51
|
Liu Z, Zhang S, Ran Y, Geng H, Gao F, Tian G, Feng Z, Xi J, Ye L, Su W. Nanoarchitectonics of tannic acid based injectable hydrogel regulate the microglial phenotype to enhance neuroplasticity for poststroke rehabilitation. Biomater Res 2023; 27:108. [PMID: 37908012 PMCID: PMC10617113 DOI: 10.1186/s40824-023-00444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Stroke is the second leading cause of mortality and disability worldwide. Poststroke rehabilitation is still unsatisfactory in clinics, which brings great pain and economic burdens to stroke patients. In this study, an injectable hydrogel in which tannic acid (TA) acts as not only a building block but also a therapeutic drug, was developed for poststroke rehabilitation. METHODS TA is used as a building block to form an injectable hydrogel (TA gel) with carboxymethyl chitosan (CMCS) by multivalent hydrogen bonds. The morphology, rheological properties, and TA release behavior of the hydrogel were characterized. The abilities of the TA gel to modulate microglial (BV2 cells) polarization and subsequently enhance the neuroplasticity of neuro cells (N2a cells) were assessed in vitro. The TA gel was injected into the cavity of stroke mice to evaluate motor function recovery, microglial polarization, and neuroplasticity in vivo. The molecular pathway through which TA modulates microglial polarization was also explored both in vitro and in vivo. RESULTS The TA gel exhibited sustainable release behavior of TA. The TA gel can suppress the expression of CD16 and IL-1β, and upregulate the expression of CD206 and TGF-β in oxygen and glucose-deprived (OGD) BV2 cells, indicating the regulation of OGD BV2 cells to an anti-inflammatory phenotype in vitro. This finding further shows that the decrease in synaptophysin and PSD95 in OGD N2a cells is effectively recovered by anti-inflammatory BV2 cells. Furthermore, the TA gel decreased CD16/iNOS expression and increased CD206 expression in the peri-infarct area of stroke mice, implying anti-inflammatory polarization of microglia in vivo. The colocalization of PSD95 and Vglut1 stains, as well as Golgi staining, showed the enhancement of neuroplasticity by the TA gel. Spontaneously, the TA gel successfully recovered the motor function of stroke mice. The western blot results in vitro and in vivo suggested that the TA gel regulated microglial polarization via the NF-κB pathway. CONCLUSION The TA gel serves as an effective brain injectable implant to treat stroke and shows promising potential to promote poststroke rehabilitation in the clinic.
Collapse
Affiliation(s)
- Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Shulei Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyuan Ran
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China.
| | - Fuhai Gao
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Guiqin Tian
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Wei Su
- Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
52
|
Nguyen JN, Mohan EC, Pandya G, Ali U, Tan C, Kofler JK, Shapiro L, Marrelli SP, Chauhan A. CD13 facilitates immune cell migration and aggravates acute injury but promotes chronic post-stroke recovery. J Neuroinflammation 2023; 20:232. [PMID: 37817190 PMCID: PMC10566099 DOI: 10.1186/s12974-023-02918-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Acute stroke leads to the activation of myeloid cells. These cells express adhesion molecules and transmigrate to the brain, thereby aggravating injury. Chronically after stroke, repair processes, including angiogenesis, are activated and enhance post-stroke recovery. Activated myeloid cells express CD13, which facilitates their migration into the site of injury. However, angiogenic blood vessels which play a role in recovery also express CD13. Overall, the specific contribution of CD13 to acute and chronic stroke outcomes is unknown. METHODS CD13 expression was estimated in both mice and humans after the ischemic stroke. Young (8-12 weeks) male wild-type and global CD13 knockout (KO) mice were used for this study. Mice underwent 60 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. For acute studies, the mice were euthanized at either 24- or 72 h post-stroke. For chronic studies, the Y-maze, Barnes maze, and the open field were performed on day 7 and day 28 post-stroke. Mice were euthanized at day 30 post-stroke and the brains were collected for assessment of inflammation, white matter injury, tissue loss, and angiogenesis. Flow cytometry was performed on days 3 and 7 post-stroke to quantify infiltrated monocytes and neutrophils and CXCL12/CXCR4 signaling. RESULTS Brain CD13 expression and infiltrated CD13+ monocytes and neutrophils increased acutely after the stroke. The brain CD13+lectin+ blood vessels increased on day 15 after the stroke. Similarly, an increase in the percentage area CD13 was observed in human stroke patients at the subacute time after stroke. Deletion of CD13 resulted in reduced infarct volume and improved neurological recovery after acute stroke. However, CD13KO mice had significantly worse memory deficits, amplified gliosis, and white matter damage compared to wild-type animals at chronic time points. CD13-deficient mice had an increased percentage of CXCL12+cells but a reduced percentage of CXCR4+cells and decreased angiogenesis at day 30 post-stroke. CONCLUSIONS CD13 is involved in the trans-migration of monocytes and neutrophils after stroke, and acutely, led to decreased infarct size and improved behavioral outcomes. However, loss of CD13 led to reductions in post-stroke angiogenesis by reducing CXCL12/CXCR4 signaling.
Collapse
Affiliation(s)
- Justin N Nguyen
- University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Eric C Mohan
- University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Gargee Pandya
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Uzma Ali
- Baylor University, Waco, TX, USA
| | - Chunfeng Tan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda Shapiro
- Center for Vascular Biology, The University of Connecticut Health Center, Farmington, CT, USA
| | - Sean P Marrelli
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA.
| |
Collapse
|
53
|
Yang X, Qi Y, Wang C, Zwang TJ, Rommelfanger NJ, Hong G, Lieber CM. Laminin-coated electronic scaffolds with vascular topography for tracking and promoting the migration of brain cells after injury. Nat Biomed Eng 2023; 7:1282-1292. [PMID: 37814007 DOI: 10.1038/s41551-023-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/30/2023] [Indexed: 10/11/2023]
Abstract
In the adult brain, neural stem cells are largely restricted into spatially discrete neurogenic niches, and hence areas of neuron loss during neurodegenerative disease or following a stroke or traumatic brain injury do not typically repopulate spontaneously. Moreover, understanding neural activity accompanying the neural repair process is hindered by a lack of minimally invasive devices for the chronic measurement of the electrophysiological dynamics in damaged brain tissue. Here we show that 32 individually addressable platinum microelectrodes integrated into laminin-coated branched polymer scaffolds stereotaxically injected to span a hydrogel-filled cortical lesion and deeper regions in the brains of mice promote neural regeneration while allowing for the tracking of migrating host brain cells into the lesion. Chronic measurements of single-unit activity and neural-circuit analyses revealed the establishment of spiking activity in new neurons in the lesion and their functional connections with neurons deeper in the brain. Electronic implants mimicking the topographical and surface properties of brain vasculature may aid the stimulation and tracking of neural-circuit restoration following injury.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Psychiatry and Behavioral Sciences and Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Yue Qi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Beijing Graphene Institute, Beijing, China
| | - Chonghe Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theodore J Zwang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Lieber Research Group, Lexington, MA, USA.
| |
Collapse
|
54
|
Qin W, Wan Q, Yan J, Han X, Lu W, Ma Z, Ye T, Li Y, Li C, Wang C, Tay FR, Niu L, Jiao K. Effect of Extracellular Ribonucleic Acids on Neurovascularization in Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301763. [PMID: 37395388 PMCID: PMC10502862 DOI: 10.1002/advs.202301763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.
Collapse
Affiliation(s)
- Wen‐pin Qin
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Jian‐Fei Yan
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Xiao‐Xiao Han
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Wei‐Cheng Lu
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Zhang‐Yu Ma
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Tao Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Yu‐Tao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Chang‐Jun Li
- Department of EndocrinologyEndocrinology Research CenterThe Xiangya Hospital of Central South UniversityChangshaHunan410008P. R. China
| | - Chen Wang
- Department of StomatologyThe Eighth Medical Center of PLA General HospitalHaidian DistrictBeijingP. R. China100091
| | - Franklin R. Tay
- Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| | - Kai Jiao
- Department of StomatologyTangdu hospitalThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032P. R. China
| |
Collapse
|
55
|
Mu J, Hao P, Duan H, Zhao W, Wang Z, Yang Z, Li X. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J Cereb Blood Flow Metab 2023; 43:1456-1474. [PMID: 37254891 PMCID: PMC10414004 DOI: 10.1177/0271678x231179544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Despite the high prevalence, stroke remains incurable due to the limited regeneration capacity in the central nervous system. Neuronal replacement strategies are highly diverse biomedical fields that attempt to replace lost neurons by utilizing exogenous stem cell transplants, biomaterials, and direct neuronal reprogramming. Although these approaches have achieved encouraging outcomes mostly in the rodent stroke model, further preclinical validation in non-human primates (NHP) is still needed prior to clinical trials. In this paper, we briefly review the recent progress of promising neuronal replacement therapy in NHP stroke studies. Moreover, we summarize the key characteristics of the NHP as highly valuable translational tools and discuss (1) NHP species and their advantages in terms of genetics, physiology, neuroanatomy, immunology, and behavior; (2) various methods for establishing NHP focal ischemic models to study the regenerative and plastic changes associated with motor functional recovery; and (3) a comprehensive analysis of experimentally and clinically accessible outcomes and a potential adaptive mechanism. Our review specifically aims to facilitate the selection of the appropriate NHP cortical ischemic models and efficient prognostic evaluation methods in preclinical stroke research design of neuronal replacement strategies.
Collapse
Affiliation(s)
- Jiao Mu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
56
|
Fan Z, Ardicoglu R, Batavia AA, Rust R, von Ziegler L, Waag R, Zhang J, Desgeorges T, Sturman O, Dang H, Weber R, Roszkowski M, Moor AE, Schwab ME, Germain PL, Bohacek J, De Bock K. The vascular gene Apold1 is dispensable for normal development but controls angiogenesis under pathological conditions. Angiogenesis 2023; 26:385-407. [PMID: 36933174 PMCID: PMC10328887 DOI: 10.1007/s10456-023-09870-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 03/19/2023]
Abstract
The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1-/- mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1-/- mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.
