51
|
Richardson M, Zhao S, Sheth RU, Lin L, Qu Y, Lee J, Moody T, Ricaurte D, Huang Y, Velez-Cortes F, Urtecho G, Wang HH. SAMPL-seq reveals micron-scale spatial hubs in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617108. [PMID: 39416120 PMCID: PMC11482894 DOI: 10.1101/2024.10.08.617108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The local arrangement of microbes can profoundly impact community assembly, function, and stability. To date, little is known about the spatial organization of the human gut microbiome. Here, we describe a high-throughput and streamlined method, dubbed SAMPL-seq, that samples microbial composition of micron-scale sub-communities with split-and-pool barcoding to capture spatial colocalization in a complex consortium. SAMPL-seq analysis of the gut microbiome of healthy humans identified bacterial taxa pairs that consistently co-occurred both over time and across multiple individuals. These colocalized microbes organize into spatially distinct groups or "spatial hubs" dominated by Bacteroideceae, Ruminococceae, and Lachnospiraceae families. From a dietary perturbation using inulin, we observed reversible spatial rearrangement of the gut microbiome, where specific taxa form new local partnerships. Spatial metagenomics using SAMPL-seq can unlock new insights to improve the study of microbial communities.
Collapse
Affiliation(s)
- Miles Richardson
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Shijie Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ravi U. Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Liyuan Lin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yiming Qu
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Jeongchan Lee
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Deirdre Ricaurte
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Florencia Velez-Cortes
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Guillaume Urtecho
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris H. Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
52
|
Ostos I, Flórez-Pardo LM, Camargo C. A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review. Front Microbiol 2024; 15:1437098. [PMID: 39464396 PMCID: PMC11502389 DOI: 10.3389/fmicb.2024.1437098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.
Collapse
Affiliation(s)
- Iván Ostos
- Grupo de Investigación en Ingeniería Electrónica, Industrial, Ambiental, Metrología GIEIAM, Universidad Santiago de Cali, Cali, Colombia
| | - Luz Marina Flórez-Pardo
- Grupo de Investigación en Modelado, Análisis y Simulación de Procesos Ambientales e Industriales PAI+, Universidad Autónoma de Occidente, Cali, Colombia
| | - Carolina Camargo
- Centro de Investigación de la Caña de Azúcar, CENICAÑA, Cali, Colombia
| |
Collapse
|
53
|
Karwowska Z, Szczerbiak P, Kosciolek T. Microbiome time series data reveal predictable patterns of change. Microbiol Spectr 2024; 12:e0410923. [PMID: 39162505 PMCID: PMC11448390 DOI: 10.1128/spectrum.04109-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
The human gut microbiome is crucial in health and disease. Longitudinal studies are becoming increasingly important compared to traditional cross-sectional approaches, as precision medicine and individualized interventions are coming to the forefront. Investigating the temporal dynamics of the microbiome is essential for comprehending its function and impact on health. This knowledge has implications for targeted therapeutic strategies, such as personalized diets or probiotic therapy. In this study, we focused on developing and implementing methods specifically designed for analyzing gut microbiome time series. Our statistical framework provides researchers with tools to examine the temporal behavior of the gut microbiome. Key features of our framework include statistical tests for time series properties, predictive modeling, classification of bacterial species based on stability and noise, and clustering analyses to identify groups of bacteria with similar temporal patterns. We analyzed dense amplicon sequencing time series from four generally healthy subjects. Using our developed statistical framework, we analyzed both the overall community dynamics and the behavior of individual bacterial species. We showed six longitudinal regimes within the gut microbiome and discussed their features. Additionally, we explored whether specific bacterial clusters undergo similar fluctuations, suggesting potential functional relationships and interactions within the microbiome. Our development of specialized methods for analyzing human gut microbiome time series significantly enhances the understanding of its dynamic nature and implications for human health. The guidelines and tools provided by our framework support scientists in studying the complex dynamics of the gut microbiome, fostering further research and advancements in microbiome analysis. The gut microbiome is integral to human health, influencing various diseases. Longitudinal studies offer deeper insights into its temporal dynamics compared to cross-sectional approaches. In this study, we developed a statistical framework for analyzing the time series of the human gut microbiome. This framework provides robust tools for examining microbial community dynamics over time. It includes statistical tests for time series properties, predictive modeling, classification of bacterial species based on stability and noise, and clustering analyses. Our approach significantly enhances the methodologies available to researchers, promoting further exploration and innovation in microbiome analysis. IMPORTANCE This project developed innovative methods to analyze gut microbiome time series data, offering fresh insights into its dynamic nature. Unlike many studies that focus on static snapshots, we found that the healthy gut microbiome is predictably stable over time, with only a small subset of bacteria showing significant changes. By identifying groups of bacteria with diverse temporal behaviors and clusters that change together, we pave the way for more effective probiotic therapies and dietary interventions, addressing the overlooked dynamic aspects of gut microbiome changes.
Collapse
Affiliation(s)
- Zuzanna Karwowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Paweł Szczerbiak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
54
|
Blank HM, Hammer SE, Boatright L, Roberts C, Heyden KE, Nagarajan A, Tsuchiya M, Brun M, Johnson CD, Stover PJ, Sitcheran R, Kennedy BK, Adams LG, Kaeberlein M, Field MS, Threadgill DW, Andrews-Polymenis HL, Polymenis M. Late-life dietary folate restriction reduces biosynthesis without compromising healthspan in mice. Life Sci Alliance 2024; 7:e202402868. [PMID: 39043420 PMCID: PMC11266815 DOI: 10.26508/lsa.202402868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Staci E Hammer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Laurel Boatright
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Courtney Roberts
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Katarina E Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Aravindh Nagarajan
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marcel Brun
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, TX, USA
| | - Charles D Johnson
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, TX, USA
| | - Patrick J Stover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - L Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M, College Station, TX, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Optispan, Inc., Seattle, WA, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - David W Threadgill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Helene L Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, USA
| |
Collapse
|
55
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
56
|
Rodríguez-Fuentes ME, Pérez-Sayáns M, Barbeito-Castiñeiras G, Molares-Vila A, Prado-Pena IB, Camolesi GCV, López-López R. Oral specimens as a tool for accurate metagenomic analysis: A pilot study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101991. [PMID: 39084558 DOI: 10.1016/j.jormas.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES Acute oral mucosal damage, as well as other inflammatory processes seem to be related to dysbiosis of the oral microbiome. The need to study changes in the oral microbiome led us to hypothesize what type of sample would provide the most representative picture of the entire human oral microbiome. MATERIALS AND METHODS An observational, and cross-sectional study was carried out. Six healthy adult participants provided 3 different sample types each, that included saliva, oral rinse and mucosal biopsy tissue. We performed 16S rRNA sequencing of the V3-V4 region of the 18 samples using Illumina MiSeq technology. RESULTS Participants were 27 ± 6,3 years old. Bacterial alpha diversity was higher in oral rinse samples compared to whole unstimulated saliva and oral mucosa tissue (p = 0,005). However, saliva specimens showed a 56 % relative abundance of identified species followed by a 30 % in oral rinse and only 1 % in tissue samples. CONCLUSIONS This study found differences on oral microbiome composition for each type of sample. Oral rinse should be chosen when higher alpha diversity is needed, whereas whole unstimulated saliva should be more appropriate for larger amount of bacterial DNA. CLINICAL RELEVANCE The results obtained demonstrate the importance of a correct choice of the optimal type of oral sample for microbiome studies due to the differences found in its composition.
Collapse
Affiliation(s)
- Manuel Eros Rodríguez-Fuentes
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain; Health Research Institute of Santiago de Compostela (IDIS, ORALRES Group), Santiago de Compostela, A Coruña 15706, Spain
| | - Mario Pérez-Sayáns
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain; Health Research Institute of Santiago de Compostela (IDIS, ORALRES Group), Santiago de Compostela, A Coruña 15706, Spain.
| | - Gema Barbeito-Castiñeiras
- Microbiology Unit, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| | - Alberto Molares-Vila
- Health Research Institute of Santiago de Compostela (IDIS, ORALRES Group), Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS, RESMET Group, https://resmet.org), Santiago de Compostela, A Coruña 15706, Spain
| | - Irene B Prado-Pena
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain
| | - Gisela C V Camolesi
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain; Health Research Institute of Santiago de Compostela (IDIS, ORALRES Group), Santiago de Compostela, A Coruña 15706, Spain
| | - Rafael López-López
- Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, c/ Entrerríos s/n, Santiago de Compostela 15782, Spain; Medical Oncology Unit, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña 15706, Spain
| |
Collapse
|
57
|
González A, Fullaondo A, Odriozola A. Host genetics and microbiota data analysis in colorectal cancer research. ADVANCES IN GENETICS 2024; 112:31-81. [PMID: 39396840 DOI: 10.1016/bs.adgen.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with a complex aetiology influenced by a myriad of genetic and environmental factors. Despite advances in CRC research, it is a major burden of disease, with the second highest incidence and third leading cause of cancer deaths worldwide. To individualise diagnosis, prognosis, and treatment of CRC, developing new strategies combining precision medicine and bioinformatic procedures is promising. Precision medicine is based on omics technologies and aims to individualise the management of CRC based on patient host genetic characteristics and microbiota. Bioinformatics is central to the application of personalised medicine because it enables the analysis of large datasets generated by these technologies. At the level of host genetics, bioinformatics allows the identification of mutations, genes, molecular pathways, biomarkers and drugs relevant to colorectal carcinogenesis. At the microbiota level, bioinformatics is fundamental to analysing microbial communities' composition and functionality and developing biomarkers and personalised microbiota-based therapies. This paper explores the host and microbiota genetic data analysis in CRC research.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
58
|
Luo Q, Lu M, Butt H, Lytal N, Du R, Jiang H, An L. TimeNorm: a novel normalization method for time course microbiome data. Front Genet 2024; 15:1417533. [PMID: 39381141 PMCID: PMC11458461 DOI: 10.3389/fgene.2024.1417533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metagenomic time-course studies provide valuable insights into the dynamics of microbial systems and have become increasingly popular alongside the reduction in costs of next-generation sequencing technologies. Normalization is a common but critical preprocessing step before proceeding with downstream analysis. To the best of our knowledge, currently there is no reported method to appropriately normalize microbial time-series data. We propose TimeNorm, a novel normalization method that considers the compositional property and time dependency in time-course microbiome data. It is the first method designed for normalizing time-series data within the same time point (intra-time normalization) and across time points (bridge normalization), separately. Intra-time normalization normalizes microbial samples under the same condition based on common dominant features. Bridge normalization detects and utilizes a group of most stable features across two adjacent time points for normalization. Through comprehensive simulation studies and application to a real study, we demonstrate that TimeNorm outperforms existing normalization methods and boosts the power of downstream differential abundance analysis.
