51
|
Deshwal A, Shikha, Maiti S. Trade-off between carbohydrates and metal ions regulates the chemotactic directionality of alkaline phosphatase. Chem Commun (Camb) 2022; 58:12851-12854. [DOI: 10.1039/d2cc04360b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of the Hofmeister interaction in governing the chemotactic behavior of alkaline phosphatase in the presence of carbohydrate and metal ion gradients has been established.
Collapse
Affiliation(s)
- Akshi Deshwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Shikha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
52
|
Priyanka, Shandilya E, Brar SK, Mahato RR, Maiti S. Spatiotemporal dynamics of self-assembled structures in enzymatically induced agonistic and antagonistic conditions. Chem Sci 2021; 13:274-282. [PMID: 35059177 PMCID: PMC8694342 DOI: 10.1039/d1sc05353a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/20/2021] [Indexed: 12/20/2022] Open
Abstract
Predicting and designing systems with dynamic self-assembly properties in a spatiotemporal fashion is an important research area across disciplines ranging from understanding the fundamental non-equilibrium features of life to the fabrication of next-generation materials with life-like properties. Herein, we demonstrate a spatiotemporal dynamics pattern in the self-assembly behavior of a surfactant from an unorganized assembly, induced by adenosine triphosphate (ATP) and enzymes responsible for the degradation or conversion of ATP. We report the different behavior of two enzymes, alkaline phosphatase (ALP) and hexokinase (HK), towards adenosine triphosphate (ATP)-driven surfactant assembly, which also results in contrasting spatiotemporal dynamic assembly behavior. Here, ALP acts antagonistically, resulting in transient self-assemblies, whereas HK shows agonistic action with the ability to sustain the assemblies. This dynamic assembly behavior was then used to program the time-dependent emergence of a self-assembled structure in a two-dimensional space by maintaining concentration gradients of the enzymes and surfactant at different locations, demonstrating a new route for obtaining 'spatial' organizational adaptability in a self-organized system of interacting components for the incorporation of programmed functionality.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| | - Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| | - Surinder Kaur Brar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| | - Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli 140306 India
| |
Collapse
|
53
|
Booth R, Insua I, Ahmed S, Rioboo A, Montenegro J. Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets. Nat Commun 2021; 12:6421. [PMID: 34741043 PMCID: PMC8571317 DOI: 10.1038/s41467-021-26681-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/17/2021] [Indexed: 02/02/2023] Open
Abstract
One-dimensional (1D) supramolecular polymers are commonly found in natural and synthetic systems to prompt functional responses that capitalise on hierarchical molecular ordering. Despite amphiphilic self-assembly being significantly studied in the context of aqueous encapsulation and autopoiesis, very little is currently known about the physico-chemical consequences and functional role of 1D supramolecular polymerisation confined in aqueous compartments. Here, we describe the different phenomena that resulted from the chemically triggered supramolecular fibrillation of synthetic peptide amphiphiles inside water microdroplets. The confined connection of suitable dormant precursors triggered a physically autocatalysed chemical reaction that resulted in functional environmental responses such as molecular uptake, fusion and chemical exchange. These results demonstrate the potential of minimalistic 1D supramolecular polymerisation to modulate the behaviour of individual aqueous entities with their environment and within communities.
Collapse
Affiliation(s)
- Richard Booth
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Sahnawaz Ahmed
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Alicia Rioboo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
54
|
Abstract
A pearl's distinguished beauty and toughness are attributable to the periodic stacking of aragonite tablets known as nacre. Nacre has naturally occurring mesoscale periodicity that remarkably arises in the absence of discrete translational symmetry. Gleaning the inspiring biomineral design of a pearl requires quantifying its structural coherence and understanding the stochastic processes that influence formation. By characterizing the entire structure of pearls (∼3 mm) in a cross-section at high resolution, we show that nacre has medium-range mesoscale periodicity. Self-correcting growth mechanisms actively remedy disorder and topological defects of the tablets and act as a countervailing process to long-range disorder. Nacre has a correlation length of roughly 16 tablets (∼5.5 µm) despite persistent fluctuations and topological defects. For longer distances (>25 tablets , ∼8.5 µm), the frequency spectrum of nacre tablets follows [Formula: see text] behavior, suggesting that growth is coupled to external stochastic processes-a universality found across disparate natural phenomena, which now includes pearls.
Collapse
|
55
|
Mehan S, Herrmann L, Chapel JP, Jestin J, Berret JF, Cousin F. The desalting/salting pathway: a route to form metastable aggregates with tuneable morphologies and lifetimes. SOFT MATTER 2021; 17:8496-8505. [PMID: 34474458 DOI: 10.1039/d1sm00260k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigate the formation/re-dissociation mechanisms of hybrid complexes made from negatively charged PAA2k coated γ-Fe2O3 nanoparticles (NP) and positively charged polycations (PDADMAC) in aqueous solution in the regime of very high ionic strength (I). When the building blocks are mixed at large ionic strength (1 M NH4Cl), the electrostatic interaction is screened and complexation does not occur. If the ionic strength is then lowered down to a targeted ionic strength Itarget, there is a critical threshold Ic = 0.62 M at which complexation occurs, that is independent of the charge ratio Z and the pathway used to reduce salinity (drop-by-drop mixing or fast mixing). If salt is added back up to 1 M, the transition is not reversible and persistent out-of-equilibrium aggregates are formed. The lifetimes of such aggregates depends on Itarget: the closer Itarget to Ic is, the more difficult it is to dissolve the aggregates. Such peculiar behavior is driven by the inner structure of the complexes that are formed after desalting. When Itarget is far below Ic, strong electrostatic interactions induce the formation of dense, compact and frozen aggregates. Such aggregates can only poorly reorganize further on with time, which makes their dissolution upon resalting almost reversible. Conversely, when Itarget is close to Ic more open aggregates are formed due to weaker electrostatic interactions upon desalting. The system can thus rearrange with time to lower its free energy and reach more stable out-of-equilibrium states which are very difficult to dissociate back upon resalting, even at very high ionic strength.