Collapse
Affiliation(s)
- Zheng Fan
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
- Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Raphaela Ardicoglu
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Aashil A Batavia
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Zurich, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ruslan Rust
- Department of Health Sciences and Technology, Institute for Regenerative Medicine, University of Zürich, ETH Zürich, Zurich, Switzerland
| | - Lukas von Ziegler
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Rebecca Waag
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Jing Zhang
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
| | - Thibaut Desgeorges
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
| | - Oliver Sturman
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Hairuo Dang
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
- DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Rebecca Weber
- Department of Health Sciences and Technology, Institute for Regenerative Medicine, University of Zürich, ETH Zürich, Zurich, Switzerland
| | - Martin Roszkowski
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Martin E Schwab
- Department of Health Sciences and Technology, Institute for Regenerative Medicine, University of Zürich, ETH Zürich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland
- Department of Health Sciences and Technology, Computational Neurogenomics, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland
- Department for Molecular Life Sciences, Laboratory of Statistical Bioinformatics, University of Zürich, Zurich, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, ETH Zürich, Zurich, Switzerland.
- Neuroscience Center Zurich, ETH Zürich, University of Zürich, Zurich, Switzerland.
| | - Katrien De Bock
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
57
|
Wilson KL, Onweller LA, Joseph NI, David-Bercholz J, Darling NJ, Segura T. SDF-1 Bound Heparin Nanoparticles Recruit Progenitor Cells for Their Differentiation and Promotion of Angiogenesis After Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547800. [PMID: 37461490 PMCID: PMC10349963 DOI: 10.1101/2023.07.05.547800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Angiogenesis after stroke is correlated with enhanced tissue repair and functional outcomes. The existing body of research in biomaterials for stroke focuses on hydrogels for the delivery of stem cells, growth factors, or small molecules or drugs. Despite the ability of hydrogels to enhance all these delivery methods, no material has significantly regrown vasculature within the translatable timeline of days to weeks after stroke. Here we developed 2 novel biomaterials for tissue regeneration after stroke, a highly porous granular hydrogel termed Cryo microgels, and heparin-norbornene nanoparticles with covalently bound SDF-1α. The combination of these materials resulted in fully revascularized vessels throughout the stroke core in only 10 days, as well as increased neural progenitor cell migration and maintenance and increased neurons.
Collapse
|
58
|
Wang J, Wang Y, Xiaohalati X, Su Q, Liu J, Cai B, Yang W, Wang Z, Wang L. A Bioinspired Manganese-Organic Framework Ameliorates Ischemic Stroke through its Intrinsic Nanozyme Activity and Upregulating Endogenous Antioxidant Enzymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206854. [PMID: 37129343 PMCID: PMC10369237 DOI: 10.1002/advs.202206854] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Following stroke, oxidative stress induced by reactive oxygen species (ROS) aggravates neuronal damage and enlarges ischemic penumbra, which is devastating to stroke patients. Nanozyme-based antioxidants are emerging to treat stroke through scavenging excessive ROS. However, most of nanozymes cannot efficiently scavenge ROS in neuronal cytosol and mitochondria, due to low-uptake abilities of neurons and barriers of organelle membranes, significantly limiting nanozymes' neuroprotective effects. To overcome this limitation, a manganese-organic framework modified with polydopamine (pDA-MNOF), capable of not only mimicking catalytic activities of natural SOD2's catalytic domain but also upregulating two endogenous antioxidant enzymes in neurons is fabricated. With such a dual anti-ROS effect, this nanozyme robustly decreases cellular ROS and effectively protects them from ROS-induced injury. STAT-3 signaling is found to play a vital role in pDA-MNOF activating the two antioxidant enzymes, HO1 and SOD2. In vivo pDA-MNOF treatment significantly improves the survival of middle cerebral artery occlusion (MCAo) mice by reducing infarct volume and more importantly, promotes animal behavioral recovery. Further, pDA-MNOF activates vascular endothelial growth factor expression, a downstream target of STAT3 signaling, thus enhancing angiogenesis. Taken together, the biochemical, cell-biological, and animal-level behavioral data demonstrate the potentiality of pDA-MNOF as a dual ROS-scavenging agent for stroke treatment.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Yang Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Xiakeerzhati Xiaohalati
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Qiangfei Su
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Jingwei Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Bo Cai
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Wen Yang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| |
Collapse
|
59
|
Jiang L, Wu X, Wang Y, Liu C, Wu Y, Wang J, Xu N, He Z, Wang S, Zhang H, Wang X, Lu X, Tan Q, Sun X. Photothermal Controlled-Release Immunomodulatory Nanoplatform for Restoring Nerve Structure and Mechanical Nociception in Infectious Diabetic Ulcers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300339. [PMID: 37148168 PMCID: PMC10369251 DOI: 10.1002/advs.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Indexed: 05/08/2023]
Abstract
Infectious diabetic ulcers (IDU) require anti-infection, angiogenesis, and nerve regeneration therapy; however, the latter has received comparatively less research attention than the former two. In particular, there have been few reports on the recovery of mechanical nociception. In this study, a photothermal controlled-release immunomodulatory hydrogel nanoplatform is tailored for the treatment of IDU. Due to a thermal-sensitive interaction between polydopamine-reduced graphene oxide (pGO) and the antibiotic mupirocin, excellent antibacterial efficacy is achieved through customized release kinetics. In addition, Trem2+ macrophages recruited by pGO regulate collagen remodeling and restore skin adnexal structures to alter the fate of scar formation, promote angiogenesis, accompanied by the regeneration of neural networks, which ensures the recovery of mechanical nociception and may prevent the recurrence of IDU at the source. In all, a full-stage strategy from antibacterial, immune regulation, angiogenesis, and neurogenesis to the recovery of mechanical nociception, an indispensable neural function of skin, is introduced to IDU treatment, which opens up an effective and comprehensive therapy for refractory IDU.
Collapse
Affiliation(s)
- Le Jiang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Xiangyi Wu
- Department of Burns and Plastic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNo. 321, Zhongshan RoadNanjingJiangsu210008China
| | - Yifan Wang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Chunlin Liu
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Yixian Wu
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Jingyun Wang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Nan Xu
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Zhijun He
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Shuqin Wang
- Department of Burns and Plastic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNo. 321, Zhongshan RoadNanjingJiangsu210008China
| | - Hao Zhang
- Department of Burns and Plastic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNo. 321, Zhongshan RoadNanjingJiangsu210008China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Xiong Lu
- Key Lab of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Qian Tan
- Department of Burns and Plastic SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNo. 321, Zhongshan RoadNanjingJiangsu210008China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
- Key Laboratory of Advanced Materials of Ministry of Education of ChinaSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
60
|
Rust R. Ischemic stroke-related gene expression profiles across species: a meta-analysis. J Inflamm (Lond) 2023; 20:21. [PMID: 37337154 DOI: 10.1186/s12950-023-00346-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Stroke patients are often left with permanent disabilities with no regenerative treatment options. Unbiased RNA sequencing studies decoding the transcriptional signature of stroked tissue hold promise to identify new potential targets and pathways directed to improve treatment for stroke patients. Here, gene expression profiles of stroked tissue across different time points, species, and stroke models were compared using NCBI GEO database. In total, 34 datasets from mice, rats, humans, and primates were included, exploring gene expression differences in healthy and stroked brain tissue. Distinct changes in gene expression and pathway enrichment revealed the heterogenicity of the stroke pathology in stroke-related pathways e.g., inflammatory responses, vascular repair, remodelling and cell proliferation and adhesion but also in diverse general, stroke-unrelated pathways that have to be carefully considered when evaluating new promising therapeutic targets.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine (IREM), University of Zurich, Campus Schlieren Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
61
|
Zhang Y, Wang S, Yang Y, Zhao S, You J, Wang J, Cai J, Wang H, Wang J, Zhang W, Yu J, Han C, Zhang Y, Gu Z. Scarless wound healing programmed by core-shell microneedles. Nat Commun 2023; 14:3431. [PMID: 37301874 PMCID: PMC10257705 DOI: 10.1038/s41467-023-39129-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Effective reprogramming of chronic wound healing remains challenging due to the limited drug delivery efficacy hindered by physiological barriers, as well as the inappropriate dosing timing in distinct healing stages. Herein, a core-shell structured microneedle array patch with programmed functions (PF-MNs) is designed to dynamically modulate the wound immune microenvironment according to the varied healing phases. Specifically, PF-MNs combat multidrug-resistant bacterial biofilm at the early stage via generating reactive oxygen species (ROS) under laser irradiation. Subsequently, the ROS-sensitive MN shell gradually degrades to expose the MN core component, which neutralizes various inflammatory factors and promotes the phase transition from inflammation to proliferation. In addition, the released verteporfin inhibits scar formation by blocking Engrailed-1 (En1) activation in fibroblasts. Our experiments demonstrate that PF-MNs promote scarless wound repair in mouse models of both acute and chronic wounds, and inhibit the formation of hypertrophic scar in rabbit ear models.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Shenqiang Wang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Yinxian Yang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Sheng Zhao
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiahuan You
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Junxia Wang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jingwei Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
| | - Hao Wang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jie Wang
- Department of Burns and Wound Care Center, the Second Affiliated Hospital, College of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Wei Zhang
- Department of Burns and Wound Care Center, the Second Affiliated Hospital, College of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Jicheng Yu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China
| | - Chunmao Han
- Department of Burns and Wound Care Center, the Second Affiliated Hospital, College of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Yuqi Zhang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Department of Burns and Wound Care Center, the Second Affiliated Hospital, College of Medicine, Zhejiang University, 310009, Hangzhou, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China.
| | - Zhen Gu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China.
