51
|
Gewurz B, Guo R, Lim M, Shah H, Paulo J, Zhang Y, Yang H, Wang LW, Strebinger D, Smith N, Li M, Leong M, Lutchenkov M, Liang JH, Li Z, Wang Y, Puri R, Melnick A, Green M, Asara J, Papathanassiu A, Gygi S, Mootha V. Multi-omic Analysis of Human B-cell Activation Reveals a Key Lysosomal BCAT1 Role in mTOR Hyperactivation by B-cell receptor and TLR9. RESEARCH SQUARE 2024:rs.3.rs-4413958. [PMID: 38854072 PMCID: PMC11160916 DOI: 10.21203/rs.3.rs-4413958/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof. T-independent BCR/TLR9 co-stimulation, which drives malignant and autoimmune B-cell states, jointly induced PD-L1 plasma membrane expression, supported by NAD metabolism and oxidative phosphorylation. BCR/TLR9 also highly induced the transaminase BCAT1, which localized to lysosomal membranes to support branched chain amino acid synthesis and mTORC1 hyperactivation. BCAT1 inhibition blunted BCR/TLR9, but not CD40L/IL4-triggered B-cell proliferation, IL10 expression and BCR/TLR pathway-driven lymphoma xenograft outgrowth. These results provide a valuable resource, reveal receptor-mediated immunometabolism remodeling to support key B-cell phenotypes including PD-L1 checkpoint signaling, and identify BCAT1 as a novel B-cell therapeutic target.
Collapse
Affiliation(s)
| | | | - Matthew Lim
- Department of Cell Biology, Harvard Medical School
| | | | | | | | - Haopeng Yang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center
| | | | | | | | - Meng Li
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine
| | | | | | | | | | | | - Rishi Puri
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University
| | | | - Michael Green
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center
| | | | | | | | | |
Collapse
|
52
|
Choi J, Ceribelli M, Phelan JD, Häupl B, Huang DW, Wright GW, Hsiao T, Morris V, Ciccarese F, Wang B, Corcoran S, Scheich S, Yu X, Xu W, Yang Y, Zhao H, Zhou J, Zhang G, Muppidi J, Inghirami GG, Oellerich T, Wilson WH, Thomas CJ, Staudt LM. Molecular targets of glucocorticoids that elucidate their therapeutic efficacy in aggressive lymphomas. Cancer Cell 2024; 42:833-849.e12. [PMID: 38701792 PMCID: PMC11168741 DOI: 10.1016/j.ccell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Glucocorticoids have been used for decades to treat lymphomas without an established mechanism of action. Using functional genomic, proteomic, and chemical screens, we discover that glucocorticoids inhibit oncogenic signaling by the B cell receptor (BCR), a recurrent feature of aggressive B cell malignancies, including diffuse large B cell lymphoma and Burkitt lymphoma. Glucocorticoids induce the glucocorticoid receptor (GR) to directly transactivate genes encoding negative regulators of BCR stability (LAPTM5; KLHL14) and the PI3 kinase pathway (INPP5D; DDIT4). GR directly represses transcription of CSK, a kinase that limits the activity of BCR-proximal Src-family kinases. CSK inhibition attenuates the constitutive BCR signaling of lymphomas by hyperactivating Src-family kinases, triggering their ubiquitination and degradation. With the knowledge that glucocorticoids disable oncogenic BCR signaling, they can now be deployed rationally to treat BCR-dependent aggressive lymphomas and used to construct mechanistically sound combination regimens with inhibitors of BTK, PI3 kinase, BCL2, and CSK.
Collapse
MESH Headings
- Humans
- Glucocorticoids/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Animals
- Signal Transduction/drug effects
- Receptors, Glucocorticoid/metabolism
- Mice
- Cell Line, Tumor
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Molecular Targeted Therapy/methods
- Phosphatidylinositol 3-Kinases/metabolism
- src-Family Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George W Wright
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Ciccarese
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Zhou
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Zhang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
53
|
Eken JA, Koning MT, Kupcova K, Sepúlveda Yáñez JH, de Groen RA, Quinten E, Janssen J, van Bergen CA, Vermaat JS, Cleven A, Navarrete MA, Ylstra B, de Jong D, Havranek O, Jumaa H, Veelken H. Antigen-independent, autonomous B cell receptor signaling drives activated B cell DLBCL. J Exp Med 2024; 221:e20230941. [PMID: 38512136 PMCID: PMC10959178 DOI: 10.1084/jem.20230941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Diffuse large B cell lymphoma of activated B cell type (ABC-DLBCL), a major cell-of-origin DLBCL subtype, is characterized by chronic active B cell receptor (BCR) signaling and NF-κB activation, which can be explained by activating mutations of the BCR signaling cascade in a minority of cases. We demonstrate that autonomous BCR signaling, akin to its essential pathogenetic role in chronic lymphocytic leukemia (CLL), can explain chronic active BCR signaling in ABC-DLBCL. 13 of 18 tested DLBCL-derived BCR, including 12 cases selected for expression of IgM, induced spontaneous calcium flux and increased phosphorylation of the BCR signaling cascade in murine triple knockout pre-B cells without antigenic stimulation or external BCR crosslinking. Autonomous BCR signaling was associated with IgM isotype, dependent on somatic BCR mutations and individual HCDR3 sequences, and largely restricted to non-GCB DLBCL. Autonomous BCR signaling represents a novel immunological oncogenic driver mechanism in DLBCL originating from individual BCR sequences and adds a new dimension to currently proposed genetics- and transcriptomics-based DLBCL classifications.
Collapse
Affiliation(s)
- Janneke A. Eken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Marvyn T. Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Internal Medicine—Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julieta H. Sepúlveda Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
| | - Ruben A.L. de Groen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Edwin Quinten
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Jurriaan Janssen
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | - Joost S.P. Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjen Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bauke Ylstra
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Daphne de Jong
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Internal Medicine—Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hassan Jumaa
- Institute of Immunology, University of Ulm, Ulm, Germany
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
54
|
Steinmetz T, Thomas J, Reimann L, Himmelreich AK, Schulz SR, Golombek F, Castiglione K, Jäck HM, Brodesser S, Warscheid B, Mielenz D. Identification of TFG- and Autophagy-Regulated Proteins and Glycerophospholipids in B Cells. J Proteome Res 2024; 23:1615-1633. [PMID: 38649144 PMCID: PMC11077586 DOI: 10.1021/acs.jproteome.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Autophagy supervises the proteostasis and survival of B lymphocytic cells. Trk-fused gene (TFG) promotes autophagosome-lysosome flux in murine CH12 B cells, as well as their survival. Hence, quantitative proteomics of CH12tfgKO and WT B cells in combination with lysosomal inhibition should identify proteins that are prone to lysosomal degradation and contribute to autophagy and B cell survival. Lysosome inhibition via NH4Cl unexpectedly reduced a number of proteins but increased a large cluster of translational, ribosomal, and mitochondrial proteins, independent of TFG. Hence, we propose a role for lysosomes in ribophagy in B cells. TFG-regulated proteins include CD74, BCL10, or the immunoglobulin JCHAIN. Gene ontology (GO) analysis reveals that proteins regulated by TFG alone, or in concert with lysosomes, localize to mitochondria and membrane-bound organelles. Likewise, TFG regulates the abundance of metabolic enzymes, such as ALDOC and the fatty acid-activating enzyme ACOT9. To test consequently for a function of TFG in lipid metabolism, we performed shotgun lipidomics of glycerophospholipids. Total phosphatidylglycerol is more abundant in CH12tfgKO B cells. Several glycerophospholipid species with similar acyl side chains, such as 36:2 phosphatidylethanolamine and 36:2 phosphatidylinositol, show a dysequilibrium. We suggest a role for TFG in lipid homeostasis, mitochondrial functions, translation, and metabolism in B cells.
Collapse
Affiliation(s)
- Tobit
D. Steinmetz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Jana Thomas
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Lena Reimann
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Ann-Kathrin Himmelreich
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Sebastian R. Schulz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Florian Golombek
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Kathrin Castiglione
- Chair
of Bioprocess Engineering, Technical Faculty, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Susanne Brodesser
- Cologne
Excellence Cluster on Cellular Stress Responses in Aging-associated
Diseases (CECAD), University of Köln, D-50931 Köln, Germany
| | - Bettina Warscheid
- CIBSS
Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
- Department
of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Dirk Mielenz
- Division
of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
- FAU
Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| |
Collapse
|
55
|
Eriksen PRG, de Groot F, Clasen-Linde E, de Nully Brown P, de Groen R, Melchior LC, Maier AD, Minderman M, Vermaat JSP, von Buchwald C, Pals ST, Heegaard S. Sinonasal DLBCL: molecular profiling identifies subtypes with distinctive prognosis and targetable genetic features. Blood Adv 2024; 8:1946-1957. [PMID: 38324724 PMCID: PMC11017287 DOI: 10.1182/bloodadvances.2023011517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
ABSTRACT Primary sinonasal diffuse large B-cell lymphoma (PSDLBCL) is a rare lymphoma with a variable prognosis and a unique relapse/dissemination pattern involving the central nervous system and skin. The underlying molecular mechanisms leading to this heterogeneity and progression pattern remain uncharted, hampering patient-tailored treatment. To investigate associated mechanisms, we analyzed clinical data and used immunohistochemistry, gene-expression profiling, cytogenetics, and next-generation sequencing in a cohort of 117 patients with PSDLBCL. The distribution in cell-of-origin (COO) was 68 (58%) activated B-cell (ABC), 44 (38%) germinal center B-cell (GCB), and 5 (4%) unclassifiable. COO was significantly associated with progression-free survival (PFS) and lymphoma-specific mortality (LSM) in both the overall cohort (5-year PFS: ABC, 43% vs GCB, 73%; LSM: ABC, 45% vs GCB, 14%) and in the subgroup of patients receiving immunochemotherapy (5-year PFS: ABC, 55% vs GCB, 85%; LSM: ABC, 28% vs GCB, 0%). ABC lymphomas were mainly MCD class, showing a high prevalence of MYD88 (74%) and CD79B (35%) mutations compared with GCB lymphomas (MYD88 23%; CD79B 10%) (P < .01). The ABC subtype frequently displayed cMYC/BCL2 coexpression (76% vs 18% GCB; P < .001) and HLA-II loss (48% vs 10% GCB; P < .001). PD-L1 expression and copy-number alterations were rare. All lymphomas were Epstein-Barr virus-negative. Our data suggest molecular profiling as a potent tool for detecting prognostic subgroups in PSDLBCL, exposing links to known relapse/dissemination sites. The ABC subgroup's MCD genetic features, shared with lymphomas at other nonprofessional lymphoid sites, make them potential candidates for targeted B-cell and toll-like receptor signaling therapy.
Collapse
Affiliation(s)
- Patrick R. G. Eriksen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Fleur de Groot
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Clasen-Linde
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter de Nully Brown
- Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ruben de Groen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linea C. Melchior
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andrea D. Maier
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marthe Minderman
- Department of Pathology and Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Joost S. P. Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steven T. Pals
- Department of Pathology and Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Steffen Heegaard
- Department of Pathology, Eye Section, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
56
|
Zhuang X, Woods J, Ji Y, Scheich S, Mo F, Rajagopalan S, Coulibaly ZA, Voss M, Urlaub H, Staudt LM, Pan KT, Long EO. Functional genomics identifies N-acetyllactosamine extension of complex N-glycans as a mechanism to evade lysis by natural killer cells. Cell Rep 2024; 43:114105. [PMID: 38619967 PMCID: PMC11170631 DOI: 10.1016/j.celrep.2024.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/31/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Natural killer (NK) cells are primary defenders against cancer precursors, but cancer cells can persist by evading immune surveillance. To investigate the genetic mechanisms underlying this evasion, we perform a genome-wide CRISPR screen using B lymphoblastoid cells. SPPL3, a peptidase that cleaves glycosyltransferases in the Golgi, emerges as a top hit facilitating evasion from NK cytotoxicity. SPPL3-deleted cells accumulate glycosyltransferases and complex N-glycans, disrupting not only binding of ligands to NK receptors but also binding of rituximab, a CD20 antibody approved for treating B cell cancers. Notably, inhibiting N-glycan maturation restores receptor binding and sensitivity to NK cells. A secondary CRISPR screen in SPPL3-deficient cells identifies B3GNT2, a transferase-mediating poly-LacNAc extension, as crucial for resistance. Mass spectrometry confirms enrichment of N-glycans bearing poly-LacNAc upon SPPL3 loss. Collectively, our study shows the essential role of SPPL3 and poly-LacNAc in cancer immune evasion, suggesting a promising target for cancer treatment.