Collapse
Affiliation(s)
- Sumit Mehan
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France.
| | - Laure Herrmann
- Université de Paris, CNRS, Matière et systèmes complexes, 75013 Paris, France
| | - Jean-Paul Chapel
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Université de Bordeaux, 33600 Pessac, France
| | - Jacques Jestin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France.
| | | | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France.
| |
Collapse
|
56
|
Matsuo M, Kurihara K. Proliferating coacervate droplets as the missing link between chemistry and biology in the origins of life. Nat Commun 2021; 12:5487. [PMID: 34561428 PMCID: PMC8463549 DOI: 10.1038/s41467-021-25530-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
The hypothesis that prebiotic molecules were transformed into polymers that evolved into proliferating molecular assemblages and eventually a primitive cell was first proposed about 100 years ago. To the best of our knowledge, however, no model of a proliferating prebiotic system has yet been realised because different conditions are required for polymer generation and self-assembly. In this study, we identify conditions suitable for concurrent peptide generation and self-assembly, and we show how a proliferating peptide-based droplet could be created by using synthesised amino acid thioesters as prebiotic monomers. Oligopeptides generated from the monomers spontaneously formed droplets through liquid-liquid phase separation in water. The droplets underwent a steady growth-division cycle by periodic addition of monomers through autocatalytic self-reproduction. Heterogeneous enrichment of RNA and lipids within droplets enabled RNA to protect the droplet from dissolution by lipids. These results provide experimental constructs for origins-of-life research and open up directions in the development of peptide-based materials.
Collapse
Affiliation(s)
- Muneyuki Matsuo
- Department of Chemistry, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, Japan
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | - Kensuke Kurihara
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.
- Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan.
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
- Faculty of Education, Utsunomiya University, Utsumomiya, Tochigi, Japan.
- Department of Life and Coordination-Complex Molecular Science, Biomolecular Functions, Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.
| |
Collapse
|
57
|
Self-replication of a quantum artificial organism driven by single-photon pulses. Sci Rep 2021; 11:16433. [PMID: 34385582 PMCID: PMC8361118 DOI: 10.1038/s41598-021-96048-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
Imitating the transition from inanimate to living matter is a longstanding challenge. Artificial life has achieved computer programs that self-replicate, mutate, compete and evolve, but lacks self-organized hardwares akin to the self-assembly of the first living cells. Nonequilibrium thermodynamics has achieved lifelike self-organization in diverse physical systems, but has not yet met the open-ended evolution of living organisms. Here, I look for the emergence of an artificial-life code in a nonequilibrium physical system undergoing self-organization. I devise a toy model where the onset of self-replication of a quantum artificial organism (a chain of lambda systems) is owing to single-photon pulses added to a zero-temperature environment. I find that spontaneous mutations during self-replication are unavoidable in this model, due to rare but finite absorption of off-resonant photons. I also show that the replication probability is proportional to the absorbed work from the photon, thereby fulfilling a dissipative adaptation (a thermodynamic mechanism underlying lifelike self-organization). These results hint at self-replication as the scenario where dissipative adaptation (pointing towards convergence) coexists with open-ended evolution (pointing towards divergence).
Collapse
|
58
|
Ganar KA, Honaker LW, Deshpande S. Shaping synthetic cells through cytoskeleton-condensate-membrane interactions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
59
|
Schwarz PS, Tebcharani L, Heger JE, Müller-Buschbaum P, Boekhoven J. Chemically fueled materials with a self-immolative mechanism: transient materials with a fast on/off response. Chem Sci 2021; 12:9969-9976. [PMID: 34349967 PMCID: PMC8317627 DOI: 10.1039/d1sc02561a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022] Open
Abstract
There is an increasing demand for transient materials with a predefined lifetime like self-erasing temporary electronic circuits or transient biomedical implants. Chemically fueled materials are an example of such materials; they emerge in response to chemical fuel, and autonomously decay as they deplete it. However, these materials suffer from a slow, typically first order decay profile. That means that over the course of the material's lifetime, its properties continuously change until it is fully decayed. Materials that have a sharp on-off response are self-immolative ones. These degrade rapidly after an external trigger through a self-amplifying decay mechanism. However, self-immolative materials are not autonomous; they require a trigger. We introduce here materials with the best of both, i.e., materials based on chemically fueled emulsions that are also self-immolative. The material has a lifetime that can be predefined, after which it autonomously and rapidly degrades. We showcase the new material class with self-expiring labels and drug-delivery platforms with a controllable burst-release.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Laura Tebcharani
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Julian E Heger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstr. 1 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
- Institute for Advanced Study, Technical University of Munich Lichtenbergstraße 2a 85748 Garching Germany
| |
Collapse
|
60
|
How Was Nature Able to Discover Its Own Laws-Twice? Life (Basel) 2021; 11:life11070679. [PMID: 34357051 PMCID: PMC8305280 DOI: 10.3390/life11070679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
The central thesis of the modern scientific revolution is that nature is objective. Yet, somehow, out of that objective reality, projective systems emerged-cognitive and purposeful. More remarkably, through nature's objective laws, chemical systems emerged and evolved to take advantage of those laws. Even more inexplicably, nature uncovered those laws twice-once unconsciously, once consciously. Accordingly, one could rephrase the origin of life question as follows: how was nature able to become self-aware and discover its own laws? What is the law of nature that enabled nature to discover its own laws? Addressing these challenging questions in physical-chemical terms may be possible through the newly emergent field of systems chemistry.
Collapse
|
61
|
Nakashima KK, van Haren MHI, André AAM, Robu I, Spruijt E. Active coacervate droplets are protocells that grow and resist Ostwald ripening. Nat Commun 2021; 12:3819. [PMID: 34155210 PMCID: PMC8217494 DOI: 10.1038/s41467-021-24111-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022] Open
Abstract
Active coacervate droplets are liquid condensates coupled to a chemical reaction that turns over their components, keeping the droplets out of equilibrium. This turnover can be used to drive active processes such as growth, and provide an insight into the chemical requirements underlying (proto)cellular behaviour. Moreover, controlled growth is a key requirement to achieve population fitness and survival. Here we present a minimal, nucleotide-based coacervate model for active droplets, and report three key findings that make these droplets into evolvable protocells. First, we show that coacervate droplets form and grow by the fuel-driven synthesis of new coacervate material. Second, we find that these droplets do not undergo Ostwald ripening, which we attribute to the attractive electrostatic interactions and translational entropy within complex coacervates, active or passive. Finally, we show that the droplet growth rate reflects experimental conditions such as substrate, enzyme and protein concentration, and that a different droplet composition (addition of RNA) leads to altered growth rates and droplet fitness. These findings together make active coacervate droplets a powerful platform to mimic cellular growth at a single-droplet level, and to study fitness at a population level.