- Jinhua Institute of Zhejiang University, 321299, Jinhua, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 311121, Hangzhou, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 310058, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
62
|
Fang W, Yang M, Liu M, Jin Y, Wang Y, Yang R, Wang Y, Zhang K, Fu Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023; 15:1700. [PMID: 37376148 PMCID: PMC10302687 DOI: 10.3390/pharmaceutics15061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The regeneration of biological tissues in medicine is challenging, and 3D bioprinting offers an innovative way to create functional multicellular tissues. One common way in bioprinting is bioink, which is one type of the cell-loaded hydrogel. For clinical application, however, the bioprinting still suffers from satisfactory performance, e.g., in vascularization, effective antibacterial, immunomodulation, and regulation of collagen deposition. Many studies incorporated different bioactive materials into the 3D-printed scaffolds to optimize the bioprinting. Here, we reviewed a variety of additives added to the 3D bioprinting hydrogel. The underlying mechanisms and methodology for biological regeneration are important and will provide a useful basis for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kaile Zhang
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, No. 600 Yi-Shan Road, Shanghai 200233, China; (W.F.); (M.Y.)
| |
Collapse
|
63
|
Wang MF, Sohn AL, Samal J, Erning K, Segura T, Muddiman DC. Lipidomic Analysis of Mouse Brain to Evaluate the Efficacy and Preservation of Different Tissue Preparatory Techniques by IR-MALDESI-MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:869-877. [PMID: 36988291 DOI: 10.1021/jasms.2c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Numerous preparatory methods have been developed to preserve the cellular and structural integrity of various biological tissues for different -omics studies. Herein, two preparatory methods for mass spectrometry imaging (MSI) were evaluated, fresh-frozen and sucrose-embedded, paraformaldehyde (PFA) fixed, in terms of ion abundance, putative lipid identifications, and preservation of analyte spatial distributions. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)-MSI was utilized to compare the preparatory methods of interest with and without the use of the conventional ice matrix. There were 2.5-fold and 1.6-fold more lipid species putatively identified in positive- and negative-ion modes, respectively, for sucrose-embedded, PFA-fixed tissues without an ice matrix relative to the current IR-MALDESI-MSI gold-standard, fresh-frozen tissue preparation with an exogenous ice matrix. Furthermore, sucrose-embedded tissues demonstrated improved spatial distribution of ions resulting from the cryo-protective property of sucrose and paraformaldehyde fixation. Evidence from these investigations supports sucrose-embedding without ice matrix as an alternative preparatory technique for IR-MALDESI-MSI.
Collapse
Affiliation(s)
- Mary F Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexandria L Sohn
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Juhi Samal
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Kevin Erning
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
64
|
Adhikari B, Stager MA, Krebs MD. Cell-instructive biomaterials in tissue engineering and regenerative medicine. J Biomed Mater Res A 2023; 111:660-681. [PMID: 36779265 DOI: 10.1002/jbm.a.37510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
The field of biomaterials aims to improve regenerative outcomes or scientific understanding for a wide range of tissue types and ailments. Biomaterials can be fabricated from natural or synthetic sources and display a plethora of mechanical, electrical, and geometrical properties dependent on their desired application. To date, most biomaterial systems designed for eventual translation to the clinic rely on soluble signaling moieties, such as growth factors, to elicit a specific cellular response. However, these soluble factors are often limited by high cost, convoluted synthesis, low stability, and difficulty in regulation, making the translation of these biomaterials systems to clinical or commercial applications a long and arduous process. In response to this, significant effort has been dedicated to researching cell-directive biomaterials which can signal for specific cell behavior in the absence of soluble factors. Cells of all tissue types have been shown to be innately in tune with their microenvironment, which is a biological phenomenon that can be exploited by researchers to design materials that direct cell behavior based on their intrinsic characteristics. This review will focus on recent developments in biomaterials that direct cell behavior using biomaterial properties such as charge, peptide presentation, and micro- or nano-geometry. These next generation biomaterials could offer significant strides in the development of clinically relevant medical devices which improve our understanding of the cellular microenvironment and enhance patient care in a variety of ailments.
Collapse
Affiliation(s)
- Bikram Adhikari
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Michael A Stager
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Melissa D Krebs
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
65
|
DuBois EM, Adewumi HO, O'Connor PR, Labovitz JE, O'Shea TM. Trehalose-Guanosine Glycopolymer Hydrogels Direct Adaptive Glia Responses in CNS Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211774. [PMID: 37097729 DOI: 10.1002/adma.202211774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/21/2023] [Indexed: 06/18/2023]
Abstract
Neural tissue damaged after central nervous system (CNS) injury does not naturally regenerate but is instead replaced by non-neural fibrotic scar tissue that serves no neurological function. Scar-free repair to create a more permissive environment for regeneration requires altering the natural injury responses of glial cells. In this work, glycopolymer-based supramolecular hydrogels are synthesized to direct adaptive glia repair after CNS injury. Combining poly(trehalose-co-guanosine) (pTreGuo) glycopolymers with free guanosine (fGuo) generates shear-thinning hydrogels through stabilized formation of long-range G-quadruplex secondary structures. Hydrogels with smooth or granular microstructures and mechanical properties spanning three orders of magnitude are produced through facile control of pTreGuo hydrogel composition. Injection of pTreGuo hydrogels into healthy mouse brains elicits minimal stromal cell infiltration and peripherally derived inflammation that is comparable to a bioinert methyl cellulose benchmarking material. pTreGuo hydrogels alter astrocyte borders and recruit microglia to infiltrate and resorb the hydrogel bulk over 7 d. Injections of pTreGuo hydrogels into ischemic stroke alter the natural responses of glial cells after injury to reduce the size of lesions and increase axon regrowth into lesion core environments. These results support the use of pTreGuo hydrogels as part of neural regeneration strategies to activate endogenous glia repair mechanisms.
Collapse
Affiliation(s)
- Eric M DuBois
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Payton R O'Connor
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Jacob E Labovitz
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| |
Collapse
|
66
|
Wang Y, Zhang Q, Zhang S, Qi J, Li L. The superiority and feasibility of 2,3,5-triphenyltetrazolium chloride-stained brain tissues for molecular biology experiments based on microglial properties. Animal Model Exp Med 2023; 6:111-119. [PMID: 37140996 PMCID: PMC10158948 DOI: 10.1002/ame2.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/12/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND TTC (2,3,5-triphenyltetrazolium chloride) staining is the most commonly used method in identifying and assessing cerebral infarct volumes in the transient middle cerebral artery occlusion model. Given that microglia exhibit different morphologies in different regions after ischemic stroke, we demonstrate the superiority and necessity of using TTC-stained brain tissue to analyze the expression of various proteins or genes in different regions based on microglia character. METHODS We compared brain tissue (left for 10 min on ice) from the improved TTC staining method with penumbra from the traditional sampling method. We identified the feasibility and necessity of the improved staining method using real time (RT)-PCR, Western blot, and immunofluorescence analysis. RESULTS There was no protein and RNA degradation in the TTC-stained brain tissue group. However, the TREM2 specifically expressed on the microglia showed a significant difference between two groups in the penumbra region. CONCLUSIONS TTC-stained brain tissue can be used for molecular biology experiments without any restrictions. In addition, TTC-stained brain tissue shows greater superiority due to its precise positioning.
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingrong Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuchi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jiangtao Qi
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
67
|
Wang W, Hassan MM, Mao G. Colloidal Perspective on Targeted Drug Delivery to the Central Nervous System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3235-3245. [PMID: 36825490 DOI: 10.1021/acs.langmuir.2c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This article describes a new approach in targeted drug delivery to the central nervous system (CNS) in a significant departure from the predominant systematic drug administration attempting to penetrate the blood-brain barrier (BBB). Nanoparticles chemically conjugated to neural tract tracer proteins are capable of path-specific axonal retrograde transport, transneuronal transport, and anatomical tract flow to bypass the BBB. To celebrate the work by Dr. Bettye Washington Greene on the physical chemistry of colloidal particles, this article focuses on the physiochemical characteristics of the nanoparticles, various colloidal forces that impact the colloidal stability of nanoparticles in biological media, and surface chemistry strategies to avoid nanoparticle aggregation-induced poor therapeutic outcomes. The biological environment for the anatomical retrograde transport of neural tract tracers is examined to directly link factors impacting the colloidal stability of the new class of CNS-targeting nanoconjugates such as nanoconjugate size, shape, surface charge, surface chemistry, ionic strength, pH, and protein adsorption on the nanoparticle. We conclude with opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Md Musfizur Hassan
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| |
Collapse
|
68
|
Chen T, Xia Y, Zhang L, Xu T, Yi Y, Chen J, Liu Z, Yang L, Chen S, Zhou X, Chen X, Wu H, Liu J. Loading neural stem cells on hydrogel scaffold improves cell retention rate and promotes functional recovery in traumatic brain injury. Mater Today Bio 2023; 19:100606. [PMID: 37063247 PMCID: PMC10102240 DOI: 10.1016/j.mtbio.2023.100606] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Neural stem cell (NSC) has gained considerable attention in traumatic brain injury (TBI) treatment because of their ability to replenish dysfunctional neurons and stimulate endogenous neurorestorative processes. However, their therapeutic effects are hindered by the low cell retention rate after transplantation into the dynamic brain. In this study, we found cerebrospinal fluid (CSF) flow after TBI is an important factor associated with cell loss following NSC transplantation. Recently, several studies have shown that hydrogels could serve as a beneficial carrier for stem cell transplantation, which provides a solution to prevent CSF flow-induced cell loss after TBI. For this purpose, we evaluated three different hydrogel scaffolds and found the gelatin methacrylate (GelMA)/sodium alginate (Alg) (GelMA/Alg) hydrogel scaffold showed the best capabilities for NSC adherence, growth, and differentiation. Additionally, we detected that pre-differentiated NSCs, which were loaded on the GelMA/Alg hydrogel and cultured for 7 days in neuronal differentiation medium (NSC [7d]), had the highest cell retention rate after CSF impact. Next, the neuroprotective effects of the NSC-loaded GelMA/Alg hydrogel scaffold were evaluated in a rat model of TBI. NSC [7d]-loaded GelMA/Alg markedly decreased microglial activation and neuronal death in the acute phase, reduced tissue loss, alleviated astrogliosis, promoted neurogenesis, and improved neurological recovery in the chronic phase. In summary, we demonstrated that the integration with the GelMA/Alg and modification of NSC differentiation could inhibit the influence of CSF flow on transplanted NSCs, leading to increased number of retained NSCs and improved neuroprotective effects, providing a promising alternative for TBI treatment.