Collapse
Affiliation(s)
- Qianwen Luo
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States
| | - Meng Lu
- Graduate Interdisciplinary Program in Statistics and Data Science, University of Arizona, Tucson, AZ, United States
| | - Hamza Butt
- Department of Biostatistics and Epidemiology, University of Arizona, Tucson, AZ, United States
| | - Nicholas Lytal
- Department of Mathematics and Statistics, California State University at Chico, Chico, CA, United States
| | - Ruofei Du
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hongmei Jiang
- Department of Statistics and Data Science, Northwestern University, Evanston, IL, United States
| | - Lingling An
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States
- Graduate Interdisciplinary Program in Statistics and Data Science, University of Arizona, Tucson, AZ, United States
- Department of Biostatistics and Epidemiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
59
|
Andriienko V, Buczek M, Meier R, Srivathsan A, Łukasik P, Kolasa MR. Implementing high-throughput insect barcoding in microbiome studies: impact of non-destructive DNA extraction on microbiome reconstruction. PeerJ 2024; 12:e18025. [PMID: 39329134 PMCID: PMC11426317 DOI: 10.7717/peerj.18025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
Background Symbiotic relationships with diverse microorganisms are crucial for many aspects of insect biology. However, while our understanding of insect taxonomic diversity and the distribution of insect species in natural communities is limited, we know much less about their microbiota. In the era of rapid biodiversity declines, as researchers increasingly turn towards DNA-based monitoring, developing and broadly implementing approaches for high-throughput and cost-effective characterization of both insect and insect-associated microbial diversity is essential. We need to verify whether approaches such as high-throughput barcoding, a powerful tool for identifying wild insects, would permit subsequent microbiota reconstruction in these specimens. Methods High-throughput barcoding ("megabarcoding") methods often rely on non-destructive approaches for obtaining template DNA for PCR amplification by leaching DNA out of insect specimens using alkaline buffers such as HotSHOT. This study investigated the impact of HotSHOT on microbial abundance estimates and the reconstructed bacterial community profiles. We addressed this question by comparing quantitative 16S rRNA amplicon sequencing data for HotSHOT-treated or untreated specimens of 16 insect species representing six orders and selected based on the expectation of limited variation among individuals. Results We find that in 13 species, the treatment significantly reduced microbial abundance estimates, corresponding to an estimated 15-fold decrease in amplifiable 16S rRNA template on average. On the other hand, HotSHOT pre-treatment had a limited effect on microbial community composition. The reconstructed presence of abundant bacteria with known significant effects was not affected. On the other hand, we observed changes in the presence of low-abundance microbes, those close to the reliable detection threshold. Alpha and beta diversity analyses showed compositional differences in only a few species. Conclusion Our results indicate that HotSHOT pre-treated specimens remain suitable for microbial community composition reconstruction, even if abundance may be hard to estimate. These results indicate that we can cost-effectively combine barcoding with the study of microbiota across wild insect communities. Thus, the voucher specimens obtained using megabarcoding studies targeted at characterizing insect communities can be used for microbiome characterizations. This can substantially aid in speeding up the accumulation of knowledge on the microbiomes of abundant and hyperdiverse insect species.
Collapse
Affiliation(s)
- Veronika Andriienko
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Mateusz Buczek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Rudolf Meier
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Amrita Srivathsan
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Michał R. Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
60
|
Fan S, Tang Y, Yang H, Hu Y, Zeng Y, Wang Y, Zhao Y, Chen X, Wu Y, Wang G. Effects of Fertilization and Planting Modes on Soil Organic Carbon and Microbial Community Formation of Tree Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2665. [PMID: 39339637 PMCID: PMC11434958 DOI: 10.3390/plants13182665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Biochar and organic fertilizer can significantly increase soil organic carbon (SOC) and promote agricultural production, but it is still unclear how they affect forest SOC after. Here, low-quality plantation soil was subjected to four distinct fertilization treatments: (CK, without fertilization; BC, tea seed shell biochar alone; OF, tea meal organic fertilizer alone; BCF, tea seed shell biochar plus tea meal organic fertilizer). Cunninghamia lanceolata (Lamb.) Hook and Cyclobalanopsis glauca (Thunb.) Oersted seedlings were then planted in pots at the ratios of 2:0, 1:1, and 0:2 (SS, SQ, QQ) and grown for one year. The results showed that the BCF treatment had the best effect on promoting seedling growth and increasing SOC content. BCF changed soil pH and available nutrient content, resulting in the downregulation of certain oligotrophic groups (Acidobacteria and Basidiomycetes) and the upregulation of eutrophic groups (Ascomycota and Proteobacteria). Key bacterial groups, which were identified by Line Discriminant Analysis Effect Size analysis, were closely associated with microbial biomass carbon (MBC) and SOC. Pearson correlation analysis showed that bacterial community composition exhibited a positive correlation with SOC, MBC, available phosphorus, seedling biomass, and plant height, whereas fungal community composition was predominantly positively correlated with seedling underground biomass. It suggested that environmental differences arising from fertilization and planting patterns selectively promote microbial communities that contribute to organic carbon formation. In summary, the combination of biochar and organic fertilizers would enhance the improvement and adaptation of soil microbial communities, playing a crucial role in increasing forest soil organic carbon and promoting tree growth.
Collapse
Affiliation(s)
- Sutong Fan
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yao Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongzhi Yang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuda Hu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yelin Zeng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghong Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yunlin Zhao
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA
| | - Yaohui Wu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Guangjun Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
61
|
Jamshidi S, Tavangar M, Shojaei S, Taherkhani A. Malignant Transformation of Normal Oral Tissue to Dysplasia and Early Oral Squamous Cell Carcinoma: An In Silico Transcriptomics Approach. Anal Cell Pathol (Amst) 2024; 2024:6260651. [PMID: 39376501 PMCID: PMC11458300 DOI: 10.1155/2024/6260651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) is a prevalent and aggressive form of head and neck cancer, often diagnosed at advanced stages. Elucidating the molecular mechanisms involved in the malignant transformation from normal oral tissue to oral preinvasive lesions (OPL) and primary OSCC could facilitate early diagnosis and improve therapeutic strategies. Methods: Differentially expressed genes (DEGs) were identified from the GSE30784 dataset by comparing normal oral tissue, oral dysplasia, and primary OSCC samples. Cross-validation was performed using an independent RNA-seq dataset, GSE186775. Protein-protein interaction (PPI) network analysis, gene ontology annotation, and pathway enrichment analysis were conducted on the common DEGs. Hub genes were identified, and their prognostic significance was evaluated using survival analysis. Transcription factor (TF) enrichment analysis, cross-validation, and immunohistochemistry analyses were also performed. Results: A total of 226 proteins and 677 interactions were identified in the PPI network, with 34 hub genes, including FN1, SERPINE1, PLAUR, THBS1, and ITGA6. Pathways such as "Formation of the cornified envelope," "Keratinization," and "Developmental biology" were enriched. Overexpression of SERPINE1, PLAUR, THBS1, and ITGA6 correlated with poor prognosis, while upregulation of CALML5 and SPINK5 was associated with favorable outcomes. NFIB emerged as the most significant TF-regulating hub genes. Immunohistochemistry validated ITGA6 overexpression in primary OSCC. Cross-validation using the RNA-seq dataset supported the involvement of critical genes in the malignant transformation process. Conclusion: This study identified vital genes, pathways, and prognostic markers involved in the malignant transformation from normal oral tissue to OPL and primary OSCC, providing insights for early diagnosis and targeted therapy development. Cross-validation with an independent RNA-seq dataset and immunohistochemistry reinforced the findings, supporting the robustness of the identified molecular signatures.
Collapse
Affiliation(s)
- Shokoofeh Jamshidi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Matina Tavangar
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Setareh Shojaei
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
62
|
Wang L, Ducoste JJ, de los Reyes FL. Perturbations to common gardens of anaerobic co-digesters reveal relationships between functional resilience and microbial community composition. Appl Environ Microbiol 2024; 90:e0029824. [PMID: 39189736 PMCID: PMC11409718 DOI: 10.1128/aem.00298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
We report the relationship between enrichment of adapted populations and enhancement of community functional resilience in methanogenic bioreactors. Although previous studies have shown the positive effects of acclimation, this work directly investigated the relationships between microbiome dynamics and performance of anaerobic co-digesting reactors in response to different levels of an environmental perturbation (loading of grease interceptor waste [GIW]). Using the methanogenic microbiome from a full-scale digester, we developed eight sets of microbial communities in triplicate using different feed sources. These substrate-specific microbiomes were then exposed to three independent disturbance events of low-, mid- and high-GIW loading rates. This approach allowed us to directly attribute differences in community responses to differences in community composition. Despite identical inocula, environment (digester operation, substrate loading rate, and feeding patterns) and general whole-community function (methane production and effluent quality) during the cultivation period, different substrates led to different microbial community assemblies. Lipid pre-acclimation led to enrichment of a pool of specialized populations, along with thriving of sub-dominant communities. The enrichment of these populations improved functional resilience and process performance when exposed to a low level of lipid-rich perturbation compared with less-acclimated communities. At higher levels of perturbation, the communities were not able to recover methanogenesis, indicating a loading limit to the resilience response. This study extends our current understanding of environmental perturbations, feed-specific adaptation, and functional resilience in methanogenic bioreactors.IMPORTANCEThis study demonstrates, for the first time for GIW co-digestion, how applying similar perturbations to different microbial communities was used to directly identify the causal relationships between microbial community, function, and environment in triplicate anaerobic microbiomes. We evaluated the impact of feed-specific adaptation on methanogenic microbiomes and demonstrated how microbiomes can be influenced to improve their functional (methanogenic) resilience to GIW inhibition. These findings demonstrate how an ecological framework can help improve a biological engineering application, and more specifically, increase the potential of anaerobic co-digestion for converting wastes to energy.
Collapse
Affiliation(s)
- Ling Wang
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Joel J. Ducoste
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Francis L. de los Reyes
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
63
|
DeFord L, Yoon JY. Soil microbiome characterization and its future directions with biosensing. J Biol Eng 2024; 18:50. [PMID: 39256848 PMCID: PMC11389470 DOI: 10.1186/s13036-024-00444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Soil microbiome characterization is typically achieved with next-generation sequencing (NGS) techniques. Metabarcoding is very common, and meta-omics is growing in popularity. These techniques have been instrumental in microbiology, but they have limitations. They require extensive time, funding, expertise, and computing power to be effective. Moreover, these techniques are restricted to controlled laboratory conditions; they are not applicable in field settings, nor can they rapidly generate data. This hinders using NGS as an environmental monitoring tool or an in-situ checking device. Biosensing technology can be applied to soil microbiome characterization to overcome these limitations and to complement NGS techniques. Biosensing has been used in biomedical applications for decades, and many successful commercial products are on the market. Given its previous success, biosensing has much to offer soil microbiome characterization. There is a great variety of biosensors and biosensing techniques, and a few in particular are better suited for soil field studies. Aptamers are more stable than enzymes or antibodies and are more ready for field-use biosensors. Given that any microbiome is complex, a multiplex sensor will be needed, and with large, complicated datasets, machine learning might benefit these analyses. If the signals from the biosensors are optical, a smartphone can be used as a portable optical reader and potential data-analyzing device. Biosensing is a rich field that couples engineering and biology, and applying its toolset to help advance soil microbiome characterization would be a boon to microbiology more broadly.
Collapse
Affiliation(s)
- Lexi DeFord
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
64
|
Gao W, Lin W, Li Q, Chen W, Yin W, Zhu X, Gao S, Liu L, Li W, Wu D, Zhang G, Zhu R, Jiao N. Identification and validation of microbial biomarkers from cross-cohort datasets using xMarkerFinder. Nat Protoc 2024; 19:2803-2830. [PMID: 38745111 DOI: 10.1038/s41596-024-00999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
Microbial signatures have emerged as promising biomarkers for disease diagnostics and prognostics, yet their variability across different studies calls for a standardized approach to biomarker research. Therefore, we introduce xMarkerFinder, a four-stage computational framework for microbial biomarker identification with comprehensive validations from cross-cohort datasets, including differential signature identification, model construction, model validation and biomarker interpretation. xMarkerFinder enables the identification and validation of reproducible biomarkers for cross-cohort studies, along with the establishment of classification models and potential microbiome-induced mechanisms. Originally developed for gut microbiome research, xMarkerFinder's adaptable design makes it applicable to various microbial habitats and data types. Distinct from existing biomarker research tools that typically concentrate on a singular aspect, xMarkerFinder uniquely incorporates a sophisticated feature selection process, specifically designed to address the heterogeneity between different cohorts, extensive internal and external validations, and detailed specificity assessments. Execution time varies depending on the sample size, selected algorithm and computational resource. Accessible via GitHub ( https://github.com/tjcadd2020/xMarkerFinder ), xMarkerFinder supports users with diverse expertise levels through different execution options, including step-to-step scripts with detailed tutorials and frequently asked questions, a single-command execution script, a ready-to-use Docker image and a user-friendly web server ( https://www.biosino.org/xmarkerfinder ).