Collapse
Affiliation(s)
- Karina K Nakashima
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Alain A M André
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Irina Robu
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
62
|
Cheng G, Lin C, Perez-Mercader J. Self-Organizing Microdroplet Protocells Displaying Light-Driven Oscillatory and Morphological Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101162. [PMID: 33977654 DOI: 10.1002/smll.202101162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The development of synthetic systems that enable the sustained active self-assembly of molecular blocks to mimic the complexity and dynamic behavior of living systems is of great interest in elucidating the origins of life, understanding the basic principles behind biological organization, and designing active materials. However, it remains a challenge to construct microsystems with dynamic behaviors and functions that are connected to molecular self-assembly processes driven by external energy. Here, an active self-assembly of microdroplet protocells with dynamic structure and high structural complexity through living radical polymerization under constant energy flux is reported. The active microdroplet protocells exhibit nonlinear behaviors including oscillatory growth and shrinkage. This relies on the transient stabilization of molecular assembly, which can channel the inflow of energy through noncovalent interactions of pure synthetic components. The intercommunication of microdroplet protocells through stochastic fusion leads to the formation of a variety of dynamic and higher-order biomimetic microstructures. This work constitutes an important step toward the realization of autonomous and dynamic microsystems and active materials with life-like properties.
Collapse
Affiliation(s)
- Gong Cheng
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, MA, 02138, USA
| | - Chenyu Lin
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, MA, 02138, USA
| | - Juan Perez-Mercader
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, MA, 02138, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| |
Collapse
|
63
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
64
|
Schwarz PS, Laha S, Janssen J, Huss T, Boekhoven J, Weber CA. Parasitic behavior in competing chemically fueled reaction cycles. Chem Sci 2021; 12:7554-7560. [PMID: 34163846 PMCID: PMC8171353 DOI: 10.1039/d1sc01106e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Non-equilibrium, fuel-driven reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when reaction cycles regulate assembly processes, such as phase separation. However, it remains unclear how the interplay between multiple reaction cycles affects the success of emergent assemblies. To tackle this question, we created a library of molecules that compete for a common fuel that transiently activates products. Often, the competition for fuel implies that a competitor decreases the lifetime of these products. However, in cases where the transient competitor product can phase-separate, such a competitor can increase the survival time of one product. Moreover, in the presence of oscillatory fueling, the same mechanism reduces variations in the product concentration while the concentration variations of the competitor product are enhanced. Like a parasite, the product benefits from the protection of the host against deactivation and increases its robustness against fuel variations at the expense of the robustness of the host. Such a parasitic behavior in multiple fuel-driven reaction cycles represents a lifelike trait, paving the way for the bottom-up design of synthetic life.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Sudarshana Laha
- Biological Physics, Max Planck Institute for the Physics of Complex Systems Nöthnitzer Straße 38 01187 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| | - Jacqueline Janssen
- Biological Physics, Max Planck Institute for the Physics of Complex Systems Nöthnitzer Straße 38 01187 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| | - Tabea Huss
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
- Institute for Advanced Study, Technical University of Munich Lichtenbergstraße 2a 85748 Garching Germany
| | - Christoph A Weber
- Biological Physics, Max Planck Institute for the Physics of Complex Systems Nöthnitzer Straße 38 01187 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| |
Collapse
|
65
|
Feng Y, Ovalle M, Seale JSW, Lee CK, Kim DJ, Astumian RD, Stoddart JF. Molecular Pumps and Motors. J Am Chem Soc 2021; 143:5569-5591. [PMID: 33830744 DOI: 10.1021/jacs.0c13388] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pumps and motors are essential components of the world as we know it. From the complex proteins that sustain our cells, to the mechanical marvels that power industries, much we take for granted is only possible because of pumps and motors. Although molecular pumps and motors have supported life for eons, it is only recently that chemists have made progress toward designing and building artificial forms of the microscopic machinery present in nature. The advent of artificial molecular machines has granted scientists an unprecedented level of control over the relative motion of components of molecules through the development of kinetically controlled, away-from-thermodynamic equilibrium chemistry. We outline the history of pumps and motors, focusing specifically on the innovations that enable the design and synthesis of the artificial molecular machines central to this Perspective. A key insight connecting biomolecular and artificial molecular machines is that the physical motions by which these machines carry out their function are unambiguously in mechanical equilibrium at every instant. The operation of molecular motors and pumps can be described by trajectory thermodynamics, a theory based on the work of Onsager, which is grounded on the firm foundation of the principle of microscopic reversibility. Free energy derived from thermodynamically non-equilibrium reactions kinetically favors some reaction pathways over others. By designing molecules with kinetic asymmetry, one can engineer potential landscapes to harness external energy to drive the formation and maintenance of geometries of component parts of molecules away-from-equilibrium, that would be impossible to achieve by standard synthetic approaches.
Collapse
Affiliation(s)
- Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - James S W Seale
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher K Lee
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - R Dean Astumian
- Department of Physics, University of Maine, Orono, Maine 04469, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
66
|
Würbser MA, Schwarz PS, Heckel J, Bergmann AM, Walther A, Boekhoven J. Chemically Fueled Block Copolymer Self‐Assembly into Transient Nanoreactors**. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Michaela A. Würbser
- Department of Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Patrick S. Schwarz
- Department of Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Jonas Heckel
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Alexander M. Bergmann
- Department of Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Duesbergweg 10–14 55128 Mainz Germany
| | - Job Boekhoven
- Department of Chemistry Technical University Munich Lichtenbergstraße 4 85748 Garching Germany
- Institute for Advanced Studies Technical University Munich Lichtenbergstraße 2a 85748 Garching Germany
| |
Collapse
|
67
|
Abstract
![]()
Coacervates are a
type of liquid–liquid phase separated
(LLPS) droplets that can serve as models of membraneless organelles
(MLOs) in living cells. Peptide–nucleotide coacervates have
been widely used to mimic properties of ribonucleoprotein (RNP) granules,
but the thermal stability and the role of base stacking is still poorly
understood. Here, we report a systematic investigation of coacervates
formed by five different nucleoside triphosphates (NTPs) with poly-l-lysine and poly-l-arginine as a function of temperature.