Collapse
Affiliation(s)
- Tiange Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Xu
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Yan Yi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Hunan, China
| | - Jianwei Chen
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Ziyuan Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siming Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxi Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Corresponding author. Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Rd, Kaifu District, Changsha, 410008, PR China.
| |
Collapse
|
69
|
Liao F, He D, Liu C, Vong CT, Zhong Z, Wang Y. Isolation and identification of angiogenesis-promoting components in Huanglian Jiedu decoction using live cell bio-specific extraction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115961. [PMID: 36442757 DOI: 10.1016/j.jep.2022.115961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian Jiedu Decoction (HLJDD) is a traditional heat-dissipating and detoxicating prescription used in Chinese medicine and has been extensively applied in the clinical treatment of ischemic stroke. Preliminary research confirmed that HLJDD exerts a neuroprotective effect on brain tissue injury caused by cerebral ischemia by promoting angiogenesis. However, the components of HLJDD responsible for its medicinal activity in ischemic injury remain unclear. AIM OF THE STUDY The aim of this study was to identify the active components of HLJDD that could promote angiogenesis and investigate its underlying mechanism, as well as Hypoxia-inducible factor-1α (HIF-1α)/Vascular endothelial growth factor (VEGF) signalings in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS The specific binding components of HLJDD with HUVECs were isolated and identified through a combination of live cell biospecific extraction, solid-phase extraction, and ultra performance liquid chromatography (UPLC)-Orbitrap Fusion Tribrid mass spectrometry (MS). Their pharmacological activity against oxygen-glucose deprivation-reperfusion (OGD/R) injury and in vitro pro-angiogenesis was validated using Cell Counting Kit-8 (CCK-8) and tube formation analysis, respectively. Finally, we explored the effect of active ingredients on the expression levels of HIF-1α and VEGF using enzyme-linked immunosorbent assay. Molecular docking was used to predict the potential binding of six active components to phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (AKT) and Von Hippel-Lindau (VHL) proteins, which are involved in the regulation of HIF-1α and are highly associated with angiogenesis. RESULTS A total of 13 HUVECs-specific HLJDD components were identified, and 10 of them were shown to protect against OGD/R injury. We were the first to demonstrate that two of these components have a protective role in OGD/R-induced HUVECs injury. Additionally, seven of these 10 components exhibited angiogenesis-promoting activity, and two of these components were shown, for the first time, to promote angiogenesis in HUVECs. These effects might occur through the HIF-1α/VEGF pathway. Molecular docking results showed that all six active ingredients could stably bind to PI3K and AKT proteins, suggesting that these two proteins may be potential targets for six active ingredients. CONCLUSIONS The approach employed in this study effectively identified proangiogenic components in HLJDD that might act via PI3K/AKT/HIF-1α/VEGF pathways and other mechanisms involved in angiogenesis. In conclusion, this study was the first to demonstrate four compounds with new bioactivities and could also provide insight into the isolation and discovery of new bioactive compounds existing in Chinese medicine with potential clinical value.
Collapse
Affiliation(s)
- Fengyun Liao
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Dongmei He
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, Guangdong, China.
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Chi Teng Vong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
70
|
Wu W, Jia S, Xu H, Gao Z, Wang Z, Lu B, Ai Y, Liu Y, Liu R, Yang T, Luo R, Hu C, Kong L, Huang D, Yan L, Yang Z, Zhu L, Hao D. Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury. ACS NANO 2023; 17:3818-3837. [PMID: 36787636 DOI: 10.1021/acsnano.2c12017] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neural stem cells (NSCs) are considered to be prospective replacements for neuronal cell loss as a result of spinal cord injury (SCI). However, the survival and neuronal differentiation of NSCs are strongly affected by the unfavorable microenvironment induced by SCI, which critically impairs their therapeutic ability to treat SCI. Herein, a strategy to fabricate PDGF-MP hydrogel (PDGF-MPH) microspheres (PDGF-MPHM) instead of bulk hydrogels is proposed to dramatically enhance the efficiency of platelet-derived growth factor mimetic peptide (PDGF-MP) in activating its receptor. PDGF-MPHM were fabricated by a piezoelectric ceramic-driven thermal electrospray device, had an average size of 9 μm, and also had the ability to activate the PDGFRβ of NSCs more effectively than PDGF-MPH. In vitro, PDGF-MPHM exerted strong neuroprotective effects by maintaining the proliferation and inhibiting the apoptosis of NSCs in the presence of myelin extracts. In vivo, PDGF-MPHM inhibited M1 macrophage infiltration and extrinsic or intrinsic cells apoptosis on the seventh day after SCI. Eight weeks after SCI, the T10 SCI treatment results showed that PDGF-MPHM + NSCs significantly promoted the survival of NSCs and neuronal differentiation, reduced lesion size, and considerably improved motor function recovery in SCI rats by stimulating axonal regeneration, synapse formation, and angiogenesis in comparison with the NSCs graft group. Therefore, our findings provide insights into the ability of PDGF-MPHM to be a promising therapeutic agent for SCI repair.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Ziheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Botao Lu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Yixiang Ai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Tong Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Rongjin Luo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Chunping Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Dageng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710054, China
| |
Collapse
|
71
|
Yu W, Gong E, Liu B, Zhou L, Che C, Hu S, Zhang Z, Liu J, Shi J. Hydrogel-mediated drug delivery for treating stroke. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
72
|
Morris GP, Gowing EK, Courtney J, Coombe HE, King NE, Rewell SSJ, Howells DW, Clarkson AN, Sutherland BA. Vascular perfusion differs in two distinct PDGFRβ-positive zones within the ischemic core of male mice 2 weeks following photothrombotic stroke. J Neurosci Res 2023; 101:278-292. [PMID: 36412274 PMCID: PMC10952185 DOI: 10.1002/jnr.25146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/07/2022] [Accepted: 11/06/2022] [Indexed: 11/23/2022]
Abstract
Stroke therapy has largely focused on preventing damage and encouraging repair outside the ischemic core, as the core is considered irreparable. Recently, several studies have suggested endogenous responses within the core are important for limiting the spread of damage and enhancing recovery, but the role of blood flow and capillary pericytes in this process is unknown. Using the Rose Bengal photothrombotic model of stroke, we illustrate blood vessels are present in the ischemic core and peri-lesional regions 2 weeks post stroke in male mice. A FITC-albumin gel cast of the vasculature revealed perfusion of these vessels, suggesting cerebral blood flow (CBF) may be partially present, without vascular leakage. The length of these vessels is significantly reduced compared to uninjured regions, but the average width is greater, suggesting they are either larger vessels that survived the initial injury, smaller vessels that have expanded in size (i.e., arteriogenesis), or that neovascularization begins with larger vessels. Concurrently, we observed an increase in platelet-derived growth factor receptor beta (PDGFRβ, a marker of pericytes) expression within the ischemic core in two distinct patterns, one which resembles pericyte-derived fibrotic scarring at the edge of the core, and one which is vessel associated and may represent blood vessel recovery. We find little evidence for dividing cells on these intralesional blood vessels 2 weeks post stroke. Our study provides evidence flow is present in PDGFRβ-positive vessels in the ischemic core 2 weeks post stroke. We hypothesize intralesional CBF is important for limiting injury and for encouraging endogenous repair following cerebral ischemia.
Collapse
Affiliation(s)
- Gary P. Morris
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Emma K. Gowing
- Department of Anatomy, Brain Health Research Centre and Brain Research New ZealandUniversity of OtagoDunedinNew Zealand
| | - Jo‐Maree Courtney
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Hannah E. Coombe
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Natalie E. King
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Sarah S. J. Rewell
- Florey Institute of Neuroscience and Mental HealthMelbourne Brain Centre, Austin CampusHeidelbergVictoriaAustralia
| | - David W. Howells
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New ZealandUniversity of OtagoDunedinNew Zealand
| | - Brad A. Sutherland
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
73
|
Wang L, Zhang B, Yang X, Guo S, Waterhouse GI, Song G, Guan S, Liu A, Cheng L, Zhou S. Targeted alleviation of ischemic stroke reperfusion via atorvastatin-ferritin Gd-layered double hydroxide. Bioact Mater 2023; 20:126-136. [PMID: 35663341 PMCID: PMC9136047 DOI: 10.1016/j.bioactmat.2022.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022] Open
Abstract
In acute ischemic stroke therapy, potent neuroprotective agents are needed that prevent neural injuries caused by reactive oxygen species (ROS) during ischemic reperfusion. Herein, a novel 2D neuroprotective agent (AFGd-LDH) is reported, comprising Gd-containing layered double hydroxide nanosheets (Gd-LDH, as a drug nanocarrier/MRI contrast agent), atorvastatin (ATO, as a neuroprotective drug) and the ferritin heavy subunit (FTH, as a blood brain barrier transport agent). Experiments revealed AFGd-LDH to possess outstanding antioxidant activity, neuroprotective properties, blood‒brain barrier transit properties, and biocompatibility. In vitro studies demonstrated the ROS scavenging efficiency of AFGd‒LDH to be ∼90%, surpassing CeO2 (50%, a ROS scavenger) and edaravone (52%, a clinical neuroprotective drug). Ischemia‒reperfusion model studies in mice showed AFGd‒LDH could dramatically decrease apoptosis induced by reperfusion, reducing the infarct area by 67% and lowering the neurological deficit score from 3.2 to 0.9. AFGd-LDH also offered outstanding MRI performance, thus enabling simultaneous imaging and ischemia reperfusion therapy. The simple stepwise method was used to construct AFGd-LDH by the confinement of atorvastatin and the ferritin heavy subunit (FTH) with Gd-LDH. AFGd-LDH demonstrated outstanding antioxidant activity and ROS scavenging efficiency. AFGd-LDH offered neuroprotective properties to dramatically decrease apoptosis induced by reperfusion. AFGd-LDH presented blood‒brain barrier transit properties and outstanding MRI performance, thus enabling simultaneous imaging and ischemia reperfusion therapy.