Collapse
Affiliation(s)
- Wenxing Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Weili Lin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Qiang Li
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Wanning Chen
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Wenjing Yin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Xinyue Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Sheng Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Lei Liu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Wenjie Li
- Shanghai Southgene Technology Co., Ltd., Shanghai, P. R. China
| | - Dingfeng Wu
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China.
| | - Na Jiao
- National Clinical Research Center for Child Health, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
65
|
Boyd A, El Dani M, Ajrouche R, Demontant V, Cheval J, Lacombe K, Cosson G, Rodriguez C, Pawlotsky JM, Woerther PL, Surgers L. Gut microbiome diversity and composition in individuals with and without extended-spectrum β-lactamase-producing Enterobacterales carriage: a matched case-control study in infectious diseases department. Clin Microbiol Infect 2024; 30:1154-1163. [PMID: 38527613 DOI: 10.1016/j.cmi.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE Little is known about the effect of gut microbial and extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) carriage, particularly in the general population. The aim of this study was to identify microbiota signatures uniquely correlated with ESBL-E carriage. METHODS We conducted a case-control study among individuals seeking care at the Sexual Health Clinic or Department of Infectious and Tropical Diseases, Saint-Antoine Hospital, Paris, France. Using coarsened exact matching, 176 participants with ESBL-carriage (i.e. cases) were matched 1:1 to those without ESBL-carriage (i.e. controls) based on sexual group, ESBL-E prevalence of countries travelled in <12 months, number of sexual partners in <6 months, geographic origin, and any antibiotic use in <6 months. 16S rRNA gene amplicon sequencing was used to generate differential abundances at the genus level and measures of α- and β-diversity. RESULTS Participants were mostly men (83.2%, n = 293/352) and had a median age of 33 years (interquartile range: 27-44). Nine genera were found associated with ESBL-E carriage: Proteus (p < 0.0001), Carnobacterium (p < 0.0001), Enterorhabdus (p 0.0079), Catonella (p 0.017), Dermacoccus (p 0.017), Escherichia/Shigella (p 0.021), Kocuria (p 0.023), Bacillus (p 0.040), and Filifactor (p 0.043); however, differences were no longer significant after Benjamini-Hochberg correction (q > 0.05). There were no differences between those with versus without ESBL-E carriage in measures of α-diversity (Shannon Diversity Index, p 0.49; Simpson Diversity Index, p 0.54; and Chao1 Richness Estimator, p 0.16) or β-diversity (Bray-Curtis dissimilarity index, p 0.42). DISCUSSION In this large carefully controlled study, there is lacking evidence that gut microbial composition and diversity is any different between individuals with and without ESBL-E carriage.
Collapse
Affiliation(s)
- Anders Boyd
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; Stichting HIV Monitoring, Amsterdam, The Netherlands; Public Health Service of Amsterdam, Infectious Diseases, Amsterdam, The Netherlands
| | - Mariam El Dani
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon
| | - Roula Ajrouche
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadat, Lebanon; Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut, Lebanon
| | - Vanessa Demontant
- NGS Platform, Henri Mondor Hospital, APHP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Justine Cheval
- NGS Platform, Henri Mondor Hospital, APHP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Karine Lacombe
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; GHU APHP. Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France
| | - Guillaume Cosson
- GHU APHP. Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France
| | - Christophe Rodriguez
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris (APHP), Université Paris-Est-Créteil, Créteil, France; INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
| | - Jean-Michel Pawlotsky
- Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris (APHP), Université Paris-Est-Créteil, Créteil, France; INSERM U955, Team "Viruses, Hepatology, Cancer", Créteil, France
| | - Paul-Louis Woerther
- NGS Platform, Henri Mondor Hospital, APHP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France; Département de Microbiologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique Hôpitaux de Paris (APHP), Université Paris-Est-Créteil, Créteil, France; Université Paris-Est-Créteil (UPEC), EA 7380 Dynamic, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Laure Surgers
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, Paris, France; GHU APHP. Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France.
| |
Collapse
|
66
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
67
|
Ebrahimi H, Dizman N, Meza L, Malhotra J, Li X, Dorff T, Frankel P, Llamas-Quitiquit M, Hsu J, Zengin ZB, Alcantara M, Castro D, Mercier B, Chawla N, Chehrazi-Raffle A, Barragan-Carrillo R, Jaime-Casas S, Govindarajan A, Gillece J, Trent J, Lee PP, Parks TP, Takahashi M, Hayashi A, Kortylewski M, Caporaso JG, Lee K, Tripathi A, Pal SK. Cabozantinib and nivolumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med 2024; 30:2576-2585. [PMID: 38942995 PMCID: PMC11405272 DOI: 10.1038/s41591-024-03086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
Supplementation with CBM588, a bifidogenic live bacterial product, has been associated with improved clinical outcomes in persons with metastatic renal cell carcinoma (mRCC) receiving nivolumab and ipilimumab. However, its effect on those receiving tyrosine kinase inhibitor-based combinations is unknown. In this open-label, randomized, investigator-initiated, phase 1 study, 30 participants with locally advanced or mRCC with histological confirmation of clear cell, papillary or sarcomatoid component were randomized in a 2:1 fashion to receive cabozantinib (an inhibitor of vascular endothelial growth factor receptor, MET and AXL) and nivolumab (anti-programmed cell death protein 1) with or without CBM588 as first-line treatment. Metagenomic sequencing was performed on stool samples to characterize their gut microbiome at baseline and 13 weeks into treatment. The primary endpoint was a change in the relative abundance of Bifidobacterium spp.; secondary endpoints included objective response rate (ORR), progression-free survival (PFS) and toxicity profile. The primary endpoint of the study was not met and the addition of CBM588 to cabozantinib and nivolumab did not result in a difference in the relative abundance of Bifidobacterium spp. or alpha diversity (as measured by the Shannon index). However, ORR was significantly higher in participants treated with CBM588 compared to those in the control arm (14 of 19, 74% versus 2 of 10, 20%; P = 0.01). PFS at 6 months was 84% (16 of 19) and 60% (6 of 10) in the experimental and control arms, respectively. No significant difference in toxicity profile was seen between the study arms. Our results provide a preliminary signal of improved clinical activity with CBM588 in treatment-naive participants with mRCC receiving cabozantinib and nivolumab. Further investigation is needed to confirm these findings and better characterize the underlying mechanism driving this effect.ClinicalTrials.gov identifier: NCT05122546.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Nazli Dizman
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- MD Anderson Cancer Center, Houston, TX, USA
| | - Luis Meza
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Jasnoor Malhotra
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Xiaochen Li
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tanya Dorff
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Paul Frankel
- Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Joann Hsu
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zeynep B Zengin
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Marice Alcantara
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Daniela Castro
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Benjamin Mercier
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Neal Chawla
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Alex Chehrazi-Raffle
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Salvador Jaime-Casas
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ameish Govindarajan
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - John Gillece
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Jeffrey Trent
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | | | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Keehoon Lee
- Translational Genomics Research Institute (TGen), Flagstaff, AZ, USA
| | - Abhishek Tripathi
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Sumanta K Pal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
68
|
Gerasimova Y, Ali H, Nadeem U. Challenges for pathologists in implementing clinical microbiome diagnostic testing. J Pathol Clin Res 2024; 10:e70002. [PMID: 39289163 PMCID: PMC11407905 DOI: 10.1002/2056-4538.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
Recent research has established that the microbiome plays potential roles in the pathogenesis of numerous chronic diseases, including carcinomas. This discovery has led to significant interest in clinical microbiome testing among physicians, translational investigators, and the lay public. As novel, inexpensive methodologies to interrogate the microbiota become available, research labs and commercial vendors have offered microbial assays. However, these tests still have not infiltrated the clinical laboratory space. Here, we provide an overview of the challenges of implementing microbiome testing in clinical pathology. We discuss challenges associated with preanalytical and analytic sample handling and collection that can influence results, choosing the appropriate testing methodology for the clinical context, establishing reference ranges, interpreting the data generated by testing and its value in making patient care decisions, regulation, and cost considerations of testing. Additionally, we suggest potential solutions for these problems to expedite the establishment of microbiome testing in the clinical laboratory.
Collapse
Affiliation(s)
- Yulia Gerasimova
- Department of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haroon Ali
- Department of Medicine, Woodland Heights Medical Center, Lufkin, TX, USA
| | - Urooba Nadeem
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
69
|
Jia P, Liang JL, Lu JL, Zhong SJ, Xiong T, Feng SW, Wang Y, Wu ZH, Yi XZ, Gao SM, Zheng J, Wen P, Li F, Li Y, Liao B, Shu WS, Li JT. Soil keystone viruses are regulators of ecosystem multifunctionality. ENVIRONMENT INTERNATIONAL 2024; 191:108964. [PMID: 39173234 DOI: 10.1016/j.envint.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Ecosystem multifunctionality reflects the capacity of ecosystems to simultaneously maintain multiple functions which are essential bases for human sustainable development. Whereas viruses are a major component of the soil microbiome that drive ecosystem functions across biomes, the relationships between soil viral diversity and ecosystem multifunctionality remain under-studied. To address this critical knowledge gap, we employed a combination of amplicon and metagenomic sequencing to assess prokaryotic, fungal and viral diversity, and to link viruses to putative hosts. We described the features of viruses and their potential hosts in 154 soil samples from 29 farmlands and 25 forests distributed across China. Although 4,460 and 5,207 viral populations (vOTUs) were found in the farmlands and forests respectively, the diversity of specific vOTUs rather than overall soil viral diversity was positively correlated with ecosystem multifunctionality in both ecosystem types. Furthermore, the diversity of these keystone vOTUs, despite being 10-100 times lower than prokaryotic or fungal diversity, was a better predictor of ecosystem multifunctionality and more strongly associated with the relative abundances of prokaryotic genes related to soil nutrient cycling. Gemmatimonadota and Actinobacteria dominated the host community of soil keystone viruses in the farmlands and forests respectively, but were either absent or showed a significantly lower relative abundance in that of soil non-keystone viruses. These findings provide novel insights into the regulators of ecosystem multifunctionality and have important implications for the management of ecosystem functioning.
Collapse
Affiliation(s)
- Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Sheng-Ji Zhong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Tian Xiong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yutao Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xin-Zhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Zheng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yanying Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
70
|
Pasqualini J, Facchin S, Rinaldo A, Maritan A, Savarino E, Suweis S. Emergent ecological patterns and modelling of gut microbiomes in health and in disease. PLoS Comput Biol 2024; 20:e1012482. [PMID: 39331660 PMCID: PMC11493414 DOI: 10.1371/journal.pcbi.1012482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/21/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Recent advancements in next-generation sequencing have revolutionized our understanding of the human microbiome. Despite this progress, challenges persist in comprehending the microbiome's influence on disease, hindered by technical complexities in species classification, abundance estimation, and data compositionality. At the same time, the existence of macroecological laws describing the variation and diversity in microbial communities irrespective of their environment has been recently proposed using 16s data and explained by a simple phenomenological model of population dynamics. We here investigate the relationship between dysbiosis, i.e. in unhealthy individuals there are deviations from the "regular" composition of the gut microbial community, and the existence of macro-ecological emergent law in microbial communities. We first quantitatively reconstruct these patterns at the species level using shotgun data, and addressing the consequences of sampling effects and statistical errors on ecological patterns. We then ask if such patterns can discriminate between healthy and unhealthy cohorts. Concomitantly, we evaluate the efficacy of different statistical generative models, which incorporate sampling and population dynamics, to describe such patterns and distinguish which are expected by chance, versus those that are potentially informative about disease states or other biological drivers. A critical aspect of our analysis is understanding the relationship between model parameters, which have clear ecological interpretations, and the state of the gut microbiome, thereby enabling the generation of synthetic compositional data that distinctively represent healthy and unhealthy individuals. Our approach, grounded in theoretical ecology and statistical physics, allows for a robust comparison of these models with empirical data, enhancing our understanding of the strengths and limitations of simple microbial models of population dynamics.
