 10.3389/fmicb.2023.1322892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatitis B, a global health concern caused by the hepatitis B virus (HBV), infects nearly 2 billion individuals worldwide, as reported by the World Health Organization (WHO). HBV, a hepatotropic DNA virus, predominantly targets and replicates within hepatocytes. Those carrying the virus are at increased risk of liver cirrhosis and hepatocellular carcinoma, resulting in nearly 900,000 fatalities annually. The HBV X protein (HBx), encoded by the virus's open reading frame x, plays a key role in its virulence. This protein is integral to viral replication, immune modulation, and liver cancer progression. Despite its significance, the precise molecular mechanisms underlying HBx remain elusive. This review investigates the HBx protein's roles in HBV replication, interferon signaling regulation, and hepatocellular carcinoma progression. By understanding the complex interactions between the virus and its host mediated by HBx, we aim to establish a solid foundation for future research and the development of HBx-targeted therapeutics.
Collapse
Affiliation(s)
- Fei Wang
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengchao Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Xu
- Health Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Le Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Yang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujia Zhu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
69
|
Cheng S, Wan X, Yang L, Qin Y, Chen S, Liu Y, Sun Y, Qiu Y, Huang L, Qin Q, Cui X, Wu M, Liu M. RGCC-mediated PLK1 activity drives breast cancer lung metastasis by phosphorylating AMPKα2 to activate oxidative phosphorylation and fatty acid oxidation. J Exp Clin Cancer Res 2023; 42:342. [PMID: 38102722 PMCID: PMC10722681 DOI: 10.1186/s13046-023-02928-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND More than 90% of the mortality of triple-negative breast cancer (TNBC) patients is attributed to cancer metastasis with organotropism. The lung is a frequent site of TNBC metastasis. However, the precise molecular mechanism for lung-specific metastasis of TNBC is not well understood. METHODS RNA sequencing was performed to identify patterns of gene expression associated with lung metastatic behavior using 4T1-LM3, MBA-MB-231-LM3, and their parental cells (4T1-P, MBA-MB-231-P). Expressions of RGCC, called regulator of cell cycle or response gene to complement 32 protein, were detected in TNBC cells and tissues by qRT-PCR, western blotting, and immunohistochemistry. Kinase activity assay was performed to evaluate PLK1 kinase activity. The amount of phosphorylated AMP-activated protein kinase α2 (AMPKα2) was detected by immunoblotting. RGCC-mediated metabolism was determined by UHPLC system. Oxidative phosphorylation was evaluated by JC-1 staining and oxygen consumption rate (OCR) assay. Fatty acid oxidation assay was conducted to measure the status of RGCC-mediated fatty acid oxidation. NADPH and ROS levels were detected by well-established assays. The chemical sensitivity of cells was evaluated by CCK8 assay. RESULTS RGCC is aberrantly upregulated in pulmonary metastatic cells. High level of RGCC is significantly related with lung metastasis in comparison with other organ metastases. RGCC can effectively promote kinase activity of PLK1, and the activated PLK1 phosphorylates AMPKα2 to facilitate TNBC lung metastasis. Mechanistically, the RGCC/PLK1/AMPKα2 signal axis increases oxidative phosphorylation of mitochondria to generate more energy, and promotes fatty acid oxidation to produce abundant NADPH. These metabolic changes contribute to sustaining redox homeostasis and preventing excessive accumulation of potentially detrimental ROS in metastatic tumor cells, thereby supporting TNBC cell survival and colonization during metastases. Importantly, targeting RGCC in combination with paclitaxel/carboplatin effectively suppresses pulmonary TNBC lung metastasis in a mouse model. CONCLUSIONS RGCC overexpression is significantly associated with lung-specific metastasis of TNBC. RGCC activates AMPKα2 and downstream signaling through RGCC-driven PLK1 activity to facilitate TNBC lung metastasis. The study provides implications for RGCC-driven OXPHOS and fatty acid oxidation as important therapeutic targets for TNBC treatment.
