51
|
Jäger R, Hoke M, Mayer FJ, Boden S, Englisch C, Ay C, Kralovics R, Binder CJ. Combined Effects of Clonal Hematopoiesis and Carotid Stenosis on Cardiovascular Mortality. J Am Coll Cardiol 2024; 83:1717-1727. [PMID: 38692825 DOI: 10.1016/j.jacc.2024.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The expansion of hematopoietic stem cells caused by acquired somatic mutations (clonal hematopoiesis [CH]) is a novel cardiovascular risk factor. The prognostic value of CH in patients with carotid atherosclerosis remains to be evaluated. OBJECTIVES This study assessed the prognostic significance of CH in patients with atherosclerosis as detected by ultrasound of the carotid artery. METHODS We applied deep sequencing of selected genomic regions within the genes DNMT3A, TET2, ASXL1, and JAK2 to screen for CH in 968 prospectively collected patients with asymptomatic carotid atherosclerosis evaluated by duplex sonography. RESULTS We detected clonal markers at variant allele frequency ≥2% in 133 (13.7%) of 968 patients (median age 69.2 years), with increasing prevalence at advanced age. Multivariate analyses including age and established cardiovascular risk factors revealed overall presence of CH to be significantly associated with increased risk of cardiovascular death (HR: 1.50; 95% CI: 1.12-2.00; P = 0.007), reflected also at the single gene level. The effect of CH was more pronounced in older patients and independent of the patients' inflammatory status as measured by high-sensitivity C-reactive protein. Simultaneous assessment of CH and degree of carotid stenosis revealed combined effects on cardiovascular mortality, depicted by a superior risk for patients with >50% stenosis and concomitant CH (adjusted HR: 1.60; 95% CI: 1.08-2.38; P = 0.020). CONCLUSIONS CH status in combination with the extent of carotid atherosclerosis jointly predict long-term mortality. Determination of CH can provide additional prognostic information in patients with asymptomatic carotid atherosclerosis.
Collapse
Affiliation(s)
- Roland Jäger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Hoke
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Florian J Mayer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefanie Boden
- University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Cornelia Englisch
- Clinical Division of Haematology and Haemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
52
|
Zou C, Shen J, Xu F, Ye Y, Wu Y, Xu S. Immunoreactive Microenvironment Modulator GBP5 Suppresses Ovarian Cancer Progression by Inducing Canonical Pyroptosis. J Cancer 2024; 15:3510-3530. [PMID: 38817865 PMCID: PMC11134437 DOI: 10.7150/jca.94616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
Ovarian cancer has the highest mortality among gynecological malignancies, and exploring effective strategies to reverse the immunosuppressive tumor microenvironment in patients remains a pressing scientific challenge. In this study, we identified a pyroptosis-related protective factor, GBP5, which significantly inhibits the growth of ovarian cancer cells and patient-derived ovarian cancer organoids, impeding the invasion and migration of ovarian cancer cells. Results of immunohistochemistry and external single-cell data verification were consistent. Further research confirmed that GBP5 in ovarian cancer cell can induce canonical pyroptosis through JAK2/STAT1 pathway, thereby restraining the progression of ovarian cancer. Interestingly, in this study, we also discovered that ovarian cancer cells with high GBP5 expression exhibit increased expressions of CXCL9/10/11 in a co-culture assay. Subsequent immune cell infiltration analyses revealed the remodeling of immunosuppressive microenvironment in ovarian cancer patients, characterized by increased infiltration and polarization of M1 macrophages. External immunotherapy database analysis showed profound potential for the application of GBP5 in immunotherapy strategies for ovarian cancer. Overall, our study demonstrates that the protective factor GBP5 significantly inhibits ovarian cancer progression, triggering canonical pyroptosis through the JAK2-STAT1 pathway. Driven by its pro-inflammatory nature, it can also enhance M1 macrophages polarization and reverse immunosuppressive microenvironment, thus providing new insights for ovarian cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yuanyuan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
53
|
Lin AE, Bapat AC, Xiao L, Niroula A, Ye J, Wong WJ, Agrawal M, Farady CJ, Boettcher A, Hergott CB, McConkey M, Flores-Bringas P, Shkolnik V, Bick AG, Milan D, Natarajan P, Libby P, Ellinor PT, Ebert BL. Clonal Hematopoiesis of Indeterminate Potential With Loss of Tet2 Enhances Risk for Atrial Fibrillation Through Nlrp3 Inflammasome Activation. Circulation 2024; 149:1419-1434. [PMID: 38357791 PMCID: PMC11058018 DOI: 10.1161/circulationaha.123.065597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP), a common age-associated phenomenon, associates with increased risk of both hematological malignancy and cardiovascular disease. Although CHIP is known to increase the risk of myocardial infarction and heart failure, the influence of CHIP in cardiac arrhythmias, such as atrial fibrillation (AF), is less explored. METHODS CHIP prevalence was determined in the UK Biobank, and incident AF analysis was stratified by CHIP status and clone size using Cox proportional hazard models. Lethally irradiated mice were transplanted with hematopoietic-specific loss of Tet2, hematopoietic-specific loss of Tet2 and Nlrp3, or wild-type control and fed a Western diet, compounded with or without NLRP3 (NLR [NACHT, LRR {leucine rich repeat}] family pyrin domain containing protein 3) inhibitor, NP3-361, for 6 to 9 weeks. Mice underwent in vivo invasive electrophysiology studies and ex vivo optical mapping. Cardiomyocytes from Ldlr-/- mice with hematopoietic-specific loss of Tet2 or wild-type control and fed a Western diet were isolated to evaluate calcium signaling dynamics and analysis. Cocultures of pluripotent stem cell-derived atrial cardiomyocytes were incubated with Tet2-deficient bone marrow-derived macrophages, wild-type control, or cytokines IL-1β (interleukin 1β) or IL-6 (interleukin 6). RESULTS Analysis of the UK Biobank showed individuals with CHIP, in particular TET2 CHIP, have increased incident AF. Hematopoietic-specific inactivation of Tet2 increases AF propensity in atherogenic and nonatherogenic mouse models and is associated with increased Nlrp3 expression and CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation, with AF susceptibility prevented by inactivation of Nlrp3. Cardiomyocytes isolated from Ldlr-/- mice with hematopoietic inactivation of Tet2 and fed a Western diet have impaired calcium release from the sarcoplasmic reticulum into the cytosol, contributing to atrial arrhythmogenesis. Abnormal sarcoplasmic reticulum calcium release was recapitulated in cocultures of cardiomyocytes with the addition of Tet2-deficient macrophages or cytokines IL-1β or IL-6. CONCLUSIONS We identified a modest association between CHIP, particularly TET2 CHIP, and incident AF in the UK Biobank population. In a mouse model of AF resulting from hematopoietic-specific inactivation of Tet2, we propose altered calcium handling as an arrhythmogenic mechanism, dependent on Nlrp3 inflammasome activation. Our data are in keeping with previous studies of CHIP in cardiovascular disease, and further studies into the therapeutic potential of NLRP3 inhibition for individuals with TET2 CHIP may be warranted.