Collapse
Affiliation(s)
- Jacopo Pasqualini
- Dipartimento di Fisica “G. Galilei” e INFN sezione di Padova, University of Padova, Padova, Italy
| | - Sonia Facchin
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche (DiSCOG), University of Padova, Padova, Italy
| | - Andrea Rinaldo
- Dipartimento di Ingegneria Civile, Edile e Ambientale (ICEA), University of Padova, Padova, Italy
- Laboratory of Ecohydrology, École Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Amos Maritan
- Dipartimento di Fisica “G. Galilei” e INFN sezione di Padova, University of Padova, Padova, Italy
| | - Edoardo Savarino
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche (DiSCOG), University of Padova, Padova, Italy
| | - Samir Suweis
- Dipartimento di Fisica “G. Galilei” e INFN sezione di Padova, University of Padova, Padova, Italy
| |
Collapse
|
71
|
Gonzalez E, Lee MD, Tierney BT, Lipieta N, Flores P, Mishra M, Beckett L, Finkelstein A, Mo A, Walton P, Karouia F, Barker R, Jansen RJ, Green SJ, Weging S, Kelliher J, Singh NK, Bezdan D, Galazska J, Brereton NJB. Spaceflight alters host-gut microbiota interactions. NPJ Biofilms Microbiomes 2024; 10:71. [PMID: 39209868 PMCID: PMC11362537 DOI: 10.1038/s41522-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The ISS rodent habitat has provided crucial insights into the impact of spaceflight on mammals, inducing symptoms characteristic of liver disease, insulin resistance, osteopenia, and myopathy. Although these physiological responses can involve the microbiome on Earth, host-microbiota interactions during spaceflight are still being elucidated. We explore murine gut microbiota and host gene expression in the colon and liver after 29 and 56 days of spaceflight using multiomics. Metagenomics revealed significant changes in 44 microbiome species, including relative reductions in bile acid and butyrate metabolising bacteria like Extibacter muris and Dysosmobacter welbionis. Functional prediction indicate over-representation of fatty acid and bile acid metabolism, extracellular matrix interactions, and antibiotic resistance genes. Host gene expression described corresponding changes to bile acid and energy metabolism, and immune suppression. These changes imply that interactions at the host-gut microbiome interface contribute to spaceflight pathology and that these interactions might critically influence human health and long-duration spaceflight feasibility.
Collapse
Affiliation(s)
- E Gonzalez
- Microbiome Unit, Canadian Centre for Computational Genomics, Department of Human Genetics, McGill University, Montréal, Canada
- Centre for Microbiome Research, McGill University, Montréal, Canada
| | - M D Lee
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - N Lipieta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - P Flores
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - M Mishra
- Grossman School of Medicine, New York University, New York, USA
| | - L Beckett
- University of Nottingham, Nottingham, NG7 2RD, UK
| | - A Finkelstein
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - A Mo
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - P Walton
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - F Karouia
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Centre for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - R Barker
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Yuri GmbH, Wiesentalstr. 40, 88074, Meckenbeuren, Germany
- University of Wisconsin-Madison, Madison, WI, USA
| | - R J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Centre, 1653 W. Congress Parkway, Chicago, IL, 60612, USA
| | - S Weging
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - J Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N K Singh
- Department of Industrial Relations, Division of Occupational Safety and Health, Oakland, USA
| | - D Bezdan
- University of Wisconsin-Madison, Madison, WI, USA
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - J Galazska
- Space Biosciences Research Branch, NASA Ames Research Centre, Moffett Field, CA, USA
| | - N J B Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
72
|
Longtine AG, Greenberg NT, Gonzalez A, Lindquist A, VanDongen NS, Mahoney SA, Rahman G, Clayton ZS, Ziemba BP, Ludwig KR, Widlansky ME, Knight R, Seals DR, Brunt VE. Oral Supplementation with the Short-Chain Fatty Acid Acetate Ameliorates Age-Related Arterial Dysfunction in Mice. AGING BIOLOGY 2024; 2:20240033. [PMID: 39897133 PMCID: PMC11785404 DOI: 10.59368/agingbio.20240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Adverse changes in the gut microbiome with aging are an emerging mediator of arterial dysfunction, which contributes to cardiovascular disease (CVD) development. We investigated the therapeutic potential of enhancing the bioavailability of gut-derived short-chain fatty acids (SCFAs; produced from dietary fiber) for improving age-related arterial dysfunction. We performed gut microbial whole-genome sequencing in young (3 months) versus old (24 months) male C57BL/6N mice to explore changes in bacterial taxonomic abundance and functional pathways with aging and relations to arterial function. We then supplemented young and old mice with the SCFA acetate in drinking water versus controls and versus a high-fiber diet for 8-10 weeks to test the effects of these interventions on vascular function and explore potential mechanisms. Of the various differences in the gut microbiomes of old mice, lower SCFA-producing capacity (taxonomic abundance and functional pathways) stood out as a key feature related to worse arterial function after adjusting for age. Acetate supplementation and a high-fiber diet reversed ~30% of the age-related increase in aortic pulse wave velocity (stiffness) and fully restored carotid artery endothelium-dependent dilation (endothelial function) to young levels. Acetate and a high-fiber diet reduced age-related increases in systemic inflammation. We also found that improvements in endothelial function were likely mediated by suppressed early growth response-1 signaling using innovative siRNA-based knockdown in isolated arteries. There were no effects of the interventions in young mice. Acetate supplementation was comparably effective for ameliorating arterial dysfunction with aging as a high-fiber diet and thus shows promise for reducing CVD risk in older adults.
Collapse
Affiliation(s)
- Abigail G. Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nathan T. Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Alexandra Lindquist
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Nicholas S. VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia A. Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Gibraan Rahman
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Brian P. Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Katelyn R. Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Michael E. Widlansky
- Departments of Medicine and Pharmacology and the Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, Department of Computer Science and Engineering, and Halıcıoğlu Data Science Institute, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Vienna E. Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
73
|
Marini S, Barquero A, Wadhwani AA, Bian J, Ruiz J, Boucher C, Prosperi M. OCTOPUS: Disk-based, Multiplatform, Mobile-friendly Metagenomics Classifier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585215. [PMID: 38559026 PMCID: PMC10979967 DOI: 10.1101/2024.03.15.585215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Portable genomic sequencers such as Oxford Nanopore's MinION enable real-time applications in clinical and environmental health. However, there is a bottleneck in the downstream analytics when bioinformatics pipelines are unavailable, e.g., when cloud processing is unreachable due to absence of Internet connection, or only low-end computing devices can be carried on site. Here we present a platform-friendly software for portable metagenomic analysis of Nanopore data, the Oligomer-based Classifier of Taxonomic Operational and Pan-genome Units via Singletons (OCTOPUS). OCTOPUS is written in Java, reimplements several features of the popular Kraken2 and KrakenUniq software, with original components for improving metagenomics classification on incomplete/sampled reference databases, making it ideal for running on smartphones or tablets. OCTOPUS obtains sensitivity and precision comparable to Kraken2, while dramatically decreasing (4- to 16-fold) the false positive rate, and yielding high correlation on real-word data. OCTOPUS is available along with customized databases at https://github.com/DataIntellSystLab/OCTOPUS and https://github.com/Ruiz-HCI-Lab/OctopusMobile.
Collapse
Affiliation(s)
- Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
| | - Alexander Barquero
- Department of Computer and Information Science and Engineering, University of Florida, USA
| | - Anisha Ashok Wadhwani
- Department of Computer and Information Science and Engineering, University of Florida, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, USA
| | - Jaime Ruiz
- Department of Computer and Information Science and Engineering, University of Florida, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, USA
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, USA
| |
Collapse
|
74
|
Onyeaghala GC, Sharma S, Oyenuga M, Staley CM, Milne GL, Demmer RT, Shaukat A, Thyagarajan B, Straka RJ, Church TR, Prizment AE. The Effects of Aspirin Intervention on Inflammation-Associated Lingual Bacteria: A Pilot Study from a Randomized Clinical Trial. Microorganisms 2024; 12:1609. [PMID: 39203451 PMCID: PMC11357305 DOI: 10.3390/microorganisms12081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Several bacterial taxa enriched in inflammatory bowel diseases and colorectal cancer (CRC) are found in the oral cavity. We conducted a pilot study nested within a six-week aspirin intervention in a randomized placebo-controlled trial to test their response to aspirin intervention. Fifty healthy subjects, 50-75 years old, were randomized to receive 325 mg aspirin (n = 30) or placebo (n = 20) orally once daily for six weeks. Oral tongue swabs were collected at baseline and week six. We estimated the association between aspirin use and the temporal changes in the relative abundance of pre-specified genus level taxa from pre- to post-treatment. The temporal change in relative abundance differed for eight genus level taxa between the aspirin and placebo groups. In the aspirin group, there were significant increases in the relative abundances of Neisseria, Streptococcus, Actinomyces, and Rothia and significant decreases in Prevotella, Veillonella, Fusobacterium, and Porphyromonas relative to placebo. The log ratio of Neisseria to Fusobacterium declined more in the aspirin group than placebo, signaling a potential marker associated with aspirin intervention. These preliminary findings should be validated using metagenomic sequencing and may guide future studies on the role of aspirin on taxa in various oral ecological niches.
Collapse
Affiliation(s)
- Guillaume C. Onyeaghala
- Division of Nephrology, Hennepin Healthcare, University of Minnesota, Minneapolis, MN 55415, USA;
| | - Shweta Sharma
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
| | - Mosunmoluwa Oyenuga
- Department of Internal Medicine, SSM Health St. Mary’s Hospital—St. Louis, St. Louis, MO 63117, USA;
| | - Christopher M. Staley
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ginger L. Milne
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN 37232, USA;
| | - Ryan T. Demmer
- Mayo Clinic College of Medicine & Sciences, Rochester, MN 55905, USA;
| | - Aasma Shaukat
- Department of Population Health, New York University Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Bharat Thyagarajan
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Timothy R. Church
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anna E. Prizment
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
75
|
Shi H, Hou G, Jiang S, Su X. PM-profiler: a high-resolution and fast tool for taxonomy annotation of amplicon-based microbiome. Microbiol Spectr 2024; 12:e0069524. [PMID: 38912828 PMCID: PMC11302061 DOI: 10.1128/spectrum.00695-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/12/2024] [Indexed: 06/25/2024] Open
Abstract
Amplicon sequencing stands as a cornerstone in microbiome profiling, yet concerns persist regarding its resolution and accuracy. The enhancement of reference databases and annotations marks a new era for 16S rRNA-based profiling. Capitalizing on this potential, we introduce PM-profiler, a novel tool for profiling amplicon short reads. PM-profiler is implemented by C++-based advanced algorithms, such as pre-allocated hash for reference construction, hybrid and dynamic short-read matching, big-data-guided dual-mode hierarchical taxonomy annotation strategy, and full-procedure parallel computing. This tool delivers species-level resolution and ultrafast speed for large-scale microbiomes, surpassing alignment-based approaches and the Naïve-Bayesian model. Furthermore, recognizing the global uneven distribution of microbes, we delineate optimal annotation strategies for each sampling habitat based on microbial patterns over 270,000 microbiomes. Integrated with the established workflow of Parallel-Meta Suite and the latest curated reference databases, this endeavor offers a swift and dependable solution for high-precision microbiome surveys.IMPORTANCEOur study introduces PM-profiler, a new tool that deciphers the complexity of microbial communities. With advanced algorithms, flexible annotation strategies, and well-organized big-data, PM-profiler provides a faster and more accurate way to study on microbiomes, paving the way for discoveries that could improve our understanding of microbiomes and their impact on the world.