Collapse
Affiliation(s)
- Xiaoxuan Zhuang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - James Woods
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fei Mo
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kuan-Ting Pan
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
57
|
Kawai T, Ikegawa M, Ori D, Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57:649-673. [PMID: 38599164 DOI: 10.1016/j.immuni.2024.03.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan; Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Shizuo Akira
- Center for Advanced Modalities and DSS (CAMaD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
58
|
Liu S, Lagos J, Shumlak NM, Largent AD, Lewis ST, Holder U, Du SW, Liu Y, Hou B, Acharya M, Jackson SW. NADPH oxidase exerts a B cell-intrinsic contribution to lupus risk by modulating endosomal TLR signals. J Exp Med 2024; 221:e20230774. [PMID: 38442270 PMCID: PMC10913815 DOI: 10.1084/jem.20230774] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/11/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Genome-wide association studies in systemic lupus erythematosus (SLE) have linked loss-of-function mutations in phagocytic NADPH oxidase complex (NOX2) genes, including NCF1 and NCF2, to disease pathogenesis. The prevailing model holds that reduced NOX2 activity promotes SLE via defective efferocytosis, the immunologically silent clearance of apoptotic cells. Here, we describe a parallel B cell-intrinsic mechanism contributing to breaks in tolerance. In keeping with an important role for B cell Toll-like receptor (TLR) pathways in lupus pathogenesis, NOX2-deficient B cells exhibit enhanced signaling downstream of endosomal TLRs, increased humoral responses to nucleic acid-containing antigens, and the propensity toward humoral autoimmunity. Mechanistically, TLR-dependent NOX2 activation promotes LC3-mediated maturation of TLR-containing endosomes, resulting in signal termination. CRISPR-mediated disruption of NCF1 confirmed a direct role for NOX2 in regulating endosomal TLR signaling in primary human B cells. Together, these data highlight a new B cell-specific mechanism contributing to autoimmune risk in NCF1 and NCF2 variant carriers.
Collapse
Affiliation(s)
- Shuozhi Liu
- Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | | | | | - Ursula Holder
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Samuel W. Du
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Yifan Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mridu Acharya
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Shaun W. Jackson
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
59
|
Flümann R, Hansen J, Meinel J, Pfeiffer P, Goldfarb Wittkopf H, Lütz A, Wirtz J, Möllmann M, Zhou T, Tabatabai A, Lohmann T, Jauch M, Beleggia F, Pelzer B, Ullrich F, Höfmann S, Arora A, Persigehl T, Büttner R, von Tresckow B, Klein S, Jachimowicz RD, Reinhardt HC, Knittel G. An inducible Cd79b mutation confers ibrutinib sensitivity in mouse models of Myd88-driven diffuse large B-cell lymphoma. Blood Adv 2024; 8:1063-1074. [PMID: 38060829 PMCID: PMC10907402 DOI: 10.1182/bloodadvances.2023011213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/26/2023] [Indexed: 02/29/2024] Open
Abstract
ABSTRACT Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma and constitutes a highly heterogenous disease. Recent comprehensive genomic profiling revealed the identity of numerous molecularly defined DLBCL subtypes, including a cluster which is characterized by recurrent aberrations in MYD88, CD79B, and BCL2, as well as various lesions promoting a block in plasma cell differentiation, including PRDM1, TBL1XR1, and SPIB. Here, we generated a series of autochthonous mouse models to mimic this DLBCL cluster and specifically focused on the impact of Cd79b mutations in this setting. We show that canonical Cd79b immunoreceptor tyrosine-based activation motif (ITAM) mutations do not accelerate Myd88- and BCL2-driven lymphomagenesis. Cd79b-mutant murine DLBCL were enriched for IgM surface expression, reminiscent of their human counterparts. Moreover, Cd79b-mutant lymphomas displayed a robust formation of cytoplasmic signaling complexes involving MYD88, CD79B, MALT1, and BTK. These complexes were disrupted upon pharmacological BTK inhibition. The BTK inhibitor-mediated disruption of these signaling complexes translated into a selective ibrutinib sensitivity of lymphomas harboring combined Cd79b and Myd88 mutations. Altogether, this in-depth cross-species comparison provides a framework for the development of molecularly targeted therapeutic intervention strategies in DLBCL.
Collapse
Affiliation(s)
- Ruth Flümann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julia Hansen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jörn Meinel
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pauline Pfeiffer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannah Goldfarb Wittkopf
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anna Lütz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jessica Wirtz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Michael Möllmann
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Zhou
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Areya Tabatabai
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tim Lohmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian Jauch
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Filippo Beleggia
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Benedikt Pelzer
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY
| | - Fabian Ullrich
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svenja Höfmann
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aastha Arora
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten Persigehl
- Department of Radiology and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ron D. Jachimowicz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
60
|
Liang X, Yu H, Liang R, Feng Z, Saidahmatov A, Sun C, Ren H, Wei X, Zhao J, Yang C, Liu H. Development of Potent MALT1 Inhibitors Featuring a Novel "2-Thioxo-2,3-dihydrothiazolo[4,5- d]pyrimidin-7(6 H)-one" Scaffold for the Treatment of B Cell Lymphoma. J Med Chem 2024; 67:2884-2906. [PMID: 38349664 DOI: 10.1021/acs.jmedchem.3c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) has emerged as a novel and promising therapeutic target for the treatment of lymphomas and autoimmune diseases. Herein, we reported a new class of MALT1 inhibitors featuring a novel "2-thioxo-2,3-dihydrothiazolo[4,5-d]pyrimidin-7(6H)-one" scaffold developed by structure-based drug design. Structure-activity relationship studies finally led to the discovery of MALT1 inhibitor 10m, which covalently and potently inhibited MALT1 protease with the IC50 value of 1.7 μM. 10m demonstrated potent and selective antiproliferative activity against ABC-DLBCL and powerful ability to induce HBL1 apoptosis. 10m also effectively downregulated the activities of MALT1 and its downstream signal pathways. Furthermore, 10m induced upregulation of mTOR and PI3K-Akt signals and exhibited a synergistic antitumor effect with Rapamycin in HBL1 cells. More importantly, 10m remarkably suppressed the tumor growth both in the implanted HBL1 and TMD8 xenograft models. Collectively, this work provides valuable MALT1 inhibitors with a distinct core structure.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haolan Yu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanghui Feng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxia Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaohui Wei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200043, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai 200433, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
61
|
Phelan JD, Scheich S, Choi J, Wright GW, Häupl B, Young RM, Rieke SA, Pape M, Ji Y, Urlaub H, Bolomsky A, Doebele C, Zindel A, Wotapek T, Kasbekar M, Collinge B, Huang DW, Coulibaly ZA, Morris VM, Zhuang X, Enssle JC, Yu X, Xu W, Yang Y, Zhao H, Wang Z, Tran AD, Shoemaker CJ, Shevchenko G, Hodson DJ, Shaffer AL, Staudt LM, Oellerich T. Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy. Cancer Cell 2024; 42:238-252.e9. [PMID: 38215749 PMCID: PMC11256978 DOI: 10.1016/j.ccell.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL.
Collapse
Affiliation(s)
- James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD 20850, USA
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara A Rieke
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Martine Pape
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Yanlong Ji
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Doebele
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Alena Zindel
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett Collinge
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiaoxuan Zhuang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julius C Enssle
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuo Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy D Tran
- CCR Microscopy Core, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Galina Shevchenko
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
62
|
Kawaji‐Kanayama Y, Tsukamoto T, Nakano M, Tokuda Y, Nagata H, Mizuhara K, Katsuragawa‐Taminishi Y, Isa R, Fujino T, Matsumura‐Kimoto Y, Mizutani S, Shimura Y, Taniwaki M, Tashiro K, Kuroda J. miR-17-92 cluster-BTG2 axis regulates B-cell receptor signaling in mantle cell lymphoma. Cancer Sci 2024; 115:452-464. [PMID: 38050664 PMCID: PMC10859618 DOI: 10.1111/cas.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
B-cell receptor (BCR) signaling is critically activated and stable for mantle cell lymphoma (MCL), but the underlying mechanism of the activated BCR signaling pathway is not clear. The pathogenic basis of miR-17-92 cluster remains unclear although the oncogenic microRNA (miRNA) miR-17-92 cluster is highly expressed in patients with MCL. We revealed that miR-17-92 cluster overexpression is partly dependent on SOX11 expression and chromatin acetylation of MIR17HG enhancer regions. Moreover, miR-17-92 cluster regulates not only cell proliferation but BCR signaling activation in MCL cell lines. To comprehensively identify miR-17-92 cluster target genes, we performed pulldown-seq, where target RNA of miRNA was captured using the biotinylated miRNA mimics and magnetic bead-coated streptavidin, and quantified using next-generation sequencing. The pulldown-seq identified novel miRNA target genes, including tumor suppressors such as BTG2 (miR-19b), CDKN2A (miR-17), SYNE1 (miR-20a), TET2 (miR-18, miR-19b, and miR-92a), TNFRSF10A (miR-92a), and TRAF3 (miR-17). Notably, the gene expression profile data of patients with MCL revealed that BTG2 expression was negatively associated with that of BCR signature genes, and low BTG2 expression was associated with poor overall survival. Moreover, BTG2 silencing in MCL cell lines significantly induced BCR signaling overactivation and cell proliferation. Our results suggest an oncogenic role of miR-17-92 cluster-activating BCR signaling throughout BTG2 deregulation in MCL. Furthermore, this may contribute to the prediction of the therapeutic efficacy and improved outcomes of MCL.
Collapse
Affiliation(s)
- Yuka Kawaji‐Kanayama
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Taku Tsukamoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masakazu Nakano
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Yuichi Tokuda
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroaki Nagata
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Kentaro Mizuhara
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yoko Katsuragawa‐Taminishi
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Reiko Isa
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiro Fujino
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yayoi Matsumura‐Kimoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyJapan Community Health Care Organization, Kyoto Kuramaguchi Medical CenterKyotoJapan
| | - Shinsuke Mizutani
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yuji Shimura
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masafumi Taniwaki
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyAiseikai Yamashina HospitalKyotoJapan
- Center for Molecular Diagnostic and TherapeuticsKyoto Prefectural University of MedicineKyotoJapan
| | - Kei Tashiro
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Junya Kuroda
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
63
|
Roschewski M, Hodson DJ. Diffuse large B-cell lymphoma involving the central nervous system: biologic rationale for targeted therapy. Haematologica 2024; 109:388-400. [PMID: 37706315 PMCID: PMC10828633 DOI: 10.3324/haematol.2021.278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell lymphoma curable even in advanced stages. DLBCL involving the central nervous system (CNS) is more difficult to cure and fewer treatment options exist. Primary CNS lymphoma (PCNSL) refers to aggressive lymphomas confined to the CNS, and are almost always DLBCL. Standard approaches for PCNSL use high-dose methotrexate-based combinations as induction therapy and younger patients often receive dose-intensive consolidation. However, dose-intensive therapies are not suitable for all patients, and older patients have fewer effective treatment options. Patients with relapsed or chemotherapy-refractory disease have a very poor prognosis. Secondary CNS lymphoma (SCNSL) describes aggressive lymphomas involving the CNS at initial presentation or relapses within the CNS after treatment for systemic DLBCL. Isolated CNS relapse is often managed as PCNSL, but patients with synchronous involvement of DLBCL in both the periphery and the CNS pose a unique clinical challenge. Insights into the molecular circuitry of DLBCL have identified distinct genetic subtypes including cases with a predilection for CNS invasion. PCNSL and subsets of SCNSL are characterized by chronically activated B-cell receptor and NFκB signaling along with genetic evidence of immune evasion which may be exploited therapeutically. Improved mechanistic understanding of targetable pathways underpinning CNS lymphomas has led to numerous clinical trials testing targeted agent combinations and immunotherapy approaches with promising early results. Biologically rational strategies may further improve the cure rate of CNS lymphomas, either by overcoming intrinsic or acquired treatment resistance and/or by being broadly applicable to patients of all ages.
