51
|
崔 红. Ancient Virus Resurrection and Ecological Thinking. INTERNATIONAL JOURNAL OF ECOLOGY 2022. [DOI: 10.12677/ije.2022.113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
52
|
Cardenas T, Naoki K, Landivar CM, Struelens Q, Gómez MI, Meneses RI, Cauvy‐Fraunié S, Anthelme F, Dangles O. Glacier influence on bird assemblages in habitat islands of the high Bolivian Andes. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tatiana Cardenas
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE Univ Montpellier, CNRS, EPHE, IRD Montpellier France
| | - Kazuya Naoki
- Instituto de Ecología Universidad Mayor de San Andrés La Paz Bolivia
| | | | - Quentin Struelens
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE Univ Montpellier, CNRS, EPHE, IRD Montpellier France
- Muséum National d’Histoire Naturelle Sorbonne Universités Paris France
| | | | | | | | - Fabien Anthelme
- AMAP, IRD, CIRAD, CNRS, INRA Université de Montpellier Montpellier France
| | - Olivier Dangles
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE Univ Montpellier, CNRS, EPHE, IRD Montpellier France
| |
Collapse
|
53
|
Ficetola GF, Marta S, Guerrieri A, Gobbi M, Ambrosini R, Fontaneto D, Zerboni A, Poulenard J, Caccianiga M, Thuiller W. Dynamics of Ecological Communities Following Current Retreat of Glaciers. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-010521-040017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glaciers are retreating globally, and the resulting ice-free areas provide an experimental system for understanding species colonization patterns, community formation, and dynamics. The last several years have seen crucial advances in our understanding of biotic colonization after glacier retreats, resulting from the integration of methodological innovations and ecological theories. Recent empirical studies have demonstrated how multiple factors can speed up or slow down the velocity of colonization and have helped scientists develop theoretical models that describe spatiotemporalchanges in community structure. There is a growing awareness of how different processes (e.g., time since glacier retreat, onset or interruption of surface processes, abiotic factors, dispersal, biotic interactions) interact to shape community formation and, ultimately, their functional structure through succession. Here, we examine how these studies address key theoretical questions about community dynamics and show how classical approaches are increasingly being combined with environmental DNA metabarcoding and functional trait analysis to document the formation of multitrophic communities, revolutionizing our understanding of the biotic processes that occur following glacier retreat.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| | - Silvio Marta
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Alessia Guerrieri
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Mauro Gobbi
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Science Museum, I-38122 Trento, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Diego Fontaneto
- Molecular Ecology Group, Water Research Institute (IRSA), Italian National Research Council (CNR), I-28922 Verbania Pallanza, Italy
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra “A. Desio,” Università degli Studi di Milano, I-20133 Milano, Italy
| | - Jerome Poulenard
- Laboratory of Environments, Dynamics, and Mountain Territories (EDYTEM), Université Savoie Mont Blanc, Université Grenoble Alpes, CNRS, F‐73000 Chambéry, France
| | - Marco Caccianiga
- Department of Biosciences, Università degli Studi di Milano, I-20133 Milano, Italy
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| |
Collapse
|
54
|
Llambí LD, Melfo A, Gámez LE, Pelayo RC, Cárdenas M, Rojas C, Torres JE, Ramírez N, Huber B, Hernández J. Vegetation Assembly, Adaptive Strategies and Positive Interactions During Primary Succession in the Forefield of the Last Venezuelan Glacier. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.657755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glaciers are receding at unprecedented rates in the alpine tropics, opening-up new areas for ecosystem assembly. However, little is known about the patterns/mechanisms of primary succession during the last stages of glacier retreat in tropical mountains. Our aim was to analyze soil development and vegetation assembly during primary succession, and the role of changing adaptive strategies and facilitative interactions on these processes at the forefront of the last Venezuelan glacier (Humboldt Peak, 4,940 m asl). We established a chronosequence of four sites where the glacier retreated between 1910 and 2009. We compared soil organic matter (SOM), nutrients and temperatures inside vs. outside biological soil crusts (BSCs) at each site, estimated the cover of lichen, bryophyte and vascular plant species present, and analyzed changes in their growth-form abundance and species/functional turnover. We also evaluated local spatial associations between lichens/bryophytes and the dominant ruderal vascular plant (the grass Poa petrosa). We found a progressive increase in SOM during the first century of succession, while BSCs only had a positive buffering effect on superficial soil temperatures. Early seral stages were dominated by lichens and bryophytes, while vascular plant cover remained low during the first six decades, and was almost exclusively represented by wind dispersed/pollinated grasses. There was a general increase in species richness along the chronosequence, but it declined in late succession for lichens. Lichen and bryophyte communities exhibited a higher species turnover than vascular plants, resulting in the loss of some pioneer specialists as succession progressed. Lichen and bryophyte species were positively associated with safe-sites for the colonization of the dominant ruderal grass, suggesting a possible facilitation effect. Our results indicate that lichens and bryophytes play a key role as pioneers in these high tropical alpine environments. The limited initial colonization of vascular plants and the progressive accumulation of species and growth-forms (i.e., direct succession) could be linked to a combination of severe environmental filtering during early seral stages and limitations for zoochoric seed dispersal and entomophilic/ornithophilic pollination. This could potentially result in a slow successional response of these ecosystems to accelerated glacier loss and climate change.