Collapse
Affiliation(s)
- Amy Erica Lin
- Division of Cardiovascular Medicine, Department of Medicine (A.E.L., P.L.), Brigham and Women’s Hospital, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Aneesh C. Bapat
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Demoulas Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine (A.C.B., P.T.E.), Massachusetts General Hospital, Boston
| | - Ling Xiao
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Abhishek Niroula
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
- Department of Laboratory Medicine, Lund University, Sweden (A.N.)
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Sweden (A.N.)
| | - Jiangchuan Ye
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Waihay J. Wong
- Department of Pathology (W.J.W., C.B.H.), Brigham and Women’s Hospital, Boston, MA
| | - Mridul Agrawal
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Christopher J. Farady
- Novartis Institutes for BioMedical Research Forum 1, Basel, Switzerland (C.J.F., A.B.)
| | - Andreas Boettcher
- Novartis Institutes for BioMedical Research Forum 1, Basel, Switzerland (C.J.F., A.B.)
| | - Christopher B. Hergott
- Department of Pathology (W.J.W., C.B.H.), Brigham and Women’s Hospital, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Marie McConkey
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Patricio Flores-Bringas
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Veronica Shkolnik
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (A.G.B.)
| | - David Milan
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Leducq Foundation, Boston, MA (D.M.)
| | - Pradeep Natarajan
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine (A.E.L., P.L.), Brigham and Women’s Hospital, Boston, MA
| | - Patrick T. Ellinor
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Demoulas Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine (A.C.B., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
- Howard Hughes Medical Institute, Boston, MA (B.L.E.)
| |
Collapse
|
54
|
Shao X, Zeng W, Wang Q, Liu S, Guo Q, Luo D, Luo Q, Wang D, Wang L, Zhang Y, Diao H, Piao S, Yan M, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) suppression of macrophage pyroptosis: Key to stabilizing rupture-prone plaques. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117705. [PMID: 38219878 DOI: 10.1016/j.jep.2024.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Research on the Chinese herbal formula Fufang Zhenzhu Tiaozhi (FTZ) has demonstrated its effectiveness in treating hyperlipidemia and glycolipid metabolic disorders. Additionally, FTZ has shown inhibitory effects on oxidative stress, regulation of lipid metabolism, and reduction of inflammation in these conditions. However, the precise mechanisms through which FTZ modulates macrophage function in atherosclerosis remain incompletely understood. Therefore, this study aims to investigate whether FTZ can effectively stabilize rupture-prone plaques by suppressing macrophage pyroptosis and impeding the development of M1 macrophage polarization in ApoE-/- mice. METHODS To assess the impact of FTZ on macrophage function and atherosclerosis in ApoE-/- mice, we orally administered FTZ at a dosage of 1.2 g/kg body weight daily for 14 weeks. Levels of interleukin-18 and interleukin-1β were quantified using ELISA kits to gauge FTZ's influence on inflammation. Total cholesterol content was measured with a Cholesterol Assay Kit to evaluate FTZ's effect on lipid metabolism. Aortic tissues were stained with Oil Red O, and immunohistochemistry techniques were applied to assess atherosclerotic lesions and plaque stability. To evaluate the effects of FTZ on macrophage pyroptosis and oxidative damage, immunofluorescence staining was utilized. Additionally, we conducted an analysis of protein and mRNA expression levels of NLRP3 inflammasome-related genes and macrophage polarization-related genes using RT-PCR and western blotting techniques. RESULTS This study illustrates the potential therapeutic effectiveness of FTZ in mitigating the severity of atherosclerosis and improving serum lipid profiles by inhibiting inflammation. The observed enhancements in atherosclerosis severity and inflammation can be attributed to the suppression of NLRP3 inflammasome activity and M1 polarization by FTZ. CONCLUSION The current findings indicate that FTZ provides protection against atherosclerosis, positioning it as a promising candidate for novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoqi Shao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Wenru Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qing Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Suping Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qiaoling Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qingmao Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dongwei Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hongtao Diao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Shenghua Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
55
|
He C, Kim HI, Park J, Guo J, Huang W. The role of immune cells in different stages of atherosclerosis. Int J Med Sci 2024; 21:1129-1143. [PMID: 38774746 PMCID: PMC11103388 DOI: 10.7150/ijms.94570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of immune cells in the intima of arteries. Experimental and clinical evidence shows that both innate and adaptive immunity orchestrate the progression of atherosclerosis. The heterogeneous nature of immune cells within atherosclerosis lesions is important. Studies utilizing high-dimensional mass spectrometry and single-cell RNA sequencing of leukocytes from atherosclerotic lesions show the diversity and adaptability of these immune cell subtypes. Their migration, compositional changes, phenotypic alterations, and adaptive responses are key features throughout atherosclerosis progression. Understanding how these immune cells and their subtypes affect atherogenesis would help to develop novel therapeutic approaches that control atherosclerosis progression. Precise targeting of specific immune system components involved in atherosclerosis, rather than broad suppression of the immune system with anti-inflammatory agents, can more accurately regulate the progress of atherosclerosis with fewer side effects. In this review, we cover the most recent advances in the field of atherosclerosis to understand the role of various immune cells on its development. We focus on the complex network of immune cells and the interaction between the innate immune system and adaptive immune system.