Collapse
Affiliation(s)
- Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer nstitute, Bethesda, MD, 20892.
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge.
| |
Collapse
|
64
|
Mandhair HK, Radpour R, Westerhuis M, Banz Y, Humbert M, Arambasic M, Dengjel J, Davies A, Tschan MP, Novak U. Analysis of autophagy in DLBCL reveals subtype-specific differences and the preferential targeting of ULK1 inhibition in GCB-DLBCL provides a rationale as a new therapeutic approach. Leukemia 2024; 38:424-429. [PMID: 38263431 PMCID: PMC10844068 DOI: 10.1038/s41375-024-02147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Affiliation(s)
- Harpreet K Mandhair
- University of Bern, Department of BioMedical Research, Bern, Switzerland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Ramin Radpour
- University of Bern, Department of BioMedical Research, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mira Westerhuis
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Magali Humbert
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Miroslav Arambasic
- University of Bern, Department of BioMedical Research, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Andrew Davies
- Southampton NHIR/Cancer Research UK, Experimental Cancer Medicines Centre, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Mario P Tschan
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Urban Novak
- University of Bern, Department of BioMedical Research, Bern, Switzerland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
65
|
Cooper A, Tumuluru S, Kissick K, Venkataraman G, Song JY, Lytle A, Duns G, Yu J, Kotlov N, Bagaev A, Hodkinson B, Srinivasan S, Smith SM, Scott DW, Steidl C, Godfrey JK, Kline J. CD5 Gene Signature Identifies Diffuse Large B-Cell Lymphomas Sensitive to Bruton's Tyrosine Kinase Inhibition. J Clin Oncol 2024; 42:467-480. [PMID: 38079587 DOI: 10.1200/jco.23.01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 01/31/2024] Open
Abstract
PURPOSE A genetic classifier termed LymphGen accurately identifies diffuse large B-cell lymphoma (DLBCL) subtypes vulnerable to Bruton's tyrosine kinase inhibitors (BTKis), but is challenging to implement in the clinic and fails to capture all DLBCLs that benefit from BTKi-based therapy. Here, we developed a novel CD5 gene expression signature as a biomarker of response to BTKi-based therapy in DLBCL. METHODS CD5 immunohistochemistry (IHC) was performed on 404 DLBCLs to identify CD5 IHC+ and CD5 IHC- cases, which were subsequently characterized at the molecular level through mutational and transcriptional analyses. A 60-gene CD5 gene expression signature (CD5sig) was constructed using genes differentially expressed between CD5 IHC+ and CD5 IHC- non-germinal center B-cell-like (non-GCB DLBCL) DLBCLs. This CD5sig was applied to external DLBCL data sets, including pretreatment biopsies from patients enrolled in the PHOENIX study (n = 584) to define the extent to which the CD5sig could identify non-GCB DLBCLs that benefited from the addition of ibrutinib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). RESULTS CD5 expression was observed in 12% of non-GCB DLBCLs. CD5+ DLBCLs displayed transcriptional features of B-cell receptor (BCR) activation and were enriched for BCR-activating mutations known to correlate with BTKi sensitivity. However, most CD5+ DLBCLs lacked canonical BCR-activating mutations or were LymphGen-unclassifiable (LymphGen-Other). The CD5sig recapitulated these findings in multiple independent data sets, indicating its utility in identifying DLBCLs with genetic and nongenetic bases for BCR dependence. Supporting this notion, CD5sig+ DLBCLs derived a selective survival advantage from the addition of ibrutinib to R-CHOP in the PHOENIX study, independent of LymphGen classification. CONCLUSION CD5sig is a useful biomarker to identify DLBCLs vulnerable to BTKi-based therapies and complements current biomarker approaches by identifying DLBCLs with genetic and nongenetic bases for BTKi sensitivity.
Collapse
Affiliation(s)
- Alan Cooper
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Sravya Tumuluru
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Kyle Kissick
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, CA
| | - Andrew Lytle
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC
| | - Gerben Duns
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | | | | - Brendan Hodkinson
- Oncology Translational Research, Janssen Research & Development, Spring House, PA
| | - Srimathi Srinivasan
- Oncology Translational Research, Janssen Research & Development, Lower Gwynedd Township, PA
| | - Sonali M Smith
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - David W Scott
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Christian Steidl
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - James K Godfrey
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Justin Kline
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
66
|
Deng T, Zhang S, Xiao M, Gu J, Huang L, Zhou X. A single-centre, real-world study of BTK inhibitors for the initial treatment of MYD88 mut /CD79B mut diffuse large B-cell lymphoma. Cancer Med 2024; 13:e7005. [PMID: 38457222 PMCID: PMC10923040 DOI: 10.1002/cam4.7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND MCD (MYD88L265P /CD79Bmut ) diffuse large B-cell lymphoma has a poor prognosis. There is no published clinical research conclusion regarding zanubrutinib or orelabrutinib for the initial treatment of MCD DLBCL. AIMS This study aimed to analyse the efficacy and safety of Bruton's tyrosine kinase inhibitor (BTKi) (zanubrutinib or orelabrutinib) therapy for newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut . MATERIALS AND METHODS Twenty-three newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut from June 2020 to June 2022 received BTKi combined with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) or rituximab + lenalidomide (R2 ). A control group of 17 patients with MYD88mut and/or CD79Bmut DLBCL who received the standard R-CHOP therapy was also assessed. We retrospectively analysed clinical characteristics, safety, overall response rate (ORR), complete response (CR) rate and progression-free survival (PFS) of the two groups. RESULTS The main clinical features were a high International Prognostic Index (IPI) score (≥3, 22/40, 55%) and a high rate of extranodal involvement (27/40,67.5%). Among the 23 DLBCL patients, 18 received BTKi + R-CHOP, and five elderly DLBCL patients were treated with BTKi + R2 . Compared with those in the control group (ORR 70.6%, CRR 52.9%, 1-year PFS rate 41.2%), improved ORR, CRR and PFS results were observed in the BTKi + R-CHOP group (100%, 94.4% and 88.9%, p = 0.019, 0.007, and 0.0001). In subgroup analyses based on genetic subtypes, cell origin, dual expression or IPI score, patients in the BTKi + R-CHOP group had better PFS than patients in the control group. In the BTKi + R-CHOP group, no significant difference was found in ORR, CRR and PFS based on subtype analysis, while BTKi-type subgroups exhibited statistically significant differences in 1-year PFS (p = 0.028). There were no significant differences in grade 3-4 haematological toxicity (p = 1) and grade 3-4 non-haematological toxicity (p = 0.49) between the BTKi + R-CHOP and R-CHOP treatment groups. In the BTKi + R2 group, the ORR was 100%, the CRR was 80%, and the 1-year PFS rate was 80%. The incidences of grade 3-4 haematologic toxicity and non-haematological toxicity were both 40%. No bleeding or cardiovascular events of grade 3 or higher occurred in any patients. DISCUSSION The efficacy of BTKi combined with R-CHOP was similar to previous reports, which was significantly better than R-CHOP alone. It is necessary to fully consider that 14 patients in the BTKi + R-CHOP group received a BTKi as maintenance therapy when evaluating efficacy. Meanwhile, the addition of a BTKi may improve the prognosis of non-GCB, DEL or high-IPI-score DLBCL patients with MYD88mut and/or CD79Bmut . In our study, five elderly DLBCL patients with MYD88mut and/or CD79Bmut were achieved better ORR, CRR, PFS than the historical data of R-miniCHOP treatment and Ibrutinib + R2 treatment. However, the efficacy and benefit of BTKis for this type of DLBCL need to be further analysed using a larger sample size. CONCLUSION This study suggests that newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut may benefit from BTKis according to real-world clinical data.
Collapse
Affiliation(s)
- Ting Deng
- Department of HematologyChongqing Fifth People's HospitalChongqingPR China
| | - Shiyuan Zhang
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Min Xiao
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Jia Gu
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Liang Huang
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Xiaoxi Zhou
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| |
Collapse
|
67
|
Zhou R, Guo J, Feng X, Zhou W. Mechanisms of the role of proto-oncogene activation in promoting malignant transformation of mature B cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:113-121. [PMID: 38615172 PMCID: PMC11017026 DOI: 10.11817/j.issn.1672-7347.2024.230304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 04/15/2024]
Abstract
Malignant tumors continue to pose a significant threat to human life and safety and their development is primarily due to the activation of proto-oncogenes and the inactivation of suppressor genes. Among these, the activation of proto-oncogenes possesses greater potential to drive the malignant transformation of cells. Targeting oncogenes involved in the malignant transformation of tumor cells has provided a novel approach for the development of current antitumor drugs. Several preclinical and clinical studies have revealed that the development pathway of B cells, and the malignant transformation of mature B cells into tumors have been regulated by oncogenes and their metabolites. Therefore, summarizing the key oncogenes involved in the process of malignant transformation of mature B cells and elucidating the mechanisms of action in tumor development hold significant importance for the clinical treatment of malignant tumors.
Collapse
Affiliation(s)
- Ruiqi Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| | - Jiaojiao Guo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410006, China
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| |
Collapse
|
68
|
Li W, Sano R, Apatira M, DeAnda F, Gururaja T, Yang M, Lundgaard G, Pan C, Liu J, Zhai Y, Yoon WH, Wang L, Tse C, Souers AJ, Lee CH. Bruton's Tyrosine Kinase Inhibitors with Distinct Binding Modes Reveal Differential Functional Impact on B-Cell Receptor Signaling. Mol Cancer Ther 2024; 23:35-46. [PMID: 37735104 PMCID: PMC10762339 DOI: 10.1158/1535-7163.mct-22-0642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/17/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Small molecule inhibitors of Bruton's tyrosine kinase (BTK) have been approved for the treatment of multiple B-cell malignancies and are being evaluated for autoimmune and inflammatory diseases. Various BTK inhibitors (BTKi) have distinct potencies, selectivity profiles, and binding modes within the ATP-binding site. On the basis of the latter feature, BTKis can be classified into those that occupy the back-pocket, H3 pocket, and the hinge region only. Hypothesizing that differing binding modes may have differential impact on the B-cell receptor (BCR) signaling pathway, we evaluated the activities of multiple BTKis in B-cell lymphoma models in vitro and in vivo. We demonstrated that, although all three types of BTKis potently inhibited BTK-Y223 autophosphorylation and phospholipase C gamma 2 (PLCγ2)-Y1217 transphosphorylation, hinge-only binders were defective in inhibiting BTK-mediated calcium mobilization upon BCR activation. In addition, PLCγ2 activation was effectively blocked by back-pocket and H3 pocket binders but not by hinge-only binders. Further investigation using TMD8 cells deficient in Rac family small GTPase 2 (RAC2) revealed that RAC2 functioned as a bypass mechanism, allowing for residual BCR signaling and PLCγ2 activation when BTK kinase activity was fully inhibited by the hinge-only binders. These data reveal a kinase activity-independent function of BTK, involving RAC2 in transducing BCR signaling events, and provide mechanistic rationale for the selection of clinical candidates for B-cell lymphoma indications.