Collapse
Affiliation(s)
- Haobo Shi
- College of Computer Science and Technology, Qingdao University, Qingdao, Shandong, China
| | - Guosen Hou
- College of Computer Science and Technology, Qingdao University, Qingdao, Shandong, China
| | - Sikai Jiang
- College of Computer Science and Technology, Qingdao University, Qingdao, Shandong, China
| | - Xiaoquan Su
- College of Computer Science and Technology, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
76
|
Fu L, Huo S, Lin P, Wang J, Zhao J, You Y, Nie X, Ding S. Precise antibiotic delivery to the lung infection microenvironment boosts the treatment of pneumonia with decreased gut dysbiosis. Acta Biomater 2024; 184:352-367. [PMID: 38909721 DOI: 10.1016/j.actbio.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Bacterial pneumonia is a common disease with significant health risks. However, the overuse antibiotics in clinics face challenges such as inadequate targeting and limited drug utilization, leading to drug resistance and gut dysbiosis. Herein, a dual-responsive lung inflammatory tissue targeted nanoparticle (LITTN), designed for targeting lung tissue and bacteria, is screened from a series of prepared nanoparticles consisting of permanent cationic lipids, acid-responsive lipids, and reactive oxygen species-responsive and phenylboronic acid-modified lipids with different surface properties. Such nanoparticle is further verified to enhance the adsorption of vitronectin in serum. Additionally, the optimized nanoparticle exhibits more positive charge and coordination of boric acid with cis-diol in the infected microenvironment, facilitating electrostatic interactions with bacteria and biofilm penetration. Importantly, the antibacterial efficiency of dual-responsive rifampicin-loaded LITTN (Rif@LITTN) against methicillin-resistant staphylococcus aureus is 10 times higher than that of free rifampicin. In a mouse model of bacterial pneumonia, the intravenous administration of Rif@LITTN could precisely target the lungs, localize in the lung infection microenvironment, and trigger the responsive release of rifampicin, thereby effectively alleviating lung inflammation and reducing damage. Notably, the targeted delivery of rifampicin helps protect against antibiotic-induced changes in the gut microbiota. This study establishes a new strategy for precise delivery to the lung-infected microenvironment, promoting treatment efficacy while minimizing the impact on gut microbiota. STATEMENT OF SIGNIFICANCE: Intravenous antibiotics play a critical role in clinical care, particularly for severe bacterial pneumonia. However, the inability of antibiotics to reach target tissues causes serious side effects, including liver and kidney damage and intestinal dysbiosis. Therefore, achieving precise delivery of antibiotics is of great significance. In this study, we developed a novel lung inflammatory tissue-targeted nanoparticle that could target lung tissue after intravenous administration and then target the inflammatory microenvironment to trigger dual-responsive antibiotics release to synergistically treat pneumonia while maintaining the balance of gut microbiota and reducing the adverse effects of antibiotics. This study provides new ideas for targeted drug delivery and reference for clinical treatment of pneumonia.
Collapse
Affiliation(s)
- Ling Fu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Shaohu Huo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Beijing Children's Hospital, Capital Medical University, China National Clinical, Research Center of Respiratory Diseases, Beijing 100045, PR China
| | - Paiyu Lin
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jing Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jiaying Zhao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and, Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, PR China.
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China; Beijing Children's Hospital, Capital Medical University, China National Clinical, Research Center of Respiratory Diseases, Beijing 100045, PR China.
| |
Collapse
|
77
|
de Medeiros Garcia Torres M, Lanza DCF. A Standard Pipeline for Analyzing the Endometrial Microbiome. Reprod Sci 2024; 31:2163-2173. [PMID: 38720154 DOI: 10.1007/s43032-024-01557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/11/2024] [Indexed: 07/31/2024]
Abstract
The endometrial microbiome is a rapidly advancing field of research, particularly in obstetrics and gynecology, as it has been found to be linked with obstetric complications and potential impacts on fertility. The diversity of microorganisms presents in the endometrium, along with their metabolites, can influence reproductive outcomes by modulating the local immune environment of the uterus. However, a major challenge in advancing our understanding of the endometrial microbiota lies in the heterogeneity of available studies, which vary in terms of patient selection, control groups, collection methods and analysis methodologies. In this study, we propose a detailed pipeline for endometrial microbiome analysis, based on the most comprehensive prospective of 64 studies that have investigated the endometrial microbiome up to the present. Additionally, our review suggests that a dominance of Lactobacilli in the endometrium may be associated with improved reproductive prognosis, including higher implantation rates and lower miscarriage rates. By establishing a standardized pipeline, we aim to facilitate future research, enabling better comparison and correlation of bacterial communities with the health status of patients, including fertility-related issues.
Collapse
|
78
|
Older CE, Rodrigues Hoffmann A. Considerations for performing companion animal skin microbiome studies. Vet Dermatol 2024; 35:367-374. [PMID: 38654617 DOI: 10.1111/vde.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/16/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The microbiome field has grown significantly in the past decade, and published studies have provided an overview of the microorganisms inhabiting the skin of companion animals. With the continued growth and interest in this field, concerns have been raised regarding sample collection methods, reagent contamination, data processing and environmental factors that may impair data interpretation (especially as related to low-biomass skin samples). In order to assure transparency, it is important to report all steps from sample collection to data analysis, including use of proper controls, and to make sequence data and sample metadata publicly available. Whilst interstudy variation will continue to exist, efforts to standardise methods will reduce confounding variables, and allow for reproducibility and comparability of results between studies. Companion animal microbiome studies often include clinical cases, and small sample sizes may result in lack of statistical significance within small datasets. The ability to combine results from standardised studies through meta-analyses would mitigate the limitations of these smaller studies, providing for more robust interpretation of results which could then inform clinical decisions. In this narrative review, we aim to present considerations for designing a study to evaluate the skin microbiome of companion animals, from conception to data analysis.
Collapse
Affiliation(s)
- Caitlin E Older
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Aline Rodrigues Hoffmann
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
79
|
Clinton M, Wyness AJ, Martin SAM, Brierley AS, Ferrier DEK. Association of microbial community structure with gill disease in marine-stage farmed Atlantic salmon (Salmo salar); a yearlong study. BMC Vet Res 2024; 20:340. [PMID: 39090695 PMCID: PMC11293161 DOI: 10.1186/s12917-024-04125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Understanding the relationship between resident microbiota and disease in cultured fish represents an important and emerging area of study. Marine gill disorders in particular are considered an important challenge to Atlantic salmon (Salmo salar) aquaculture, however relatively little is known regarding the role resident gill microbiota might play in providing protection from or potentiating different gill diseases. Here, 16S rRNA sequencing was used to examine the gill microbiome alongside fish health screening in farmed Atlantic salmon. Results were used to explore the relationship between microbial communities and gill disease. RESULTS Microbial community restructuring was observed throughout the sampling period and linked to varied drivers of change, including environmental conditions and severity of gill pathology. Taxa with significantly greater relative abundance on healthier gills included isolates within genus Shewanella, and taxa within family Procabacteriaceae. In contrast, altered abundance of Candidatus Branchiomonas and Rubritalea spp. were associated with damaged gills. Interestingly, more general changes in community richness and diversity were not associated with altered gill health, and thus not apparently deleterious to fish. Gross and histological gill scoring demonstrated seasonal shifts in gill pathology, with increased severity of gill damage in autumn. Specific infectious causes that contributed to observed pathology within the population included the gill disorder amoebic gill disease (AGD), however due to the uncontrolled nature of this study and likely mixed contribution of various causes of gill disease to observed pathology results do not strongly support an association between the microbial community and specific infectious or non-infectious drivers of gill pathology. CONCLUSIONS Results suggest that the microbial community of farmed Atlantic salmon gills undergo continual restructuring in the marine environment, with mixed influences upon this change including environmental, host, and pathogenic factors. A significant association of specific taxa with different gill health states suggests these taxa might make meaningful indicators of gill health. Further research with more frequent sampling and deliberate manipulation of gills would provide important advancement of knowledge in this area. Overall, although much is still to be learnt regarding what constitutes a healthy or maladapted gill microbial community, the results of this study provide clear advancement of the field, providing new insight into the microbial community structure of gills during an annual production cycle of marine-stage farmed Atlantic salmon.
Collapse
Affiliation(s)
- Morag Clinton
- Scottish Oceans Institute, University of St Andrews, St Andrews, UK.
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, USA.
- Sitka Sound Science Center, Alaska, Sitka, USA.
| | - Adam J Wyness
- Scottish Oceans Institute, University of St Andrews, St Andrews, UK
- Scottish Association for Marine Science, Oban, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | - David E K Ferrier
- Scottish Oceans Institute, University of St Andrews, St Andrews, UK.
| |
Collapse
|
80
|
Stringer AM, Hargreaves BM, Mendes RA, Blijlevens NMA, Bruno JS, Joyce P, Kamath S, Laheij AMGA, Ottaviani G, Secombe KR, Tonkaboni A, Zadik Y, Bossi P, Wardill HR. Updated perspectives on the contribution of the microbiome to the pathogenesis of mucositis using the MASCC/ISOO framework. Support Care Cancer 2024; 32:558. [PMID: 39080025 PMCID: PMC11289053 DOI: 10.1007/s00520-024-08752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Advances in the treatment of cancer have significantly improved mortality rates; however, this has come at a cost, with many treatments still limited by their toxic side effects. Mucositis in both the mouth and gastrointestinal tract is common following many anti-cancer agents, manifesting as ulcerative lesions and associated symptoms throughout the alimentary tract. The pathogenesis of mucositis was first defined in 2004 by Sonis, and almost 20 years on, the model continues to be updated reflecting ongoing research initiatives and more sophisticated analytical techniques. The most recent update, published by the Multinational Association for Supportive Care in Cancer and the International Society for Oral Oncology (MASCC/ISOO), highlights the numerous co-occurring events that underpin mucositis development. Most notably, a role for the ecosystem of microorganisms that reside throughout the alimentary tract (the oral and gut microbiota) was explored, building on initial concepts proposed by Sonis. However, many questions remain regarding the true causal contribution of the microbiota and associated metabolome. This review aims to provide an overview of this rapidly evolving area, synthesizing current evidence on the microbiota's contribution to mucositis development and progression, highlighting (i) components of the 5-phase model where the microbiome may be involved, (ii) methodological challenges that have hindered advances in this area, and (iii) opportunities for intervention.
Collapse
Affiliation(s)
- Andrea M Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Benjamin M Hargreaves
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Rui Amaral Mendes
- Faculty of Medicine, University of Porto/CINTESIS@RISE, Porto, Portugal
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, Cleveland, OH, 44106-7401, USA
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julia S Bruno
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Alexa M G A Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, Trieste, Italy
| | - Kate R Secombe
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Arghavan Tonkaboni
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yehuda Zadik
- Department of Military Medicine and "Tzameret", Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Hannah R Wardill
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Level 5S, Adelaide, 5000, Australia.
| |
Collapse
|
81
|
Talbot BM, Clennon JA, Rakotoarison MFN, Rautman L, Durry S, Ragazzo LJ, Wright PC, Gillespie TR, Read TD. Metagenome-wide characterization of shared antimicrobial resistance genes in sympatric people and lemurs in rural Madagascar. PeerJ 2024; 12:e17805. [PMID: 39099658 PMCID: PMC11296303 DOI: 10.7717/peerj.17805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Background Tracking the spread of antibiotic resistant bacteria is critical to reduce global morbidity and mortality associated with human and animal infections. There is a need to understand the role that wild animals in maintenance and transfer of antibiotic resistance genes (ARGs). Methods This study used metagenomics to identify and compare the abundance of bacterial species and ARGs detected in the gut microbiomes from sympatric humans and wild mouse lemurs in a forest-dominated, roadless region of Madagascar near Ranomafana National Park. We examined the contribution of human geographic location toward differences in ARG abundance and compared the genomic similarity of ARGs between host source microbiomes. Results Alpha and beta diversity of species and ARGs between host sources were distinct but maintained a similar number of detectable ARG alleles. Humans were differentially more abundant for four distinct tetracycline resistance-associated genes compared to lemurs. There was no significant difference in human ARG diversity from different locations. Human and lemur microbiomes shared 14 distinct ARGs with highly conserved in nucleotide identity. Synteny of ARG-associated assemblies revealed a distinct multidrug-resistant gene cassette carrying dfrA1 and aadA1 present in human and lemur microbiomes without evidence of geographic overlap, suggesting that these resistance genes could be widespread in this ecosystem. Further investigation into intermediary processes that maintain drug-resistant bacteria in wildlife settings is needed.