All studied combinations exhibit an upper critical solution temperature
(UCST), and a temperature-dependent critical salt concentration, originating
from a significant nonelectrostatic contribution to the mixing free
energy. Both the enthalpic and entropic parts of this nonelectrostatic
interaction decrease in the order G/A/U/C/T, in accordance with nucleobase
stacking free energies. Partitioning of two dyes proves that the local
hydrophobicity inside the peptide–nucleotide coacervates is
different for every nucleoside triphosphate. We derive a simple relation
between the temperature and salt concentration at the critical point
based on a mean-field model of phase separation. Finally, when different
NTPs are mixed with one common oppositely charged peptide, hybrid
coacervates were formed, characterized by a single intermediate UCST
and critical salt concentration. NTPs with lower critical salt concentrations
can remain condensed in mixed coacervates far beyond their original
critical salt concentration. Our results show that NTP-based coacervates
have a strong temperature sensitivity due to base stacking interactions
and that mixing NTPs can significantly influence the stability of
condensates and, by extension, their bioavailability.
Collapse
Affiliation(s)
- Tiemei Lu
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Karina K Nakashima
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
68
|
Zhou Z, Ouyang Y, Wang J, Willner I. Dissipative Gated and Cascaded DNA Networks. J Am Chem Soc 2021; 143:5071-5079. [DOI: 10.1021/jacs.1c00486] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhixin Zhou
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
69
|
Abbas M, Lipiński WP, Wang J, Spruijt E. Peptide-based coacervates as biomimetic protocells. Chem Soc Rev 2021; 50:3690-3705. [PMID: 33616129 DOI: 10.1039/d0cs00307g] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coacervates are condensed liquid-like droplets formed by liquid-liquid phase separation of molecules through multiple weak associative interactions. In recent years it has emerged that not only long polymers, but also short peptides are capable of forming simple and complex coacervates. The coacervate droplets they form act as compartments that sequester and concentrate a wide range of solutes, and their spontaneous formation make coacervates attractive protocell models. The main advantage of peptides as building blocks lies in the functional diversity of the amino acid residues, which allows for tailoring of the peptide's phase separation propensity, their selectivity in guest molecule uptake and the physicochemical and catalytic properties of the compartments. The aim of this tutorial review is to illustrate the recent developments in the field of peptide-based coacervates in a systematic way and to deduce the basic requirements for both simple and complex coacervation of peptides. We review a selection of peptide coacervates that illustrates the essentials of phase separation, the limitations, and the properties that make peptide coacervates biomimetic protocells. Finally, we provide some perspectives of this novel research field in the direction of active droplets, moving away from thermodynamic equilibrium.
Collapse
Affiliation(s)
- Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
70
|
Fan X, Walther A. Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angew Chem Int Ed Engl 2021; 60:3619-3624. [PMID: 33098236 PMCID: PMC7898518 DOI: 10.1002/anie.202009542] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Transient signaling orchestrates complex spatiotemporal behaviour in living organisms via (bio)chemical reaction networks (CRNs). Compartmentalization of signal processing is an important aspect for controlling such networks. However, artificial CRNs mostly focus on homogeneous solutions to program autonomous self-assembling systems, which limits their accessible behaviour and tuneability. Here, we introduce layered compartments housing antagonistic pH-modulating enzymes and demonstrate that transient pH signals in a supernatant solution can be programmed based on spatial delays. This overcomes limitations of activity mismatches of antagonistic enzymes in solution and allows to flexibly program acidic and alkaline pH lifecycles beyond the possibilities of homogeneous solutions. Lag time, lifetime, and the pH minima and maxima can be precisely programmed by adjusting spatial and kinetic conditions. We integrate these spatially controlled pH flips with switchable peptides, furnishing time-programmed self-assemblies and hydrogel material system.
Collapse
Affiliation(s)
- Xinlong Fan
- ABMS Lab-Active Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Andreas Walther
- ABMS Lab-Active Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
71
|
Zhou Y, Huo S, Loznik M, Göstl R, Boersma AJ, Herrmann A. Kontrolle über die optische und katalytische Aktivität gentechnisch hergestellter Proteine mit Ultraschall. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yu Zhou
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
| | - Shuaidong Huo
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische Chemie und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- Fujian Provincial Key Laboratory of Innovative Drug Target Research School of Pharmaceutical Science Xiamen University 361102 Xiamen China
| | - Mark Loznik
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische Chemie und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
| | - Robert Göstl
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| | - Arnold J. Boersma
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
| | - Andreas Herrmann
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstraße 50 52056 Aachen Deutschland
- Institut für Technische Chemie und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
| |
Collapse
|
72
|
Zhou Y, Huo S, Loznik M, Göstl R, Boersma AJ, Herrmann A. Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound. Angew Chem Int Ed Engl 2021; 60:1493-1497. [PMID: 33104261 PMCID: PMC7839785 DOI: 10.1002/anie.202010324] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Indexed: 12/31/2022]
Abstract
Ultrasound (US) produces cavitation-induced mechanical forces stretching and breaking polymer chains in solution. This type of polymer mechanochemistry is widely used for synthetic polymers, but not biomacromolecules, even though US is biocompatible and commonly used for medical therapy as well as in vivo imaging. The ability to control protein activity by US would thus be a major stepping-stone for these disciplines. Here, we provide the first examples of selective protein activation and deactivation by means of US. Using GFP as a model system, we engineer US sensitivity into proteins by design. The incorporation of long and highly charged domains enables the efficient transfer of force to the protein structure. We then use this principle to activate the catalytic activity of trypsin by inducing the release of its inhibitor. We expect that this concept to switch "on" and "off" protein activity by US will serve as a blueprint to remotely control other bioactive molecules.