Collapse
Affiliation(s)
- Shaojie Cheng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Liping Yang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yilu Qin
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Shanchun Chen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxiang Qiu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Luyi Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Qizhong Qin
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 91006, USA
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| |
Collapse
|
70
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
71
|
Wang L, Wang J, Ma X, Ju G, Shi C, Wang W, Wu J. USP35 promotes HCC development by stabilizing ABHD17C and activating the PI3K/AKT signaling pathway. Cell Death Discov 2023; 9:421. [PMID: 37993419 PMCID: PMC10665393 DOI: 10.1038/s41420-023-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
S-palmitoylation is a reversible protein lipidation that controls the subcellular localization and function of targeted proteins, including oncogenes such as N-RAS. The depalmitoylation enzyme family ABHD17s can remove the S-palmitoylation from N-RAS to facilitate cancer development. We previously showed that ABHD17C has oncogenic roles in hepatocellular carcinoma (HCC) cells, and its mRNA stability is controlled by miR-145-5p. However, it is still unclear whether ABHD17C is regulated at the post-translational level. In the present study, we identified multiple ubiquitin-specific proteases (USPs) that can stabilize ABHD17C by inhibiting the ubiquitin-proteasome-mediated degradation. Among them, USP35 is the most potent stabilizer of ABHD17C. We found a positive correlation between the elevated expression levels of USP35 and ABHD17C, together with their association with increased PI3K/AKT pathway activity in HCCs. USP35 knockdown caused decreased ABHD17C protein level, impaired PI3K/AKT pathway, reduced proliferation, cell cycle arrest, increased apoptosis, and mitigated migration and invasion. USP35 can interact with and stabilize ABHD17C by inhibiting its ubiquitination. Overexpression of ABHD17C can rescue the defects caused by USP35 knockdown in HCC cells. In support of these in vitro observations, xenograft assay data also showed that USP35 deficiency repressed HCC development in vivo, characterized by reduced proliferation and disrupted PI3K/AKT signaling. Together, these findings demonstrate that USP35 may promote HCC development by stabilization of ABHD17C and activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Linpei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian Province, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, China
| | - Jiawei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian Province, China
| | - Xiaoqiu Ma
- Department of Health Medicine, The 910th Hospital of People's Liberation Army, 362000, Quanzhou, Fujian Province, China
| | - Guomin Ju
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, China
| | - Chunfeng Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian Province, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian Province, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
72
|
Li Y, Gao J, Liu C, Bu N, Zhan S, Wu H, Zhang R, Sun H, Fan H. USP22 knockdown protects against cerebral ischemia/reperfusion injury via destabilizing PTEN protein and activating the mTOR/TFEB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3163-3175. [PMID: 37191727 DOI: 10.1007/s00210-023-02524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Ubiquitin-specific protease 22 (USP22) expression was reported to be increased in response to ischemic brain damage, but the biological role and underlying mechanism remain little understood. USP22 shRNA was intravenously injected into the mouse brain, and then a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was constructed, and the infarct volume, neurobehavioral deficit score, cell apoptosis, oxidative stress, and autophagy in vivo were evaluated. Oxygen-glucose deprivation/reperfusion (OGD/R) treated pheochromocytoma-12 (PC12) cells were used as an in vitro model of ischemia/reperfusion. The effects of USP22 on proliferation, apoptosis, oxidative stress, and autophagy were explored by CCK-8, flow cytometry, ELISA, and Western blot assays. The relationship between USP22 and the phosphatase and tensin homolog (PTEN) was measured by Co-IP and Western blot assays. Both USP22 and PTEN were highly expressed in MCAO/R mouse brain tissues and OGD/R-induced PC12 cells. In vitro, USP22 knockdown strongly improved OGD/R-mediated changes in cell viability, apoptosis, oxidative stress, and lactate dehydrogenase (LDH) production in PC12 cells. USP22 bound to PTEN and stabilized PTEN expression by decreasing its ubiquitination. PTEN overexpression reversed the promoting effect of USP22 knockdown on cell viability and the inhibitory effects of USP22 knockdown on apoptosis, oxidative stress, and LDH release rate in PC12 cells subjected to OGD/R. PTEN silencing elevated the protein levels of p62, p-mTOR, TFEB, and LAMP1 and reduced the protein levels of LC3-II/LC3-I. USP22 expression levels were negatively correlated with mTOR expression levels, and USP22-shRNA-mediated expression of p62, p-mTOR, TFEB, and LAMP1 was reversed by rapamycin, an inhibitor of mTOR. In vivo, USP22 silencing significantly alleviated infarct volume, neurobehavioral impairments, cell apoptosis, oxidative stress, and autophagy in MCAO/R mice. USP22 knockdown exerts neuroprotective effects in cerebral ischemia/reperfusion injury by downregulating PTEN and activating the mTOR/TFEB pathway.
Collapse
Affiliation(s)
- Yanling Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, Xi'an, 710004, Shaanxi Province, China.
| | - Jing Gao
- Department of Anesthesiology, The First Hospital of YuLin, YuLin, 719000, Shaanxi Province, China
| | - Chuntian Liu
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an , Shaanxi Province, China
| | - Ning Bu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, Xi'an, 710004, Shaanxi Province, China
| | - Shuqin Zhan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, Xi'an, 710004, Shaanxi Province, China
| | - Haiqin Wu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, Xi'an, 710004, Shaanxi Province, China
| | - Ru Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, Xi'an, 710004, Shaanxi Province, China
| | - Hong Sun
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, Xi'an, 710004, Shaanxi Province, China
| | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, Xi'an, 710004, Shaanxi Province, China
| |
Collapse
|
73
|
Zhang Y, Xu J, Zhou D, Ye T, Zhou P, Liu Z, Liu X, Wang Z, Hua T, Zhang Z, Sun Q. Swimming exercise ameliorates insulin resistance and nonalcoholic fatty liver by negatively regulating PPARγ transcriptional network in mice fed high fat diet. Mol Med 2023; 29:150. [PMID: 37907845 PMCID: PMC10617119 DOI: 10.1186/s10020-023-00740-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Recent findings elucidated hepatic PPARγ functions as a steatogenic-inducer gene that activates de novo lipogenesis, and is involved in regulation of glucose homeostasis, lipid accumulation, and inflammation response. This study delved into a comprehensive analysis of how PPARγ signaling affects the exercise-induced improvement of insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD), along with its underlying mechanism. METHODS Chronic and acute swimming exercise intervention were conducted in each group mice. IR status was assessed by GTT and ITT assays. Serum inflammatory cytokines were detected by Elisa assays. PPARγ and its target genes expression were detected by qPCR assay. Relative protein levels were quantified via Western blotting. ChIP-qPCR assays were used to detect the enrichment of PPARγ on its target genes promoter. RESULTS Through an exploration of a high-fat diet (HFD)-induced IR and NAFLD model, both chronic and acute swimming exercise training led to significant reductions in body weight and visceral fat mass, as well as hepatic lipid accumulation. The exercise interventions also demonstrated a significant amelioration in IR and the inflammatory response. Meanwhile, swimming exercise significantly inhibited PPARγ and its target genes expression induced by HFD, containing CD36, SCD1 and PLIN2. Furthermore, swimming exercise presented significant modulation on regulatory factors of PPARγ expression and transcriptional activity. CONCLUSION The findings suggest that swimming exercise can improve lipid metabolism in IR and NAFLD, possibly through PPARγ signaling in the liver of mice.