Collapse
Affiliation(s)
- Brooke M. Talbot
- Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Julie A. Clennon
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States of America
| | | | - Lydia Rautman
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States of America
| | - Sarah Durry
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Leo J. Ragazzo
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States of America
| | - Patricia C. Wright
- Centre ValBio, Ranomafana, Madagascar
- Institute for the Conservation of Tropical Ecosystems, State University of New York at Stony Brook, Stony Brook, NY, United States of America
| | - Thomas R. Gillespie
- Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, United States of America
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States of America
- Centre ValBio, Ranomafana, Madagascar
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Timothy D. Read
- Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
82
|
Tanes C, Tu V, Daniel S, Bittinger K. Unassigning bacterial species for microbiome studies. mSystems 2024; 9:e0051524. [PMID: 38912768 PMCID: PMC11264914 DOI: 10.1128/msystems.00515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024] Open
Abstract
The method of 16S rRNA marker gene sequencing has fueled microbiome research and continues to be relevant. A perceived weakness of the method is that taxonomic assignments are not possible to make at the rank of species. We show that by working to rule out bacterial or archaeal species membership, we can provide an answer that is more accurate and useful. The Unassigner software operates on 16S rRNA marker gene data and computes a rule-out probability for species membership using a beta-binomial distribution. We demonstrate that our approach is accurate based on full-genome comparisons. Our method is consistent with existing approaches and dramatically improves on them based on the percentage of reads it can associate with a species in a sample. The software is available at https://github.com/PennChopMicrobiomeProgram/unassigner.IMPORTANCEWhile existing methods do not provide reliable species-level assignments for 16S rRNA marker gene data, the Unassigner software solves this problem by ruling out species membership, allowing researchers to reason at the species level.
Collapse
Affiliation(s)
- Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Scott Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
83
|
Zhou X, Liu X, Liu M, Liu W, Xu J, Li Y. Comparative evaluation of 16S rRNA primer pairs in identifying nitrifying guilds in soils under long-term organic fertilization and water management. Front Microbiol 2024; 15:1424795. [PMID: 39077744 PMCID: PMC11284604 DOI: 10.3389/fmicb.2024.1424795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Compared with 454 sequencing technology, short-read sequencing (e.g., Illumina) technology generates sequences of high accuracy, but limited length (<500 bp). Such a limitation can prove that studying a target gene using a large amplicon (>500 bp) is challenging. The ammonia monooxygenase subunit A (amoA) gene of ammonia-oxidizing archaea (AOA), which plays a crucial part in the nitrification process, is such a gene. By providing a full overview of the community of a functional microbial guild, 16S ribosomal ribonucleic acid (rRNA) gene sequencing could overcome this problem. However, it remains unclear how 16S rRNA primer selection influences the quantification of relative abundance and the identification of community composition of nitrifiers, especially AOA. In the present study, a comparison was made between the performance of primer pairs 338F-806R, 515F-806R, and 515F-907R to a shotgun metagenome approach. The structure of nitrifier communities subjected to different long-term organic matter amendment and water management protocols was assessed. Overall, we observed higher Chao1 richness diversity of soil total bacteria by using 515F-806R compared to 338F-806R and 515F-907R, while higher Pielou's evenness diversity was observed by using 515F-806R and 515F-907R compared to 338F-806R. The studied primer pairs revealed different performances on the relative abundance of Thaumarchaeota, AOB, and NOB. The Thaumarchaeota 16S rRNA sequence was rarely detected using 338F-806R, while the relative abundances of Thaumarchaeota detected using 515F-806R were higher than those detected by using 515F-907R. AOB showed higher proportions in the 338F-806R and 515F-907R data, than in 515F-806R data. Different primers pairs showed significant change in relative proportion of NOB. Nonetheless, we found consistent patterns of the phylotype distribution of nitrifiers in different treatments. Nitrosopumilales (NP) and Nitrososphaerales (NS) clades were the dominant members of the AOA community in soils subject to controlled irrigation, whereas Ca. Nitrosotaleales (NT) and NS clades dominated the AOA community in soils subject to flooding irrigation. Nitrospira lineage II was the dominant NOB phylotype in all samples. Overall, ideal 16S rRNA primer pairs were identified for the analysis of nitrifier communities. Moreover, NP and NT clades of AOA might have distinct environmental adaptation strategies under different irrigation treatments.
Collapse
Affiliation(s)
- Xue Zhou
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, China
| | - Xiaoyin Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, China
| | - Meiyu Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Weixuan Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, China
| | - Junzeng Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, China
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China
| | - Yawei Li
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Hohai University, Nanjing, China
| |
Collapse
|
84
|
Tieppo AM, Tieppo JS, Rivetti LA. Analysis of Intestinal Bacterial Microbiota in Individuals with and without Chronic Low Back Pain. Curr Issues Mol Biol 2024; 46:7339-7352. [PMID: 39057076 PMCID: PMC11276315 DOI: 10.3390/cimb46070435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Low back pain is a health problem that represents the greatest cause of years lived with disability. This research seeks to evaluate the bacterial composition of the intestinal microbiota of two similar groups: one with chronic low back pain (PG) and the control group (CG). Clinical data from 73 participants and bacterial genome sequencing data from stool samples were analyzed. There were 40 individuals in PG and 33 in CG, aged between 20 and 50 years and with a body mass index of up to 30 kg/m2. Thus, the intragroup alpha diversity and intergroup beta diversity were analyzed. The significant results (p < 0.05) showed greater species richness in PG compared to CG. Additionally, a greater abundance of the species Clostridium difficile in PG was found along with 52 species with significantly different average relative abundances between groups (adjusted p < 0.05), with 36 more abundant species in PG and 16 in CG. We are the first to unveil significant differences in the composition of the intestinal bacterial microbiota of individuals with chronic low back pain who are non-elderly, non-obese and without any other serious chronic diseases. It could be a reference for a possible intestinal bacterial microbiota signature in chronic low back pain.
Collapse
Affiliation(s)
- Antonio Martins Tieppo
- Rehabilitation Service, School of Medical Sciences of Santa Casa de São Paulo, São Paulo 01221-020, Brazil
| | - Júlia Silva Tieppo
- Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Luiz Antonio Rivetti
- Postgraduate Cardiac Surgery Discipline, School of Medical Sciences of Santa Casa de São Paulo, São Paulo 01221-020, Brazil;
| |
Collapse
|
85
|
Xie Y, Zhu H, Yuan Y, Guan X, Xie Q, Dong Z. Baseline gut microbiota profiles affect treatment response in patients with depression. Front Microbiol 2024; 15:1429116. [PMID: 39021622 PMCID: PMC11251908 DOI: 10.3389/fmicb.2024.1429116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The role of the gut microbiota in the pathophysiology of depression has been explored in numerous studies, which have confirmed that the baseline gut microbial profiles of patients with depression differ from those of healthy individuals. The gut microbiome affects metabolic activity in the immune and central nervous systems and regulates intestinal ecology through the neuroendocrine system. Additionally, baseline changes in the gut microbiota differed among patients with depression who demonstrated varying treatment response. Currently, probiotics are an emerging treatment for depression; however, the efficacy of modulating the gut microbiota in the treatment of depression remains uncertain. Additionally, the mechanisms by which changes in the gut microbiota affect treatment response in patients with depression remain unclear. In this review, we aimed to summarize the differences in the baseline gut microbiota between the remission and non-remission groups after antidepressant therapy. Additionally, we summarized the possible mechanisms that may contribute to antidepressant resistance through the effects of the gut microbiome on the immune and nervous systems, various enzymes, bioaccumulation, and blood-brain barrier, and provide a basis for treating depression by targeting the gut microbiota.
Collapse
Affiliation(s)
- Yingjing Xie
- West China Hospital, Sichuan University, Chengdu, China
| | - Hanwen Zhu
- West China Hospital, Sichuan University, Chengdu, China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuan Guan
- Chengdu Medical College, Chengdu, China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, China
| | - Zaiquan Dong
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
86
|
Berryhill BA, Burke KB, Fontaine J, Brink CE, Harvill MG, Goldberg DA, Konstantinidis KT, Levin BR, Woodworth MH. Enteric Populations of Escherichia coli are Likely to be Resistant to Phages Due to O Antigen Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.566299. [PMID: 37986824 PMCID: PMC10659284 DOI: 10.1101/2023.11.08.566299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
There is a surfeit of bioinformatic data showing that bacteriophages abound in the enteric microbiomes of humans. What is the contribution of these viruses in shaping the bacterial strain and species composition of the gut microbiome and how are these phages maintained over time? To address these questions, we performed experiments with Escherichia coli and phages isolated from four fecal microbiota transplantation (FMT) doses as representative samples of non-dysbiotic enteric microbiota and develop and analyze the properties of a mathematical model of the population and evolutionary dynamics of bacteria and phage. Our models predict and experiments confirm that due to production of the O antigen, E. coli in the enteric microbiome are likely to be resistant to infection with co-occurring phages. Furthermore, our modeling suggests that the phages can be maintained in the population due to the high rates of host transition between resistant and sensitive states, which we call leaky resistance. Based on our observations and model predictions, we postulate that the phages found in the human gut are likely to play little role in shaping the composition of E. coli at the strain level in the enteric microbiome in healthy individuals. How general this is for other species of bacteria in the enteric flora is not yet clear, although O antigen expression is common across many taxa.
Collapse
Affiliation(s)
- Brandon A. Berryhill
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Program in Microbiology and Molecular Genetics (MMG), Graduate Division of Biological and Biomedical Sciences (GDBBS), Laney Graduate School, Emory University; Atlanta, Georgia, 30322, USA
| | - Kylie B. Burke
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| | - Jake Fontaine
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Catherine E. Brink
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mason G. Harvill
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - David A. Goldberg
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Konstantinos T. Konstantinidis
- Ocean Science & Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bruce R. Levin
- Department of Biology, Emory University; Atlanta, Georgia, 30322, USA
| | - Michael H. Woodworth
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, 30322, USA
| |
Collapse
|
87
|
Liu Y, Fachrul M, Inouye M, Méric G. Harnessing human microbiomes for disease prediction. Trends Microbiol 2024; 32:707-719. [PMID: 38246848 DOI: 10.1016/j.tim.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The human microbiome has been increasingly recognized as having potential use for disease prediction. Predicting the risk, progression, and severity of diseases holds promise to transform clinical practice, empower patient decisions, and reduce the burden of various common diseases, as has been demonstrated for cardiovascular disease or breast cancer. Combining multiple modifiable and non-modifiable risk factors, including high-dimensional genomic data, has been traditionally favored, but few studies have incorporated the human microbiome into models for predicting the prospective risk of disease. Here, we review research into the use of the human microbiome for disease prediction with a particular focus on prospective studies as well as the modulation and engineering of the microbiome as a therapeutic strategy.
Collapse
Affiliation(s)
- Yang Liu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Muhamad Fachrul
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia; Human Genomics and Evolution Unit, St Vincent's Institute of Medical Research, Victoria, Australia; Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; British Heart Foundation Cambridge Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guillaume Méric
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Medical Science, Molecular Epidemiology, Uppsala University, Uppsala, Sweden; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
88
|
Ordinola-Zapata R, Costalonga M, Dietz M, Lima BP, Staley C. The root canal microbiome diversity and function. A whole-metagenome shotgun analysis. Int Endod J 2024; 57:872-884. [PMID: 36861850 DOI: 10.1111/iej.13911] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
AIM To evaluate the root canal microbiome composition and bacterial functional capability in cases of primary and secondary apical periodontitis utilizing whole-metagenome shotgun sequencing. METHODOLOGY Twenty-two samples from patients with primary root canal infections, and 18 samples obtained from previously treated teeth currently diagnosed with apical periodontitis were analysed with whole-metagenome shotgun sequencing at a depth of 20 M reads. Taxonomic and functional gene annotations were made using MetaPhlAn3 and HUMAnN3 software. The Shannon and Chao1 indices were utilized to measure alpha diversity. Differences in community composition were evaluated utilizing analysis of similarity (ANOSIM) using Bray-Curtis dissimilarities. The Wilcoxon rank sum test was used to compare differences in taxa and functional genes. RESULTS Microbial community variations within a community were significantly lower in secondary relative to primary infections (alpha diversity p = .001). Community composition was significantly different in primary versus secondary infection (R = .11, p = .005). The predominant taxa observed among samples (>2.5%) were Pseudopropionibacterium propionicum, Prevotella oris, Eubacterium infirmum, Tannerella forsythia, Atopobium rimae, Peptostreptococcus stomatis, Bacteroidetes bacterium oral taxon 272, Parvimonas micra, Olsenella profusa, Streptococcus anginosus, Lactobacillus rhamnosus, Porphyromonas endodontalis, Pseudoramibacter alactolyticus, Fusobacterium nucleatum, Eubacterium brachy and Solobacterium moorei. The Wilcoxon rank test revealed no significant differences in relative abundances of functional genes in both groups. Genes with greater relative abundances (top 25) were associated with genetic, signalling and cellular processes including the iron and peptide/nickel transport system. Numerous genes encoding toxins were identified: exfoliative toxin, haemolysins, thiol-activated cytolysin, phospholipase C, cAMP factor, sialidase, and hyaluronic glucosaminidase. CONCLUSIONS Despite taxonomic differences between primary and secondary apical periodontitis, the functional capability of the microbiomes was similar.