Collapse
Affiliation(s)
- Wei Li
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Renata Sano
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Mutiah Apatira
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Felix DeAnda
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | | | - Muhua Yang
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Greta Lundgaard
- Drug Discovery Science and Technology, AbbVie Inc., Lake County, Illinois
| | - Chin Pan
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Jing Liu
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Yongjiao Zhai
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Woo Hyun Yoon
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Longcheng Wang
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Chris Tse
- Oncology Discovery, AbbVie Inc., Lake County, Illinois
| | | | - Chih-Hung Lee
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| |
Collapse
|
69
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
70
|
Çakan E, Ah Kioon MD, Garcia-Carmona Y, Glauzy S, Oliver D, Yamakawa N, Vega Loza A, Du Y, Schickel JN, Boeckers JM, Yang C, Baldo A, Ivashkiv LB, Young RM, Staudt LM, Moody KL, Nündel K, Marshak-Rothstein A, van der Made CI, Hoischen A, Hayward A, Rossato M, Radstake TR, Cunningham-Rundles C, Ryu C, Herzog EL, Barrat FJ, Meffre E. TLR9 ligand sequestration by chemokine CXCL4 negatively affects central B cell tolerance. J Exp Med 2023; 220:e20230944. [PMID: 37773045 PMCID: PMC10541333 DOI: 10.1084/jem.20230944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
Central B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides. The in vivo production of CXCL4 thereby impedes both TLR9 responses in B cells and the establishment of central B cell tolerance. We conclude that TLR9 plays an essential early tolerogenic function required for the establishment of central B cell tolerance and that correcting defective TLR9 function in B cells from SSc patients may represent a novel therapeutic strategy to restore B cell tolerance.
Collapse
Affiliation(s)
- Elif Çakan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Yolanda Garcia-Carmona
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Salomé Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David Oliver
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Natsuko Yamakawa
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrea Vega Loza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yong Du
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | | | - Joshua M. Boeckers
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Chao Yang
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Alessia Baldo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lionel B. Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Ryan M. Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Krishna L. Moody
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Kerstin Nündel
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Caspar I. van der Made
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anthony Hayward
- Warren Alper School of Medicine, Brown University, Providence, RI, USA
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Timothy R.D.J. Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Cunningham-Rundles
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwan Ryu
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Erica L. Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
71
|
Kim PM, Nejati R, Lu P, Thakkar D, Mackrides N, Dupoux V, Nakhoda S, Baldwin DA, Pei J, Dave SS, Wang YL, Wasik MA. Leukemic presentation and progressive genomic alterations of MCD/C5 diffuse large B-cell lymphoma (DLBCL). Cold Spring Harb Mol Case Stud 2023; 9:a006283. [PMID: 37730436 PMCID: PMC10815299 DOI: 10.1101/mcs.a006283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/30/2023] [Indexed: 09/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogenous group of lymphoid malignancies. Based on gene expression profiling, it has been subdivided into germinal center (GC)-derived and activated B-cell (ABC) types. Advances in molecular methodologies have further refined the subclassification of DLBCL, based on recurrent genetic abnormalities. Here, we describe a distinct case of DLBCL that presented in leukemic form. DNA sequencing targeting 275 genes revealed pathogenically relevant mutations of CD79B, MyD88, TP53, TBL1XR1, and PIM1 genes, indicating that this lymphoma would be best classified as MCD/C5 DLBCL, an ABC subtype. Despite an initial good clinical response to BTK inhibitor ibrutinib, anti-CD20 antibody rituxan, alkylating agent bendamustine, and hematopoietic stem-cell transplant, the lymphoma relapsed, accompanied by morphologic and molecular evidence of disease progression. Specifically, the recurrent tumor developed loss of TP53 heterozygosity (LOH) and additional chromosomal changes central to ABC DLBCL pathogenesis, such as PRDM1 loss. Acquired resistance to ibrutinib and rituxan was indicated by the emergence of BTK and FOXO1 mutations, respectively, as well as apparent activation of alternative cell-activation pathways, through copy-number alterations (CNAs), detected by high-resolution chromosomal microarrays. In vitro, studies of relapsed lymphoma cells confirmed resistance to standard BTK inhibitors but sensitivity to vecabrutinib, a noncovalent inhibitor active against both wild-type as well as mutated BTK. In summary, we provide in-depth molecular characterization of a de novo leukemic DLBCL and discuss mechanisms that may have contributed to the lymphoma establishment, progression, and development of drug resistance.
Collapse
Affiliation(s)
- Patricia M Kim
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Pin Lu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | - Nicholas Mackrides
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Vanessa Dupoux
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Shazia Nakhoda
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Don A Baldwin
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Sandeep S Dave
- Duke University, Durham, North Carolina 27708, USA
- Data Driven Bioscience, Durham, North Carolina 27707, USA
| | - Y Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
| |
Collapse
|
72
|
Abstract
N-myristoyltransferase 1 (NMT1) is an indispensable eukaryotic enzyme that catalyses the transfer of myristoyl groups to the amino acid terminal residues of numerous proteins. This catalytic process is required for the growth and development of many eukaryotes and viruses. Elevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types (e.g. colon, lung and breast tumours). Furthermore, an elevated level of NMT1 in tumours is associated with poor survival. Therefore, a relationship exists between NMT1 and tumours. In this review, we discuss the underlying mechanisms by which NMT1 is associated with tumour development from the perspective of oncogene signalling, involvement in cellular metabolism, and endoplasmic reticulum stress. Several NMT inhibitors used in cancer treatment are introduced. The review will provide some directions for future research.Key MessagesElevated expression and activity of NMT1 is observed to varying degrees in a variety of tumour types which creates the possibility of targeting NMT1 in tumours.NMT1-mediated myristoylation plays a pivotal role in cancer cell metabolism and may be particularly relevant to cancer metastasis and drug resistance. These insights can be used to direct potential therapeutic avenues for NMT1 inhibitors.
Collapse
Affiliation(s)
- Hong Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Medical Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
73
|
Fuertes T, Álvarez-Corrales E, Gómez-Escolar C, Ubieto-Capella P, Serrano-Navarro Á, de Molina A, Méndez J, Ramiro AR, de Yébenes VG. miR-28-based combination therapy impairs aggressive B cell lymphoma growth by rewiring DNA replication. Cell Death Dis 2023; 14:687. [PMID: 37852959 PMCID: PMC10585006 DOI: 10.1038/s41419-023-06178-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common aggressive B cell lymphoma and accounts for nearly 40% of cases of B cell non-Hodgkin lymphoma. DLBCL is generally treated with R-CHOP chemotherapy, but many patients do not respond or relapse after treatment. Here, we analyzed the therapeutic potential of the tumor suppressor microRNA-28 (miR-28) for DLBCL, alone and in combination with the Bruton's tyrosine kinase inhibitor ibrutinib. Combination therapy with miR-28 plus ibrutinib potentiated the anti-tumor effects of monotherapy with either agent by inducing a specific transcriptional cell-cycle arrest program that impairs DNA replication. The molecular actions of miR-28 and ibrutinib synergistically impair DNA replication by simultaneous inhibition of origin activation and fork progression. Moreover, we found that downregulation of the miR-28-plus-ibrutinib gene signature correlates with better survival of ABC-DLBCL patients. These results provide evidence for the effectiveness of a new miRNA-based ibrutinib combination therapy for DLBCL and unveil the miR-28-plus-ibrutinib gene signature as a new predictor of outcome in ABC-DLBCL patients.
Collapse
Affiliation(s)
- Teresa Fuertes
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Emigdio Álvarez-Corrales
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Gómez-Escolar
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Álvaro Serrano-Navarro
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Antonio de Molina
- Comparative Medicine Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Méndez
- DNA replication Group. Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Laboratory Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - Virginia G de Yébenes
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense de Madrid; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
74
|
Zhang MC, Tian S, Fu D, Wang L, Cheng S, Yi HM, Jiang XF, Song Q, Zhao Y, He Y, Li JF, Mu RJ, Fang H, Yu H, Xiong H, Li B, Chen SJ, Xu PP, Zhao WL. Genetic subtype-guided immunochemotherapy in diffuse large B cell lymphoma: The randomized GUIDANCE-01 trial. Cancer Cell 2023; 41:1705-1716.e5. [PMID: 37774697 DOI: 10.1016/j.ccell.2023.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/25/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
We report the results of GUIDANCE-01 (NCT04025593), a randomized, phase II trial of R-CHOP alone or combined with targeted agents (R-CHOP-X) guided by genetic subtyping of newly diagnosed, intermediate-risk, or high-risk diffuse large B cell lymphoma (DLBCL). A total of 128 patients were randomized 1:1 to receive R-CHOP-X or R-CHOP. The study achieved the primary endpoint, showing significantly higher complete response rate with R-CHOP-X than R-CHOP (88% vs. 66%, p = 0.003), with overall response rate of 92% vs. 73% (p = 0.005). Two-year progression-free survival rates were 88% vs. 63% (p < 0.001), and 2-year overall survival rates were 94% vs. 77% (p = 0.001). Meanwhile, post hoc RNA-sequencing validated our simplified genetic subtyping algorithm and previously established lymphoma microenvironment subtypes. Our findings highlight the efficacy and safety of R-CHOP-X, a mechanism-based tailored therapy, which dually targeted genetic and microenvironmental alterations in patients with newly diagnosed DLBCL.
Collapse
Affiliation(s)
- Mu-Chen Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Tian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Mei Yi
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu-Feng Jiang
- Department of Nuclear Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Song
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Feng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong-Ji Mu
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yu
- Department of Research and Development, Shanghai Righton Biotechnology Co. Ltd, Shanghai, China
| | - Hui Xiong
- Department of Research and Development, Shanghai Righton Biotechnology Co. Ltd, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
75
|
Mandato E, Yan Q, Ouyang J, Paczkowska J, Qin Y, Hao Y, Bojarczuk K, Hansen J, Chapuy B, Rodig SJ, Khan SJ, Redd RA, Shipp MA. MYD88L265P augments proximal B-cell receptor signaling in large B-cell lymphomas via an interaction with DOCK8. Blood 2023; 142:1219-1232. [PMID: 37467575 DOI: 10.1182/blood.2023019865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease with at least 5 recognized molecular subtypes. Cluster 5 (C5)/MCD tumors frequently exhibit concurrent alterations in the toll-like receptor (TLR) and B-cell receptor (BCR) pathway members, MYD88L265P and CD79B, and have a less favorable prognosis. In healthy B cells, the synergy between TLR and BCR signaling pathways integrates innate and adaptive immune responses and augments downstream NF-κB activation. In addition, physiologic TLR9 pathway engagement via MYD88, protein tyrosine kinase 2 (PYK2), and dedicator of cytokinesis 8 (DOCK8) increases proximal BCR signaling in healthy murine B cells. Although C5/MCD DLBCLs are selectively sensitive to Bruton tyrosine kinase (BTK) inhibition in in vitro studies and certain clinical trials, the role of mutated MYD88 in proximal BCR signaling remains undefined. Using engineered DLBCL cell line models, we found that concurrent MYD88L265P and CD79B alterations significantly increased the magnitude and duration of proximal BCR signaling, at the level of spleen tyrosine kinase and BTK, and augmented PYK2-dependent DOCK8 phosphorylation. MYD88L265P DLBCLs have significantly increased colocalization of DOCK8 with both MYD88 and the proximal BCR-associated Src kinase, LYN, in comparison with MYD88WT DLBCLs, implicating DOCK8 in MYD88L265P/proximal BCR cross talk. Additionally, DOCK8 depletion selectively decreased proximal BCR signaling, cellular proliferation, and viability of DLBCLs with endogenous MYD88L265P/CD79BY196F alterations and increased the efficacy of BTK blockade in these lymphomas. Therefore, MYD88L265P/DOCK8-enhanced proximal BCR signaling is a likely mechanism for the increased sensitivity of C5/MCD DLBCLs to BTK blockade.