Collapse
Affiliation(s)
- Yu Zhou
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Shuaidong Huo
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical ScienceXiamen University361102XiamenChina
| | - Mark Loznik
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
| | - Arnold J. Boersma
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
| | - Andreas Herrmann
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstrasse 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
73
|
Hamada S, Yancey KG, Pardo Y, Gan M, Vanatta M, An D, Hu Y, Derrien TL, Ruiz R, Liu P, Sabin J, Luo D. Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism. Sci Robot 2021; 4:4/29/eaaw3512. [PMID: 33137715 DOI: 10.1126/scirobotics.aaw3512] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/20/2019] [Indexed: 01/06/2023]
Abstract
Metabolism is a key process that makes life alive-the combination of anabolism and catabolism sustains life by a continuous flux of matter and energy. In other words, the materials comprising life are synthesized, assembled, dissipated, and decomposed autonomously in a controlled, hierarchical manner using biological processes. Although some biological approaches for creating dynamic materials have been reported, the construction of such materials by mimicking metabolism from scratch based on bioengineering has not yet been achieved. Various chemical approaches, especially dissipative assemblies, allow the construction of dynamic materials in a synthetic fashion, analogous to part of metabolism. Inspired by these approaches, here, we report a bottom-up construction of dynamic biomaterials powered by artificial metabolism, representing a combination of irreversible biosynthesis and dissipative assembly processes. An emergent locomotion behavior resembling a slime mold was programmed with this material by using an abstract design model similar to mechanical systems. Dynamic properties, such as autonomous pattern generation and continuous polarized regeneration, enabled locomotion along the designated tracks against a constant flow. Furthermore, an emergent racing behavior of two locomotive bodies was achieved by expanding the program. Other applications, including pathogen detection and hybrid nanomaterials, illustrated further potential use of this material. Dynamic biomaterials powered by artificial metabolism could provide a previously unexplored route to realize "artificial" biological systems with regenerating and self-sustaining characteristics.
Collapse
Affiliation(s)
- Shogo Hamada
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Kenneth Gene Yancey
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yehudah Pardo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mingzhe Gan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Max Vanatta
- Department of Architecture, Cornell University, Ithaca, NY 14853, USA
| | - Duo An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yue Hu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thomas L Derrien
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Roanna Ruiz
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Peifeng Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.,Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jenny Sabin
- Department of Architecture, Cornell University, Ithaca, NY 14853, USA
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
74
|
Fan X, Walther A. Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinlong Fan
- A3BMS Lab-Active Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Andreas Walther
- A3BMS Lab-Active Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
75
|
Deng J, Walther A. Programmable and Chemically Fueled DNA Coacervates by Transient Liquid-Liquid Phase Separation. Chem 2020; 6:3329-3343. [PMID: 35252623 PMCID: PMC7612463 DOI: 10.1016/j.chempr.2020.09.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multivalency-driven liquid-liquid phase separation (LLPS) is essential in biomolecular condensates to facilitate spatiotemporal regulation of biological functions. Providing programmable model systems would help to better understand the LLPS processes in biology, and furnish new types of compartmentalized synthetic reaction crucibles that exploit biological principles. Herein, we demonstrate a concept for programming LLPS using transient multivalency between ATP-driven sequence-defined functionalized nucleic acid polymers (SfNAPs), which serve as simple models for membrane-less organelles. The ATP-driven SfNAPs are transiently formed by an enzymatic reaction network (ERN) of concurrent ATP-powered DNA ligation and DNA restriction. The lifetimes can be programmed by the ATP concentration, which manifests on the LLPS length scale in tunable lifetimes for the all-DNA coacervates. Critically, the prominent programmability of the DNA-based building blocks allows to encode distinct molecular recognitions for multiple multivalent systems, enabling sorted LLPS and thus multicomponent DNA coacervates, reminiscent of the diverse membraneless organelles in biological systems. The ATP-driven coacervates are capable for multivalent trapping of micron-scale colloids and biomolecules to generate functions as emphasized for rate enhancements in enzymatic cascades. This work supports ATP-driven multivalent coacervation as a valuable mechanism for dynamic multicomponent and function biomolecular condensate mimics and for autonomous materials design in general.
Collapse
Affiliation(s)
- Jie Deng
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier- Straße 31, 79104 Freiburg, Germany
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- ABMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier- Straße 31, 79104 Freiburg, Germany
- DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
76
|
Schnitzer T, Vantomme G. Synthesis of Complex Molecular Systems-The Foreseen Role of Organic Chemists. ACS CENTRAL SCIENCE 2020; 6:2060-2070. [PMID: 33274282 PMCID: PMC7706085 DOI: 10.1021/acscentsci.0c00974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/09/2023]
Abstract
How to control the self-assembly of complex molecular systems is unknown. Yet, these complex molecular systems are fundamental for advances in material and biomedical sciences. A step forward is to transform one-step self-assembly into multistep synthesis involving covalent and noncovalent reactions. Key to this approach is to explore the chemical space at the frontiers of advanced covalent synthesis and supramolecular chemistry. Herein, we describe a selection of such reported cases and provide a guide for current limitations and insights for future directions. This outlook is meant to trigger collaborations between synthetic organic and supramolecular chemists, to expand the repertoire of organic syntheses working with supramolecular assemblies and thereby join forces to achieve stepwise emergence of molecular complexity in supramolecular systems.
Collapse
|
77
|
Kumar M, Son J, Huang RH, Sementa D, Lee M, O'Brien S, Ulijn RV. In Situ, Noncovalent Labeling and Stimulated Emission Depletion-Based Super-Resolution Imaging of Supramolecular Peptide Nanostructures. ACS NANO 2020; 14:15056-15063. [PMID: 33169979 DOI: 10.1021/acsnano.0c05029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular materials have gained substantial interest for a number biological and nonbiological applications. However, for optimum utilization of these dynamic self-assembled materials, it is important to visualize and understand their structures at the nanoscale, in solution and in real time. Previous approaches for imaging these structures have utilized super-resolution optical imaging methods such as STORM, which has provided important insights, but suffers from drawbacks of complex sample preparation and slow acquisition times, thus limiting real-time in situ imaging of dynamic processes. We demonstrate a noncovalent fluorescent labeling design for STED-based super-resolution imaging of self-assembling peptides. This is achieved by in situ, electrostatic binding of anionic sulfonates of Alexa-488 dye to the cationic sites of lysine (or arginine) residues exposed on the peptide nanostructure surface. A direct, multiscale visualization of static structures reveals hierarchical organization of supramolecular fibers with sub-60 nm resolution. In addition, the degradation of nanofibers upon enzymatic hydrolysis of peptide could be directly imaged in real time, and although resolution was compromised in this dynamic process, it provided mechanistic insights into the enzymatic degradation process. Noncovalent Alexa-488 labeling and subsequent imaging of a range of cationic self-assembling peptides and peptide-functionalized gold nanoparticles demonstrated the versatility of the methodology for the imaging of cationic supramolecular structures. Overall, our approach presents a general and simple method for the electrostatic fluorescent labeling of cationic peptide nanostructures for nanoscale imaging under physiological conditions and probe dynamic processes in real time and in situ.