Collapse
Affiliation(s)
- Ronald Ordinola-Zapata
- Division of Endodontics, Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Massimo Costalonga
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matthew Dietz
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruno P Lima
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
89
|
Hassan S, Mushtaq M, Ganiee SA, Zaman M, Yaseen A, Shah AJ, Ganai BA. Microbial oases in the ice: A state-of-the-art review on cryoconite holes as diversity hotspots and their scientific connotations. ENVIRONMENTAL RESEARCH 2024; 252:118963. [PMID: 38640991 DOI: 10.1016/j.envres.2024.118963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Cryoconite holes, small meltwater pools on the surface of glaciers and ice sheets, represent extremely cold ecosystems teeming with diverse microbial life. Cryoconite holes exhibit greater susceptibility to the impacts of climate change, underlining the imperative nature of investigating microbial communities as an essential module of polar and alpine ecosystem monitoring efforts. Microbes in cryoconite holes play a critical role in nutrient cycling and can produce bioactive compounds, holding promise for industrial and pharmaceutical innovation. Understanding microbial diversity in these delicate ecosystems is essential for effective conservation strategies. Therefore, this review discusses the microbial diversity in these extreme environments, aiming to unveil the complexity of their microbial communities. The current study envisages that cryoconite holes as distinctive ecosystems encompass a multitude of taxonomically diverse and functionally adaptable microorganisms that exhibit a rich microbial diversity and possess intricate ecological functions. By investigating microbial diversity and ecological functions of cryoconite holes, this study aims to contribute valuable insights into the broader field of environmental microbiology and enhance further understanding of these ecosystems. This review seeks to provide a holistic overview regarding the formation, evolution, characterization, and molecular adaptations of cryoconite holes. Furthermore, future research directions and challenges underlining the need for long-term monitoring, and ethical considerations in preserving these pristine environments are also provided. Addressing these challenges and resolutely pursuing future research directions promises to enrich our comprehension of microbial diversity within cryoconite holes, revealing the broader ecological and biogeochemical implications. The inferences derived from the present study will provide researchers, ecologists, and policymakers with a profound understanding of the significance and utility of cryoconite holes in unveiling the microbial diversity and its potential applications.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Misba Mushtaq
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
90
|
Sample collection time affects microbiome study results. Nat Metab 2024; 6:1207-1208. [PMID: 38951659 DOI: 10.1038/s42255-024-01077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
|
91
|
Allaband C, Lingaraju A, Flores Ramos S, Kumar T, Javaheri H, Tiu MD, Dantas Machado AC, Richter RA, Elijah E, Haddad GG, Leone VA, Dorrestein PC, Knight R, Zarrinpar A. Time of sample collection is critical for the replicability of microbiome analyses. Nat Metab 2024; 6:1282-1293. [PMID: 38951660 PMCID: PMC11309016 DOI: 10.1038/s42255-024-01064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/08/2024] [Indexed: 07/03/2024]
Abstract
As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design, which includes the maternal effect1, cage effect2, facility differences3, as well as laboratory and sample handling protocols4, is critical for interpretability of results. Despite significant procedural and bioinformatic improvements, unexplained variability and lack of replicability still occur. One underexplored factor is that the microbiome is dynamic and exhibits diurnal oscillations that can change microbiome composition5-7. In this retrospective analysis of 16S amplicon sequencing studies in male mice, we show that sample collection time affects the conclusions drawn from microbiome studies and its effect size is larger than those of a daily experimental intervention or dietary changes. The timing of divergence of the microbiome composition between experimental and control groups is unique to each experiment. Sample collection times as short as only 4 hours apart can lead to vastly different conclusions. Lack of consistency in the time of sample collection may explain poor cross-study replicability in microbiome research. The impact of diurnal rhythms on the outcomes and study design of other fields is unknown but likely significant.
Collapse
Affiliation(s)
- Celeste Allaband
- Division of Biomedical Sciences, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Amulya Lingaraju
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Stephany Flores Ramos
- Division of Biomedical Sciences, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tanya Kumar
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Haniyeh Javaheri
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Maria D Tiu
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | | | - R Alexander Richter
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Emmanuel Elijah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel G Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, CA, USA.
- Institute of Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
92
|
Łukasik P, Kolasa MR. With a little help from my friends: the roles of microbial symbionts in insect populations and communities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230122. [PMID: 38705185 PMCID: PMC11070262 DOI: 10.1098/rstb.2023.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/14/2023] [Indexed: 05/07/2024] Open
Abstract
To understand insect abundance, distribution and dynamics, we need to understand the relevant drivers of their populations and communities. While microbial symbionts are known to strongly affect many aspects of insect biology, we lack data on their effects on populations or community processes, or on insects' evolutionary responses at different timescales. How these effects change as the anthropogenic effects on ecosystems intensify is an area of intense research. Recent developments in sequencing and bioinformatics permit cost-effective microbial diversity surveys, tracking symbiont transmission, and identification of functions across insect populations and multi-species communities. In this review, we explore how different functional categories of symbionts can influence insect life-history traits, how these effects could affect insect populations and their interactions with other species, and how they may affect processes and patterns at the level of entire communities. We argue that insect-associated microbes should be considered important drivers of insect response and adaptation to environmental challenges and opportunities. We also outline the emerging approaches for surveying and characterizing insect-associated microbiota at population and community scales. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michał R. Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
93
|
Seethalakshmi PS, Kumaresan TN, Vishnu Prasad Nair RU, Prathiviraj R, Seghal Kiran G, Selvin J. Comparative analysis of commercially available kits for optimal DNA extraction from bovine fecal samples. Arch Microbiol 2024; 206:314. [PMID: 38900289 DOI: 10.1007/s00203-024-04047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
In the field of metagenomic research, the choice of DNA extraction methods plays a pivotal yet often underestimated role in shaping the reliability and interpretability of microbial community data. This study delves into the impact of five commercially available DNA extraction kits on the analysis of bovine fecal microbiota. Recognizing the importance of accurate DNA extraction in elucidating microbial community dynamics, we systematically assessed DNA yield, quality, and microbial composition across these kits using 16S rRNA gene sequencing. Notably, the FastDNA spin soil kit yielded the highest DNA concentration, while significant variations in quality were observed across kits. Furthermore, differential abundance analysis revealed kit-specific biases that impacted taxa representation. Microbial richness and diversity were significantly influenced by the choice of extraction kit, with QIAamp DNA stool minikit, QIAamp Power Pro, and DNeasy PowerSoil outperforming the Stool DNA Kit. Principal-coordinate analysis revealed distinct clustering based on DNA isolation procedures, particularly highlighting the unique microbial community composition derived from the Stool DNA Kit. This study also addressed practical implications, demonstrating how kit selection influences the concentration of Gram-positive and Gram-negative bacterial taxa in samples. This research highlights the need for consideration of DNA extraction kits in metagenomic studies, offering valuable insights for researchers striving to advance the precision and depth of microbiota analyses in ruminants.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - T N Kumaresan
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | | | | | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
94
|
Perez-Garcia J, Cardenas A, Lorenzo-Diaz F, Pino-Yanes M. Precision medicine for asthma treatment: Unlocking the potential of the epigenome and microbiome. J Allergy Clin Immunol 2024:S0091-6749(24)00634-1. [PMID: 38906272 DOI: 10.1016/j.jaci.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Asthma is a leading worldwide biomedical concern. Patients can experience life-threatening worsening episodes (exacerbations) usually controlled by anti-inflammatory and bronchodilator drugs. However, substantial heterogeneity in treatment response exists, and a subset of patients with unresolved asthma carry the major burden of this disease. The study of the epigenome and microbiome might bridge the gap between human genetics and environmental exposure to partially explain the heterogeneity in drug response. This review aims to provide a critical examination of the existing literature on the microbiome and epigenetic studies examining associations with asthma treatments and drug response, highlight convergent pathways, address current challenges, and offer future perspectives. Current epigenetic and microbiome studies have shown the bilateral relationship between asthma pharmacologic interventions and the human epigenome and microbiome. These studies, focusing on corticosteroids and to a lesser extent on bronchodilators, azithromycin, immunotherapy, and mepolizumab, have improved the understanding of the molecular basis of treatment response and identified promising biomarkers for drug response prediction. Immune and inflammatory pathways (eg, IL-2, TNF-α, NF-κB, and C/EBPs) underlie microbiome-epigenetic associations with asthma treatment, representing potential therapeutic pathways to be targeted. A comprehensive evaluation of these omics biomarkers could significantly contribute to precision medicine and new therapeutic target discovery.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
95
|
Surmacz B, Stec D, Prus-Frankowska M, Buczek M, Michalczyk Ł, Łukasik P. Pinpointing the microbiota of tardigrades: What is really there? Environ Microbiol 2024; 26:e16659. [PMID: 38899728 DOI: 10.1111/1462-2920.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Microbiota are considered significant in the biology of tardigrades, yet their diversity and distribution remain largely unexplored. This is partly due to the methodological challenges associated with studying the microbiota of small organisms that inhabit microbe-rich environments. In our study, we characterized the microbiota of 31 species of cultured tardigrades using 16S rRNA amplicon sequencing. We employed various sample preparation strategies and multiple types of controls and estimated the number of microbes in samples using synthetic DNA spike-ins. We also reanalysed data from previous tardigrade microbiome studies. Our findings suggest that the microbial communities of cultured tardigrades are predominantly composed of bacterial genotypes originating from food, medium, or reagents. Despite numerous experiments, we found it challenging to identify strains that were enriched in certain tardigrades, which would have indicated likely symbiotic associations. Putative tardigrade-associated microbes rarely constituted more than 20% of the datasets, although some matched symbionts identified in other studies. We also uncovered serious contamination issues in previous tardigrade microbiome studies, casting doubt on some of their conclusions. We concluded that tardigrades are not universally dependent on specialized microbes. Our work underscores the need for rigorous safeguards in studies of the microbiota of microscopic organisms and serves as a cautionary tale for studies involving samples with low microbiome abundance.
Collapse
Affiliation(s)
- Bartłomiej Surmacz
- Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Daniel Stec
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Monika Prus-Frankowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Mateusz Buczek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Łukasz Michalczyk
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
96
|
Morrow NM, Morissette A, Mulvihill EE. Immunomodulation and inflammation: Role of GLP-1R and GIPR expressing cells within the gut. Peptides 2024; 176:171200. [PMID: 38555054 DOI: 10.1016/j.peptides.2024.171200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are peptide hormones produced by enteroendocrine cells in the small intestine. Despite being produced in the gut, the leveraging of their role in potentiating glucose-stimulated insulin secretion, also known as the incretin effect, has distracted from discernment of direct intestinal signaling circuits. Both preclinical and clinical evidence have highlighted a role for the incretins in inflammation. In this review, we highlight the discoveries of GLP-1 receptor (GLP-1R)+ natural (TCRαβ and TCRγδ) and induced (TCRαβ+CD4+ cells and TCRαβ+CD8αβ+) intraepithelial lymphocytes. Both endogenous signaling and pharmacological activation of GLP-1R impact local and systemic inflammation, the gut microbiota, whole-body metabolism, as well as the control of GLP-1 bioavailability. While GIPR signaling has been documented to impact hematopoiesis, the impact of these bone marrow-derived cells in gut immunology is not well understood. We uncover gaps in the literature of the evaluation of the impact of sex in these GLP-1R and GIP receptor (GIPR) signaling circuits and provide speculations of the maintenance roles these hormones play within the gut in the fasting-refeeding cycles. GLP-1R agonists and GLP-1R/GIPR agonists are widely used as treatments for diabetes and weight loss, respectively; however, their impact on gut homeostasis has not been fully explored. Advancing our understanding of the roles of GLP-1R and GIPR signaling within the gut at homeostasis as well as metabolic and inflammatory diseases may provide targets to improve disease management.