Collapse
Affiliation(s)
- Cong He
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163319, PR China
| | - Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junli Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou 571199, PR China
| | - Wei Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, PR China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education & Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, School of Public Health, Hainan Medical University, Haikou 571199, PR China
| |
Collapse
|
56
|
Traughber CA, Timinski K, Prince A, Bhandari N, Neupane K, Khan MR, Opoku E, Opoku E, Brubaker G, Shin J, Hong J, Kanuri B, Ertugral EG, Nagareddy PR, Kothapalli CR, Cherepanova O, Smith JD, Gulshan K. Disulfiram Reduces Atherosclerosis and Enhances Efferocytosis, Autophagy, and Atheroprotective Gut Microbiota in Hyperlipidemic Mice. J Am Heart Assoc 2024; 13:e033881. [PMID: 38563369 PMCID: PMC11262521 DOI: 10.1161/jaha.123.033881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Pyroptosis executor GsdmD (gasdermin D) promotes atherosclerosis in mice and humans. Disulfiram was recently shown to potently inhibit GsdmD, but the in vivo efficacy and mechanism of disulfiram's antiatherosclerotic activity is yet to be explored. METHODS AND RESULTS We used human/mouse macrophages, endothelial cells, and smooth muscle cells and a hyperlipidemic mouse model of atherosclerosis to determine disulfiram antiatherosclerotic efficacy and mechanism. The effects of disulfiram on several atheroprotective pathways such as autophagy, efferocytosis, phagocytosis, and gut microbiota were determined. Atomic force microscopy was used to determine the effects of disulfiram on the biophysical properties of the plasma membrane of macrophages. Disulfiram-fed hyperlipidemic apolipoprotein E-/- mice showed significantly reduced interleukin-1β release upon in vivo Nlrp3 (NLR family pyrin domain containing 3) inflammasome activation. Disulfiram-fed mice showed smaller atherosclerotic lesions (~27% and 29% reduction in males and females, respectively) and necrotic core areas (~50% and 46% reduction in males and females, respectively). Disulfiram induced autophagy in macrophages, smooth muscle cells, endothelial cells, hepatocytes/liver, and atherosclerotic plaques. Disulfiram modulated other atheroprotective pathways (eg, efferocytosis, phagocytosis) and gut microbiota. Disulfiram-treated macrophages showed enhanced phagocytosis/efferocytosis, with the mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic force microscopy analysis revealed altered biophysical properties of disulfiram-treated macrophages, showing increased order-state of plasma membrane and increased adhesion strength. Furthermore, 16sRNA sequencing of disulfiram-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. CONCLUSIONS Taken together, our data show that disulfiram can simultaneously modulate several atheroprotective pathways in a GsdmD-dependent as well as GsdmD-independent manner.
Collapse
Affiliation(s)
- C. Alicia Traughber
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Kara Timinski
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Ashutosh Prince
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Nilam Bhandari
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Kalash Neupane
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Mariam R. Khan
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Esther Opoku
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Emmanuel Opoku
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Gregory Brubaker
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Junchul Shin
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Babunageswararao Kanuri
- Department of Internal Medicine, Cardiovascular SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Elif G. Ertugral
- Department of Chemical & Biomedical EngineeringCleveland State UniversityClevelandOHUSA
| | - Prabhakara R. Nagareddy
- Department of Internal Medicine, Cardiovascular SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | | | - Olga Cherepanova
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Jonathan D. Smith
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Kailash Gulshan
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| |
Collapse
|
57
|
Liu W, Pircher J, Schuermans A, Ul Ain Q, Zhang Z, Honigberg MC, Yalcinkaya M, Nakao T, Pournamadri A, Xiao T, Hajebrahimi MA, Wasner L, Stegner D, Petzold T, Natarajan P, Massberg S, Tall AR, Schulz C, Wang N. Jak2 V617F clonal hematopoiesis promotes arterial thrombosis via platelet activation and cross talk. Blood 2024; 143:1539-1550. [PMID: 38142422 PMCID: PMC11033586 DOI: 10.1182/blood.2023022260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT JAK2 V617F (JAK2VF) clonal hematopoiesis (CH) has been associated with atherothrombotic cardiovascular disease (CVD). We assessed the impact of Jak2VF CH on arterial thrombosis and explored the underlying mechanisms. A meta-analysis of 3 large cohort studies confirmed the association of JAK2VF with CVD and with platelet counts and adjusted mean platelet volume (MPV). In mice, 20% or 1.5% Jak2VF CH accelerated arterial thrombosis and increased platelet activation. Megakaryocytes in Jak2VF CH showed elevated proplatelet formation and release, increasing prothrombogenic reticulated platelet counts. Gp1ba-Cre-mediated expression of Jak2VF in platelets (VFGp1ba) increased platelet counts to a similar level as in 20% Jak2VF CH mice while having no effect on leukocyte counts. Like Jak2VF CH mice, VFGp1ba mice showed enhanced platelet activation and accelerated arterial thrombosis. In Jak2VF CH, both Jak2VF and wild-type (WT) platelets showed increased activation, suggesting cross talk between mutant and WT platelets. Jak2VF platelets showed twofold to threefold upregulation of COX-1 and COX-2, particularly in young platelets, with elevated cPLA2 activation and thromboxane A2 production. Compared with controls, conditioned media from activated Jak2VF platelets induced greater activation of WT platelets that was reversed by a thromboxane receptor antagonist. Low-dose aspirin ameliorated carotid artery thrombosis in VFGp1ba and Jak2VF CH mice but not in WT control mice. This study shows accelerated arterial thrombosis and platelet activation in Jak2VF CH with a major role of increased reticulated Jak2VF platelets, which mediate thromboxane cross talk with WT platelets and suggests a potential beneficial effect of aspirin in JAK2VF CH.