Collapse
|
74
|
Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands. Nat Commun 2023; 14:457. [PMID: 36709345 PMCID: PMC9884236 DOI: 10.1038/s41467-023-36133-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Injectable biomimetic hydrogels have great potential for use in regenerative medicine as cellular delivery vectors. However, they can suffer from issues relating to hypoxia, including poor cell survival, differentiation, and functional integration owing to the lack of an established vascular network. Here we engineer a hybrid myoglobin:peptide hydrogel that can concomitantly deliver stem cells and oxygen to the brain to support engraftment until vascularisation can occur naturally. We show that this hybrid hydrogel can modulate cell fate specification within progenitor cell grafts, resulting in a significant increase in neuronal differentiation. We find that the addition of myoglobin to the hydrogel results in more extensive innervation within the host tissue from the grafted cells, which is essential for neuronal replacement strategies to ensure functional synaptic connectivity. This approach could result in greater functional integration of stem cell-derived grafts for the treatment of neural injuries and diseases affecting the central and peripheral nervous systems.
Collapse
|
75
|
Ji W, Wu Z, Wen J, Tang H, Chen Z, Xue B, Tian Z, Ba Y, Zhang N, Wen X, Hou B. A simple method to isolate structurally and chemically intact brain vascular basement membrane for neural regeneration following traumatic brain injury. Biomater Res 2023; 27:2. [PMID: 36635718 PMCID: PMC9837976 DOI: 10.1186/s40824-023-00341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The brain vascular basement membrane (brain-VBM) is an important component of the brain extracellular matrix, and the three-dimensional structure of the cerebrovascular network nested with many cell-adhesive proteins may provide guidance for brain tissue regeneration. However, the potential of ability of brain-VBM to promote neural tissue regeneration has not been examined due to the technical difficulty of isolating intact brain-VBM. METHODS The present study developed a simple, effective method to isolate structurally and compositionally intact brain-VBM. Structural and component properties of the brain-VBM were characterized to confirm the technique. Seed cells were cocultured with brain-VBM in vitro to analyze biocompatibility and neurite extension. An experimental rat model of focal traumatic brain injury (TBI) induced by controlled cortical impact were conducted to further test the tissue regeneration ability of brain-VBM. RESULTS Brain-VBM isolated using genipin showed significantly improved mechanical properties, was easy to handle, supported high cell viability, exhibited strong cell adhesive properties, and promoted neurite extension and outgrowth. Further testing of the isolated brain-VBM transplanted at lesion sites in an experimental rat model of focal TBI demonstrated considerable promise for reconstructing a complete blood vessel network that filled in the lesion cavity and promoting repopulation of neural progenitor cells and neurons. CONCLUSION The technique allows isolation of intact brain-VBM as a 3D microvascular scaffold to support brain tissue regeneration following TBI and shows considerable promise for the production of naturally-derived biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Wanqing Ji
- grid.410737.60000 0000 8653 1072Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623 China
| | - Zhiru Wu
- grid.412679.f0000 0004 1771 3402Department of Nephrology, Dongcheng branch of the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiaming Wen
- grid.410737.60000 0000 8653 1072Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623 China
| | - Hengxin Tang
- grid.79703.3a0000 0004 1764 3838Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Zhuopeng Chen
- grid.12981.330000 0001 2360 039XDepartment of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630 Guangdong Province China
| | - Bo Xue
- grid.268154.c0000 0001 2156 6140Shared Research Facilities, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26506 USA
| | - Zhenming Tian
- grid.12981.330000 0001 2360 039XDepartment of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630 Guangdong Province China
| | - Yueyang Ba
- grid.12981.330000 0001 2360 039XDepartment of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630 Guangdong Province China
| | - Ning Zhang
- grid.224260.00000 0004 0458 8737Department of Biomedical Engineering, Institute For Engineering and Medicine, Virginia Commonwealth University, Room 399, 601 West Main Street, Richmond, VA 23220 USA
| | - Xuejun Wen
- grid.224260.00000 0004 0458 8737Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23220 USA
| | - Bo Hou
- grid.12981.330000 0001 2360 039XDepartment of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630 Guangdong Province China
| |
Collapse
|
76
|
Sutherland B, Premilovac D. Acute and long-term changes in blood flow after ischemic stroke: challenges and opportunities. Neural Regen Res 2023; 18:799-800. [PMID: 36204841 PMCID: PMC9700091 DOI: 10.4103/1673-5374.350699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
77
|
Weber RZ, Mulders G, Perron P, Tackenberg C, Rust R. Molecular and anatomical roadmap of stroke pathology in immunodeficient mice. Front Immunol 2022; 13:1080482. [PMID: 36569903 PMCID: PMC9785704 DOI: 10.3389/fimmu.2022.1080482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Background Stroke remains a leading cause of disability and death worldwide. It has become apparent that inflammation and immune mediators have a pre-dominant role in initial tissue damage and long-term recovery. Still, different immunosuppressed mouse models are necessary in stroke research e.g., to evaluate therapies using human cell grafts. Despite mounting evidence delineating the importance of inflammation in the stroke pathology, it is poorly described to what extent immune deficiency influences overall stroke outcome. Methods Here, we assessed the stroke pathology of popular genetic immunodeficient mouse models, i.e., NOD scid gamma (NSG) and recombination activating gene 2 (Rag2-/-) mice as well as pharmacologically immunosuppressed mice and compared them to immune competent, wildtype (WT) C57BL/6J mice three weeks after injury. We performed histology, gene expression, blood serum and behavioural analysis to identify the impact of immunosuppression on stroke progression. Results We detected changes in microglia activation/macrophage infiltration, scar-forming and vascular repair in immune-suppressed mice three weeks after injury. Transcriptomic analysis of stroked tissue revealed the strongest deviation from WT was observed in NSG mice affecting immunological and angiogenic pathways. Pharmacological immunosuppression resulted in the least variation in gene expression compared with the WT. These anatomical and genetic changes did not affect functional recovery in a time course of three weeks. To determine whether timing of immunosuppression is critical, we compared mice with acute and delayed pharmacological immunosuppression after stroke. Mice with delayed immunosuppression (7d) showed increased inflammatory and scarring responses compared to animals acutely treated with tacrolimus, thus more closely resembling WT pathology. Transplantation of human cells in the brains of immunosuppressed mice led to prolonged cell survival in all immunosuppressed mouse models, which was most consistent in NSG and Rag2-/- mice. Conclusions We detected distinct anatomical and molecular changes in the stroke pathology between individual immunosuppressed mouse models that should be considered when selecting an appropriate mouse model for stroke research.
Collapse
Affiliation(s)
- Rebecca Z. Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Geertje Mulders
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Patrick Perron
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland,*Correspondence: Ruslan Rust,
| |
Collapse
|
78
|
Fan H, Duan H, Hao P, Gao Y, Zhao W, Hao F, Li X, Yang Z. Cellular regeneration treatments for traumatic brain injury. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
79
|
Yoon HJ, Lee S, Kim TY, Yu SE, Kim HS, Chung YS, Chung S, Park S, Shin YC, Wang EK, Noh J, Kim HJ, Ku CR, Koh H, Kim CS, Park JS, Shin YM, Sung HJ. Sprayable nanomicelle hydrogels and inflammatory bowel disease patient cell chips for development of intestinal lesion-specific therapy. Bioact Mater 2022; 18:433-445. [PMID: 35415304 PMCID: PMC8971598 DOI: 10.1016/j.bioactmat.2022.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022] Open
Abstract
All-in-one treatments represent a paradigm shift in future medicine. For example, inflammatory bowel disease (IBD) is mainly diagnosed by endoscopy, which could be applied for not only on-site monitoring but also the intestinal lesion-targeted spray of injectable hydrogels. Furthermore, molecular conjugation to the hydrogels would program both lesion-specific adhesion and drug-free therapy. This study validated this concept of all-in-one treatment by first utilizing a well-known injectable hydrogel that underwent efficient solution-to-gel transition and nanomicelle formation as a translatable component. These properties enabled spraying of the hydrogel onto the intestinal walls during endoscopy. Next, peptide conjugation to the hydrogel guided endoscopic monitoring of IBD progress upon adhesive gelation with subsequent moisturization of inflammatory lesions, specifically by nanomicelles. The peptide was designed to mimic the major component that mediates intestinal interaction with Bacillus subtilis flagellin during IBD initiation. Hence, the peptide-guided efficient adhesion of the hydrogel nanomicelles onto Toll-like receptor 5 (TLR5) as the main target of flagellin binding and Notch-1. The peptide binding potently suppressed inflammatory signaling without drug loading, where TLR5 and Notch-1 operated collaboratively through downstream actions of tumor necrosis factor-alpha. The results were produced using a human colorectal cell line, clinical IBD patient cells, gut-on-a-chip, a mouse IBD model, and pig experiments to validate the translational utility. Injectable nanomicelle hydrogel for all-in-one treatment of intestinal inflammation. Spraying of the hydrogel onto the intestinal walls during endoscopy. Peptide-guided detection and moisturization of inflammatory lesions.