Collapse
|
55
|
Abstract
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Collapse
|
56
|
Liu K, Liu Y, Hu A, Wang F, Zhang Z, Yan Q, Ji M, Vick-Majors TJ. Fate of glacier surface snow-originating bacteria in the glacier-fed hydrologic continuums. Environ Microbiol 2021; 23:6450-6462. [PMID: 34559463 DOI: 10.1111/1462-2920.15788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Glaciers represent important biomes of Earth and are recognized as key species pools for downstream aquatic environments. Worldwide, rapidly receding glaciers are driving shifts in hydrology, species distributions and threatening microbial diversity in glacier-fed aquatic ecosystems. However, the impact of glacier surface snow-originating taxa on the microbial diversity in downstream aquatic environments has been little explored. To elucidate the contribution of glacier surface snow-originating taxa to bacterial diversity in downstream aquatic environments, we collected samples from glacier surface snows, downstream streams and lakes along three glacier-fed hydrologic continuums on the Tibetan Plateau. Our results showed that glacier stream acts as recipients and vectors of bacteria originating from the glacier environments. The contributions of glacier surface snow-originating taxa to downstream bacterial communities decrease from the streams to lakes, which was consistently observed in three geographically separated glacier-fed ecosystems. Our results also revealed that some rare snow-originating bacteria can thrive along the hydrologic continuums and become dominant in downstream habitats. Finally, our results indicated that the dispersal patterns of bacterial communities are largely determined by mass effects and increasingly subjected to local sorting of species along the glacier-fed hydrologic continuums. Collectively, this study provides insights into the fate of bacterial assemblages in glacier surface snow following snow melt and how bacterial communities in aquatic environments are affected by the influx of glacier snow-originating bacteria.
Collapse
Affiliation(s)
- Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.,Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Anyi Hu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Yan
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Trista J Vick-Majors
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
57
|
Fodelianakis S, Washburne AD, Bourquin M, Pramateftaki P, Kohler TJ, Styllas M, Tolosano M, De Staercke V, Schön M, Busi SB, Brandani J, Wilmes P, Peter H, Battin TJ. Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME JOURNAL 2021; 16:666-675. [PMID: 34522009 PMCID: PMC8857233 DOI: 10.1038/s41396-021-01106-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 02/01/2023]
Abstract
Glacier-fed streams (GFSs) are extreme and rapidly vanishing ecosystems, and yet they harbor diverse microbial communities. Although our understanding of the GFS microbiome has recently increased, we do not know which microbial clades are ecologically successful in these ecosystems, nor do we understand potentially underlying mechanisms. Ecologically successful clades should be more prevalent across GFSs compared to other clades, which should be reflected as clade-wise distinctly low phylogenetic turnover. However, methods to assess such patterns are currently missing. Here we developed and applied a novel analytical framework, “phyloscore analysis”, to identify clades with lower spatial phylogenetic turnover than other clades in the sediment microbiome across twenty GFSs in New Zealand. These clades constituted up to 44% and 64% of community α-diversity and abundance, respectively. Furthermore, both their α-diversity and abundance increased as sediment chlorophyll a decreased, corroborating their ecological success in GFS habitats largely devoid of primary production. These clades also contained elevated levels of putative microdiversity than others, which could potentially explain their high prevalence in GFSs. This hitherto unknown microdiversity may be threatened as glaciers shrink, urging towards further genomic and functional exploration of the GFS microbiome.