Collapse
Affiliation(s)
- Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Joachim Pircher
- Department of Cardiology, Medical Clinic I, University Hospital, Ludwig Maximilian University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Art Schuermans
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Qurrat Ul Ain
- Department of Cardiology, Medical Clinic I, University Hospital, Ludwig Maximilian University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Zhe Zhang
- Department of Cardiology, Medical Clinic I, University Hospital, Ludwig Maximilian University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Michael C. Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Tetsushi Nakao
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Cardiology Division, Brigham and Women’s Hospital, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ashley Pournamadri
- Biomedical Informatics Graduate Training Program, Stanford University, Stanford, CA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Mohammad Ali Hajebrahimi
- Department of Cardiology, Medical Clinic I, University Hospital, Ludwig Maximilian University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Lisa Wasner
- Department of Cardiology, Medical Clinic I, University Hospital, Ludwig Maximilian University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - David Stegner
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Petzold
- Department of Cardiology, Medical Clinic I, University Hospital, Ludwig Maximilian University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Steffen Massberg
- Department of Cardiology, Medical Clinic I, University Hospital, Ludwig Maximilian University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Christian Schulz
- Department of Cardiology, Medical Clinic I, University Hospital, Ludwig Maximilian University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
58
|
Benajiba L. A JAK2 mutant to WT prothrombotic cross talk. Blood 2024; 143:1441-1443. [PMID: 38602699 DOI: 10.1182/blood.2023023579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Affiliation(s)
- Lina Benajiba
- Université Paris Cité
- INSERM UMR 944
- Hôpital Saint-Louis
| |
Collapse
|
59
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
60
|
Raisi-Estabragh Z, Szabo L, Schuermans A, Salih AM, Chin CWL, Vágó H, Altmann A, Ng FS, Garg P, Pavanello S, Marwick TH, Petersen SE. Noninvasive Techniques for Tracking Biological Aging of the Cardiovascular System: JACC Family Series. JACC Cardiovasc Imaging 2024:S1936-878X(24)00082-2. [PMID: 38597854 DOI: 10.1016/j.jcmg.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
Population aging is one of the most important demographic transformations of our time. Increasing the "health span"-the proportion of life spent in good health-is a global priority. Biological aging comprises molecular and cellular modifications over many years, which culminate in gradual physiological decline across multiple organ systems and predispose to age-related illnesses. Cardiovascular disease is a major cause of ill health and premature death in older people. The rate at which biological aging occurs varies across individuals of the same age and is influenced by a wide range of genetic and environmental exposures. The authors review the hallmarks of biological cardiovascular aging and their capture using imaging and other noninvasive techniques and examine how this information may be used to understand aging trajectories, with the aim of guiding individual- and population-level interventions to promote healthy aging.
Collapse
Affiliation(s)
- Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Liliana Szabo
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Art Schuermans
- Faculty of Medicine, KU Leuven, Leuven, Belgium; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed M Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Department of Population Health Sciences, University of Leicester, Leicester UK; Department of Computer Science, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq
| | - Calvin W L Chin
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore; Cardiovascular Academic Clinical Programme, Duke National University of Singapore Medical School, Singapore, Singapore
| | - Hajnalka Vágó
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pankaj Garg
- University of East Anglia, Norwich Medical School, Norwich, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy; Padua Hospital, Occupational Medicine Unit, Padua, Italy; University Center for Space Studies and Activities "Giuseppe Colombo" - CISAS, University of Padua, Padua, Italy
| | | | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Health Data Research UK, London, United Kingdom
| |
Collapse
|
61
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Sachs N, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:930-945. [PMID: 38385291 PMCID: PMC10978277 DOI: 10.1161/atvbaha.123.320524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Nadja Sachs
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K., E.P.), Columbia University Irving Medical Center, New York, NY
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (N.S., L.M.)
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (L.M.)
- Department of Medicine, Karolinksa Institute, Stockholm, Sweden (L.M.)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY (A.C.B., C.X., L.Y.Z., E.K., T.M., J.C., A.C., S.H., L.S.R., R.C.B., M.P.R.)
- Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
62
|
Huang B, Zou Z, Li Y, Chen H, Lai K, Yuan Y, Xu Y. Gasdermin D-Mediated Pyroptosis Promotes the Development of Atherosclerosis. J Transl Med 2024; 104:100337. [PMID: 38266921 DOI: 10.1016/j.labinv.2024.100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/16/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory cardiovascular disease with a high-morbidity and mortality rate. An increasing number of studies have addressed the crucial contribution of gasdermin D (GSDMD)-mediated pyroptosis, which is triggered by the inflammasomes to the development of atherosclerosis. However, the underlying mechanism is still unclear. This study aimed to uncover the detailed role of GSDMD in the development of atherosclerosis. An atherosclerotic model was established in Gsdmd-/-/Ldlr-/- mice and Gsdmd+/+/Ldlr-/- mice fed with a high-fat diet. The atherosclerotic lesions, the activation of GSDMD, and the expression level of inflammatory cytokines and chemokines were evaluated. Gsdmd deletion ameliorated the atherosclerotic lesion sizes and the infiltration of immune cells and inflammatory cells in the aortas of mice. Additionally, Gsdmd deletion suppressed the pyroptosis of macrophages and endothelial cells induced by the serum of Ldlr-/- mice fed with a high-fat diet. Furthermore, the formation of neutrophil extracellular traps was also attenuated by knockout of Gsdmd. Bone marrow chimeras confirmed that the genetic deficiency of Gsdmd in both immune cells and intrinsic cells played a role in the promotion of arteriosclerosis. Collectively, our study demonstrated that Gsdmd deletion hindered the pathogenesis of atherosclerosis by inhibiting endothelial cell and macrophage cell death, and the formation of neutrophil extracellular traps.
Collapse
Affiliation(s)
- Bangbang Huang
- Department of Geriatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhenhuan Zou
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yinshuang Li
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hui Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kunmei Lai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Yuan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
63
|
Yalcinkaya M, Liu W, Xiao T, Abramowicz S, Wang R, Wang N, Westerterp M, Tall AR. Cholesterol trafficking to the ER leads to the activation of CaMKII/JNK/NLRP3 and promotes atherosclerosis. J Lipid Res 2024; 65:100534. [PMID: 38522750 PMCID: PMC11031842 DOI: 10.1016/j.jlr.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
The deposition of cholesterol-rich lipoproteins in the arterial wall triggers macrophage inflammatory responses, which promote atherosclerosis. The NLRP3 inflammasome aggravates atherosclerosis; however, cellular mechanisms connecting macrophage cholesterol accumulation to inflammasome activation are poorly understood. We investigated the mechanisms of NLRP3 inflammasome activation in cholesterol-loaded macrophages and in atherosclerosis-prone Ldlr-/- mice with defects in macrophage cholesterol efflux. We found that accumulation of cholesterol in macrophages treated with modified LDL or cholesterol crystals, or in macrophages defective in the cholesterol efflux promoting transporters ABCA1 and ABCG1, leads to activation of NLRP3 inflammasomes as a result of increased cholesterol trafficking from the plasma membrane to the ER, via Aster-B. In turn, the accumulation of cholesterol in the ER activates the inositol triphosphate-3 receptor, CaMKII/JNK, and induces NLRP3 deubiquitylation by BRCC3. An NLRP3 deubiquitylation inhibitor or deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex, suppressed inflammasome activation, neutrophil extracellular trap formation (NETosis), and atherosclerosis in vivo. These results identify a link between the trafficking of cholesterol to the ER, NLRP3 deubiquitylation, inflammasome activation, and atherosclerosis.