Collapse
Affiliation(s)
- Yong Zhang
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
- the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Xu
- Department of Hepatology, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Di Zhou
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tingting Ye
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Puqing Zhou
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zuofeng Liu
- Department of Hepatology, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xinyuan Liu
- the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zinan Wang
- the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tianmiao Hua
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhenghao Zhang
- Department of Hematology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Qingyan Sun
- Physiology laboratory of College of Life Sciences, Anhui Normal University, Wuhu, China.
| |
Collapse
|
74
|
Wang H, Hu S, Nie J, Qin X, Zhang X, Wang Q, Li JZ. Comprehensive Analysis of METTLs (METTL1/13/18/21A/23/25/2A/2B/5/6/9) and Associated mRNA Risk Signature in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2023; 2023:6007431. [PMID: 38130905 PMCID: PMC10735724 DOI: 10.1155/2023/6007431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 12/23/2023] Open
Abstract
Currently, 80%-90% of liver cancers are hepatocellular carcinomas (HCC). HCC patients develop insidiously and have an inferior prognosis. The methyltransferase-like (METTL) family principal members are strongly associated with epigenetic and tumor progression. The present study mainly analyzed the value of METTLs (METTL1/13/18/21A/23/25/2A/2B/5/6/9) and associated mRNA risk signature for HCC. METTLs expression is upregulated in HCC and is a poor prognostic factor in HCC. METTLs were upregulated in patients older than 60 and associated with grade. Except for METTL25, the remaining 10 genes were associated with the HCC stage, invasion depth (T). In addition, METTLs showed an overall alteration rate of 50%. Except for METTL13/2A/25/9, the expression of the other seven genes was significantly associated with overall survival, disease-specific survival, and progression-free survival. Multivariate studies have shown that METTL21A/6 can be an independent prognostic marker in HCC. A total of 664 mRNAs were selected based on Pearson correlation coefficient (R > 0.5), unsupervised consensus clustering, weighted coexpression network analysis, and univariate Cox analysis. These mRNAs were significantly associated with METTLs and were poor prognostic factors in HCC patients. The least absolute shrinkage and selection operator (lasso) was used to construct the best METTLs associated with mRNA risk signature. The mRNA risk signature was significantly associated with age, stage, and t grade. The mRNA high-risk group had higher TP53 and RB1 mutations. This study constructed a nomogram with the mRNA risk profile and clinicopathological features, which could better predict the OS of individuals with HCC. We also analyzed associations between METTLs and mRNA risk signatures in epithelial-mesenchymal transition, immune checkpoints, immune cell infiltration, tumor mutational burden, microsatellite instability, cancer stem cells, tumor pathways, and drug sensitivity. In addition, this study constructed a protein interaction network network including METTLs and mRNA risk signature genes related to tumor microenvironment remodeling based on single-cell sequencing. In conclusion, this study provides a theoretical basis for the mechanism, biomarker screening, and treatment of HCC.
Collapse
Affiliation(s)
- Haoyu Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Shangshang Hu
- Department of Clinical Laboratory Diagnostics, School of Medicine, Southeast University, Nanjing 210009, China
| | - Junjie Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaodan Qin
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xu Zhang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qian Wang
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
75
|
Crane H, Gofton C, Sharma A, George J. MAFLD: an optimal framework for understanding liver cancer phenotypes. J Gastroenterol 2023; 58:947-964. [PMID: 37470858 PMCID: PMC10522746 DOI: 10.1007/s00535-023-02021-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Hepatocellular carcinoma has a substantial global mortality burden which is rising despite advancements in tackling the traditional viral risk factors. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is the most prevalent liver disease, increasing in parallel with the epidemics of obesity, diabetes and systemic metabolic dysregulation. MAFLD is a major factor behind this sustained rise in HCC incidence, both as a single disease entity and often via synergistic interactions with other liver diseases. Mechanisms behind MAFLD-related HCC are complex but is crucially underpinned by systemic metabolic dysregulation with variable contributions from interacting disease modifiers related to environment, genetics, dysbiosis and immune dysregulation. MAFLD-related HCC has a distinct clinical presentation, most notably its common occurrence in non-cirrhotic liver disease. This is just one of several major challenges to effective surveillance programmes. The response of MAFLD-related HCC to immune-checkpoint therapy is currently controversial, and is further complicated by the high prevalence of MAFLD in individuals with HCC from viral aetiologies. In this review, we highlight the current data on epidemiology, clinical characteristics, outcomes and screening controversies. In addition, concepts that have arisen because of the MAFLD paradigm such as HCC in MAFLD/NAFLD non-overlapping groups, dual aetiology tumours and MAFLD sub-phenotypes is reviewed.