Collapse
Affiliation(s)
- Mohit Kumar
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Jiye Son
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Richard H Huang
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Magdelene Lee
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Stephen O'Brien
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, United States
| |
Collapse
|
78
|
Mishra A, Dhiman S, George SJ. ATP‐Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006614] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ananya Mishra
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Shikha Dhiman
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Subi J. George
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| |
Collapse
|
79
|
Mishra A, Dhiman S, George SJ. ATP‐Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angew Chem Int Ed Engl 2020; 60:2740-2756. [DOI: 10.1002/anie.202006614] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ananya Mishra
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Shikha Dhiman
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Subi J. George
- Supramolecular Chemistry Laboratory New Chemistry Unit School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| |
Collapse
|
80
|
Donau C, Späth F, Sosson M, Kriebisch BAK, Schnitter F, Tena-Solsona M, Kang HS, Salibi E, Sattler M, Mutschler H, Boekhoven J. Active coacervate droplets as a model for membraneless organelles and protocells. Nat Commun 2020; 11:5167. [PMID: 33056997 PMCID: PMC7560875 DOI: 10.1038/s41467-020-18815-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
Membraneless organelles like stress granules are active liquid-liquid phase-separated droplets that are involved in many intracellular processes. Their active and dynamic behavior is often regulated by ATP-dependent reactions. However, how exactly membraneless organelles control their dynamic composition remains poorly understood. Herein, we present a model for membraneless organelles based on RNA-containing active coacervate droplets regulated by a fuel-driven reaction cycle. These droplets emerge when fuel is present, but decay without. Moreover, we find these droplets can transiently up-concentrate functional RNA which remains in its active folded state inside the droplets. Finally, we show that in their pathway towards decay, these droplets break apart in multiple droplet fragments. Emergence, decay, rapid exchange of building blocks, and functionality are all hallmarks of membrane-less organelles, and we believe that our work could be powerful as a model to study such organelles. Membraneless organelles are liquid-liquid phase-separated droplets whose behaviour can be regulated by chemical reactions, but this process is poorly understood. Here, the authors report model membraneless organelles based on coacervate droplets that show fuel-driven dynamic behaviour and concentrate functional RNA.
Collapse
Affiliation(s)
- Carsten Donau
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Fabian Späth
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Marilyne Sosson
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Brigitte A K Kriebisch
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Fabian Schnitter
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Marta Tena-Solsona
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748, Garching, Germany
| | - Hyun-Seo Kang
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Elia Salibi
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Michael Sattler
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Hannes Mutschler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748, Garching, Germany.
| |
Collapse
|
81
|
Sun M, Deng J, Walther A. Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angew Chem Int Ed Engl 2020; 59:18161-18165. [PMID: 32608535 PMCID: PMC7590193 DOI: 10.1002/anie.202006526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Adaptivity is an essential trait of life. One type of adaptivity is the reconfiguration of a functional system states by correlating sensory inputs. We report polymer transformers, which can adaptively reconfigure their composition from a state of a mixed copolymer to being enriched in either monomer A or B. This is achieved by embedding and hierarchically interconnecting two chemically fueled activation/deactivation enzymatic reaction networks for both monomers via a joint activation pathway (network level) and an AB linker monomer reactive to both A and B (species level). The ratio of enzymes governing the individual deactivation pathways (our external signals) control the enrichment behavior in the dynamic state. The method shows high programmability of the reconfigured state, rejuvenation of transformation cycles, and quick in situ adaptation. As a proof-of-concept, we showcase this dynamic reconfiguration for colloidal surface functionalities.
Collapse
Affiliation(s)
- Mo Sun
- ABMS Lab—Active, Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Jie Deng
- ABMS Lab—Active, Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Andreas Walther
- ABMS Lab—Active, Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
82
|
van der Weijden A, Winkens M, Schoenmakers SMC, Huck WTS, Korevaar PA. Autonomous mesoscale positioning emerging from myelin filament self-organization and Marangoni flows. Nat Commun 2020; 11:4800. [PMID: 32968072 PMCID: PMC7511956 DOI: 10.1038/s41467-020-18555-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 11/09/2022] Open
Abstract
Out-of-equilibrium molecular systems hold great promise as dynamic, reconfigurable matter that executes complex tasks autonomously. However, translating molecular scale dynamics into spatiotemporally controlled phenomena emerging at mesoscopic scale remains a challenge-especially if one aims at a design where the system itself maintains gradients that are required to establish spatial differentiation. Here, we demonstrate how surface tension gradients, facilitated by a linear amphiphile molecule, generate Marangoni flows that coordinate the positioning of amphiphile source and drain droplets floating at air-water interfaces. Importantly, at the same time, this amphiphile leads, via buckling instabilities in lamellar systems of said amphiphile, to the assembly of millimeter long filaments that grow from the source droplets and get absorbed at the drain droplets. Thereby, the Marangoni flows and filament organization together sustain the autonomous positioning of interconnected droplet-filament networks at the mesoscale. Our concepts provide potential for the development of non-equilibrium matter with spatiotemporal programmability.
Collapse
Affiliation(s)
- Arno van der Weijden
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Sandra M C Schoenmakers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.
| |
Collapse
|
83
|
Wang S, Yue L, Wulf V, Lilienthal S, Willner I. Dissipative Constitutional Dynamic Networks for Tunable Transient Responses and Catalytic Functions. J Am Chem Soc 2020; 142:17480-17488. [DOI: 10.1021/jacs.0c06977] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liang Yue
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Sivan Lilienthal
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
84
|
van Ravensteijn BGP, Voets IK, Kegel WK, Eelkema R. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10639-10656. [PMID: 32787015 PMCID: PMC7497707 DOI: 10.1021/acs.langmuir.0c01763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/08/2020] [Indexed: 05/20/2023]
Abstract
Transient assembled structures play an indispensable role in a wide variety of processes fundamental to living organisms including cellular transport, cell motility, and proliferation. Typically, the formation of these transient structures is driven by the consumption of molecular fuels via dissipative reaction networks. In these networks, building blocks are converted from inactive precursor states to active (assembling) states by (a set of) irreversible chemical reactions. Since the activated state is intrinsically unstable and can be maintained only in the presence of sufficient fuel, fuel depletion results in the spontaneous disintegration of the formed superstructures. Consequently, the properties and behavior of these assembled structures are governed by the kinetics of fuel consumption rather than by their thermodynamic stability. This fuel dependency endows biological systems with unprecedented spatiotemporal adaptability and inherent self-healing capabilities. Fascinated by these unique material characteristics, coupling the assembly behavior to molecular fuel or light-driven reaction networks was recently implemented in synthetic (supra)molecular systems. In this invited feature article, we discuss recent studies demonstrating that dissipative assembly is not limited to the molecular world but can also be translated to building blocks of colloidal dimensions. We highlight crucial guiding principles for the successful design of dissipative colloidal systems and illustrate these with the current state of the art. Finally, we present our vision on the future of the field and how marrying nonequilibrium self-assembly with the functional properties associated with colloidal building blocks presents a promising route for the development of next-generation materials.