Collapse
Affiliation(s)
- Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ranran Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Marit Westerterp
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
64
|
Chen YF. Temporal Single-Cell Sequencing Analysis Reveals That GPNMB-Expressing Macrophages Potentiate Muscle Regeneration. RESEARCH SQUARE 2024:rs.3.rs-4108866. [PMID: 38585871 PMCID: PMC10996783 DOI: 10.21203/rs.3.rs-4108866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Macrophages play a crucial role in coordinating the skeletal muscle repair response, but their phenotypic diversity and the transition of specialized subsets to resolution-phase macrophages remain poorly understood. To address this issue, we induced injury and performed single-cell RNA sequencing on individual cells in skeletal muscle at different time points. Our analysis revealed a distinct macrophage subset that expressed high levels of Gpnmb and that coexpressed critical factors involved in macrophage-mediated muscle regeneration, including Igf1, Mertk, and Nr1h3. Gpnmb gene knockout inhibited macrophage-mediated efferocytosis and impaired skeletal muscle regeneration. Functional studies demonstrated that GPNMB acts directly on muscle cells in vitro and improves muscle regeneration in vivo. These findings provide a comprehensive transcriptomic atlas of macrophages during muscle injury, highlighting the key role of the GPNMB macrophage subset in regenerative processes. Targeting GPNMB signaling in macrophages could have therapeutic potential for restoring skeletal muscle integrity and homeostasis.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taiwan
| |
Collapse
|
65
|
Li C, Liu R, Xiong Z, Bao X, Liang S, Zeng H, Jin W, Gong Q, Liu L, Guo J. Ferroptosis: a potential target for the treatment of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:331-344. [PMID: 38327187 PMCID: PMC10984869 DOI: 10.3724/abbs.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive oxygen species (ROS) levels and lipid peroxidation. Furthermore, accumulated intracellular iron activates various signaling pathways or risk factors for AS, such as abnormal lipid metabolism, oxidative stress, and inflammation, which can eventually lead to the disordered function of macrophages, vascular smooth muscle cells, and vascular endothelial cells. However, the molecular pathways through which ferroptosis affects AS development and progression are not entirely understood. This review systematically summarizes the interactions between AS and ferroptosis and provides a feasible approach for inhibiting AS progression from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Chengyi Li
- School of MedicineYangtze UniversityJingzhou434020China
| | - Ran Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Zhenyu Xiong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Xue Bao
- School of MedicineYangtze UniversityJingzhou434020China
| | - Sijia Liang
- Department of PharmacologyZhongshan School of MedicineSun Yat-Sen UniversityGuangzhou510120China
| | - Haotian Zeng
- Department of GastroenterologyShenzhen People’s HospitalThe Second Clinical Medical CollegeJinan UniversityShenzhen518000China
| | - Wei Jin
- Department of Second Ward of General PediatricsSuizhou Central HospitalHubei University of MedicineSuizhou441300China
| | - Quan Gong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Lian Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Jiawei Guo
- School of MedicineYangtze UniversityJingzhou434020China
| |
Collapse
|
66
|
Schuermans A, Vlasschaert C, Nauffal V, Cho SMJ, Uddin MM, Nakao T, Niroula A, Klarqvist MDR, Weeks LD, Lin AE, Saadatagah S, Lannery K, Wong M, Hornsby W, Lubitz SA, Ballantyne C, Jaiswal S, Libby P, Ebert BL, Bick AG, Ellinor PT, Natarajan P, Honigberg MC. Clonal haematopoiesis of indeterminate potential predicts incident cardiac arrhythmias. Eur Heart J 2024; 45:791-805. [PMID: 37952204 PMCID: PMC10919923 DOI: 10.1093/eurheartj/ehad670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND AND AIMS Clonal haematopoiesis of indeterminate potential (CHIP), the age-related expansion of blood cells with preleukemic mutations, is associated with atherosclerotic cardiovascular disease and heart failure. This study aimed to test the association of CHIP with new-onset arrhythmias. METHODS UK Biobank participants without prevalent arrhythmias were included. Co-primary study outcomes were supraventricular arrhythmias, bradyarrhythmias, and ventricular arrhythmias. Secondary outcomes were cardiac arrest, atrial fibrillation, and any arrhythmia. Associations of any CHIP [variant allele fraction (VAF) ≥ 2%], large CHIP (VAF ≥10%), and gene-specific CHIP subtypes with incident arrhythmias were evaluated using multivariable-adjusted Cox regression. Associations of CHIP with myocardial interstitial fibrosis [T1 measured using cardiac magnetic resonance (CMR)] were also tested. RESULTS This study included 410 702 participants [CHIP: n = 13 892 (3.4%); large CHIP: n = 9191 (2.2%)]. Any and large CHIP were associated with multi-variable-adjusted hazard ratios of 1.11 [95% confidence interval (CI) 1.04-1.18; P = .001] and 1.13 (95% CI 1.05-1.22; P = .001) for supraventricular arrhythmias, 1.09 (95% CI 1.01-1.19; P = .031) and 1.13 (95% CI 1.03-1.25; P = .011) for bradyarrhythmias, and 1.16 (95% CI, 1.00-1.34; P = .049) and 1.22 (95% CI 1.03-1.45; P = .021) for ventricular arrhythmias, respectively. Associations were independent of coronary artery disease and heart failure. Associations were also heterogeneous across arrhythmia subtypes and strongest for cardiac arrest. Gene-specific analyses revealed an increased risk of arrhythmias across driver genes other than DNMT3A. Large CHIP was associated with 1.31-fold odds (95% CI 1.07-1.59; P = .009) of being in the top quintile of myocardial fibrosis by CMR. CONCLUSIONS CHIP may represent a novel risk factor for incident arrhythmias, indicating a potential target for modulation towards arrhythmia prevention and treatment.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Victor Nauffal
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - So Mi Jemma Cho
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Lachelle D Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy E Lin
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kim Lannery
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Megan Wong
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Steven A Lubitz
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | | | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Michael C Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
67
|
Kidder E, Gangopadhyay S, Francis S, Alfaidi M. "How to Release or Not Release, That Is the Question." A Review of Interleukin-1 Cellular Release Mechanisms in Vascular Inflammation. J Am Heart Assoc 2024; 13:e032987. [PMID: 38390810 PMCID: PMC10944040 DOI: 10.1161/jaha.123.032987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, characterized by atherosclerotic activity within large and medium-sized arteries. Inflammation has been shown to be a primary driver of atherosclerotic plaque formation, with interleukin-1 (IL-1) having a principal role. This review focuses on the current state of knowledge of molecular mechanisms of IL-1 release from cells in atherosclerotic plaques. A more in-depth understanding of the process of IL-1's release into the vascular environment is necessary for the treatment of inflammatory disease processes, as the current selection of medicines being used primarily target IL-1 after it has been released. IL-1 is secreted by several heterogenous mechanisms, some of which are cell type-specific and could provide further specialized targets for therapeutic intervention. A major unmet challenge is to understand the mechanism before and leading to IL-1 release, especially by cells in atherosclerotic plaques, including endothelial cells, vascular smooth muscle cells, and macrophages. Data so far indicate a heterogeneity of IL-1 release mechanisms that vary according to cell type and are stimulus-dependent. Unraveling this complexity may reveal new targets to block excess vascular inflammation.