Collapse
Affiliation(s)
- Harry Crane
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
- Department of Gastroenterology and Hepatology, Royal North Shore Hospital, 1 Reserve Road, St Leonards, New South Wales, Australia.
| | - Cameron Gofton
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, Royal North Shore Hospital, 1 Reserve Road, St Leonards, New South Wales, Australia
| | - Ankur Sharma
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, 6 Verdun Street, Nedlands, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, 6102, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
76
|
He Z, Li X, Wang Z, Cao Y, Han S, Li N, Cai J, Cheng S, Liu Q. Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer's disease. Redox Biol 2023; 66:102848. [PMID: 37597424 PMCID: PMC10462892 DOI: 10.1016/j.redox.2023.102848] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) peptides and dysfunction of mitochondrion, which result in neuronal apoptosis and ultimately cognitive impairment. Inhibiting Aβ generation and repairing mitochondrial damage are prominent strategies in AD therapeutic treatment. Luteolin, a flavonoid compound, exhibits anti-inflammatory neuroprotective properties in AD mice. However, it is still unclear whether luteolin has any effect on Aβ pathology and mitochondrial dysfunction. In this study, the beneficial effect and underlying mechanism of luteolin were investigated in triple transgenic AD (3 × Tg-AD) mice and primary neurons. Our study showed that luteolin supplement significantly ameliorated memory and cognitive impairment of AD mice and exerted neuroprotection by inhibiting Aβ generation, repairing mitochondrial damage and reducing neuronal apoptosis. Further research revealed that luteolin could directly bind with peroxisome proliferator-activated receptor gama (PPARγ) to promote its expression and function. In the culture of hippocampus-derived primary neurons, addition of PPARγ antagonist GW9662 or knockdown of PPARγ with its siRNA could eliminate the effect of luteolin on AD pathologies. In summary, this work revealed for the first time that luteolin effectively improved cognitive deficits of 3 × Tg-AD mice and inhibited Aβ-induced oxidative stress, mitochondrial dysfunction and neuronal apoptosis via PPARγ-dependent mechanism. Hence, luteolin has the potential to serve as a therapeutic agent against AD.
Collapse
Affiliation(s)
- Zhijun He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yingqi Cao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
77
|
Dong G, Huang X, Xu Y, Chen R, Chen S. Mechanical stress induced EndoMT in endothelial cells through PPARγ downregulation. Cell Signal 2023; 110:110812. [PMID: 37468053 DOI: 10.1016/j.cellsig.2023.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/02/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Portal hypertension is a group of clinical syndromes induced by increased portal system pressure due to various etiologies including cirrhosis. When portal hypertension develops, the portal vein dilates and endothelial cells (ECs) in the portal vein are subjected to mechanical stretch. In this study, elastic silicone chambers were used to simulate the effects of mechanical stretch on ECs under portal hypertension. We found that mechanical stretch decreased PPARγ expression in ECs by blocking the PI3K/AKT/CREB signaling pathway or increasing NEDD4-mediated ubiquitination and degradation of PPARγ. Moreover, PPARγ downregulation triggered Endothelial-to-mesenchymal transition (EndoMT) in ECs under stretch by promoting Smad3 phosphorylation. The PPARγ agonist rosiglitazone mitigated stretch-induced EndoMT in vitro and alleviated EndoMT of the portal vein endothelium in cirrhotic rats.
Collapse
Affiliation(s)
- Gang Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoquan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Endoscopy Center and Endoscopy, Shanghai, China; Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
78
|
Du D, Wang S, Li T, Liu Z, Yang M, Sun L, Yuan S. RHNO1 disruption inhibits cell proliferation and induces mitochondrial apoptosis via PI3K/Akt pathway in hepatocellular carcinoma. Biochem Biophys Res Commun 2023; 673:96-105. [PMID: 37364391 DOI: 10.1016/j.bbrc.2023.05.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Hepatocellular carcinoma (HCC) represents one of the primary liver malignancies with poor prognosis. RHNO1, which implicated in the ATR-CHK1 signaling pathway thus functions in the DNA replication stress response. However, the role and molecular mechanisms of RHNO1 in HCC remain largely elusive. Here, we imply that RHNO1 is elevated in HCC tumor tissues and that high expression of RHNO1 predicts poor prognosis of HCC patients. Moreover, RHNO1 mRNA, especially protein levels were significantly increased in most HCC cells. Knockdown of RHNO1 through small interfering RNAs (siRNAs) inhibited the proliferation and triggered cell apoptosis of HCC cells both in vitro and in vivo. Specifically, we find that RHNO1 deficiency confers apoptosis via mitochondrial-mediated pathway. Mechanistically, silencing of RHNO1 impeded HCC proliferation and induced apoptosis by inactivating the PI3K/Akt pathway. Overall, these findings unravel that RHNO1 functions as an oncogene in HCC, and involved in regulating mitochondrial apoptosis to promote HCC thus may serve as a therapeutic and diagnostic target for HCC.