Collapse
Affiliation(s)
- Stilianos Fodelianakis
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| | | | - Massimo Bourquin
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Tyler J Kohler
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Michail Styllas
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Matteo Tolosano
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vincent De Staercke
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Martina Schön
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Susheel Bhanu Busi
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jade Brandani
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paul Wilmes
- Systems Ecology Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Hannes Peter
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Tom J Battin
- Stream Biofilm & Ecosystem Research Lab, ENAC Division, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland.
| |
Collapse
|
58
|
Wambulwa MC, Milne R, Wu Z, Spicer RA, Provan J, Luo Y, Zhu G, Wang W, Wang H, Gao L, Li D, Liu J. Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot: Current knowledge and future perspectives. Ecol Evol 2021; 11:10794-10812. [PMID: 34429882 PMCID: PMC8366862 DOI: 10.1002/ece3.7906] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Mountain ecosystems support a significant one-third of all terrestrial biodiversity, but our understanding of the spatiotemporal maintenance of this high biodiversity remains poor, or at best controversial. The Himalaya hosts a complex mountain ecosystem with high topographic and climatic heterogeneity and harbors one of the world's richest floras. The high species endemism, together with increasing anthropogenic threats, has qualified the Himalaya as one of the most significant global biodiversity hotspots. The topographic and climatic complexity of the Himalaya makes it an ideal natural laboratory for studying the mechanisms of floral exchange, diversification, and spatiotemporal distributions. Here, we review literature pertaining to the Himalaya in order to generate a concise synthesis of the origin, distribution, and climate change responses of the Himalayan flora. We found that the Himalaya supports a rich biodiversity and that the Hengduan Mountains supplied the majority of the Himalayan floral elements, which subsequently diversified from the late Miocene onward, to create today's relatively high endemicity in the Himalaya. Further, we uncover links between this Miocene diversification and the joint effect of geological and climatic upheavals in the Himalaya. There is marked variance regarding species dispersal, elevational gradients, and impact of climate change among plant species in the Himalaya, and our review highlights some of the general trends and recent advances on these aspects. Finally, we provide some recommendations for conservation planning and future research. Our work could be useful in guiding future research in this important ecosystem and will also provide new insights into the maintenance mechanisms underpinning other mountain systems.
Collapse
Affiliation(s)
- Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Department of Life SciencesSchool of Pure and Applied SciencesSouth Eastern Kenya UniversityKituiKenya
| | - Richard Milne
- Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Zeng‐Yuan Wu
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Robert A. Spicer
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesXishuangbannaChina
- School of Environment, Earth and Ecosystem SciencesThe Open UniversityMilton KeynesUK
| | - Jim Provan
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Ya‐Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Guang‐Fu Zhu
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of the Chinese Academy of SciencesBeijingChina
- Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina
| | - Wan‐Ting Wang
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of the Chinese Academy of SciencesBeijingChina
- Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Lian‐Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - De‐Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| |
Collapse
|
59
|
Zhang L, Delgado-Baquerizo M, Shi Y, Liu X, Yang Y, Chu H. Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems. WATER RESEARCH 2021; 198:117139. [PMID: 33895591 DOI: 10.1016/j.watres.2021.117139] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Glacier-fed aquatic ecosystems provide habitats for diverse and active bacterial communities. However, the environmental vulnerabilities of co-existing water and sediment bacterial communities in these ecosystems remain unclear. Here, 16S rRNA gene sequencing was used to investigate co-existing bacterial communities in paired water and sediment samples from multiple rivers and lakes that are mainly fed by glaciers from the southeast Tibetan Plateau. Overall, the bacterial communities were dissimilar between the water and sediment, which indicated that there were limited interactions between them. Bacterial diversity was greatest in the sediments, where it was mainly driven by changes in nitrogen compounds and pH. Meanwhile water bacterial diversity was more susceptible to evapotranspiration, elevation, and mean annual temperature. Water samples contained higher proportions of Proteobacteria and Bacteroidetes, while sediment harbored higher proportions of Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Cyanobacteria, and Gemmatimonadetes. Bacterial community composition was significantly correlated with mean annual precipitation in water, but with nitrogen compounds in sediment. The co-occurrence network of water included more keystone species (e.g., CL500-29 marine group, Nocardioides spp., and Bacillus spp.) than the sediment network. These keystone species showed stronger phylogenetic signals than the species in the modular structures. Further, ecological clusters within the networks suggested that there were contrasting environmental vulnerabilities and preferences between water and sediment communities. These findings demonstrated that co-existing water and sediment bacterial communities and ecological clusters were shaped by contrasting environmental factors. This work provides a basis for understanding the importance of bacterial communities in maintaining glacier-fed aquatic ecosystems. Further, the results provide new perspectives for water resource management and water conservation in changing environments.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
60
|
Su H, Feng Y, Chen J, Chen J, Ma S, Fang J, Xie P. Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Ecology 2021; 102:e03370. [PMID: 33961286 DOI: 10.1002/ecy.3370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Top-down cascade effects are among the most important mechanisms underlying community structure and abundance dynamics in aquatic and terrestrial ecosystems worldwide. A current challenge is understanding the factors controlling trophic cascade strength under global environmental changes. Here, we synthesized 161 global sites to analyze how multiple factors influence consumer-resource interactions with fish in freshwater ecosystems. Fish have a profound negative effect on zooplankton and water clarity but positive effects on primary producers and water nutrients. Furthermore, fish trophic levels can modify the strength of trophic cascades, but an even number of food chain length does not have a negative effect on primary producers in real ecosystems. Eutrophication, warming, and predator abundance strengthen the trophic cascade effects on phytoplankton, suggesting that top-down control will be increasingly important under future global environmental changes. We found no influence or even an increasing trophic cascade strength (e.g., phytoplankton) with increasing latitude, which does not support the widespread view that the trophic cascade strength increases closer to the equator. With increasing temporal and spatial scales, the experimental duration has an accumulative effect, whereas the experimental size is not associated with the trophic cascade strength. Taken together, eutrophication, warming, temporal scale, and predator trophic level and abundance are pivotal to understanding the impacts of multiple environmental factors on the trophic cascade strength. Future studies should stress the possible synergistic effect of multiple factors on the food web structure and dynamics.