Collapse
Affiliation(s)
- Hyo-Jin Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae Young Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Eun Yu
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Seon Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Young Shin Chung
- Department of Obstetrics and Gynecology, Institution of Women's Life Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seyong Chung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Suji Park
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Cheol Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eun Kyung Wang
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jihye Noh
- Department of Pediatrics, Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun Jung Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Cheol Ryong Ku
- Department of Internal Medicine, Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang-Soo Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Numais Co., Ltd., Korea Seoul 04799, Republic of Korea
| | - Joon-Sang Park
- Department of Computer Engineering, Hongik University, Seoul, 04066, Republic of Korea
- Corresponding author.
| | - Young Min Shin
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Corresponding author.
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
80
|
Lainé A, Brot S, Gaillard A. Beneficial Effects of Hyaluronan-Based Hydrogel Implantation after Cortical Traumatic Injury. Cells 2022; 11:cells11233831. [PMID: 36497093 PMCID: PMC9735891 DOI: 10.3390/cells11233831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Traumatic brain injury (TBI) causes cell death mainly in the cerebral cortex. We have previously reported that transplantation of embryonic cortical neurons immediately after cortical injury allows the anatomical reconstruction of injured pathways and that a delay between cortical injury and cell transplantation can partially improve transplantation efficiency. Biomaterials supporting repair processes in combination with cell transplantation are in development. Hyaluronic acid (HA) hydrogel has attracted increasing interest in the field of tissue engineering due to its attractive biological properties. However, before combining the cell with the HA hydrogel for transplantation, it is important to know the effects of the implanted hydrogel alone. Here, we investigated the therapeutic effect of HA on host tissue after a cortical trauma. For this, we implanted HA hydrogel into the lesioned motor cortex of adult mice immediately or one week after a lesion. Our results show the vascularization of the implanted hydrogel. At one month after HA implantation, we observed a reduction in the glial scar around the lesion and the presence of the newly generated oligodendrocytes, immature and mature neurons within the hydrogel. Implanted hydrogel provides favorable environments for the survival and maturation of the newly generated neurons. Collectively, these results suggest a beneficial effect of biomaterial after a cortical traumatic injury.
Collapse
|
81
|
Revete A, Aparicio A, Cisterna BA, Revete J, Luis L, Ibarra E, Segura González EA, Molino J, Reginensi D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int J Biomater 2022; 2022:3606765. [PMID: 36387956 PMCID: PMC9663251 DOI: 10.1155/2022/3606765] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 07/29/2023] Open
Abstract
Due to their particular water absorption capacity, hydrogels are the most widely used scaffolds in biomedical studies to regenerate damaged tissue. Hydrogels can be used in tissue engineering to design scaffolds for three-dimensional cell culture, providing a novel alternative to the traditional two-dimensional cell culture as hydrogels have a three-dimensional biomimetic structure. This material property is crucial in regenerative medicine, especially for the nervous system, since it is a highly complex and delicate structure. Hydrogels can move quickly within the human body without physically disturbing the environment and possess essential biocompatible properties, as well as the ability to form a mimetic scaffold in situ. Therefore, hydrogels are perfect candidates for biomedical applications. Hydrogels represent a potential alternative to regenerating tissue lost after removing a brain tumor and/or brain injuries. This reason presents them as an exciting alternative to highly complex human physiological problems, such as injuries to the central nervous system and neurodegenerative disease.
Collapse
Affiliation(s)
- Andrea Revete
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | - Andrea Aparicio
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Javier Revete
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Luis Luis
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Ernesto Ibarra
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | | | - Jay Molino
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Diego Reginensi
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
- Integrative Neurobiology, School of Medicine, Universidad de Panama (UP), Panama, Panama
- Center for Biodiversity and Drug Discovery, INDICASAT-AIP, City of Knowledge, Panama, Panama
| |
Collapse
|
82
|
Xiao P, Gu J, Xu W, Niu X, Zhang J, Li J, Chen Y, Pei Z, Zeng J, Xing S. RTN4/Nogo-A-S1PR2 negatively regulates angiogenesis and secondary neural repair through enhancing vascular autophagy in the thalamus after cerebral cortical infarction. Autophagy 2022; 18:2711-2730. [PMID: 35263212 PMCID: PMC9629085 DOI: 10.1080/15548627.2022.2047344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cerebral infarction induces angiogenesis in the thalamus and influences functional recovery. The mechanisms underlying angiogenesis remain unclear. This study aimed to investigate the role of RTN4/Nogo-A in mediating macroautophagy/autophagy and angiogenesis in the thalamus following middle cerebral artery occlusion (MCAO). We assessed secondary neuronal damage, angiogenesis, vascular autophagy, RTN4 and S1PR2 signaling in the thalamus. The effects of RTN4-S1PR2 on vascular autophagy and angiogenesis were evaluated using lentiviral and pharmacological approaches. The results showed that RTN4 and S1PR2 signaling molecules were upregulated in parallel with angiogenesis in the ipsilateral thalamus after MCAO. Knockdown of Rtn4 by siRNA markedly reduced MAP1LC3B-II conversion and levels of BECN1 and SQSTM1 in vessels, coinciding with enhanced angiogenesis in the ipsilateral thalamus. This effect coincided with rescued neuronal loss of the thalamus and improved cognitive function. Conversely, activating S1PR2 augmented vascular autophagy, along with suppressed angiogenesis and aggravated neuronal damage of the thalamus. Further inhibition of autophagic initiation with 3-methyladenine or spautin-1 enhanced angiogenesis while blockade of lysosomal degradation by bafilomycin A1 suppressed angiogenesis in the ipsilateral thalamus. The control of autophagic flux by RTN4-S1PR2 was verified in vitro. Additionally, ROCK1-BECN1 interaction along with phosphorylation of BECN1 (Thr119) was identified in the thalamic vessels after MCAO. Knockdown of Rtn4 markedly reduced BECN1 phosphorylation whereas activating S1PR2 increased its phosphorylation in vessels. These results suggest that blockade of RTN4-S1PR2 interaction promotes angiogenesis and secondary neural repair in the thalamus by suppressing autophagic activation and alleviating dysfunction of lysosomal degradation in vessels after cerebral infarction.Abbreviations: 3-MA: 3-methyladenine; ACTA2/ɑ-SMA: actin alpha 2, smooth muscle, aorta; AIF1/Iba1: allograft inflammatory factor 1; BafA1: bafilomycin A1; BMVECs: brain microvascular endothelial cells; BrdU: 5-bromo-2'-deoxyuridine; CLDN11/OSP: claudin 11; GFAP: glial fibrillary acidic protein; HUVECs: human umbilical vein endothelial cells; LAMA1: laminin, alpha 1; MAP2: microtubule-associated protein 2; MBP2: myelin basic protein 2; MCAO: middle cerebral artery occlusion; PDGFRB/PDGFRβ: platelet derived growth factor receptor, beta polypeptide; RECA-1: rat endothelial cell antigen-1; RHOA: ras homolog family member A; RHRSP: stroke-prone renovascular hypertensive rats; ROCK1: Rho-associated coiled-coil containing protein kinase 1; RTN4/Nogo-A: reticulon 4; RTN4R/NgR1: reticulon 4 receptor; S1PR2: sphingosine-1-phosphate receptor 2; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Peiyi Xiao
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Jinmin Gu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Wei Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Xingyang Niu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Jingjing Li
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Yicong Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Shihui Xing
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| |
Collapse
|
83
|
Bjørklund G, Zou L, Peana M, Chasapis CT, Hangan T, Lu J, Maes M. The Role of the Thioredoxin System in Brain Diseases. Antioxidants (Basel) 2022; 11:2161. [PMID: 36358532 PMCID: PMC9686621 DOI: 10.3390/antiox11112161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
The thioredoxin system, consisting of thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH, plays a fundamental role in the control of antioxidant defenses, cell proliferation, redox states, and apoptosis. Aberrations in the Trx system may lead to increased oxidative stress toxicity and neurodegenerative processes. This study reviews the role of the Trx system in the pathophysiology and treatment of Alzheimer's, Parkinson's and Huntington's diseases, brain stroke, and multiple sclerosis. Trx system plays an important role in the pathophysiology of those disorders via multiple interactions through oxidative stress, apoptotic, neuro-immune, and pro-survival pathways. Multiple aberrations in Trx and TrxR systems related to other redox systems and their multiple reciprocal relationships with the neurodegenerative, neuro-inflammatory, and neuro-oxidative pathways are here analyzed. Genetic and environmental factors (nutrition, metals, and toxins) may impact the function of the Trx system, thereby contributing to neuropsychiatric disease. Aberrations in the Trx and TrxR systems could be a promising drug target to prevent and treat neurodegenerative, neuro-inflammatory, neuro-oxidative stress processes, and related brain disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
84
|
Chen P, Xu C, Wu P, Liu K, Chen F, Chen Y, Dai H, Luo Z. Wirelessly Powered Electrical-Stimulation Based on Biodegradable 3D Piezoelectric Scaffolds Promotes the Spinal Cord Injury Repair. ACS NANO 2022; 16:16513-16528. [PMID: 36174221 DOI: 10.1021/acsnano.2c05818] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An electroactive scaffold integrated with noninvasive in vivo electrical-stimulation (ES) capability shows great promise in the repair and regeneration of damaged tissues. Developing high-performance piezoelectric biomaterials which can simultaneously serve as both a biodegradable tissue scaffold and controllable electrical stimulator remains a great challenge. Herein, we constructed a biodegradable high-performance 3D piezoelectric scaffold with ultrasound (US)-driven wireless ES capability, and demonstrated its successful application for the repair of spinal cord injuries in a rat model. The 3D multichannel piezoelectric scaffold was prepared by electrospinning of poly(lactic acid) (PLA) nanofibers incorporated with biodegradable high-performance piezoelectric potassium sodium niobate (K0.5Na0.5NbO3, KNN) nanowires. With programmed US irradiation as a remote mechanical stimulus, the on-demand in vivo ES with an adjustable timeline, duration, and strength can be delivered by the 3D piezoelectric scaffold. Under proper US excitation, the 3D tissue scaffolds made of the piezoelectric composite nanofibers can accelerate the recovery of motor functions and enhance the repair of spinal cord injury. The immunohistofluorescence investigation indicated that the 3D piezoelectric scaffolds combined with the US-driven in vivo ES promoted neural stem cell differentiation and endogenous angiogenesis in the lesion. This work highlights the potential application of a biodegradable high-performance piezoelectric scaffold providing US-driven on-demand electrical cues for regenerative medicine.