Collapse
Affiliation(s)
- Evan Kidder
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Siddhartha Gangopadhyay
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Sheila Francis
- School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Mabruka Alfaidi
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| |
Collapse
|
68
|
Dimmeler S, Zeiher A. [Heart and blood: clonal hematopoiesis]. Herz 2024; 49:105-110. [PMID: 38424288 DOI: 10.1007/s00059-024-05237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Cardiovascular diseases are among the leading causes of death worldwide, with well-known modifiable risk factors, such as smoking, overweight, lipid metabolism disorders, lack of physical activity and high blood pressure playing a significant role. Recent studies have now identified "clonal hematopoiesis" as a novel blood-based risk factor. Clonal hematopoiesis arises from mutations in hematopoietic stem cells, which lead to the expansion of mutated blood cells. Mutated cell clones can be detected in over 40% of individuals over 50 years old, with more than 15% of those over 90 years old harboring large clones. Surprisingly, mutated cells predispose to the development of leukemia only to a minor extent, leading to the term clonal hematopoiesis of indeterminate potential (CHIP); however, it has been shown that CHIP is associated with an increased risk of cardiovascular diseases. Individuals with CHIP-associated gene mutations have an elevated risk of atherosclerotic vascular diseases, stroke and thrombosis. Patients with heart failure with reduced ejection fraction (HFrEF), whether of ischemic or non-ischemic origin and patients with heart failure with preserved ejection fraction (HFpEF) exhibit an increased number of mutated cells in the blood. The presence of CHIP mutations is linked to a poorer prognosis in patients with existing cardiovascular diseases. Future research should aim at a better understanding of the specific effects of different mutations, clone sizes and combinations to develop personalized therapeutic approaches. Various anti-inflammatory therapeutic drugs are available, which can be tested in controlled studies.
Collapse
Affiliation(s)
- Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60590, Frankfurt am Main, Deutschland.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt am Main, Deutschland.
| | - Andreas Zeiher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60590, Frankfurt am Main, Deutschland
- Cardiopulmonary Institute (CPI), 60590, Frankfurt am Main, Deutschland
| |
Collapse
|
69
|
Zhao K, Shen X, Liu H, Lin Z, Li J, Chen S, Liu F, Huang K, Cao J, Liu X, Shen C, Yu L, Zhao Y, Zhao L, Li Y, Hu D, Huang J, Lu X, Gu D. Somatic and Germline Variants and Coronary Heart Disease in a Chinese Population. JAMA Cardiol 2024; 9:233-242. [PMID: 38198131 PMCID: PMC10782380 DOI: 10.1001/jamacardio.2023.5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 01/11/2024]
Abstract
Importance The genetic basis of coronary heart disease (CHD) has expanded from a germline to somatic genome, including clonal hematopoiesis of indeterminate potential (CHIP). How CHIP confers CHD risk in East Asian individuals, especially those with small clones (variant allele fraction [VAF] 0.5%-2%) and different genetic backgrounds, was completely unknown. Objective To investigate the CHIP profile in a general Chinese cohort by deep sequencing and further explore the association between CHIP and incident CHD considering germline predisposition. Design, Setting, and Participants This cohort study used data from 3 prospective cohorts in the project Prediction for Atherosclerotic Cardiovascular Disease Risk in China. Participants without cardiovascular disease or cancer at baseline were enrolled in 2001 and 2008 and had a median follow-up of 12.17 years extending into 2021. Exposures CHIP mutations were detected by targeted sequencing (mean depth, 916×). A predefined CHD polygenic risk score (PRS) comprising 531 variants was used to evaluate germline predisposition. Main Outcomes and Measures The main outcome was first incident CHD. Results Among 6181 participants, the median (IQR) age was 53.83 years (45.35-62.39 years); 3082 participants (49.9%) were female, and 3099 (50.1%) were male. A total of 1100 individuals (17.80%) harbored 1372 CHIP mutations at baseline. CHIP was independently associated with incident CHD (hazard ratio [HR], 1.42; 95% CI, 1.18-1.72; P = 2.82 × 10-4) and presented a risk gradient with increasing VAF (P = 3.98 × 10-3 for trend). Notably, individuals with small clones, nearly half of CHIP carriers, also demonstrated a higher CHD risk compared with non-CHIP carriers (HR, 1.33; 95% CI, 1.02-1.74; P = .03) and were 4 years younger than those with VAF of 2% or greater (median age, 58.52 vs 62.70 years). Heightened CHD risk was not observed among CHIP carriers with low PRS (HR, 1.02; 95% CI, 0.64-1.64; P = .92), while high PRS and CHIP jointly contributed a 2.23-fold increase in risk (95% CI, 1.51-3.29; P = 6.29 × 10-5) compared with non-CHIP carriers with low PRS. Interestingly, the diversity in CHIP-related CHD risk within each PRS group was substantially diminished when removing variants in the inflammatory pathway from the PRS. Conclusions This study revealed that elevated CHD risk attributed to CHIP was nonnegligible even for small clones. Inflammation genes involved in CHD could aggravate or abrogate CHIP-related CHD risk.