Collapse
Affiliation(s)
- Haojie Su
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yuhao Feng
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jianfeng Chen
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang, 332005, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Suhui Ma
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| |
Collapse
|
61
|
Hugonnet R, McNabb R, Berthier E, Menounos B, Nuth C, Girod L, Farinotti D, Huss M, Dussaillant I, Brun F, Kääb A. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021; 592:726-731. [PMID: 33911269 DOI: 10.1038/s41586-021-03436-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Glaciers distinct from the Greenland and Antarctic ice sheets are shrinking rapidly, altering regional hydrology1, raising global sea level2 and elevating natural hazards3. Yet, owing to the scarcity of constrained mass loss observations, glacier evolution during the satellite era is known only partially, as a geographic and temporal patchwork4,5. Here we reveal the accelerated, albeit contrasting, patterns of glacier mass loss during the early twenty-first century. Using largely untapped satellite archives, we chart surface elevation changes at a high spatiotemporal resolution over all of Earth's glaciers. We extensively validate our estimates against independent, high-precision measurements and present a globally complete and consistent estimate of glacier mass change. We show that during 2000-2019, glaciers lost a mass of 267 ± 16 gigatonnes per year, equivalent to 21 ± 3 per cent of the observed sea-level rise6. We identify a mass loss acceleration of 48 ± 16 gigatonnes per year per decade, explaining 6 to 19 per cent of the observed acceleration of sea-level rise. Particularly, thinning rates of glaciers outside ice sheet peripheries doubled over the past two decades. Glaciers currently lose more mass, and at similar or larger acceleration rates, than the Greenland or Antarctic ice sheets taken separately7-9. By uncovering the patterns of mass change in many regions, we find contrasting glacier fluctuations that agree with the decadal variability in precipitation and temperature. These include a North Atlantic anomaly of decelerated mass loss, a strongly accelerated loss from northwestern American glaciers, and the apparent end of the Karakoram anomaly of mass gain10. We anticipate our highly resolved estimates to advance the understanding of drivers that govern the distribution of glacier change, and to extend our capabilities of predicting these changes at all scales. Predictions robustly benchmarked against observations are critically needed to design adaptive policies for the local- and regional-scale management of water resources and cryospheric risks, as well as for the global-scale mitigation of sea-level rise.
Collapse
Affiliation(s)
- Romain Hugonnet
- LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France. .,Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, Switzerland. .,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| | - Robert McNabb
- School of Geography and Environmental Sciences, Ulster University, Coleraine, UK.,Department of Geosciences, University of Oslo, Oslo, Norway
| | - Etienne Berthier
- LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France
| | - Brian Menounos
- Geography Earth and Environmental Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada.,Hakai Institute, Campbell River, British Columbia, Canada
| | - Christopher Nuth
- Department of Geosciences, University of Oslo, Oslo, Norway.,The Norwegian Defense Research Establishment, Kjeller, Norway
| | - Luc Girod
- Department of Geosciences, University of Oslo, Oslo, Norway
| | - Daniel Farinotti
- Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Matthias Huss
- Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.,Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Ines Dussaillant
- LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France.,Department of Geography, University of Zurich, Zurich, Switzerland
| | - Fanny Brun
- IGE, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Andreas Kääb
- Department of Geosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
62
|
Anthelme F, Cauvy-Fraunié S, Francou B, Cáceres B, Dangles O. Living at the Edge: Increasing Stress for Plants 2–13 Years After the Retreat of a Tropical Glacier. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.584872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid warming is a major threat for the alpine biodiversity but, at the same time, accelerated glacial retreat constitutes an opportunity for taxa and communities to escape range contraction or extinction. We explored the first steps of plant primary succession after accelerated glacial retreat under the assumption that the first few years are critical for the success of plant establishment. To this end, we examined plant succession along a very short post-glacial chronosequence in the tropical Andes of Ecuador (2–13 years after glacial retreat). We recorded the location of all plant individuals within an area of 4,200 m2 divided into plots of 1 m2. This sampling made it possible to measure the responses of the microenvironment, plant diversity and plants traits to time since the glacial retreat. It also made it possible to produce species-area curves and to estimate positive interactions between species. Decreases in soil temperature, soil moisture, and soil macronutrients revealed increasing abiotic stress for plants between two and 13 years after glacial retreat. This increasing stress seemingly explained the lack of positive correlation between plant diversity and time since the glacial retreat. It might explain the decreasing performance of plants at both the population (lower plant height) and the community levels (lower species richness and lower accumulation of species per area). Meanwhile, infrequent spatial associations among plants indicated a facilitation deficit and animal-dispersed plants were almost absent. Although the presence of 21 species on such a small sampled area seven years after glacial retreat could look like a colonization success in the first place, the increasing abiotic stress may partly erase this success, reducing species richness to 13 species after 13 years and increasing the frequency of patches without vegetation. This fine-grain distribution study sheds new light on nature's responses to the effects of climate change in cold biomes, suggesting that faster glacial retreat would not necessarily result in accelerated plant colonization. Results are exploratory and require site replications for generalization.