Collapse
Affiliation(s)
- Ping Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Chao Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Ping Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Feixiang Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan430071, China
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan430071, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
85
|
Taurine-Upregulated Gene 1 Attenuates Cerebral Angiogenesis following Ischemic Stroke in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1037525. [PMID: 36330459 PMCID: PMC9626194 DOI: 10.1155/2022/1037525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022]
Abstract
Objective Angiogenesis is one of the therapeutic targets of cerebral infarction. Long noncoding RNAs (lncRNAs) can regulate the pathological process of angiogenesis following ischemic stroke. Taurine-upregulated gene 1 (TUG1), an lncRNA, is correlated to ischemic stroke. We intended to determine the effect of TUG1 on angiogenesis following an ischemic stroke. Materials and Methods Middle cerebral artery occlusion (MCAO) was adopted to build a focal ischemic model of the rat brain, and pcDNA-TUG1 and miR-26a mimics were injected into rats. Neurological function was estimated through modified neurological severity scores. The volume of focal brain infarction was calculated through 2,3,5-triphenyltetrazolium chloride staining. The level of TUG1 and miR-26a was measured by PCR. The expression of vascular endothelial growth factor (VEGF) and CD31 was checked using immunohistochemistry and western blot. The correlation between miR-26a and TUG1 was verified through a luciferase reporter assay. Results TUG1 increased noticeably while miR-26a was markedly reduced in MCAO rats. Overexpression of miR-26a improved neurological function recovery and enhanced cerebral angiogenesis in MCAO rats. TUG1 overexpression aggravated neurological deficits and suppressed cerebral angiogenesis in MCAO rats. Bioinformatics analysis revealed that miR-26a was one of the predicted targets of TUG1. Furthermore, TUG1 combined with miR-26a to regulate angiogenesis. TUG1 overexpression antagonized the role of miR-26a in neurological recovery and angiogenesis in MCAO rats. Conclusions TUG1/miR-26a, which may act as a regulatory axis in angiogenesis following ischemic stroke, can be considered a potential target for cerebral infarction therapy.
Collapse
|
86
|
Weber RZ, Mulders G, Kaiser J, Tackenberg C, Rust R. Deep learning-based behavioral profiling of rodent stroke recovery. BMC Biol 2022; 20:232. [PMID: 36243716 PMCID: PMC9571460 DOI: 10.1186/s12915-022-01434-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Stroke research heavily relies on rodent behavior when assessing underlying disease mechanisms and treatment efficacy. Although functional motor recovery is considered the primary targeted outcome, tests in rodents are still poorly reproducible and often unsuitable for unraveling the complex behavior after injury. RESULTS Here, we provide a comprehensive 3D gait analysis of mice after focal cerebral ischemia based on the new deep learning-based software (DeepLabCut, DLC) that only requires basic behavioral equipment. We demonstrate a high precision 3D tracking of 10 body parts (including all relevant joints and reference landmarks) in several mouse strains. Building on this rigor motion tracking, a comprehensive post-analysis (with >100 parameters) unveils biologically relevant differences in locomotor profiles after a stroke over a time course of 3 weeks. We further refine the widely used ladder rung test using deep learning and compare its performance to human annotators. The generated DLC-assisted tests were then benchmarked to five widely used conventional behavioral set-ups (neurological scoring, rotarod, ladder rung walk, cylinder test, and single-pellet grasping) regarding sensitivity, accuracy, time use, and costs. CONCLUSIONS We conclude that deep learning-based motion tracking with comprehensive post-analysis provides accurate and sensitive data to describe the complex recovery of rodents following a stroke. The experimental set-up and analysis can also benefit a range of other neurological injuries that affect locomotion.
Collapse
Affiliation(s)
- Rebecca Z Weber
- Institute for Regenerative Medicine (IREM), University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Geertje Mulders
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Julia Kaiser
- Burke Neurological Institute, White Plains, NY, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine (IREM), University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Schlieren, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Ruslan Rust
- Institute for Regenerative Medicine (IREM), University of Zurich, Campus Schlieren, Wagistrasse 12, 8952, Schlieren, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
87
|
Zhong JX, Raghavan P, Desai TA. Harnessing Biomaterials for Immunomodulatory-Driven Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022; 9:224-239. [PMID: 37333620 PMCID: PMC10272262 DOI: 10.1007/s40883-022-00279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Abstract The immune system plays a crucial role during tissue repair and wound healing processes. Biomaterials have been leveraged to assist in this in situ tissue regeneration process to dampen the foreign body response by evading or suppressing the immune system. An emerging paradigm within regenerative medicine is to use biomaterials to influence the immune system and create a pro-reparative microenvironment to instigate endogenously driven tissue repair. In this review, we discuss recent studies that focus on immunomodulation of innate and adaptive immune cells for tissue engineering applications through four biomaterial-based mechanisms of action: biophysical cues, chemical modifications, drug delivery, and sequestration. These materials enable augmented regeneration in various contexts, including vascularization, bone repair, wound healing, and autoimmune regulation. While further understanding of immune-material interactions is needed to design the next generation of immunomodulatory biomaterials, these materials have already demonstrated great promise for regenerative medicine. Lay Summary The immune system plays an important role in tissue repair. Many biomaterial strategies have been used to promote tissue repair, and recent work in this area has looked into the possibility of doing repair by tuning. Thus, we examined the literature for recent works showcasing the efficacy of these approaches in animal models of injuries. In these studies, we found that biomaterials successfully tuned the immune response and improved the repair of various tissues. This highlights the promise of immune-modulating material strategies to improve tissue repair.
Collapse
Affiliation(s)
- Justin X. Zhong
- UC Berkeley – UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143 USA
| | - Preethi Raghavan
- UC Berkeley – UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143 USA
| | - Tejal A. Desai
- UC Berkeley – UCSF Graduate Program in Bioengineering, San Francisco, CA 94143 USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143 USA
- Department of Bioengineering, University of California, Berkeley, CA 94720 USA
- School of Engineering, Brown University, Providence, RI 02912 USA
| |
Collapse
|
88
|
Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat Commun 2022; 13:5172. [PMID: 36056007 PMCID: PMC9440098 DOI: 10.1038/s41467-022-32912-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury causes inflammation and glial scarring that impede brain tissue repair, so stimulating angiogenesis and recovery of brain function remain challenging. Here we present an adaptable conductive microporous hydrogel consisting of gold nanoyarn balls-coated injectable building blocks possessing interconnected pores to improve angiogenesis and recovery of brain function in traumatic brain injury. We show that following minimally invasive implantation, the adaptable hydrogel is able to fill defects with complex shapes and regulate the traumatic brain injury environment in a mouse model. We find that placement of this injectable hydrogel at peri-trauma regions enhances mature brain-derived neurotrophic factor by 180% and improves angiogenesis by 250% in vivo within 2 weeks after electromagnetized stimulation, and that these effects facilitate neuron survival and motor function recovery by 50%. We use blood oxygenation level-dependent functional neuroimaging to reveal the successful restoration of functional brain connectivity in the corticostriatal and corticolimbic circuits.
Collapse
|
89
|
Ataie Z, Kheirabadi S, Zhang JW, Kedzierski A, Petrosky C, Jiang R, Vollberg C, Sheikhi A. Nanoengineered Granular Hydrogel Bioinks with Preserved Interconnected Microporosity for Extrusion Bioprinting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202390. [PMID: 35922399 DOI: 10.1002/smll.202202390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 06/15/2023]
Abstract
3D bioprinting of granular hydrogels comprising discrete hydrogel microparticles (microgels) may overcome the intrinsic structural limitations of bulk (nanoporous) hydrogel bioinks, enabling the fabrication of modular thick tissue constructs. The additive manufacturing of granular scaffolds has predominantly relied on highly jammed microgels to render the particulate suspensions shear yielding and extrudable. This inevitably compromises void spaces between microgels (microporosity), defeating rapid cell penetration, facile metabolite and oxygen transfer, and cell viability. Here, this persistent bottleneck is overcome by programming microgels with reversible interfacial nanoparticle self-assembly, enabling the fabrication of nanoengineered granular bioinks (NGB) with well-preserved microporosity, enhanced printability, and shape fidelity. The microporous architecture of bioprinted NGB constructs permits immediate post-printing 3D cell seeding, which may expand the library of bioinks via circumventing the necessity of bioorthogonality for cell-laden scaffold formation. This work opens new opportunities for the 3D bioprinting of tissue engineering microporous scaffolds beyond the traditional biofabrication window.