Collapse
Affiliation(s)
- Danyu Du
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Shuai Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Tao Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Zhengrui Liu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Mei Yang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Shengtao Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
79
|
Chen NN, Ma XD, Miao Z, Zhang XM, Han BY, Almaamari AA, Huang JM, Chen XY, Liu YJ, Su SW. Doxorubicin resistance in breast cancer is mediated via the activation of FABP5/PPARγ and CaMKII signaling pathway. Front Pharmacol 2023; 14:1150861. [PMID: 37538178 PMCID: PMC10395833 DOI: 10.3389/fphar.2023.1150861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer is the most prevalent malignancy among women. Doxorubicin (Dox) resistance was one of the major obstacles to improving the clinical outcome of breast cancer patients. The purpose of this study was to investigate the relationship between the FABP signaling pathway and Dox resistance in breast cancer. The resistance property of MCF-7/ADR cells was evaluated employing CCK-8, Western blot (WB), and confocal microscopy techniques. The glycolipid metabolic properties of MCF-7 and MCF-7/ADR cells were identified using transmission electron microscopy, PAS, and Oil Red O staining. FABP5 and CaMKII expression levels were assessed through GEO and WB approaches. The intracellular calcium level was determined by flow cytometry. Clinical breast cancer patient's tumor tissues were evaluated by immunohistochemistry to determine FABP5 and p-CaMKII protein expression. In the presence or absence of FABP5 siRNA or the FABP5-specific inhibitor SBFI-26, Dox resistance was investigated utilizing CCK-8, WB, and colony formation methods, and intracellular calcium level was examined. The binding ability of Dox was explored by molecular docking analysis. The results indicated that the MCF-7/ADR cells we employed were Dox-resistant MCF-7 cells. FABP5 expression was considerably elevated in MCF-7/ADR cells compared to parent MCF-7 cells. FABP5 and p-CaMKII expression were increased in resistant patients than in sensitive individuals. Inhibition of the protein expression of FABP5 by siRNA or inhibitor increased Dox sensitivity in MCF-7/ADR cells and lowered intracellular calcium, PPARγ, and autophagy. Molecular docking results showed that FABP5 binds more powerfully to Dox than the known drug resistance-associated protein P-GP. In summary, the PPARγ and CaMKII axis mediated by FABP5 plays a crucial role in breast cancer chemoresistance. FABP5 is a potentially targetable protein and therapeutic biomarker for the treatment of Dox resistance in breast cancer.
Collapse
Affiliation(s)
- Nan-Nan Chen
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin-Di Ma
- Breast Center, Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuang Miao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiang-Mei Zhang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bo-Ye Han
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ahmed Ali Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jia-Min Huang
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue-Yan Chen
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yun-Jiang Liu
- Breast Center, Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Su-Wen Su
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
80
|
Ye D, Ma J, Yu T, Ran F, Zha Y. LncRNA FAM13A-AS1, transcriptionally regulated by PHOX2B, modulates hepatocellular carcinoma chemoresistance via stabilizing PPARγ. Gene 2023:147570. [PMID: 37330023 DOI: 10.1016/j.gene.2023.147570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major global public health concern, with approximately 79 million new cases and 75 million HCC-related deaths occurring annually worldwide. Among the drugs, cisplatin (DDP) is considered a cornerstone and has been shown to significantly inhibit cancer progression. However, the mechanism underlying DDP-resistance in HCC remains unclear. This study aimed to identify a novel lncRNA. FAM13A Antisense RNA 1 (FAM13A-AS1), that promotes the proliferation of DDP-resistant HCC cells and to elucidate its downstream and upstream mechanisms in the progression of HCC DDP-resistance. Our results suggest that FAM13A-AS1 interacts directly with Peroxisome Proliferator Activated Receptor γ (PPARγ), stabilizing its protein through de-ubiquitination. Moreover, our findings indicate that Paired Like Homeobox 2B (PHOX2B) transcriptionally regulates the expression of FAM13A-AS1 in HCC cells. These results shed new light on the understanding of the progression of HCC DDP-resistance.
Collapse
Affiliation(s)
- Daowen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Jun Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Tingdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Fengming Ran
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yong Zha
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
81
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
82
|
Foglia B, Beltrà M, Sutti S, Cannito S. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses. Int J Mol Sci 2023; 24:ijms24087463. [PMID: 37108625 PMCID: PMC10138633 DOI: 10.3390/ijms24087463] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer, ranking third among the leading causes of cancer-related mortality worldwide and whose incidence varies according to geographical area and ethnicity. Metabolic rewiring was recently introduced as an emerging hallmark able to affect tumor progression by modulating cancer cell behavior and immune responses. This review focuses on the recent studies examining HCC's metabolic traits, with particular reference to the alterations of glucose, fatty acid and amino acid metabolism, the three major metabolic changes that have gained attention in the field of HCC. After delivering a panoramic picture of the peculiar immune landscape of HCC, this review will also discuss how the metabolic reprogramming of liver cancer cells can affect, directly or indirectly, the microenvironment and the function of the different immune cell populations, eventually favoring the tumor escape from immunosurveillance.