Collapse
|
63
|
Losapio G, Cerabolini BEL, Maffioletti C, Tampucci D, Gobbi M, Caccianiga M. The Consequences of Glacier Retreat Are Uneven Between Plant Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.616562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glaciers are retreating worldwide, exposing new terrain to colonization by plants. Recently-deglaciated terrains have been a subject of ecological studies for a long time, as they represent a unique natural model system for examining the effects of global warming associated with glacier retreat on biodiversity and the spatio-temporal dynamic of communities. However, we still have a limited understanding of how physical and biotic factors interactively influence species persistence and community dynamics after glacier retreat and glacier extinction. Using hierarchical joint species distribution models, we integrated data on plant species occurrence at fine spatial scale, spatio-temporal context, environmental conditions, leaf traits, and species-to-species associations in plant communities spanning 0 to c 5,000 years on average after glacier retreat. Our results show that plant diversity initially increases with glacier retreat, but ultimately decreases after glacier extinction. The 22% of plant species non-linearly respond to glacier retreat and will locally disappear with glacier extinction. At the local scale, soil carbon enrichment and reduction of physical (topographic) disturbance positively contribute to distribution patterns in 66% of the species, indicating a strong impact of community-level environmental conditions. Furthermore, positive and negative associations among species play a relevant role (up to 34% of variance) in driving the spatio-temporal dynamic of plant communities. Global warming prompts a shift from facilitation to competition: positive associations prevail among pioneer species, whereas negative associations are relatively more common among late species. This pattern suggests a role of facilitation for enhancing plant diversity in recently ice-free terrains and of competition for decreasing species persistence in late stages. Associated to that, species persisting the most show more “conservative” traits than species of concern. In summary, although plant diversity initially increases with glacier retreat, more than a fifth of plant species are substantially declining and will disappear with glacier extinction. Even for the “winners,” the “victory” is not to be taken for granted due to the negative impact of rising competition. Integrating survey data with hierarchical and network models can help to forecast biodiversity change and anticipate cascading effects of glacier retreat on mountain ecosystems. These effects include the reduction of ecosystem services and benefits to humans, including food production from the pioneer species Artemisia genipi.
Collapse
|
64
|
Valle B, Ambrosini R, Caccianiga M, Gobbi M. Ecology of the cold-adapted species Nebria germari (Coleoptera: Carabidae): the role of supraglacial stony debris as refugium during the current interglacial period. ACTA ZOOL ACAD SCI H 2020. [DOI: 10.17109/azh.66.suppl.199.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the current scenario of climate change, cold-adapted insects are among the most threatened organisms in high-altitude habitats of the Alps. Upslope shifts and changes in phenology are two of the most investigated responses to climate change, but there is an increasing interest in evaluating the presence of high-altitude landforms acting as refugia. Nebria germari Heer, 1837 (Coleoptera: Carabidae) is a hygrophilic and cold-adapted species that still exhibits large populations on supraglacial debris of the Eastern Alps. This work aims at describing the ecology and phenology of the populations living on supraglacial debris. To this end, we analysed the populations from three Dolomitic glaciers whose surfaces are partially covered by stony debris. We found that supraglacial debris is characterised by more stable colder and wetter conditions than the surrounding debris slopes and by a shorter snow-free period. The populations found on supraglacial debris were spring breeders, differently from those documented in the 1980s on Dolomitic high alpine grasslands, which were reported as autumn breeders. Currently, Nebria germari seems, therefore, to find a suitable habitat on supraglacial debris, where micrometeorological conditions are appropriate for its life-cycle and competition and predation are reduced.