Collapse
Affiliation(s)
- Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jenna Wanjing Zhang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexander Kedzierski
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Carter Petrosky
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rhea Jiang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christian Vollberg
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
90
|
Hou X, Zhong D, Chen H, Gu Z, Gong Q, Ma X, Zhang H, Zhu H, Luo K. Recent advances in hyaluronic acid-based nanomedicines: Preparation and application in cancer therapy. Carbohydr Polym 2022; 292:119662. [PMID: 35725165 DOI: 10.1016/j.carbpol.2022.119662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
|
91
|
Wei W, Hao M, Zhou K, Wang Y, Lu Q, Zhang H, Wu Y, Zhang T, Liu Y. In situ multimodal transparent electrophysiological hydrogel for in vivo miniature two-photon neuroimaging and electrocorticogram analysis. Acta Biomater 2022; 152:86-99. [PMID: 36041650 DOI: 10.1016/j.actbio.2022.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022]
Abstract
Hydrogels are widely used in nerve tissue repair and show good histocompatibility. There remain, however, challenges with hydrogels for applications related to neural signal recording, which requires a tissue-like biomechanical property, high optical transmission, and low impedance. Here, we describe a transparent hydrogel that is highly biocompatible and has a low Young's modulus (0.15 MPa). Additionally, it functions well as an implantable electrode, as it conformably adheres to brain tissue, results in minimal inflammation and has a low impedance of 150 Ω at 1 kHz. Its high transmittance, corresponding to 93.35% at a wavelength of 300 nm to 1100 nm, supports its application in two-photon imaging. Consistent with these properties, this flexible multimodal transparent electrophysiological hydrogel (MTEHy) electrode was able to record neuronal Ca2+ activity using miniature two-photon microscopy. It also used to monitor electrocorticogram (ECoG) activity in real time in freely moving mice. Moreover, its compatibility with magnetic resonance imaging (MRI), indicates that MTEHy is a new tool for studying activity in the cerebral cortex. STATEMENT OF SIGNIFICANCE: : Future brain science research requires better-performing implantable electrodes to detect neuronal signaling in the brain. In this study, we developed a new hydrogel material, MTEHy-3, that shows high biocompatibility, high optical transmittance (93.35%) and a low Young's modulus (0.15 MPa). Using as high-biocompatible metal-free hydrogel electrode, MTEHy-3 can be implanted for a long time to study the cerebral cortex, and synchronously record the Ca2+ signaling activity of individual neurons and monitor electrocorticogram activity through ionic conduction in freely moving mice. At the same time, non-metallic MTEHy-3 is also suitable for magnetic resonance imaging. Thus MTEHy-3 provides one in situ multimodal tool to detect neuronal signaling with both high spatial resolution and high temporal resolution in the brain.
Collapse
Affiliation(s)
- Wei Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Mingming Hao
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; i-Lab., Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China; Lihuili Hospital Affiliated to Ningbo University, Ningbo 315211, China
| | - Kai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Yongfeng Wang
- i-Lab., Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qifeng Lu
- School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Hui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China
| | - Yue Wu
- i-Lab., Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ting Zhang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; i-Lab., Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China..
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China.; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
92
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
93
|
Wang Z, Zhao H, Tang X, Meng T, Khutsishvili D, Xu B, Ma S. CNS Organoid Surpasses Cell-Laden Microgel Assembly to Promote Spinal Cord Injury Repair. Research (Wash D C) 2022; 2022:9832128. [PMID: 36061824 PMCID: PMC9394056 DOI: 10.34133/2022/9832128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
The choice of therapeutic agents remains an unsolved issue in the repair of spinal cord injury. In this work, various agents and configurations were investigated and compared for their performance in promoting nerve regeneration, including bead assembly and bulk gel of collagen and Matrigel, under acellular and cell-laden conditions, and cerebral organoid (CO) as the in vitro preorganized agent. First, in Matrigel-based agents and the CO transplantations, the recipient animal gained more axon regeneration and the higher Basso, Beattie, and Bresnahan (BBB) scoring than the grafted collagen gels. Second, new nerves more uniformly infiltrated into the transplants in bead form assembly than the molded chunks. Third, the materials loaded the neural progenitor cells (NPCs) or the CO implantation groups received more regenerated nerve fibers than their acellular counterparts, suggesting the necessity to transplant exogenous cells for large trauma (e.g., a 5 mm long spinal cord transect). In addition, the activated microglial cells might benefit from neural regeneration after receiving CO transplantation in the recipient animals. The organoid augmentation may suggest that in vitro maturation of a microtissue complex is necessary before transplantation and proposes organoids as the premium therapeutic agents for nerve regeneration.
Collapse
Affiliation(s)
- Zitian Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Haoran Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Xiaowei Tang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Tianyu Meng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Davit Khutsishvili
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| | - Bing Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
94
|
Sideris E, Kioulaphides S, Wilson K, Yu A, Chen J, Carmichael ST, Segura T. Particle hydrogels decrease cerebral atrophy and attenuate astrocyte and microglia/macrophage reactivity after stroke. ADVANCED THERAPEUTICS 2022; 5:2200048. [PMID: 36589207 PMCID: PMC9797126 DOI: 10.1002/adtp.202200048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/05/2023]
Abstract
Increasing numbers of individuals live with stroke related disabilities. Following stroke, highly reactive astrocytes and pro-inflammatory microglia can release cytokines and lead to a cytotoxic environment that causes further brain damage and prevents endogenous repair. Paradoxically, these same cells also activate pro-repair mechanisms that contribute to endogenous repair and brain plasticity. Here, we show that the direct injection of a hyaluronic acid based microporous annealed particle (MAP) hydrogel into the stroke core in mice reduces the percent of highly reactive astrocytes, increases the percent of alternatively activated microglia, decreases cerebral atrophy and preserves NF200 axonal bundles. Further, we show that MAP hydrogel promotes reparative astrocyte infiltration into the lesion, which directly coincides with axonal penetration into the lesion. This work shows that the injection of a porous scaffold into the stroke core can lead to clinically relevant decrease in cerebral atrophy and modulates astrocytes and microglia towards a pro-repair phenotype.
Collapse
Affiliation(s)
- Elias Sideris
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, United States
| | - Sophia Kioulaphides
- Departments of Biomedical Engineering, Neurology, and Dermatology, Duke University, Durham, NC, United States
| | - Katrina Wilson
- Departments of Biomedical Engineering, Neurology, and Dermatology, Duke University, Durham, NC, United States
| | - Aaron Yu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, United States
| | - Jun Chen
- Departments of Biomedical Engineering, Neurology, and Dermatology, Duke University, Durham, NC, United States
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Tatiana Segura
- Departments of Biomedical Engineering, Neurology, and Dermatology, Duke University, Durham, NC, United States
| |
Collapse
|
95
|
Fernández-Serra R, Martínez-Alonso E, Alcázar A, Chioua M, Marco-Contelles J, Martínez-Murillo R, Ramos M, Guinea GV, González-Nieto D. Postischemic Neuroprotection of Aminoethoxydiphenyl Borate Associates Shortening of Peri-Infarct Depolarizations. Int J Mol Sci 2022; 23:ijms23137449. [PMID: 35806455 PMCID: PMC9266990 DOI: 10.3390/ijms23137449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022] Open
Abstract
Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.
Collapse
Affiliation(s)
- Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
| | - Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (E.M.-A.); (A.A.)
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (E.M.-A.); (A.A.)
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), 28006 Madrid, Spain; (M.C.); (J.M.-C.)
| | | | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain; (R.F.-S.); (M.R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-910679280
| |
Collapse
|
96
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
97
|
Muraoka T, Ajioka I. Self-assembling Molecular Medicine for the Subacute Phase of Ischemic Stroke. Neurochem Res 2022; 47:2488-2498. [PMID: 35666393 PMCID: PMC9463329 DOI: 10.1007/s11064-022-03638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Ischemic stroke leads to acute neuron death and forms an injured core, triggering delayed cell death at the penumbra. The impaired brain functions after ischemic stroke are hardly recovered because of the limited regenerative properties. However, recent rodent intervention studies manipulating the extracellular environments at the subacute phase shed new light on the regenerative potency of the injured brain. This review introduces the rational design of artificial extracellular matrix (ECM) mimics using supramolecular peptidic scaffolds, which self-assemble via non-covalent bonds and form hydrogels. The facile customizability of the peptide structures allows tuning the hydrogels' physical and biochemical properties, such as charge states, hydrophobicity, cell adhesiveness, stiffness, and stimuli responses. Supramolecular peptidic materials can create safer and more economical drugs than polymer materials and cell transplantation. We also discuss the importance of activating developmental programs for the recovery at the subacute phase of ischemic stroke. Self-assembling molecular medicine mimicking the ECMs and activating developmental programs may stand as a new drug modality of regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan. .,Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan.
| | - Itsuki Ajioka
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan. .,Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
98
|
Wang L, Li T, Wang Z, Hou J, Liu S, Yang Q, Yu L, Guo W, Wang Y, Guo B, Huang W, Wu Y. Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials 2022; 285:121537. [DOI: 10.1016/j.biomaterials.2022.121537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
|
99
|
Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar Drugs 2022; 20:md20060372. [PMID: 35736175 PMCID: PMC9228671 DOI: 10.3390/md20060372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.
Collapse
|
100
|
Liu X, Yang M, Lei F, Wang Y, Yang M, Mao C. Highly Effective Stroke Therapy Enabled by Genetically Engineered Viral Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201210. [PMID: 35315947 DOI: 10.1002/adma.202201210] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Stroke results in the formation of a cavity in the infarcted brain tissue. Angiogenesis and neurogenesis are poor in the cavity, preventing brain-tissue regeneration for stroke therapy. To regenerate brain tissue in the cavity, filamentous phages, the human-safe nanofiber-like bacteria-specific viruses, are genetically engineered to display many copies of RGD peptide on the sidewalls. The viral nanofibers, electrostatically coated on biocompatible injectable silk protein microparticles, not only promote adhesion, proliferation, and infiltration of neural stem cells (NSCs), but also induce NSCs to differentiate preferentially into neurons in basal medium within 3 d. After the NSC-loaded microparticles are injected into the stroke cavity of rat models, the phage nanofibers on the microparticles stimulate angiogenesis and neurogenesis in the stroke sites within two weeks for brain regeneration, leading to functional recovery of limb motor control of rats within 12 weeks. The viral nanofibers also brought about the desired outcomes for stroke therapy, such as reducing inflammatory response, decreasing thickness of astrocytes scars, and increasing neuroblasts response in the subventricular zone. As virtually any functional peptide can be displayed on the phage by genetic means, the phage nanofibers hold promise as a unique and effective injectable biomaterial for stroke therapy.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Mei Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, P. R. China
| | - Fang Lei
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yaru Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, P. R. China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|