Collapse
Affiliation(s)
- Beatrice Foglia
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Marc Beltrà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Salvatore Sutti
- Department of Health Sciences, Interdisciplinary Research Center for Autoimmune Diseases, University of East Piedmont, 28100 Novara, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| |
Collapse
|
83
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
84
|
Lee SM, Muratalla J, Sierra-Cruz M, Cordoba-Chacon J. Role of hepatic peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease. J Endocrinol 2023; 257:e220155. [PMID: 36688873 PMCID: PMC10048618 DOI: 10.1530/joe-22-0155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) belongs to a family of nuclear receptors that could serve as lipid sensors. PPARγ is the target of a group of insulin sensitizers called thiazolidinediones (TZDs) which regulate the expression of genes involved in glucose and lipid metabolism as well as adipokines that regulate metabolic function in other tissues. Non-alcoholic fatty liver disease (NAFLD) has a high prevalence worldwide and is even higher in patients with obesity and insulin resistance. TZD-mediated activation of PPARγ could serve as a good treatment for NAFLD because TZDs have shown anti-fibrogenic and anti-inflammatory effectsin vitro and increase insulin sensitivity in peripheral tissues which improves liver pathology. However, mechanistic studies in mouse models suggest that the activation of PPARγ in hepatocytes might reduce or limit the therapeutic potential of TZD against NAFLD. In this review, we briefly describe the short history of PPAR isoforms, the relevance of their expression in different tissues, as well as the pathogenesis and potential therapeutics for NAFLD. We also discuss some evidence derived from mouse models that could be useful for endocrinologists to assess tissue-specific roles of PPARs, complement reverse endocrinology approaches, and understand the direct role that PPARγ has in hepatocytes and non-parenchymal cells.
Collapse
Affiliation(s)
- Samuel M. Lee
- Department of Medicine. Division of Endocrinology, Diabetes and Metabolism. University of Illinois at Chicago, Chicago. IL
| | - Jose Muratalla
- Department of Medicine. Division of Endocrinology, Diabetes and Metabolism. University of Illinois at Chicago, Chicago. IL
| | - Marta Sierra-Cruz
- Department of Medicine. Division of Endocrinology, Diabetes and Metabolism. University of Illinois at Chicago, Chicago. IL
| | - Jose Cordoba-Chacon
- Department of Medicine. Division of Endocrinology, Diabetes and Metabolism. University of Illinois at Chicago, Chicago. IL
| |
Collapse
|
85
|
Li X, Yang X, Xue W, Yang R, He Z, Ai L, Liu H. Identification of gene signatures related to hypoxia and angiogenesis in pancreatic cancer to aid immunotherapy and prognosis. Front Oncol 2023; 13:1119763. [PMID: 37064125 PMCID: PMC10098147 DOI: 10.3389/fonc.2023.1119763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundOne of the most diverse tumors is pancreatic cancer (PC), which makes predicting the prognosis challenging. PC development is directly related to hypoxia, angiogenesis, and immunotherapy. It is still unclear how the three features are related.MethodsThe Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA) database were employed to obtain sequencing data for healthy pancreatic tissues and PC tissues, respectively. According to the constructed hypoxic prognostic model (HPM) and angiogenic prognostic model (APM), 4 subtypes of PC were identified. Hypoxia and angiogenesis prognostic model (HAPM) was established based on differentially expressed genes (DEGs) between high-angiogenesis/high-hypoxia (HH) and low-angiogenesis/low-hypoxia (LL) subgroups. Base on the median risk score, PC patients were separated into high-risk and low-risk groups, and clinical traits, prognosis, percentage of immune cell infiltration, PD-1 expression, and the fraction of T-cell depletion were compared between the groups. Finally, the predictive accuracy of the tumor immune dysfunction and rejection (TIDE) and tumor inflammatory signature (TIS) models, as well as HAPM, was compared.ResultWe analyzed the mRNA sequencing data from 178 PC tissues and 171 normal pancreatic tissues to obtain 9527 DEGs. We discovered 200 genes linked with hypoxia and 36 genes involved with angiogenesis through the literature. We found the core genes related with hypoxia and angiogenesis in PC by intersecting the DEGs of the HH and LL subgroups with those of PC via WGCNA. IL-17 signaling pathway, ECM-receptor interactions, cytokine receptor interactions, etc. were all enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) results of core genes. HAPM has good predictive efficiency, according to an evaluation of KM survival curves and ROC curves. The external dataset also validated the model’s ability to anticipate outcomes. Patients in the high- and low-risk groups were compared for PD1 expression and T-cell exclusion scores, which suggested that the model might be used to forecast which PC patients might benefit from immunotherapy.ConclusionsThe probable molecular processes connecting hypoxia and angiogenesis are described in this work, and a model is developed that may be utilized to forecast the prognosis for PC patients and the benefits of immunotherapy.