Collapse
|
65
|
Elser JJ, Wu C, González AL, Shain DH, Smith HJ, Sommaruga R, Williamson CE, Brahney J, Hotaling S, Vanderwall J, Yu J, Aizen V, Aizen E, Battin TJ, Camassa R, Feng X, Jiang H, Lu L, Qu JJ, Ren Z, Wen J, Wen L, Woods HA, Xiong X, Xu J, Yu G, Harper JT, Saros JE. Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams. GLOBAL CHANGE BIOLOGY 2020; 26:6644-6656. [PMID: 32969121 DOI: 10.1111/gcb.15362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/07/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Alpine regions are changing rapidly due to loss of snow and ice in response to ongoing climate change. While studies have documented ecological responses in alpine lakes and streams to these changes, our ability to predict such outcomes is limited. We propose that the application of fundamental rules of life can help develop necessary predictive frameworks. We focus on four key rules of life and their interactions: the temperature dependence of biotic processes from enzymes to evolution; the wavelength dependence of the effects of solar radiation on biological and ecological processes; the ramifications of the non-arbitrary elemental stoichiometry of life; and maximization of limiting resource use efficiency across scales. As the cryosphere melts and thaws, alpine lakes and streams will experience major changes in temperature regimes, absolute and relative inputs of solar radiation in ultraviolet and photosynthetically active radiation, and relative supplies of resources (e.g., carbon, nitrogen, and phosphorus), leading to nonlinear and interactive effects on particular biota, as well as on community and ecosystem properties. We propose that applying these key rules of life to cryosphere-influenced ecosystems will reduce uncertainties about the impacts of global change and help develop an integrated global view of rapidly changing alpine environments. However, doing so will require intensive interdisciplinary collaboration and international cooperation. More broadly, the alpine cryosphere is an example of a system where improving our understanding of mechanistic underpinnings of living systems might transform our ability to predict and mitigate the impacts of ongoing global change across the daunting scope of diversity in Earth's biota and environments.
Collapse
Affiliation(s)
- James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Angélica L González
- Department of Biology & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Daniel H Shain
- Department of Biology & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Ruben Sommaruga
- Lake and Glacier Research Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Janice Brahney
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Joseph Vanderwall
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Vladimir Aizen
- Department of Geography, University of Idaho, Moscow, ID, USA
| | - Elena Aizen
- Department of Geography, University of Idaho, Moscow, ID, USA
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Roberto Camassa
- Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - Xiu Feng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hongchen Jiang
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Lixin Lu
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - John J Qu
- Global Environment and Natural Resources Institute (GENRI) and Department of Geography and GeoInformation Science (GGS), George Mason University, Fairfax, VA, USA
| | - Ze Ren
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Jun Wen
- Sichuan Key Laboratory of Plateau Atmosphere and Environment, College of Atmospheric Sciences, Chengdu University of Information Technology, Chendu, China
| | - Lijuan Wen
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Joel T Harper
- Department of Geosciences, University of Montana, Missoula, MT, USA
| | - Jasmine E Saros
- School of Biology and Ecology, Climate Change Institute, University of Maine, Orono, ME, USA
| |
Collapse
|
66
|
Zawierucha K, Buda J, Jaromerska TN, Janko K, Gąsiorek P. Integrative approach reveals new species of water bears (Pilatobius, Grevenius, and Acutuncus) from Arctic cryoconite holes, with the discovery of hidden lineages of Hypsibius. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Ecosystem Birth Near Melting Glaciers: A Review on the Pioneer Role of Ground-Dwelling Arthropods. INSECTS 2020; 11:insects11090644. [PMID: 32961739 PMCID: PMC7564799 DOI: 10.3390/insects11090644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
Simple Summary Due to climate change, glaciers are retreating. On newly deglaciated ground, ecosystems gradually evolve through the process of primary succession. This gives scientists a unique opportunity to study how a new ecosystem is born. During the first few years, before plants establish, the barren ground of sand, silt, and stones close to the ice edge is conquered by a rich variety of insects, spiders, and other small animals. Many of these are predators and their prey are either transported by air or produced in situ. The real pioneers are, however, wingless springtails that graze on biofilm containing algae or cyanobacteria. Studies of two pioneer food webs showed differences in structure and function. In the one case, beetles, spiders, and harvestmen exhibit preferences for locally produced springtails, while predators in the other example relied mainly upon midges hatching from young ponds. Pioneer communities contain a mixture of generalists and specialists. Species composition vary under different climatic and geographical conditions, depending on the available candidate species in the surrounding areas. This study illustrates flexibility in the early phase of primary succession. Certain cold loving beetles, spiders, and springtails may become extinct if glaciers