Collapse
Affiliation(s)
- Kun Zhao
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuxiang Shen
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei Liu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhennan Lin
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxin Li
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keyong Huang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Cao
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People’s Hospital and Cardiovascular Institute, Guangzhou, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ling Yu
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou, China
| | - Yingxin Zhao
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Liancheng Zhao
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Li
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Jiangfeng Huang
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology & Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
70
|
Guo B, Yu Y, Wang M, Li R, He X, Tang S, Liu Q, Mao Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed Pharmacother 2024; 172:116313. [PMID: 38377736 DOI: 10.1016/j.biopha.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.
Collapse
Affiliation(s)
- Bing Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Yunfeng Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Min Wang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ronghui Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan He
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Siqin Tang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Qili Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yilin Mao
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China.
| |
Collapse
|
71
|
Tall AR, Fidler TP. An epigenetic switch in macrophages promotes fibrosis in the failing heart. NATURE CARDIOVASCULAR RESEARCH 2024; 3:254-255. [PMID: 39196117 DOI: 10.1038/s44161-024-00439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Trevor P Fidler
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
72
|
Vlasschaert C, Robinson-Cohen C, Chen J, Akwo E, Parker AC, Silver SA, Bhatraju PK, Poisner H, Cao S, Jiang M, Wang Y, Niu A, Siew E, Van Amburg JC, Kramer HJ, Kottgen A, Franceschini N, Psaty BM, Tracy RP, Alonso A, Arking DE, Coresh J, Ballantyne CM, Boerwinkle E, Grams M, Zhang MZ, Kestenbaum B, Lanktree MB, Rauh MJ, Harris RC, Bick AG. Clonal hematopoiesis of indeterminate potential is associated with acute kidney injury. Nat Med 2024; 30:810-817. [PMID: 38454125 PMCID: PMC10957477 DOI: 10.1038/s41591-024-02854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Age is a predominant risk factor for acute kidney injury (AKI), yet the biological mechanisms underlying this risk are largely unknown. Clonal hematopoiesis of indeterminate potential (CHIP) confers increased risk for several chronic diseases associated with aging. Here we sought to test whether CHIP increases the risk of AKI. In three population-based epidemiology cohorts, we found that CHIP was associated with a greater risk of incident AKI, which was more pronounced in patients with AKI requiring dialysis and in individuals with somatic mutations in genes other than DNMT3A, including mutations in TET2 and JAK2. Mendelian randomization analyses supported a causal role for CHIP in promoting AKI. Non-DNMT3A-CHIP was also associated with a nonresolving pattern of injury in patients with AKI. To gain mechanistic insight, we evaluated the role of Tet2-CHIP and Jak2V617F-CHIP in two mouse models of AKI. In both models, CHIP was associated with more severe AKI, greater renal proinflammatory macrophage infiltration and greater post-AKI kidney fibrosis. In summary, this work establishes CHIP as a genetic mechanism conferring impaired kidney function recovery after AKI via an aberrant inflammatory response mediated by renal macrophages.
Collapse
Affiliation(s)
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianchun Chen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elvis Akwo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyssa C Parker
- Division of Genetic Medicine, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Samuel A Silver
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hannah Poisner
- Division of Genetic Medicine, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Shirong Cao
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ming Jiang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph C Van Amburg
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Holly J Kramer
- Departments of Public Health Sciences and Medicine, Loyola University Chicago, Maywood IL, USA
| | - Anna Kottgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Russell P Tracy
- Pathology and Biochemistry, University of Vermont, Burlington, VT, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josef Coresh
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | | | - Eric Boerwinkle
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Morgan Grams
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Division of Nephrology, Department of Internal Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bryan Kestenbaum
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA.
- U.S Department of Veterans Affairs, Nashville, TN, USA.
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
73
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
74
|
Vu GT, Awad V, Norberto MF, Bowman TV, Trompouki E. Nucleic acid-induced inflammation on hematopoietic stem cells. Exp Hematol 2024; 131:104148. [PMID: 38151171 PMCID: PMC11061806 DOI: 10.1016/j.exphem.2023.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Hematopoiesis, the process of generating blood cells, starts during development with the primitive, pro-definitive, and definitive hematopoietic waves. The first two waves will generate erythrocytes and myeloid cells, although the definitive wave will give rise to hematopoietic stem cells (HSCs) that are multipotent and can produce most of the blood cells in an adult. Although HSCs are highly proliferative during development, during adulthood they remain quiescent in the bone marrow. Inflammatory signaling in the form of interferons, interleukins, tumor necrosis factors, and others is well-established to influence both developmental and adult hematopoiesis. Here we discuss the role of specific inflammatory pathways that are induced by sensing nucleic acids. We discuss the role of RNA-sensing members of the Toll-like, Rig-I-like, nucleotide-binding oligomerization domain (NOD)-like, and AIM2-like protein kinase receptors and the DNA-sensing receptors, DEAD-Box helicase 41 (DDX41) and cGAS. The main downstream pathways of these receptors are discussed, as well as their influence on developmental and adult hematopoiesis, including hematopoietic pathologies.
Collapse
Affiliation(s)
- Giang To Vu
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Valerie Awad
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Maria Feliz Norberto
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY.
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France.
| |
Collapse
|
75
|
Xu C, Tsihlis G, Chau K, Trinh K, Rogers NM, Julovi SM. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci 2024; 25:2658. [PMID: 38473905 PMCID: PMC10931927 DOI: 10.3390/ijms25052658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.