Collapse
Affiliation(s)
- Nadya M Morrow
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario KIY 4W7, Canada; Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 451 Smyth Rd, Ottawa, Ontario K1H 8L1, Canada
| | - Arianne Morissette
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario KIY 4W7, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario KIY 4W7, Canada; Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, 451 Smyth Rd, Ottawa, Ontario K1H 8L1, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Montreal Diabetes Research Group, Montreal, Quebec, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.
| |
Collapse
|
97
|
Vomstein K, Krog MC, Wrønding T, Nielsen HS. The microbiome in recurrent pregnancy loss - A scoping review. J Reprod Immunol 2024; 163:104251. [PMID: 38718429 DOI: 10.1016/j.jri.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/23/2023] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Recurrent pregnancy loss (RPL) is a troubling condition that affects couples worldwide. Despite extensive research efforts, many RPL cases remain unexplained, highlighting the need for novel approaches to unravel its underlying mechanisms. Recent advances in microbiome research have shed light on the potential role of the microbiome in reproductive health and outcomes. Based on a systematic literature research, this review aims to comprehensively explore the current understanding of the microbiome's involvement in RPL, focusing on the vaginal, endometrial, and gut microbiomes. Evidence from the available studies is examined to explain the relationship between the microbiome and RPL. Furthermore, we discuss the diagnostic potential of the microbiome, therapeutic interventions, and future directions in microbiome research for RPL. Understanding the complex interactions between the microbiome and reproductive health holds promise for developing targeted interventions to help patients today diagnosed as unexplained.
Collapse
Affiliation(s)
- Kilian Vomstein
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark.
| | - Maria C Krog
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Tine Wrønding
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark
| | - Henriette Svarre Nielsen
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals, Hvidovre Hospital, Hvidovre & Rigshospitalet, Copenhagen DK-2650, Denmark; Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital Hvidovre, DK-2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
98
|
Llorenç-Vicedo A, Lluesma Gomez M, Zeising O, Kleiner T, Freitag J, Martinez-Hernandez F, Wilhelms F, Martinez-Garcia M. New avenues for potentially seeking microbial responses to climate change beneath Antarctic ice shelves. mSphere 2024; 9:e0007324. [PMID: 38666797 PMCID: PMC11237435 DOI: 10.1128/msphere.00073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 05/30/2024] Open
Abstract
The signs of climate change are undeniable, and the impact of these changes on ecosystem function heavily depends on the response of microbes that underpin the food web. Antarctic ice shelf is a massive mass of floating ice that extends from the continent into the ocean, exerting a profound influence on global carbon cycles. Beneath Antarctic ice shelves, marine ice stores valuable genetic information, where marine microbial communities before the industrial revolution are archived. Here, in this proof-of-concept, by employing a combination of single-cell technologiesand metagenomics, we have been able to sequence frozen microbial DNA (≈300 years old) stored in the marine ice core B15 collected from the Filchnner-Ronne Ice Shelf. Metagenomic data indicated that Proteobacteria and Thaumarchaeota (e.g., Nitrosopumilus spp.), followed by Actinobacteria (e.g., Actinomarinales), were abundant. Remarkably, our data allow us to "travel to the past" and calibrate genomic and genetic evolutionary changes for ecologically relevant microbes and functions, such as Nitrosopumilus spp., preserved in the marine ice (≈300 years old) with those collected recently in seawater under an ice shelf (year 2017). The evolutionary divergence for the ammonia monooxygenase gene amoA involved in chemolithoautotrophy was about 0.88 amino acid and 2.8 nucleotide substitution rate per 100 sites in a century, while the accumulated rate of genomic SNPs was 2,467 per 1 Mb of genome and 100 years. Whether these evolutionary changes remained constant over the last 300 years or accelerated during post-industrial periods remains an open question that will be further elucidated. IMPORTANCE Several efforts have been undertaken to predict the response of microbes under climate change, mainly based on short-term microcosm experiments under forced conditions. A common concern is that manipulative experiments cannot properly simulate the response of microbes to climate change, which is a long-term evolutionary process. In this proof-of-concept study with a limited sample size, we demonstrate a novel approach yet to be fully explored in science for accessing genetic information from putative past marine microbes preserved under Antarctic ice shelves before the industrial revolution. This potentially allows us estimating evolutionary changes as exemplified in our study. We advocate for gathering a more comprehensive Antarctic marine ice core data sets across various periods and sites. Such a data set would enable the establishment of a robust baseline, facilitating a better assessment of the potential effects of climate change on key genetic signatures of microbes.
Collapse
Affiliation(s)
- Aitana Llorenç-Vicedo
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, Alicante, Spain
| | - Monica Lluesma Gomez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, Alicante, Spain
| | - Ole Zeising
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaveng, Germany
| | - Thomas Kleiner
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaveng, Germany
| | - Johannes Freitag
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaveng, Germany
| | - Francisco Martinez-Hernandez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, Spain
| | - Frank Wilhelms
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaveng, Germany
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Carretera San Vicente del Raspeig, San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Carretera San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
99
|
Bel Mokhtar N, Asimakis E, Galiatsatos I, Maurady A, Stathopoulou P, Tsiamis G. Development of MetaXplore: An Interactive Tool for Targeted Metagenomic Analysis. Curr Issues Mol Biol 2024; 46:4803-4814. [PMID: 38785557 PMCID: PMC11120546 DOI: 10.3390/cimb46050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Over the last decades, the analysis of complex microbial communities by high-throughput sequencing of marker gene amplicons has become routine work for many research groups. However, the main challenges faced by scientists who want to make use of the generated sequencing datasets are the lack of expertise to select a suitable pipeline and the need for bioinformatics or programming skills to apply it. Here, we present MetaXplore, an interactive, user-friendly platform that enables the discovery and visualization of amplicon sequencing data. Currently, it provides a set of well-documented choices for downstream analysis, including alpha and beta diversity analysis, taxonomic composition, differential abundance analysis, identification of the core microbiome within a population, and biomarker analysis. These features are presented in a user-friendly format that facilitates easy customization and the generation of publication-quality graphics. MetaXplore is implemented entirely in the R language using the Shiny framework. It can be easily used locally on any system with R installed, including Windows, Mac OS, and most Linux distributions, or remotely via a web server without bioinformatic expertise. It can also be used as a framework for advanced users who can modify and expand the tool.
Collapse
Affiliation(s)
- Naima Bel Mokhtar
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| | - Ioannis Galiatsatos
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tanger 93000, Morocco;
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece; (N.B.M.); (E.A.); (I.G.); (P.S.)
| |
Collapse
|
100
|
Bosch TCG, Wigley M, Colomina B, Bohannan B, Meggers F, Amato KR, Azad MB, Blaser MJ, Brown K, Dominguez-Bello MG, Ehrlich SD, Elinav E, Finlay BB, Geddie K, Geva-Zatorsky N, Giles-Vernick T, Gros P, Guillemin K, Haraoui LP, Johnson E, Keck F, Lorimer J, McFall-Ngai MJ, Nichter M, Pettersson S, Poinar H, Rees T, Tropini C, Undurraga EA, Zhao L, Melby MK. The potential importance of the built-environment microbiome and its impact on human health. Proc Natl Acad Sci U S A 2024; 121:e2313971121. [PMID: 38662573 PMCID: PMC11098107 DOI: 10.1073/pnas.2313971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
There is increasing evidence that interactions between microbes and their hosts not only play a role in determining health and disease but also in emotions, thought, and behavior. Built environments greatly influence microbiome exposures because of their built-in highly specific microbiomes coproduced with myriad metaorganisms including humans, pets, plants, rodents, and insects. Seemingly static built structures host complex ecologies of microorganisms that are only starting to be mapped. These microbial ecologies of built environments are directly and interdependently affected by social, spatial, and technological norms. Advances in technology have made these organisms visible and forced the scientific community and architects to rethink gene-environment and microbe interactions respectively. Thus, built environment design must consider the microbiome, and research involving host-microbiome interaction must consider the built-environment. This paradigm shift becomes increasingly important as evidence grows that contemporary built environments are steadily reducing the microbial diversity essential for human health, well-being, and resilience while accelerating the symptoms of human chronic diseases including environmental allergies, and other more life-altering diseases. New models of design are required to balance maximizing exposure to microbial diversity while minimizing exposure to human-associated diseases. Sustained trans-disciplinary research across time (evolutionary, historical, and generational) and space (cultural and geographical) is needed to develop experimental design protocols that address multigenerational multispecies health and health equity in built environments.
Collapse
Affiliation(s)
- Thomas C. G. Bosch
- Zoological Institute, University of Kiel, Kiel24118, Germany
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
| | - Mark Wigley
- Graduate School of Architecture, Planning and Preservation, Columbia University, New York, NY10027
| | - Beatriz Colomina
- School of Architecture, Princeton University, Princeton, NJ08544
| | - Brendan Bohannan
- The Institute of Ecology and Evolution, University of Oregon, Eugene, OR97403-5289
| | - Forrest Meggers
- Princeton University School of Architecture & Andlinger Center for Energy and the Environment, Princeton, NJ08540
| | - Katherine R. Amato
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Anthropology, Northwestern University, Evanston, IL60208
| | - Meghan B. Azad
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 0Z3, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Martin J. Blaser
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MBR3E 3P4, Canada
- Center for Advanced Biotechnology and Medicine at Rutgers Biomedical and Health Sciences, Rutgers University, Piscataway, NJ08854-8021
| | - Kate Brown
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Program in Science, Technology and Society, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Maria Gloria Dominguez-Bello
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ08901
- Department of Anthropology, Rutgers University, New Brunswick, NJ08901
| | - Stanislav Dusko Ehrlich
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Institute of Neurology, University College London, LondonWC1N 3RX, United Kingdom
| | - Eran Elinav
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Systems Immunology Department, Weizmann Institute of Science, Rehovot761000, Israel
- Division of Microbiome & Cancer, Deutsches Krebsforschungszentrum, 69120Heidelberg, Germany
| | - B. Brett Finlay
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Kate Geddie
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Medical and Related Sciences Centre, The Canadian Institute for Advanced Research, Toronto, ONM5G 1L7, Canada
| | - Naama Geva-Zatorsky
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa3525433, Israel
- Department of Cell Biology and Cancer Science, Technion-Israel Institute of Technology, Haifa3525433, Israel
| | - Tamara Giles-Vernick
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Anthropology & Ecology of Disease Emergence, Institut Pasteur, Université Paris Cité, Paris75015, France
| | - Philippe Gros
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3G 1Y6, Canada
| | - Karen Guillemin
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Institute of Molecular Biology, University of Oregon, Eugene, OR97403
| | - Louis-Patrick Haraoui
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, CanadaJ1E 4K8
| | - Elizabeth Johnson
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- College of Human Ecology, Cornell University, IthakaNY14853
| | - Frédéric Keck
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Laboratoire d’Anthropologie Sociale, Collège de France, Paris75005, France
| | - Jamie Lorimer
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- School of Geography and the Environment, University of Oxford, OX1 3QY, United Kingdom
| | - Margaret J. McFall-Ngai
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA91125
| | - Mark Nichter
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- School of Anthropology, University of Arizona, Tucson, AZ85721
| | - Sven Pettersson
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Nanyang Technological University, Singapore637715, Singapore
| | - Hendrik Poinar
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Anthropology, McMaster University, Hamilton, ONL8S 4M4, Canada
| | - Tobias Rees
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- LIMN, Berkeley, CA94708
| | - Carolina Tropini
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Microbiology and Immunology and School of Biomedical Engineering, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Eduardo A. Undurraga
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Escuela de Gobierno, Pontificia Universidad Católica de Chile, Santiago7820436, Chile
| | - Liping Zhao
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ08901
| | - Melissa K. Melby
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
- Department of Anthropology, University of Delaware, Newark, DE19716
| |
Collapse
|