disappear completely. Abstract As glaciers retreat, their forelands represent “natural laboratories” for the study of primary succession. This review describes how certain arthropods conquer pristine ground and develop food webs before the establishment of vascular plants. Based on soil samples, pitfall traps, fallout and sticky traps, gut content studies, and some unpublished data, we compare early arthropod succession on glacial forelands of northern Europe (Iceland, Norway including Svalbard, and Sweden) and of the Alps (Austria, Italy). While macroarthropod predators like ground beetles (Coleoptera: Carabidae), harvestmen (Arachnida: Opiliones), and spiders (Arachnida: Araneae) have usually been considered as pioneers, assumed to feed on airborne prey, this review explains a different pattern. Here, we highlight that springtails (Collembola), probably feeding on biofilm made up of algae or cyanobacteria, are super-pioneers, even at high altitudes and under arctic conditions. We also point out that macroarthropod predators can use locally available prey, such as springtails or non-biting midges (Diptera: Chironomidae). Pioneer arthropod communities vary under different biogeographical and climatic conditions. Two pioneer food webs, from northern Europe and the Alps, respectively, differed in structure and function. However, certain genera and orders were common to both. Generalists and specialists live together in a pioneer community. Cold-adapted specialists are threatened by glacier melting.
Collapse
|
68
|
Valdivia N, Garrido I, Bruning P, Piñones A, Pardo LM. Biodiversity of an Antarctic rocky subtidal community and its relationship with glacier meltdown processes. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104991. [PMID: 32662431 DOI: 10.1016/j.marenvres.2020.104991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Glacier meltdown is a major environmental response to climate change in the West Antarctic Peninsula. Yet, the consequences of this process for local biodiversity are still not well understood. Here, we analyse the diversity and structure of a species-rich marine subtidal macrobenthic community (consumers and primary producers) across two abiotic environmental gradients defined by the distance from a glacier (several km) and depth (between 5 and 20 m depth) in Fildes Bay, King George Island. The analysis of spatially extensive records of seawater turbidity, high-frequency temperature and salinity data, and suction dredge samples of macrobenthic organisms revealed non-linear and functional group-dependent associations between biodiversity, glacier influence, and depth. Turbidity peaked in shallow waters and in the nearby of the glacier. Temperature and salinity, on the other hand, slightly decreased in the proximity of the glacier relative to reference sites. According to the spatial pattern in turbidity, species richness of consumers was lowest in shallow waters and near to the glacier. Also, Shannon's diversity of consumers significantly decreased in the nearby of glacier across depths. Moreover, the spatial variation in community structure of consumers and primary producers depended on both glacier distance and depth. These results suggest that glacier melting can have significant effects on diversity and community structure. Therefore, the accelerated glacier meltdown may have major consequences for the biodiversity in this ecosystem.
Collapse
Affiliation(s)
- Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - Ignacio Garrido
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Department of Biology and Quebec-Ocean Institute, Université Laval, Québec, QC, Canada
| | - Paulina Bruning
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Department of Biology and Quebec-Ocean Institute, Université Laval, Québec, QC, Canada
| | - Andrea Piñones
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | - Luis Miguel Pardo
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| |
Collapse
|
69
|
Cameron KA, Müller O, Stibal M, Edwards A, Jacobsen CS. Glacial microbiota are hydrologically connected and temporally variable. Environ Microbiol 2020; 22:3172-3187. [PMID: 32383292 DOI: 10.1111/1462-2920.15059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/15/2020] [Accepted: 05/02/2020] [Indexed: 11/29/2022]
Abstract
Glaciers are melting rapidly. The concurrent export of microbial assemblages alongside glacial meltwater is expected to impact the ecology of adjoining ecosystems. Currently, the source of exported assemblages is poorly understood, yet this information may be critical for understanding how current and future glacial melt seasons may influence downstream environments. We report on the connectivity and temporal variability of microbiota sampled from supraglacial, subglacial and periglacial habitats and water bodies within a glacial catchment. Sampled assemblages showed evidence of being biologically connected through hydrological flowpaths, leading to a meltwater system that accumulates prokaryotic biota as it travels downstream. Temporal changes in the connected assemblages were similarly observed. Snow assemblages changed markedly throughout the sample period, likely reflecting changes in the surrounding environment. Changes in supraglacial meltwater assemblages reflected the transition of the glacial surface from snow-covered to bare-ice. Marked snowmelt across the surrounding periglacial environment resulted in the flushing of soil assemblages into the riverine system. In contrast, surface ice within the ablation zone and subglacial meltwaters remained relatively stable throughout the sample period. Our results are indicative that changes in snow and ice melt across glacial environments will influence the abundance and diversity of microbial assemblages transported downstream.