Collapse
Affiliation(s)
- Xiushen Li
- Department of Obstetrics and Gynaecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Xi Yang
- Department of Ultrasound, The People’s Hospital of Shapingba District, Chongqing, China
| | - Weiqi Xue
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rui Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhiwei He
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Hui Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer, Shenzhen University, Shenzhen, China
- *Correspondence: Hui Liu,
| |
Collapse
|
86
|
Chen J, Feng D, Lu Y, Zhang Y, Jiang H, Yuan M, Xu Y, Zou J, Zhu Y, Zhang J, Ge C, Wang Y. A Novel Phenazine Analog, CPUL1, Suppresses Autophagic Flux and Proliferation in Hepatocellular Carcinoma: Insight from Integrated Transcriptomic and Metabolomic Analysis. Cancers (Basel) 2023; 15:cancers15051607. [PMID: 36900398 PMCID: PMC10001020 DOI: 10.3390/cancers15051607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND CPUL1, a phenazine analog, has demonstrated potent antitumor properties against hepatocellular carcinoma (HCC) and indicates a promising prospect in pharmaceutical development. However, the underlying mechanisms remain largely obscure. METHODS Multiple HCC cell lines were used to investigate the in vitro effects of CPUL1. The antineoplastic properties of CPUL1 were assessed in vivo by establishing a xenograft nude mice model. After that, metabolomics, transcriptomics, and bioinformatics were integrated to elucidate the mechanisms underlying the therapeutic efficacy of CPUL1, highlighting an unanticipated involvement of autophagy dysregulation. RESULTS CPUL1 suppressed HCC cell proliferation in vitro and in vivo, thereby endorsing the potential as a leading agent for HCC therapy. Integrative omics characterized a deteriorating scenario of metabolic debilitation with CPUL1, presenting an issue in the autophagy contribution of autophagy. Subsequent observations indicated that CPUL1 treatment could impede autophagic flow by suppressing autophagosome degradation rather than its formation, which supposedly exacerbated cellular damage triggered by metabolic impairment. Moreover, the observed late autophagosome degradation may be attributed to lysosome dysfunction, which is essential for the final stage of autophagy and cargo disposal. CONCLUSIONS Our study comprehensively profiled the anti-hepatoma characteristics and molecular mechanisms of CPUL1, highlighting the implications of progressive metabolic failure. This could partially be ascribed to autophagy blockage, which supposedly conveyed nutritional deprivation and intensified cellular vulnerability to stress.
Collapse
Affiliation(s)
- Jiaqin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Feng
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing 211100, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yanjun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Hanxiang Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Man Yuan
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Xu
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingjing Zhang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chun Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Correspondence: (C.G.); (Y.W.)
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (C.G.); (Y.W.)
| |
Collapse
|
87
|
Abstract
Few metabolites can claim a more central and versatile role in cell metabolism than acetyl coenzyme A (acetyl-CoA). Acetyl-CoA is produced during nutrient catabolism to fuel the tricarboxylic acid cycle and is the essential building block for fatty acid and isoprenoid biosynthesis. It also functions as a signalling metabolite as the substrate for lysine acetylation reactions, enabling the modulation of protein functions in response to acetyl-CoA availability. Recent years have seen exciting advances in our understanding of acetyl-CoA metabolism in normal physiology and in cancer, buoyed by new mouse models, in vivo stable-isotope tracing approaches and improved methods for measuring acetyl-CoA, including in specific subcellular compartments. Efforts to target acetyl-CoA metabolic enzymes are also advancing, with one therapeutic agent targeting acetyl-CoA synthesis receiving approval from the US Food and Drug Administration. In this Review, we give an overview of the regulation and cancer relevance of major metabolic pathways in which acetyl-CoA participates. We further discuss recent advances in understanding acetyl-CoA metabolism in normal tissues and tumours and the potential for targeting these pathways therapeutically. We conclude with a commentary on emerging nodes of acetyl-CoA metabolism that may impact cancer biology.
Collapse
Affiliation(s)
- David A Guertin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
88
|
Zhang CY, Liu S, Yang M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J Hepatol 2023; 15:180-200. [PMID: 36926234 PMCID: PMC10011909 DOI: 10.4254/wjh.v15.i2.180] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
89
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
90
|
Abstract
It has been 10 years since the concept of ferroptosis was put forward and research focusing on ferroptosis has been increasing continuously. Ferroptosis is driven by iron-dependent lipid peroxidation, which can be antagonized by glutathione peroxidase 4 (GPX4), ferroptosis inhibitory protein 1 (FSP1), dihydroorotate dehydrogenase (DHODH) and Fas-associated factor 1 (FAF1). Various cellular metabolic events, including lipid metabolism, can modulate ferroptosis sensitivity. It is worth noting that the reprogramming of lipid metabolism in cancer cells can promote the occurrence and development of tumors. The metabolic flexibility of cancer cells opens the possibility for the coordinated targeting of multiple lipid metabolic pathways to trigger cancer cells ferroptosis. In addition, cancer cells must obtain immortality, escape from programmed cell death including ferroptosis, to promote cancer progression, which provides new perspectives for improving cancer therapy. Targeting the vulnerability of ferroptosis has received attention as one of the significant possible strategies to treat cancer given its role in regulating tumor cell survival. We review the impact of iron and lipid metabolism on ferroptosis and the potential role of the crosstalk of lipid metabolism reprogramming and ferroptosis in antitumor immunity and sum up agents targeting lipid metabolism and ferroptosis for cancer therapy.