Collapse
Affiliation(s)
- Bas G. P. van Ravensteijn
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K. Voets
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Willem K. Kegel
- Van
’t Hoff Laboratory for Physical and Colloid Chemistry, Debye
Institute for NanoMaterials Science, Utrecht
University, 3584 CH Utrecht, The Netherlands
| | - Rienk Eelkema
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
85
|
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Construction of Organelle‐Like Architecture by Dynamic DNA Assembly in Living Cells. Angew Chem Int Ed Engl 2020; 59:20651-20658. [DOI: 10.1002/anie.202009387] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaocui Guo
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dan Luo
- Department of Biological &Environmental Engineering Cornell University Ithaca NY 14853 USA
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics College of Chemistry & Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
86
|
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Construction of Organelle‐Like Architecture by Dynamic DNA Assembly in Living Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaocui Guo
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dan Luo
- Department of Biological &Environmental Engineering Cornell University Ithaca NY 14853 USA
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics College of Chemistry & Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
87
|
Sun M, Deng J, Walther A. Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mo Sun
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Jie Deng
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Andreas Walther
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
88
|
Abstract
The discovery of membraneless organelles (MLOs) formed by liquid-liquid phase separation raised many questions about the spatial organization of biomolecular processes in cells, but also offered a new tool to mimic cellular media. Since disordered and charged protein domains are often necessary for phase separation, coacervates can be used as models both to understand MLO regulation and to develop dynamic cellular-like compartments. A versatile way to turn passive coacervate droplets into active and dynamic compartments is by introducing enzymatic reactions that affect parameters relevant for complex coacervation, such as the charge and length of the components. However, these reactions strictly take place in a heterogeneous medium, and the complexity thereof is hardly addressed, making it difficult to achieve true control. In this chapter we help close this gap by describing two coacervate systems in which enzymatic reactions endow coacervate droplets with a dynamic character. We further highlight the technical challenges posed by the two-phase systems and strategies to overcome them.
Collapse
Affiliation(s)
- Karina K Nakashima
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Alain A M André
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
89
|
Kubota R, Makuta M, Suzuki R, Ichikawa M, Tanaka M, Hamachi I. Force generation by a propagating wave of supramolecular nanofibers. Nat Commun 2020; 11:3541. [PMID: 32669562 PMCID: PMC7363860 DOI: 10.1038/s41467-020-17394-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 01/07/2023] Open
Abstract
Dynamic spatiotemporal patterns that arise from out-of-equilibrium biochemical reactions generate forces in living cells. Despite considerable recent efforts, rational design of spatiotemporal patterns in artificial molecular systems remains at an early stage of development. Here, we describe force generation by a propagating wave of supramolecular nanofibers. Inspired by actin dynamics, a reaction network is designed to control the formation and degradation of nanofibers by two chemically orthogonal stimuli. Real-time fluorescent imaging successfully visualizes the propagating wave based on spatiotemporally coupled generation and collapse of nanofibers. Numerical simulation indicates that the concentration gradient of degradation stimulus and the smaller diffusion coefficient of the nanofiber are critical for wave emergence. Moreover, the force (0.005 pN) generated by chemophoresis and/or depletion force of this propagating wave can move nanobeads along the wave direction.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masahiro Makuta
- Department of Physics, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryo Suzuki
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masatoshi Ichikawa
- Department of Physics, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan. .,JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8530, Japan.
| |
Collapse
|
90
|
Monterroso B, Robles-Ramos MÁ, Zorrilla S, Rivas G. Reconstituting bacterial cell division assemblies in crowded, phase-separated media. Methods Enzymol 2020; 646:19-49. [PMID: 33453926 DOI: 10.1016/bs.mie.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we have summarized several strategies to reconstruct complexes containing the FtsZ protein, a central element of the cell division machinery in most bacteria, and to test their functional organization in minimal membrane systems and cell-like containers, as vesicles and droplets produced by microfluidics. These synthetic systems have been devised to mimic elements of the intracellular complexity, as excluded volume effects due to natural crowding, and macromolecular condensation resulting from biologically regulated liquid-liquid phase separation, in media of known and controllable composition. This integrative approach has allowed to demonstrate that macromolecular phase separation and crowding may also help to dynamically organize FtsZ in the intracellular space thus modulating its functional reactivity in cell division.
Collapse
Affiliation(s)
- Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Miguel Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
91
|
Mason AF, Altenburg WJ, Song S, van Stevendaal M, van Hest JCM. Terpolymer-stabilized complex coacervates: A robust and versatile synthetic cell platform. Methods Enzymol 2020; 646:51-82. [PMID: 33453933 DOI: 10.1016/bs.mie.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The utilization of liquid-liquid phase separated systems has seen increased attention as synthetic cell platforms due to their innate ability to sequester interesting, functional, and biologically relevant materials. However, their applications are limited by the temporal stability of such condensed phases. While there are a number of strategies toward droplet stabilization, in our group we have developed a polymer-based approach to stabilize complex coacervate microdroplets. These protocells are remarkably robust and have been utilized to support a number of new protocellular applications. Here, we describe in detail the methodologies we have developed for the synthesis of the starting components, their formation into stable, cargo-loaded protocells, and how these protocells are treated post-formation to purify and analyze the resultant functional self-assembled systems.