Collapse
Affiliation(s)
- Karen A Cameron
- Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DD, UK.,Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, 1350, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 1350, Denmark.,School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Oliver Müller
- Department of Biological Sciences, University of Bergen, Bergen, 5006, Norway
| | - Marek Stibal
- Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, 1350, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 1350, Denmark.,Department of Ecology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Arwyn Edwards
- Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DD, UK
| | - Carsten Suhr Jacobsen
- Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, 1350, Denmark.,Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, 1350, Denmark.,Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| |
Collapse
|
70
|
Abstract
Glaciers are important drivers of environmental heterogeneity and biological diversity across mountain landscapes. Worldwide, glaciers are receding rapidly due to climate change, with important consequences for biodiversity in mountain ecosystems. However, the effects of glacier loss on biodiversity have never been quantified across a mountainous region, primarily due to a lack of adequate data at large spatial and temporal scales. Here, we combine high-resolution biological and glacier change (ca. 1850-2015) datasets for Glacier National Park, USA, to test the prediction that glacier retreat reduces biodiversity in mountain ecosystems through the loss of uniquely adapted meltwater stream species. We identified a specialized cold-water invertebrate community restricted to the highest elevation streams primarily below glaciers, but also snowfields and groundwater springs. We show that this community and endemic species have unexpectedly persisted in cold, high-elevation sites, even in catchments that have not been glaciated in ∼170 y. Future projections suggest substantial declines in suitable habitat, but not necessarily loss of this community with the complete disappearance of glaciers. Our findings demonstrate that high-elevation streams fed by snow and other cold-water sources continue to serve as critical climate refugia for mountain biodiversity even after glaciers disappear.
Collapse
|
71
|
Mountains as a Global Heritage: Arguments for Conserving the Natural Diversity of Mountain Regions. HERITAGE 2020. [DOI: 10.3390/heritage3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This concise review posits the urgent need for conserving the natural diversity of mountain environments by envisioning mountains as a global natural heritage. Mountains are recognized as cradles of biodiversity and for their important ecosystem services. Mountains also constitute the second most popular outdoor destination category at the global level after islands and beaches. However, in the current age of accelerating global environmental change, mountain systems face unprecedented change in their ecological characteristics, and consequent effects will extend to the millions who depend directly on ecosystem services from mountains. Moreover, growing tourism is putting fragile mountain ecosystems under increasing stress. This situation requires scientists and mountain area management stakeholders to come together in order to protect mountains as a global heritage. By underlining the salient natural diversity characteristics of mountains and their relevance for understanding global environmental change, this critical review argues that it is important to appreciate both biotic and abiotic diversity features of mountains in order to create a notion of mountains as a shared heritage for humanity. Accordingly, the development of soft infrastructure that can communicate the essence of mountain destinations and a committed network of scientists and tourism scholars working together at the global level are required for safeguarding this shared heritage.
Collapse
|
72
|
Reply to: Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat Ecol Evol 2020; 4:688-689. [PMID: 32231326 DOI: 10.1038/s41559-020-1164-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 11/08/2022]
|
73
|
Stibal M, Bradley JA, Edwards A, Hotaling S, Zawierucha K, Rosvold J, Lutz S, Cameron KA, Mikucki JA, Kohler TJ, Šabacká M, Anesio AM. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat Ecol Evol 2020; 4:686-687. [DOI: 10.1038/s41559-020-1163-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/03/2020] [Indexed: 11/09/2022]
|
74
|
Abstract
High altitude glacier-fed streams are harsh environments inhabiting specialized invertebrate communities. Most research on biotic aspects in glacier-fed streams have focused on the simple relationship between presence/absence of species and prevailing environmental conditions, whereas functional strategies and potentials of glacial stream specialists have been hardly investigated so far. Using new and recent datasets from our investigations in the European Alps, we now demonstrate distinct functional properties of invertebrates that typically dominate glacier-fed streams and show significant relationships with declining glacier cover in alpine stream catchments. In particular, we present and argue about cause-effect relationships between glacier cover in the catchment and temperature, community structure, diversity, feeding strategies, early life development, body mass, and growth of invertebrates. By concentrating on key taxa in glacial and non-glacial alpine streams, the relevance of distinct adaptations in these functional components becomes evident. This clearly demonstrates that further studies of functional characteristics are essential for the understanding of peculiar diversity patterns, successful traits and their plasticity, evolutionary triggered species adaptions, and flexibilities.
Collapse
|