Collapse
Affiliation(s)
- Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Qingsheng Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Bristol Myers Squibb, Cambridge, MA
| | - Julia Paczkowska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yan Qin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Parthenon Therapeutics, Boston, MA
| | - Yansheng Hao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Kamil Bojarczuk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julia Hansen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Björn Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Oncology, and Tumor Immunology, Charité - University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Sumbul Jawed Khan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Margaret A Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
76
|
Palmer AC, Kurtz DM, Alizadeh AA. Cell-of-Origin Subtypes and Therapeutic Benefit from Polatuzumab Vedotin. N Engl J Med 2023; 389:764-766. [PMID: 37611128 DOI: 10.1056/nejmc2306105] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Adam C Palmer
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David M Kurtz
- Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
77
|
Minderman M, Lantermans H, van der Zwaan C, Hoogendijk AJ, van den Biggelaar M, Kersten MJ, Spaargaren M, Pals ST. The oncogenic human B-cell lymphoma MYD88 L265P mutation genocopies activation by phosphorylation at the Toll/interleukin-1 receptor (TIR) domain. Blood Cancer J 2023; 13:125. [PMID: 37591861 PMCID: PMC10435502 DOI: 10.1038/s41408-023-00896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
MYD88 is the key signaling adaptor-protein for Toll-like and interleukin-1 receptors. A somatic L265P mutation within the Toll/interleukin-1 receptor (TIR) domain of MYD88 is found in 90% of Waldenström macroglobulinemia cases and in a significant subset of diffuse large B-cell lymphomas. MYD88-L265P strongly promotes NF-κB pathway activation, JAK-STAT signaling and lymphoma cell survival. Previous studies have identified other residues of the TIR-domain crucially involved in NF-κB activation, including serine 257 (S257), indicating a potentially important physiological role in the regulation of MYD88 activation. Here, we demonstrate that MYD88 S257 is phosphorylated in B-cell lymphoma cells and that this phosphorylation is required for optimal TLR-induced NF-κB activation. Furthermore, we demonstrate that a phosphomimetic MYD88-S257D mutant promotes MYD88 aggregation, IRAK1 phosphorylation, NF-κB activation and cell growth to a similar extent as the oncogenic L265P mutant. Lastly, we show that expression of MYD88-S257D can rescue cell growth upon silencing of endogenous MYD88-L265P expression in lymphoma cells addicted to oncogenic MYD88 signaling. Our data suggest that the L265P mutation promotes TIR domain homodimerization and NF-κB activation by copying the effect of MY88 phosphorylation at S257, thus providing novel insights into the molecular mechanism underlying the oncogenic activity of MYD88-L265P in B-cell malignancies.
Collapse
Affiliation(s)
- Marthe Minderman
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Hildo Lantermans
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands.
| |
Collapse
|
78
|
Scheich S, Chen J, Liu J, Schnütgen F, Enssle JC, Ceribelli M, Thomas CJ, Choi J, Morris V, Hsiao T, Nguyen H, Wang B, Bolomsky A, Phelan JD, Corcoran S, Urlaub H, Young RM, Häupl B, Wright GW, Huang DW, Ji Y, Yu X, Xu W, Yang Y, Zhao H, Muppidi J, Pan KT, Oellerich T, Staudt LM. Targeting N-linked Glycosylation for the Therapy of Aggressive Lymphomas. Cancer Discov 2023; 13:1862-1883. [PMID: 37141112 PMCID: PMC10524254 DOI: 10.1158/2159-8290.cd-22-1401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) can be subdivided into the activated B-cell (ABC) and germinal center B cell-like (GCB) subtypes. Self-antigen engagement of B-cell receptors (BCR) in ABC tumors induces their clustering, thereby initiating chronic active signaling and activation of NF-κB and PI3 kinase. Constitutive BCR signaling is essential in some GCB tumors but primarily activates PI3 kinase. We devised genome-wide CRISPR-Cas9 screens to identify regulators of IRF4, a direct transcriptional target of NF-κB and an indicator of proximal BCR signaling in ABC DLBCL. Unexpectedly, inactivation of N-linked protein glycosylation by the oligosaccharyltransferase-B (OST-B) complex reduced IRF4 expression. OST-B inhibition of BCR glycosylation reduced BCR clustering and internalization while promoting its association with CD22, which attenuated PI3 kinase and NF-κB activation. By directly interfering with proximal BCR signaling, OST-B inactivation killed models of ABC and GCB DLBCL, supporting the development of selective OST-B inhibitors for the treatment of these aggressive cancers. SIGNIFICANCE DLBCL depends on constitutive BCR activation and signaling. There are currently no therapeutics that target the BCR directly and attenuate its pathologic signaling. Here, we unraveled a therapeutically exploitable, OST-B-dependent glycosylation pathway that drives BCR organization and proximal BCR signaling. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Julius C. Enssle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Craig J. Thomas
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Johns Hopkins University, Department of Biology, Baltimore, MD, 21218, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hang Nguyen
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James D. Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Ryan M. Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Björn Häupl
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - George W. Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanlong Ji
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kuan-Ting Pan
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Thomas Oellerich
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
79
|
Rovsing AB, Thomsen EA, Nielsen I, Skov TW, Luo Y, Dybkaer K, Mikkelsen JG. Resistance to vincristine in DLBCL by disruption of p53-induced cell cycle arrest and apoptosis mediated by KIF18B and USP28. Br J Haematol 2023; 202:825-839. [PMID: 37190875 DOI: 10.1111/bjh.18872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The frontline therapy R-CHOP for patients with diffuse large B-cell lymphoma (DLBCL) has remained unchanged for two decades despite numerous Phase III clinical trials investigating new alternatives. Multiple large studies have uncovered genetic subtypes of DLBCL enabling a targeted approach. To further pave the way for precision oncology, we perform genome-wide CRISPR screening to uncover the cellular response to one of the components of R-CHOP, vincristine, in the DLBCL cell line SU-DHL-5. We discover important pathways and subnetworks using gene-set enrichment analysis and protein-protein interaction networks and identify genes related to mitotic spindle organization that are essential during vincristine treatment. The inhibition of KIF18A, a mediator of chromosome alignment, using the small molecule inhibitor BTB-1 causes complete cell death in a synergistic manner when administered together with vincristine. We also identify the genes KIF18B and USP28 of which CRISPR/Cas9-directed knockout induces vincristine resistance across two DLBCL cell lines. Mechanistic studies show that lack of KIF18B or USP28 counteracts a vincristine-induced p53 response suggesting that resistance to vincristine has origin in the mitotic surveillance pathway (USP28-53BP1-p53). Collectively, our CRISPR screening data uncover potential drug targets and mechanisms behind vincristine resistance, which may support the development of future drug regimens.
Collapse
Affiliation(s)
| | | | - Ian Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Karen Dybkaer
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
80
|
Lam JH, Baumgarth N. Toll-like receptor mediated inflammation directs B cells towards protective antiviral extrafollicular responses. Nat Commun 2023; 14:3979. [PMID: 37407556 DOI: 10.1038/s41467-023-39734-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Extrafollicular plasmablast responses (EFRs) are considered to generate antibodies of low affinity that offer little protection from infections. Paradoxically, high avidity antigen-B cell receptor engagement is thought to be the main driver of B cell differentiation, whether in EFRs or slower-developing germinal centers (GCs). Here we show that influenza infection rapidly induces EFRs, generating protective antibodies via Toll-like receptor (TLR)-mediated mechanisms that are both B cell intrinsic and extrinsic. B cell-intrinsic TLR signals support antigen-stimulated B cell survival, clonal expansion, and the differentiation of B cells via induction of IRF4, the master regulator of B cell differentiation, through activation of NF-kB c-Rel. Provision of sustained TLR4 stimulation after immunization shifts the fate of virus-specific B cells towards EFRs instead of GCs, prompting rapid antibody production and improving their protective capacity over antigen/alum administration alone. Thus, inflammatory signals act as B cell fate-determinants for the rapid generation of protective antiviral extrafollicular responses.
Collapse
Affiliation(s)
- Jonathan H Lam
- Graduate Group in Immunology, University of California Davis, Davis, USA
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, USA
- Dept. Pathology, Microbiology and Immunology, University of California Davis, Davis, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, USA.
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, USA.
- Dept. Pathology, Microbiology and Immunology, University of California Davis, Davis, USA.
- W. Harry Feinstone Dept Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, E4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
81
|
Xu Y, Shen H, Shi Y, Zhao Y, Zhen X, Sun J, Li X, Zhou D, Yang C, Wang J, Huang X, Wei J, Huang J, Meng H, Yu W, Tong H, Jin J, Xie W. Dyslipidemia in diffuse large B-cell lymphoma based on the genetic subtypes: a single-center study of 259 Chinese patients. Front Oncol 2023; 13:1172623. [PMID: 37384286 PMCID: PMC10299728 DOI: 10.3389/fonc.2023.1172623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a kind of highly heterogeneous non-Hodgkin lymphoma, both in clinical and genetic terms. DLBCL is admittedly categorized into six subtypes by genetics, which contain MCD, BN2, EZB, N1, ST2, and A53. Dyslipidemia is relevant to a multitude of solid tumors and has recently been reported to be associated with hematologic malignancies. We aim to present a retrospective study investigating dyslipidemia in DLBCL based on the molecular subtypes. Results This study concluded that 259 patients with newly diagnosed DLBCL and their biopsy specimens were available for molecular typing. Results show that the incidence of dyslipidemia (87.0%, p <0.001) is higher in the EZB subtype than in others, especially hypertriglyceridemia (78.3%, p = 0.001) in the EZB subtype. Based on the pathological gene-sequencing, patients with BCL2 gene fusion mutation are significantly correlative with hyperlipidemia (76.5%, p = 0.006) and hypertriglyceridemia (88.2%, p = 0.002). Nevertheless, the occurrence of dyslipidemia has no remarkable influence on prognosis. Conclusion In summary, dyslipidemia correlates with genetic heterogeneity in DLBCL without having a significant influence on survival. This research first connects lipids and genetic subtypes in DLBCL.
Collapse
|
82
|
Jayawant E, Pack A, Clark H, Kennedy E, Ghodke A, Jones J, Pepper C, Pepper A, Mitchell S. NF-κB fingerprinting reveals heterogeneous NF-κB composition in diffuse large B-cell lymphoma. Front Oncol 2023; 13:1181660. [PMID: 37333821 PMCID: PMC10272839 DOI: 10.3389/fonc.2023.1181660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving treatments for Diffuse Large B-Cell Lymphoma (DLBCL) is challenged by the vast heterogeneity of the disease. Nuclear factor-κB (NF-κB) is frequently aberrantly activated in DLBCL. Transcriptionally active NF-κB is a dimer containing either RelA, RelB or cRel, but the variability in the composition of NF-κB between and within DLBCL cell populations is not known. Results Here we describe a new flow cytometry-based analysis technique termed "NF-κB fingerprinting" and demonstrate its applicability to DLBCL cell lines, DLBCL core-needle biopsy samples, and healthy donor blood samples. We find each of these cell populations has a unique NF-κB fingerprint and that widely used cell-of-origin classifications are inadequate to capture NF-κB heterogeneity in DLBCL. Computational modeling predicts that RelA is a key determinant of response to microenvironmental stimuli, and we experimentally identify substantial variability in RelA between and within ABC-DLBCL cell lines. We find that when we incorporate NF-κB fingerprints and mutational information into computational models we can predict how heterogeneous DLBCL cell populations respond to microenvironmental stimuli, and we validate these predictions experimentally. Discussion Our results show that the composition of NF-κB is highly heterogeneous in DLBCL and predictive of how DLBCL cells will respond to microenvironmental stimuli. We find that commonly occurring mutations in the NF-κB signaling pathway reduce DLBCL's response to microenvironmental stimuli. NF-κB fingerprinting is a widely applicable analysis technique to quantify NF-κB heterogeneity in B cell malignancies that reveals functionally significant differences in NF-κB composition within and between cell populations.