Collapse
Affiliation(s)
- Alexander F Mason
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Wiggert J Altenburg
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Shidong Song
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marleen van Stevendaal
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
92
|
|
93
|
Kumar M, Sementa D, Narang V, Riedo E, Ulijn RV. Self-Assembly Propensity Dictates Lifetimes in Transient Naphthalimide-Dipeptide Nanofibers. Chemistry 2020; 26:8372-8376. [PMID: 32428282 DOI: 10.1002/chem.202001008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Transient self-assembly of dipeptide nanofibers with lifetimes that are predictably variable through dipeptide sequence design are presented. This was achieved using 1,8-naphthalimide (NI) amino acid methyl-esters (Phe, Tyr, Leu) that are biocatalytically coupled to amino acid-amides (Phe, Tyr, Leu, Val, Ala, Ser) to form self-assembling NI-dipeptides. However, competing hydrolysis of the dipeptides results in disassembly. It was demonstrated that the kinetic parameters like lifetimes of these nanofibers can be predictably regulated by the thermodynamic parameter, namely the self-assembly propensity of the constituent dipeptide sequence. These lifetimes could vary from minutes, to hours, to permanent gels that do not degrade. Moreover, the in-built NI fluorophore was utilized to image the transient nanostructures in solution with stimulated emission depletion (STED) based super-resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Mohit Kumar
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Deborah Sementa
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Vishal Narang
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA
| | - Elisa Riedo
- Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Rein V Ulijn
- Nanoscience Initiative at Advanced Science Research Center (ASRC), The Graduate Center, City University of New York, 85 Saint Nicholas Terrace, New York, NY, 10031, USA.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| |
Collapse
|
94
|
|
95
|
Magdalena Estirado E, Mason AF, Alemán García MÁ, van Hest JCM, Brunsveld L. Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs. J Am Chem Soc 2020; 142:9106-9111. [PMID: 32356660 PMCID: PMC7243252 DOI: 10.1021/jacs.0c01732] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
The programmed construction of functional
synthetic cells requires
spatial control over arrays of biomolecules within the cytomimetic
environment. The mimicry of the natural hierarchical assembly of biomolecules
remains challenging due to the lack of an appropriate molecular toolbox.
Herein, we report the implementation of DNA-decorated supramolecular
assemblies as dynamic and responsive nanoscaffolds for the localization
of arrays of DNA signal cargo within hierarchically assembled complex
coacervate protocells. Protocells stabilized with a semipermeable
membrane allow trafficking of single-stranded DNA between neighboring
protocells. DNA duplex operations demonstrate the responsiveness of
the nanoscaffolds to different input DNA strands via the reversible
release of DNA cargo. Moreover, a second population of coacervate
protocells with nanoscaffolds featuring a higher affinity for the
DNA cargo enabled chemically programmed communication between both
protocell populations. This combination of supramolecular structure
and function paves the way for the next generation of protocells imbued
with programmable, lifelike behaviors.
Collapse
Affiliation(s)
- Eva Magdalena Estirado
- Laboratories of Chemical Biology and Bio-Organic Chemistry, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Alexander F Mason
- Laboratories of Chemical Biology and Bio-Organic Chemistry, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Miguel Ángel Alemán García
- Laboratories of Chemical Biology and Bio-Organic Chemistry, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Laboratories of Chemical Biology and Bio-Organic Chemistry, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratories of Chemical Biology and Bio-Organic Chemistry, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
96
|
Singh N, Formon GJM, De Piccoli S, Hermans TM. Devising Synthetic Reaction Cycles for Dissipative Nonequilibrium Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906834. [PMID: 32064688 DOI: 10.1002/adma.201906834] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Indexed: 05/04/2023]
Abstract
Fuel-driven reaction cycles are found in biological systems to control the assembly and disassembly of supramolecular materials such as the cytoskeleton. Fuel molecules can bind noncovalently to a self-assembling building block or they can react with it, resulting in covalent modifications. Overall the fuel can either switch the self-assembly process on or off. Here, a closer look is taken at artificial systems that mimic biological systems by making and breaking covalent bonds in a self-assembling motif. The different chemistries used so far are highlighted in chronological order and the pros and cons of each system are discussed. Moreover, the desired traits of future reaction cycles, their fuels, and waste management are outlined, and two chemistries that have not been explored up to now in chemically fueled dissipative self-assembly are suggested.
Collapse
Affiliation(s)
- Nishant Singh
- Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Georges J M Formon
- Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Serena De Piccoli
- Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Thomas M Hermans
- Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
97
|
|
98
|
Ma C, Malessa A, Boersma AJ, Liu K, Herrmann A. Supercharged Proteins and Polypeptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905309. [PMID: 31943419 DOI: 10.1002/adma.201905309] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Electrostatic interactions play a vital role in nature. Biomacromolecules such as proteins are orchestrated by electrostatics, among other intermolecular forces, to assemble and organize biochemistry. Natural proteins with a high net charge exist in a folded state or are unstructured and can be an inspiration for scientists to artificially supercharge other protein entities. Recent findings show that supercharging proteins allows for control of their properties such as temperature resistance and catalytic activity. One elegant method to transfer the favorable properties of supercharged proteins to other proteins is the fabrication of fusions. Genetically engineered, supercharged unstructured polypeptides (SUPs) are just one promising fusion tool. SUPs can also be complexed with artificial entities to yield thermotropic and lyotropic liquid crystals and liquids. These architectures represent novel bulk materials that are sensitive to external stimuli. Interestingly, SUPs undergo fluid-fluid phase separation to form coacervates. These coacervates can even be directly generated in living cells or can be combined with dissipative fiber assemblies that induce life-like features. Supercharged proteins and SUPs are developed into exciting classes of materials. Their synthesis, structures, and properties are summarized. Moreover, potential applications are highlighted and challenges are discussed.
Collapse
Affiliation(s)
- Chao Ma
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Anke Malessa
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Arnold J Boersma
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
99
|
Méndez‐Ardoy A, Bayón‐Fernández A, Yu Z, Abell C, Granja JR, Montenegro J. Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alejandro Méndez‐Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Alfonso Bayón‐Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Ziyi Yu
- Department of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Chris Abell
- Department of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidad de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
100
|
Shandilya E, Maiti S. Deconvolution of Transient Species in a Multivalent Fuel‐Driven Multistep Assembly under Dissipative Conditions. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.201900040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ekta Shandilya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Subhabrata Maiti
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| |
Collapse
|