Collapse
|
91
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
92
|
Xu Y, Dalamaga M, Liu J. Ubiquitin-specific protease 22 promotes lipogenesis contributing to Hepatocellular Carcinoma pathogenesis. Metabol Open 2022; 16:100218. [PMID: 36506939 PMCID: PMC9731896 DOI: 10.1016/j.metop.2022.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
|
93
|
Bari KA, Berg MD, Genereaux J, Brandl CJ, Lajoie P. Tra1 controls the transcriptional landscape of the aging cell. G3 (BETHESDA, MD.) 2022; 13:6782959. [PMID: 36315064 PMCID: PMC9836359 DOI: 10.1093/g3journal/jkac287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan assays in yeast measure the survival of nondividing cells at stationary phase over time, providing insights into the aging process of postmitotic cells. Tra1 is an essential component of both the yeast Spt-Ada-Gcn5 acetyltransferase/Spt-Ada-Gcn5 acetyltransferase-like and nucleosome acetyltransferase of H4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitizes cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes, and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
Collapse
Affiliation(s)
- Khaleda Afrin Bari
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Present address for Matthew D Berg: Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada,Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Corresponding author: Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
94
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
95
|
Xu M, Fang L, Guo X, Qin H, Sun R, Ning Z, Wang A. RIOK3 promotes pancreatic ductal adenocarcinoma cell invasion and metastasis by stabilizing FAK. Heliyon 2022; 8:e10116. [PMID: 35982848 PMCID: PMC9379581 DOI: 10.1016/j.heliyon.2022.e10116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive cancer, characterized by a high metastatic burden. RIO Kinase 3 (RIOK3) has been shown to promote invasion and metastasis of PDAC by cytoskeleton remodeling, but the exact mechanism is still unknown. In this study, we analyzed transcriptome sequencing data from RIOK3 stable knockdown PANC-1 cells and TCGA-PDAC data and discovered that RIOK3 was substantially related to focal adhesion signaling in PDAC. Additionally, silencing RIOK3 dramatically decreased Focal Adhesion Kinase (FAK) protein expression and phosphorylation (Tyr397 and Tyr925 sites). Immunoprecipitation assay verified the interaction of RIOK3 and FAK. Furthermore, RIOK3 considerably increased the protein stability of FAK protein but not FAK-Y925F protein. The biological function of RIOK3 in increasing PDAC cell invasion and migration was shown to be dependent on FAK activation. Moreover, we discovered that RIOK3 mutations were mainly characterized by amplification. RIOK3 mRNA was found to be significantly elevated in PDAC tissues and was associated with a poor prognosis. Furthermore, RIOK3 mRNA was significantly upregulated in later T-stage, pre-existing lymph node metastases, and later pathological stage samples. Overall, our study found that RIOK3 promotes PDAC cell invasion and metastasis by stabilizing FAK protein expression and upregulating its phosphorylation. This also provides a new target for therapeutic modalities targeting FAK. FAK activation is required for RIOK3 to promote PDAC cell invasion and metastasis. RIOK3 binds to and stabilizes the FAK protein. RIOK3 is highly expressed in PDAC tissues and associated with poor prognosis.
Collapse
Affiliation(s)
- Mengyuan Xu
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
- Hangzhou Medical College Affiliated Lin’an People’s Hospital, Hangzhou 310000, China
| | - Lei Fang
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
| | - Xin Guo
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| | - Henan Qin
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
| | - Rui Sun
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
| | - Zhen Ning
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
- Corresponding author.
| | - Aman Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116000, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
- Corresponding author.
| |
Collapse
|
96
|
Zhao J, Guo J, Wang Y, Ma Q, Shi Y, Cheng F, Lu Q, Fu W, Ouyang G, Zhang J, Xu Q, Hu X. Research Progress of DUB Enzyme in Hepatocellular Carcinoma. Front Oncol 2022; 12:920287. [PMID: 35875077 PMCID: PMC9303014 DOI: 10.3389/fonc.2022.920287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
According to GLOBOCAN 2021 cancer incidence and mortality statistics compiled by the International Agency for Research on Cancer, hepatocellular carcinoma (HCC) is the most common malignancy in the human liver and one of the leading causes of cancer death worldwide. Although there have been great advances in the treatment of HCC, such as regofenib, sorafenib, and lomvatinib, which have been developed and approved for the clinical treatment of advanced or metastatic HCC. However, they only prolong survival by a few months, and patients with advanced liver cancer are susceptible to tumor invasion metastasis and drug resistance. Ubiquitination modification is a type of post-translational modification of proteins. It can affect the physiological activity of cells by regulating the localization, stability and activity of proteins, such as: gene transcription, DNA damage signaling and other pathways. The reversible process of ubiquitination is called de-ubiquitination: it is the process of re-releasing ubiquitinated substrates with the participation of de-ubiquitinases (DUBs) and other active substances. There is growing evidence that many dysregulations of DUBs are associated with tumorigenesis. Although dysregulation of deuquitinase function is often found in HCC and other cancers, The mechanisms of action of many DUBs in HCC have not been elucidated. In this review, we focused on several deubiquitinases (DUBs) associated with hepatocellular carcinoma, including their structure, function, and relationship to hepatocellular carcinoma. hepatocellular carcinoma was highlighted, as well as the latest research reports. Among them, we focus on the USP family and OTU family which are more studied in the HCC. In addition, we discussed the prospects and significance of targeting DUBs as a new strategy for the treatment of hepatocellular carcinoma. It also briefly summarizes the research progress of some DUB-related small molecule inhibitors and their clinical application significance as a treatment for HCC in the future.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yanan Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Shi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | | | - Ji Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| | - Xiaoge Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| |
Collapse
|