Collapse
|
83
|
Miallot R, Millet V, Groult Y, Modelska A, Crescence L, Roulland S, Henri S, Malissen B, Brouilly N, Panicot-Dubois L, Vincentelli R, Sulzenbacher G, Finetti P, Dutour A, Blay JY, Bertucci F, Galland F, Naquet P. An OMA1 redox site controls mitochondrial homeostasis, sarcoma growth, and immunogenicity. Life Sci Alliance 2023; 6:e202201767. [PMID: 37024121 PMCID: PMC10078952 DOI: 10.26508/lsa.202201767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Aggressive tumors often display mitochondrial dysfunction. Upon oxidative stress, mitochondria undergo fission through OMA1-mediated cleavage of the fusion effector OPA1. In yeast, a redox-sensing switch participates in OMA1 activation. 3D modeling of OMA1 comforted the notion that cysteine 403 might participate in a similar sensor in mammalian cells. Using prime editing, we developed a mouse sarcoma cell line in which OMA1 cysteine 403 was mutated in alanine. Mutant cells showed impaired mitochondrial responses to stress including ATP production, reduced fission, resistance to apoptosis, and enhanced mitochondrial DNA release. This mutation prevented tumor development in immunocompetent, but not nude or cDC1 dendritic cell-deficient, mice. These cells prime CD8+ lymphocytes that accumulate in mutant tumors, whereas their depletion delays tumor control. Thus, OMA1 inactivation increased the development of anti-tumor immunity. Patients with complex genomic soft tissue sarcoma showed variations in the level of OMA1 and OPA1 transcripts. High expression of OPA1 in primary tumors was associated with shorter metastasis-free survival after surgery, and low expression of OPA1, with anti-tumor immune signatures. Targeting OMA1 activity may enhance sarcoma immunogenicity.
Collapse
Affiliation(s)
- Richard Miallot
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Virginie Millet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Yann Groult
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Angelika Modelska
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lydie Crescence
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Sandrine Roulland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sandrine Henri
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Bernard Malissen
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM 1263, INRAE 1260, Plateforme d'Imagerie Vasculaire et de Microscopie Intravitale, C2VN, Marseille, France
| | - Renaud Vincentelli
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Gerlind Sulzenbacher
- Aix-Marseille Université, CNRS, Architecture et Fonction des Macromolécules Biologiques, Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Aurélie Dutour
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
| | - Jean-Yves Blay
- Childhood Cancers and Cell Death Laboratory, Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS, Lyon, France
- Department of Medicine, Centre Léon Bérard, UNICANCER & University Lyon I, Lyon, France
| | - François Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | - Franck Galland
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Philippe Naquet
- Aix-Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
84
|
Kielbassa K, Haselager MV, Bax DJC, van Driel BF, Dubois J, Levin MD, Kersting S, Svanberg R, Niemann CU, Kater AP, Eldering E. Ibrutinib sensitizes CLL cells to venetoclax by interrupting TLR9-induced CD40 upregulation and protein translation. Leukemia 2023; 37:1268-1276. [PMID: 37100883 PMCID: PMC10244160 DOI: 10.1038/s41375-023-01898-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells upregulate Bcl-2 proteins within the lymph node (LN) microenvironment. Signaling via B-cell receptor, Toll-like receptors and CD40 collectively reduce sensitivity to the BCL-2 inhibitor venetoclax. Time-limited treatment with venetoclax plus the BTK-inhibitor ibrutinib results in deep remissions, but how this combination affects LN-related signaling is not yet completely clear. Therefore, samples obtained from the HOVON141/VISION phase 2 clinical trial were used to analyze this. Two cycles of lead-in ibrutinib monotherapy resulted in decreased protein expression of Bcl-2 proteins in circulating CLL cells. Strikingly, at this timepoint CD40-induced venetoclax resistance was strongly attenuated, as was expression of CD40. Since CD40 signaling occurs within the CLL LN, we tested various LN-related signals that could affect CD40 signaling. While BCR stimulation had only a minor effect, TLR9 stimulation via CpG led to significantly increased CD40 expression and importantly, reverted the effects of ibrutinib treatment on venetoclax sensitivity by inducing overall protein translation. Together, these findings identify a novel effect of ibrutinib: interruption of TLR9-induced CD40 upregulation and translation of pro-survival proteins. This mechanism may potentially further inhibit priming of CLL cells in the LN microenvironment for venetoclax resistance.
Collapse
Affiliation(s)
- Karoline Kielbassa
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Marco V Haselager
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - Danique J C Bax
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Bianca F van Driel
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Julie Dubois
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | | | | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arnon P Kater
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands.
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands.
| |
Collapse
|
85
|
Pasqualucci L. The germinal center in the pathogenesis of B cell lymphomas. Hematol Oncol 2023; 41 Suppl 1:62-69. [PMID: 37294970 DOI: 10.1002/hon.3141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The adaptive immune system has evolved to allow effective responses against a virtually unlimited number of invading pathogens. This process requires the transient formation of germinal centers (GC), a dynamic environment that ensures the generation and selection of B cells capable to produce antibodies with high antigen affinity, or to maintain the memory of that antigen for life. However, this comes at a cost, as the unique events accompanying the GC reaction pose a significant risk to the genome of B cells, which must endure elevated levels of replication stress, while proliferating at high rates and undergoing DNA breaks introduced by somatic hypermutation and class switch recombination. Indeed, the genetic/epigenetic disruption of programs implicated in normal GC biology has emerged as a hallmark of most B cell lymphomas. This improved understanding provides a conceptual framework for the identification of cellular pathways that could be exploited for precision medicine approaches.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| |
Collapse
|
86
|
Fu T, Zuo Y, Xue G, Zhou D, Pan Z. Discovery of 2,5-diaminopyrimidine derivatives as the first series of selective monomeric degraders of B-lymphoid tyrosine kinase. Eur J Med Chem 2023; 256:115460. [PMID: 37163946 DOI: 10.1016/j.ejmech.2023.115460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
B-lymphoid tyrosine kinase (BLK) is an important knot of B cell receptor signaling, and regulates the function and development of B cells subset. Dysfunction of BLK is correlated with autoimmune diseases and cancer. There is an urgent need to develop selective BLK modulators to facilitate the studies of BLK in biological processes. Herein, we report the discovery of a series of 2,5-diaminopyrimidine-based compounds capable of selectively degrading BLK. The optimized compounds 9-11 possess weak biochemical inhibitory activities against BLK, yet they effectively degrade BLK and show high selectivity for BLK over other structurally and functionally related SRC family and TEC family kinases. Furthermore, compounds 9 and 11 demonstrate potent inhibitory activities in several B-lymphoid cell lines. As the first series of effective and selective monomeric BLK degraders, compounds 9-11 serve as valuable tools for further investigation of the functions of BLK.
Collapse
Affiliation(s)
- Tiancheng Fu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yingying Zuo
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Gang Xue
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Danli Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
87
|
Aftab F, Rodriguez-Fuguet A, Silva L, Kobayashi IS, Sun J, Politi K, Levantini E, Zhang W, Kobayashi SS, Zhang WC. An intrinsic purine metabolite AICAR blocks lung tumour growth by targeting oncoprotein mucin 1. Br J Cancer 2023; 128:1647-1664. [PMID: 36810913 PMCID: PMC10133251 DOI: 10.1038/s41416-023-02196-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Lung cancer cells overexpress mucin 1 (MUC1) and active subunit MUC1-CT. Although a peptide blocks MUC1 signalling, metabolites targeting MUC1 are not well studied. AICAR is a purine biosynthesis intermediate. METHODS Cell viability and apoptosis were measured in AICAR-treated EGFR-mutant and wild-type lung cells. AICAR-binding proteins were evaluated by in silico and thermal stability assays. Protein-protein interactions were visualised by dual-immunofluorescence staining and proximity ligation assay. AICAR-induced whole transcriptomic profile was determined by RNA sequencing. EGFR-TL transgenic mice-derived lung tissues were analysed for MUC1 expression. Organoids and tumours from patients and transgenic mice were treated with AICAR alone or in combination with JAK and EGFR inhibitors to evaluate treatment effects. RESULTS AICAR reduced EGFR-mutant tumour cell growth by inducing DNA damage and apoptosis. MUC1 was one of the leading AICAR-binding and degrading proteins. AICAR negatively regulated JAK signalling and JAK1-MUC1-CT interaction. Activated EGFR upregulated MUC1-CT expression in EGFR-TL-induced lung tumour tissues. AICAR reduced EGFR-mutant cell line-derived tumour formation in vivo. Co-treating patient and transgenic mouse lung-tissue-derived tumour organoids with AICAR and JAK1 and EGFR inhibitors reduced their growth. CONCLUSIONS AICAR represses the MUC1 activity in EGFR-mutant lung cancer, disrupting protein-protein interactions between MUC1-CT and JAK1 and EGFR.
Collapse
Affiliation(s)
- Fareesa Aftab
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Alice Rodriguez-Fuguet
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Luis Silva
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA
| | - Ikei S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, E/CLS-409, Boston, MA, 02215, USA
| | - Jiao Sun
- Department of Computer Science, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816, USA
| | - Katerina Politi
- Departments of Pathology and Internal Medicine (Section of Medical Oncology) and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elena Levantini
- Harvard Stem Cell Institute, 330 Brookline Avenue, Harvard Medical School, Boston, MA, 02215, USA
- Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, 56124, Pisa, Italy
| | - Wei Zhang
- Department of Computer Science, College of Engineering and Computer Science, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816, USA
| | - Susumu S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, E/CLS-409, Boston, MA, 02215, USA
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8575, Japan
| | - Wen Cai Zhang
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL, 32827, USA.
| |
Collapse
|
88
|
O'Neill TJ, Tofaute MJ, Krappmann D. Function and targeting of MALT1 paracaspase in cancer. Cancer Treat Rev 2023; 117:102568. [PMID: 37126937 DOI: 10.1016/j.ctrv.2023.102568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The paracaspase MALT1 has emerged as a key regulator of immune signaling, which also promotes tumor development by both cancer cell-intrinsic and -extrinsic mechanisms. As an integral subunit of the CARD11-BCL10-MALT1 (CBM) signaling complex, MALT1 has an intriguing dual function in lymphocytes. MALT1 acts as a scaffolding protein to drive activation of NF-κB transcription factors and as a protease to modulate signaling and immune activation by cleavage of distinct substrates. Aberrant MALT1 activity is critical for NF-κB-dependent survival and proliferation of malignant cancer cells, which is fostered by paracaspase-catalyzed inactivation of negative regulators of the canonical NF-κB pathway like A20, CYLD and RelB. Specifically, B cell receptor-addicted lymphomas rely strongly on this cancer cell-intrinsic MALT1 protease function, but also survival, proliferation and metastasis of certain solid cancers is sensitive to MALT1 inhibition. Beyond this, MALT1 protease exercises a cancer cell-extrinsic role by maintaining the immune-suppressive function of regulatory T (Treg) cells in the tumor microenvironment (TME). MALT1 inhibition is able to convert immune-suppressive to pro-inflammatory Treg cells in the TME of solid cancers, thereby eliciting a robust anti-tumor immunity that can augment the effects of checkpoint inhibitors. Therefore, the cancer cell-intrinsic and -extrinsic tumor promoting MALT1 protease functions offer unique therapeutic opportunities, which has motivated the development of potent and selective MALT1 inhibitors currently under pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Thomas J O'Neill
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marie J Tofaute
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
89
|
Shah SB, Carlson CR, Lai K, Zhong Z, Marsico G, Lee KM, Félix Vélez NE, Abeles EB, Allam M, Hu T, Walter LD, Martin KE, Gandhi K, Butler SD, Puri R, McCleary-Wheeler AL, Tam W, Elemento O, Takata K, Steidl C, Scott DW, Fontan L, Ueno H, Cosgrove BD, Inghirami G, García AJ, Coskun AF, Koff JL, Melnick A, Singh A. Combinatorial treatment rescues tumour-microenvironment-mediated attenuation of MALT1 inhibitors in B-cell lymphomas. NATURE MATERIALS 2023; 22:511-523. [PMID: 36928381 PMCID: PMC10069918 DOI: 10.1038/s41563-023-01495-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/01/2023] [Indexed: 05/21/2023]
Abstract
Activated B-cell-like diffuse large B-cell lymphomas (ABC-DLBCLs) are characterized by constitutive activation of nuclear factor κB driven by the B-cell receptor (BCR) and Toll-like receptor (TLR) pathways. However, BCR-pathway-targeted therapies have limited impact on DLBCLs. Here we used >1,100 DLBCL patient samples to determine immune and extracellular matrix cues in the lymphoid tumour microenvironment (Ly-TME) and built representative synthetic-hydrogel-based B-cell-lymphoma organoids accordingly. We demonstrate that Ly-TME cellular and biophysical factors amplify the BCR-MYD88-TLR9 multiprotein supercomplex and induce cooperative signalling pathways in ABC-DLBCL cells, which reduce the efficacy of compounds targeting the BCR pathway members Bruton tyrosine kinase and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1). Combinatorial inhibition of multiple aberrant signalling pathways induced higher antitumour efficacy in lymphoid organoids and implanted ABC-DLBCL patient tumours in vivo. Our studies define the complex crosstalk between malignant ABC-DLBCL cells and Ly-TME, and provide rational combinatorial therapies that rescue Ly-TME-mediated attenuation of treatment response to MALT1 inhibitors.
Collapse
Affiliation(s)
- Shivem B Shah
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Columbia University, New York, USA
| | - Christopher R Carlson
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kristine Lai
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhe Zhong
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Grazia Marsico
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Katherine M Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | - Mayar Allam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas Hu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren D Walter
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Khanjan Gandhi
- Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott D Butler
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rishi Puri
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer Center, Vancouver, British Columbia, Canada
- Niigata University, Niigata, Japan
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer Center, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Center, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorena Fontan
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Janssen Pharmaceuticals, Inc., Beerse, Belgium
| | - Hideki Ueno
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Benjamin D Cosgrove
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ahmet F Coskun
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Jean L Koff
- Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ankur Singh
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
90
|
Michot JM, Quivoron C, Sarkozy C, Danu A, Lazarovici J, Saleh K, El-Dakdouki Y, Goldschmidt V, Bigenwald C, Dragani M, Bahleda R, Baldini C, Arfi-Rouche J, Martin-Romano P, Tselikas L, Gazzah A, Hollebecque A, Lacroix L, Ghez D, Vergé V, Marzac C, Cotteret S, Rahali W, Soria JC, Massard C, Bernard OA, Dartigues P, Camara-Clayette V, Ribrag V. Sequence analyses of relapsed or refractory diffuse large B-cell lymphomas unravel three genetic subgroups of patients and the GNA13 mutant as poor prognostic biomarker, results of LNH-EP1 study. Am J Hematol 2023; 98:645-657. [PMID: 36606708 DOI: 10.1002/ajh.26835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Advances in molecular profiling of newly diagnosed diffuse large B-cell lymphoma (DLBCL) have recently refine genetic subgroups. Genetic subgroups remain undetermined at the time of relapse or refractory (RR) disease. This study aims to decipher genetic subgroups and search for prognostic molecular biomarkers in patients with RR-DLBCL. From 2015 to 2021, targeted next-generation sequencing analyses of germline-matched tumor samples and fresh tissue from RR-DLBCL patients were performed. Unsupervised clustering of somatic mutations was performed and correlations with patient outcome were sought. A number of 120 patients with RR-DLBCL were included in LNH-EP1 study and a molecular tumor landscape was successfully analyzed in 87% of patients (104/120 tumor samples). The median age was 67.5 years (range 27.4-87.4), median number of previous treatments was 2 (range 1-9). The most frequently mutated genes were TP53 (n = 53 mutations; 42% of samples), CREBBP (n = 39; 32%), BCL2 (n = 86; 31%), KMT2D (n = 39; 28%) and PIM1 (n = 54; 22%). Unsupervised clustering separated three genetic subgroups entitled BST (enriched in BCL2, SOCS1, and TNFRSF14 mutations); TKS (enriched in TP53, KMT2D, and STAT6 mutations); and PCM (enriched in PIM1, CD79B, and MYD88 mutations). Median overall survival (OS) was 11.0 (95% confidence interval [CI]: 8.1-12.6) months. OS was not significantly different between the three genetic subgroups. GNA13 mutant was significantly associated with an increased risk of death (hazard ratio: 6.6 [95% CI: 2.1-20.6]; p = .0011) and shorter OS (p = .0340). At the time of relapse or refractory disease, three genetic subgroups of DLBCL patients were delineated, which could help advance precision molecular medicine programs.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Cyril Quivoron
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Clémentine Sarkozy
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Alina Danu
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Khalil Saleh
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Vincent Goldschmidt
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | - Matteo Dragani
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Capucine Baldini
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | | | | | - Anas Gazzah
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - David Ghez
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Veronique Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Sophie Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Wassila Rahali
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Christophe Massard
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Peggy Dartigues
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Valérie Camara-Clayette
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Ribrag
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
91
|
O’Donnell A, Pepper C, Mitchell S, Pepper A. NF-kB and the CLL microenvironment. Front Oncol 2023; 13:1169397. [PMID: 37064123 PMCID: PMC10098180 DOI: 10.3389/fonc.2023.1169397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent type of leukemia in the western world. Despite the positive clinical effects of new targeted therapies, CLL still remains an incurable and refractory disease and resistance to treatments are commonly encountered. The Nuclear Factor-Kappa B (NF-κB) transcription factor has been implicated in the pathology of CLL, with high levels of NF-κB associated with disease progression and drug resistance. This aberrant NF-κB activation can be caused by genetic mutations in the tumor cells and microenvironmental factors, which promote NF-κB signaling. Activation can be induced via two distinct pathways, the canonical and non-canonical pathway, which result in tumor cell proliferation, survival and drug resistance. Therefore, understanding how the CLL microenvironment drives NF-κB activation is important for deciphering how CLL cells evade treatment and may aid the development of novel targeting therapeutics. The CLL microenvironment is comprised of various cells, including nurse like cells, mesenchymal stromal cells, follicular dendritic cells and CD4+ T cells. By activating different receptors, including the B cell receptor and CD40, these cells cause overactivity of the canonical and non-canonical NF-κB pathways. Within this review, we will explore the different components of the CLL microenvironment that drive the NF-κB pathway, investigating how this knowledge is being translated in the development of new therapeutics.
Collapse
Affiliation(s)
- Alice O’Donnell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
- Royal Sussex County Hospital, University Hospitals Sussex, Brighton, United Kingdom
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
92
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
93
|
Turi M, Anilkumar Sithara A, Hofmanová L, Žihala D, Radhakrishnan D, Vdovin A, Knápková S, Ševčíková T, Chyra Z, Jelínek T, Šimíček M, Gullà A, Anderson KC, Hájek R, Hrdinka M. Transcriptome Analysis of Diffuse Large B-Cell Lymphoma Cells Inducibly Expressing MyD88 L265P Mutation Identifies Upregulated CD44, LGALS3, NFKBIZ, and BATF as Downstream Targets of Oncogenic NF-κB Signaling. Int J Mol Sci 2023; 24:ijms24065623. [PMID: 36982699 PMCID: PMC10057398 DOI: 10.3390/ijms24065623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
During innate immune responses, myeloid differentiation primary response 88 (MyD88) functions as a critical signaling adaptor protein integrating stimuli from toll-like receptors (TLR) and the interleukin-1 receptor (IL-1R) family and translates them into specific cellular outcomes. In B cells, somatic mutations in MyD88 trigger oncogenic NF-κB signaling independent of receptor stimulation, which leads to the development of B-cell malignancies. However, the exact molecular mechanisms and downstream signaling targets remain unresolved. We established an inducible system to introduce MyD88 to lymphoma cell lines and performed transcriptomic analysis (RNA-seq) to identify genes differentially expressed by MyD88 bearing the L265P oncogenic mutation. We show that MyD88L265P activates NF-κB signaling and upregulates genes that might contribute to lymphomagenesis, including CD44, LGALS3 (coding Galectin-3), NFKBIZ (coding IkBƺ), and BATF. Moreover, we demonstrate that CD44 can serve as a marker of the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) and that CD44 expression is correlated with overall survival in DLBCL patients. Our results shed new light on the downstream outcomes of MyD88L265P oncogenic signaling that might be involved in cellular transformation and provide novel therapeutical targets.
Collapse
Affiliation(s)
- Marcello Turi
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Anjana Anilkumar Sithara
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Lucie Hofmanová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - David Žihala
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Alexander Vdovin
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Sofija Knápková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, University of Ostrava, 70100 Ostrava, Czech Republic
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Annamaria Gullà
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Kenneth Carl Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, 70800 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
94
|
Muir V, Sagadiev S, Liu S, Holder U, Armendariz AM, Suchland E, Meitlis I, Camp N, Giltiay N, Tam JM, Garner EC, Wivagg CN, Shows D, James RG, Lacy-Hulbert A, Acharya M. Transcriptomic analysis of pathways associated with ITGAV/alpha(v) integrin-dependent autophagy in human B cells. Autophagy 2023; 19:926-942. [PMID: 36016494 PMCID: PMC9980515 DOI: 10.1080/15548627.2022.2113296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy proteins have been linked with the development of immune-mediated diseases including lupus, but the mechanisms for this are unclear due to the complex roles of these proteins in multiple immune cell types. We have previously shown that a form of noncanonical autophagy induced by ITGAV/alpha(v) integrins regulates B cell activation by viral and self-antigens, in mice. Here, we investigate the involvement of this pathway in B cells from human tissues. Our data reveal that autophagy is specifically induced in the germinal center and memory B cell subpopulations of human tonsils and spleens. Transcriptomic analysis show that the induction of autophagy is related to unique aspects of activated B cells such as mitochondrial metabolism. To understand the function of ITGAV/alpha(v) integrin-dependent autophagy in human B cells, we used CRISPR-mediated knockdown of autophagy genes. Integrating data from primary B cells and knockout cells, we found that ITGAV/alpha(v)-dependent autophagy limits activation of specific pathways related to B cell responses, while promoting others. These data provide new mechanistic links for autophagy and B-cell-mediated immune dysregulation in diseases such as lupus.
Collapse
Affiliation(s)
- Virginia Muir
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Sara Sagadiev
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shuozhi Liu
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ursula Holder
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrea M Armendariz
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Emmaline Suchland
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Iana Meitlis
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nathan Camp
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Natalia Giltiay
- Departments of Rheumatology, University of Washington, Seattle, WA, USA
| | - Jenny M Tam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, USA
| | - Carl N Wivagg
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, USA
| | - Donna Shows
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Richard G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatric, University of Washington, Seattle, WA, USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Adam Lacy-Hulbert
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA
| | - Mridu Acharya
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatric, University of Washington, Seattle, WA, USA
| |
Collapse
|
95
|
Bende RJ, Slot LM, Kwakkenbos MJ, Wormhoudt TA, Jongejan A, Verstappen GM, van Kampen AC, Guikema JE, Kroese FG, van Noesel CJ. Lymphoma-associated mutations in autoreactive memory B cells of patients with Sjögren's syndrome. J Pathol 2023; 259:264-275. [PMID: 36426826 PMCID: PMC10108009 DOI: 10.1002/path.6039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
We recently demonstrated that normal memory B lymphocytes carry a substantial number of de novo mutations in the genome. Here, we performed exome-wide somatic mutation analyses of bona fide autoreactive rheumatoid factor (RF)-expressing memory B cells retrieved from patients with Sjӧgren's syndrome (SS). The amount and repertoire of the de novo exome mutations of RF B cells were found to be essentially different from those detected in healthy donor memory B cells. In contrast to the mutation spectra of normal B cells, which appeared random and non-selected, the mutations of the RF B cells were greater in number and enriched for mutations in genes also found mutated in B-cell non-Hodgkin lymphomas. During the study, one of the SS patients developed a diffuse large B-cell lymphoma (DLBCL) out of an RF clone that was identified 2 years earlier in an inflamed salivary gland biopsy. The successive oncogenic events in the RF precursor clone and the DLBCL were assessed. In conclusion, our findings of enhanced and selected genomic damage in growth-regulating genes in RF memory B cells of SS patients together with the documented transformation of an RF-precursor clone into DLBCL provide unique novel insight into the earliest stages of B-cell derailment and lymphomagenesis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Richard J Bende
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Linda M Slot
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | | | - Thera Am Wormhoudt
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoine Cm van Kampen
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Biosystems Data analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Ej Guikema
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Frans Gm Kroese
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Carel Jm van Noesel
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| |
Collapse
|
96
|
Heat-Shock Proteins in Leukemia and Lymphoma: Multitargets for Innovative Therapeutic Approaches. Cancers (Basel) 2023; 15:cancers15030984. [PMID: 36765939 PMCID: PMC9913431 DOI: 10.3390/cancers15030984] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Heat-shock proteins (HSPs) are powerful chaperones that provide support for cellular functions under stress conditions but also for the homeostasis of basic cellular machinery. All cancer cells strongly rely on HSPs, as they must continuously adapt to internal but also microenvironmental stresses to survive. In solid tumors, HSPs have been described as helping to correct the folding of misfolded proteins, sustain oncogenic pathways, and prevent apoptosis. Leukemias and lymphomas also overexpress HSPs, which are frequently associated with resistance to therapy. HSPs have therefore been proposed as new therapeutic targets. Given the specific biology of hematological malignancies, it is essential to revise their role in this field, providing a more adaptable and comprehensive picture that would help design future clinical trials. To that end, this review will describe the different pathways and functions regulated by HSP27, HSP70, HSP90, and, not least, HSP110 in leukemias and lymphomas.
Collapse
|
97
|
Shimkus G, Nonaka T. Molecular classification and therapeutics in diffuse large B-cell lymphoma. Front Mol Biosci 2023; 10:1124360. [PMID: 36818048 PMCID: PMC9936827 DOI: 10.3389/fmolb.2023.1124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) encompasses a wide variety of disease states that have to date been subgrouped and characterized based on immunohistochemical methods, which provide limited prognostic value to clinicians and no alteration in treatment regimen. The addition of rituximab to CHOP therapy was the last leap forward in terms of treatment, but regimens currently follow a standardized course when disease becomes refractory with no individualization based on genotype. Research groups are tentatively proposing new strategies for categorizing DLBCL based on genetic abnormalities that are frequently found together to better predict disease course following dysregulation of specific pathways and to deliver targeted treatment. Novel algorithms in combination with next-generation sequencing techniques have identified between 4 and 7 subgroups of DLBCL, depending on the research team, with potentially significant and actionable genetic alterations. Various drugs aimed at pathways including BCR signaling, NF-κB dysfunction, and epigenetic regulation have shown promise in their respective groups and may show initial utility as second or third line therapies to patients with recurrent DLBCL. Implementation of subgroups will allow collection of necessary data to determine which groups are significant, which treatments may be indicated, and will provide better insight to clinicians and patients on specific disease course.
Collapse
Affiliation(s)
- Gaelen Shimkus
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
98
|
Hernández-Verdin I, Kirasic E, Wienand K, Mokhtari K, Eimer S, Loiseau H, Rousseau A, Paillassa J, Ahle G, Lerintiu F, Uro-Coste E, Oberic L, Figarella-Branger D, Chinot O, Gauchotte G, Taillandier L, Marolleau JP, Polivka M, Adam C, Ursu R, Schmitt A, Barillot N, Nichelli L, Lozano-Sánchez F, Ibañez-Juliá MJ, Peyre M, Mathon B, Abada Y, Charlotte F, Davi F, Stewart C, de Reyniès A, Choquet S, Soussain C, Houillier C, Chapuy B, Hoang-Xuan K, Alentorn A. Molecular and clinical diversity in primary central nervous system lymphoma. Ann Oncol 2023; 34:186-199. [PMID: 36402300 DOI: 10.1016/j.annonc.2022.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) is a rare and distinct entity within diffuse large B-cell lymphoma presenting with variable response rates probably to underlying molecular heterogeneity. PATIENTS AND METHODS To identify and characterize PCNSL heterogeneity and facilitate clinical translation, we carried out a comprehensive multi-omic analysis [whole-exome sequencing, RNA sequencing (RNA-seq), methylation sequencing, and clinical features] in a discovery cohort of 147 fresh-frozen (FF) immunocompetent PCNSLs and a validation cohort of formalin-fixed, paraffin-embedded (FFPE) 93 PCNSLs with RNA-seq and clinico-radiological data. RESULTS Consensus clustering of multi-omic data uncovered concordant classification of four robust, non-overlapping, prognostically significant clusters (CS). The CS1 and CS2 groups presented an immune-cold hypermethylated profile but a distinct clinical behavior. The 'immune-hot' CS4 group, enriched with mutations increasing the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and nuclear factor-κB activity, had the most favorable clinical outcome, while the heterogeneous-immune CS3 group had the worse prognosis probably due to its association with meningeal infiltration and enriched HIST1H1E mutations. CS1 was characterized by high Polycomb repressive complex 2 activity and CDKN2A/B loss leading to higher proliferation activity. Integrated analysis on proposed targets suggests potential use of immune checkpoint inhibitors/JAK1 inhibitors for CS4, cyclin D-Cdk4,6 plus phosphoinositide 3-kinase (PI3K) inhibitors for CS1, lenalidomide/demethylating drugs for CS2, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors for CS3. We developed an algorithm to identify the PCNSL subtypes using RNA-seq data from either FFPE or FF tissue. CONCLUSIONS The integration of genome-wide data from multi-omic data revealed four molecular patterns in PCNSL with a distinctive prognostic impact that provides a basis for future clinical stratification and subtype-based targeted interventions.
Collapse
Affiliation(s)
- I Hernández-Verdin
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France
| | - E Kirasic
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France
| | - K Wienand
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany; Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - K Mokhtari
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neuropathology, Groupe Hospitalier Pitié Salpêtrière, APHP, Paris, France
| | - S Eimer
- Department of Pathology, CHU de Bordeaux, Hôpital Pellegrin, Bordeaux, France
| | - H Loiseau
- Department of Neurosurgery, Bordeaux University Hospital Center, Pellegrin Hospital, Bordeaux, France; EA 7435-IMOTION, University of Bordeaux, Bordeaux, France
| | - A Rousseau
- Department of Pathology, PBH, CHU Angers, Angers, France; CRCINA, Université de Nantes-université d'Angers, Angers, France
| | - J Paillassa
- Department of Hematology, CHU Angers, Angers, France
| | - G Ahle
- Department of Neurology, Hôpitaux Civils de Colmar, Colmar, France
| | - F Lerintiu
- Department of Neuropathology, Hôpitaux Civils de Colmar, Strasbourg, France
| | - E Uro-Coste
- Department of Pathology, CHU de Toulouse, IUC-Oncopole, Toulouse, France; INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - L Oberic
- Department of Hematology, IUC Toulouse Oncopole, Toulouse, France
| | - D Figarella-Branger
- Neuropathology Department, University Hospital Timone, Aix Marseille University, Marseille, France; Inst Neurophysiopathol, CNRS, INP, Aix-Marseille University, Marseille, France
| | - O Chinot
- Department of Neuro-oncology, CHU Timone, APHM, Marseille, France; Institute of NeuroPhysiopathology, CNRS, INP, Aix-Marseille University, Marseille, France
| | - G Gauchotte
- Department of Biopathology, CHRU Nancy, CHRU/ICL, Bâtiment BBB, Vandoeuvre-lès-Nancy, France; Department of Legal Medicine, CHRU Nancy, Vandoeuvre-lès-Nancy, France; INSERM U1256, University of Lorraine, Vandoeuvre-lès-Nancy, France; Centre de Ressources Biologiques, BB-0033-00035, CHRU, Nancy, France
| | - L Taillandier
- Department of Neuro-oncology, CHRU-Nancy, Université de Lorraine, Nancy, France
| | - J-P Marolleau
- Department of Hematology, CHU Amiens-Picardie, Amiens, France
| | - M Polivka
- Department of Anatomopathology, Lariboisière Hospital, Assistance Publique-Hopitaux de Paris, University of Paris, Paris, France
| | - C Adam
- Pathology Department, Bicêtre University Hospital, Public Hospital Network of Paris, Le Kremlin Bicêtre, France
| | - R Ursu
- Department of Neurology, Université de Paris, AP-HP, Hôpital Saint Louis, Paris, France
| | - A Schmitt
- Department of Hematology, Institut Bergonié Hospital, Bordeaux, France
| | - N Barillot
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France
| | - L Nichelli
- Department of Neuroradiology, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - F Lozano-Sánchez
- Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | | | - M Peyre
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neurosurgery, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - B Mathon
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neurosurgery, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Y Abada
- Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - F Charlotte
- Department Pathology, Hôpital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - F Davi
- Department Hematology, APHP, Hôpital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - C Stewart
- Department Broad Institute of MIT and Harvard, Cambridge, USA
| | - A de Reyniès
- Department INSERM UMR_S1138-Centre de Recherche des Cordeliers-Université Pierre et Marie Curie et Université Paris Descartes, Paris, France
| | - S Choquet
- Department Pathology, Hôpital Pitié-Salpêtrière and Sorbonne University, Paris, France
| | - C Soussain
- Department Hematology Unit, Institut Curie, Saint-Cloud, France
| | - C Houillier
- Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - B Chapuy
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - K Hoang-Xuan
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France
| | - A Alentorn
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, Paris, France; Department of Neurology-2, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, Paris, France.
| |
Collapse
|
99
|
Meta-Analysis of MS-Based Proteomics Studies Indicates Interferon Regulatory Factor 4 and Nucleobindin1 as Potential Prognostic and Drug Resistance Biomarkers in Diffuse Large B Cell Lymphoma. Cells 2023; 12:cells12010196. [PMID: 36611989 PMCID: PMC9818977 DOI: 10.3390/cells12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The prognosis of diffuse large B cell lymphoma (DLBCL) is inaccurately predicted using clinical features and immunohistochemistry (IHC) algorithms. Nomination of a panel of molecules as the target for therapy and predicting prognosis in DLBCL is challenging because of the divergences in the results of molecular studies. Mass spectrometry (MS)-based proteomics in the clinic represents an analytical tool with the potential to improve DLBCL diagnosis and prognosis. Previous proteomics studies using MS-based proteomics identified a wide range of proteins. To achieve a consensus, we reviewed MS-based proteomics studies and extracted the most consistently significantly dysregulated proteins. These proteins were then further explored by analyzing data from other omics fields. Among all significantly regulated proteins, interferon regulatory factor 4 (IRF4) was identified as a potential target by proteomics, genomics, and IHC. Moreover, annexinA5 (ANXA5) and nucleobindin1 (NUCB1) were two of the most up-regulated proteins identified in MS studies. Functional enrichment analysis identified the light zone reactions of the germinal center (LZ-GC) together with cytoskeleton locomotion functions as enriched based on consistent, significantly dysregulated proteins. In this study, we suggest IRF4 and NUCB1 proteins as potential biomarkers that deserve further investigation in the field of DLBCL sub-classification and prognosis.
Collapse
|
100
|
Han F, Chen Y, Zhu Y, Huang Z. Antigen receptor structure and signaling. Adv Immunol 2023; 157:1-28. [PMID: 37061286 DOI: 10.1016/bs.ai.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The key to mounting an immune response is that the host cells must be coordinated to generate an appropriate immune response against the pathogenic invaders. Antigen receptors recognize specific molecular structures and recruit adaptors through their effector domains, triggering trans-membrane transduction signaling pathway to exert immune response. The T cell antigen receptor (TCR) and B cell antigen receptor (BCR) are the primary determinant of immune responses to antigens. Their structure determines the mode of signaling and signal transduction determines cell fate, leading to changes at the molecular and cellular level. Studies of antigen receptor structure and signaling revealed the basis of immune response triggering, providing clues to antigen receptor priming and a foundation for the rational design of immunotherapies. In recent years, the increased research on the structure of antigen receptors has greatly contributed to the understanding of immune response, different immune-related diseases and even tumors. In this review, we describe in detail the current view and advances of the antigen structure and signaling.
Collapse
Affiliation(s)
- Fang Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|