Collapse
Affiliation(s)
- Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
| | - George Tsihlis
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Katrina Chau
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
- Blacktown Clinical School, School of Medicine, Western Sydney University, Sydney, NSW 2148, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
| | - Natasha M. Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| | - Sohel M. Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| |
Collapse
|
76
|
Mitroulis I, Hajishengallis G, Chavakis T. Bone marrow inflammatory memory in cardiometabolic disease and inflammatory comorbidities. Cardiovasc Res 2024; 119:2801-2812. [PMID: 36655373 PMCID: PMC10874275 DOI: 10.1093/cvr/cvad003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/20/2023] Open
Abstract
Cardiometabolic disorders are chief causes of morbidity and mortality, with chronic inflammation playing a crucial role in their pathogenesis. The release of differentiated myeloid cells with elevated pro-inflammatory potential, as a result of maladaptively trained myelopoiesis may be a crucial factor for the perpetuation of inflammation. Several cardiovascular risk factors, including sedentary lifestyle, unhealthy diet, hypercholesterolemia, and hyperglycemia, may modulate bone marrow hematopoietic progenitors, causing sustained functional changes that favour chronic metabolic and vascular inflammation. In the present review, we summarize recent studies that support the function of long-term inflammatory memory in progenitors of the bone marrow for the development and progression of cardiometabolic disease and related inflammatory comorbidities, including periodontitis and arthritis. We also discuss how maladaptive myelopoiesis associated with the presence of mutated hematopoietic clones, as present in clonal hematopoiesis, may accelerate atherosclerosis via increased inflammation.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- First Department of Internal Medicine and Department of Haematology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Centre for Cardiovascular Science, QMRI, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
77
|
Wu Q, Zhang W, Lu Y, Li H, Yang Y, Geng F, Liu J, Lin L, Pan Y, Li C. Association between periodontitis and inflammatory comorbidities: The common role of innate immune cells, underlying mechanisms and therapeutic targets. Int Immunopharmacol 2024; 128:111558. [PMID: 38266446 DOI: 10.1016/j.intimp.2024.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Periodontitis, which is related to various systemic diseases, is a chronic inflammatory disease caused by periodontal dysbiosis of the microbiota. Multiple factors can influence the interaction of periodontitis and associated inflammatory disorders, among which host immunity is an important contributor to this interaction. Innate immunity can be activated aberrantly because of the systemic inflammation induced by periodontitis. This aberrant activation not only exacerbates periodontal tissue damage but also impairs systemic health, triggering or aggravating inflammatory comorbidities. Therefore, innate immunity is a potential therapeutic target for periodontitis and associated inflammatory comorbidities. This review delineates analogous aberrations of innate immune cells in periodontitis and comorbid conditions such as atherosclerosis, diabetes, obesity, and rheumatoid arthritis. The mechanisms behind these changes in innate immune cells are discussed, including trained immunity and clonal hematopoiesis of indeterminate potential (CHIP), which can mediate the abnormal activation and myeloid-biased differentiation of hematopoietic stem and progenitor cells. Besides, the expansion of myeloid-derived suppressor cells (MDSCs), which have immunosuppressive and osteolytic effects on peripheral tissues, also contributes to the interaction between periodontitis and its inflammatory comorbidities. The potential treatment targets for relieving the risk of both periodontitis and systemic conditions are also elucidated, such as the modulation of innate immunity cells and mediators, the regulation of trained immunity and CHIP, as well as the inhibition of MDSCs' expansion.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weijia Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Lu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hongxia Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yaru Yang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jinwen Liu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
78
|
Khan SU, Huang Y, Ali H, Ali I, Ahmad S, Khan SU, Hussain T, Ullah M, Lu K. Single-cell RNA Sequencing (scRNA-seq): Advances and Challenges for Cardiovascular Diseases (CVDs). Curr Probl Cardiol 2024; 49:102202. [PMID: 37967800 DOI: 10.1016/j.cpcardiol.2023.102202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Implementing Single-cell RNA sequencing (scRNA-seq) has significantly enhanced our comprehension of cardiovascular diseases (CVDs), providing new opportunities to strengthen the prevention of CVDs progression. Cardiovascular diseases continue to be the primary cause of death worldwide. Improving treatment strategies and patient risk assessment requires a deeper understanding of the fundamental mechanisms underlying these disorders. The advanced and widespread use of Single-cell RNA sequencing enables a comprehensive investigation of the complex cellular makeup of the heart, surpassing essential descriptive aspects. This enhances our understanding of disease causes and directs functional research. The significant advancement in understanding cellular phenotypes has enhanced the study of fundamental cardiovascular science. scRNA-seq enables the identification of discrete cellular subgroups, unveiling previously unknown cell types in the heart and vascular systems that may have relevance to different disease pathologies. Moreover, scRNA-seq has revealed significant heterogeneity in phenotypes among distinct cell subtypes. Finally, we will examine current and upcoming scRNA-seq studies about various aspects of the cardiovascular system, assessing their potential impact on our understanding of the cardiovascular system and offering insight into how these technologies may revolutionise the diagnosis and treatment of cardiac conditions.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan
| | - Yuqing Huang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad-44000
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Muneeb Ullah
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
79
|
Kishtagari A, Corty RW, Visconte V. Clonal hematopoiesis and autoimmunity. Semin Hematol 2024; 61:3-8. [PMID: 38423847 DOI: 10.1053/j.seminhematol.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Clonal hematopoiesis (CH) has been associated with aging, occurring in about 10% of individuals aged >70 years, and immune dysfunction. Aged hematopoietic stem and progenitor cells exhibit pathological changes in immune function and activation of inflammatory pathways. CH clones commonly harbor a loss of function mutation in DNMT3A or TET2, which causes increased expression of inflammatory signaling genes, a proposed mechanism connected to CH and the development of age-related diseases. Additionally, inflammation may stress the hematopoietic compartment, driving the expansion of mutant clones. While the epidemiologic overlap between CH, hematologic malignancies, and atherosclerotic cardiovascular diseases has been reported, the mechanisms linking these concepts are largely unknown and merit much further investigation. Here, we review studies highlighting the interplay between CH, inflamm-aging, the immune system, and the prevalence of CH in autoimmune diseases.
Collapse
Affiliation(s)
- Ashwin Kishtagari
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Robert W Corty
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
80
|
Luo X, Wang Y, Zhu X, Chen Y, Xu B, Bai X, Weng X, Xu J, Tao Y, Yang D, Du J, Lv Y, Zhang S, Hu S, Li J, Jia H. MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction. Redox Biol 2024; 69:102987. [PMID: 38100883 PMCID: PMC10761782 DOI: 10.1016/j.redox.2023.102987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Micheliolide (MCL), which is the active metabolite of parthenolide, has demonstrated promising clinical application potential. However, the effects and underlying mechanisms of MCL on atherosclerosis are still unclear. METHOD ApoE-/- mice were fed with high fat diet, with or without MCL oral administration, then the plaque area, lipid deposition and collagen content were determined. In vitro, MCL was used to pretreat macrophages combined by ox-LDL, the levels of ferroptosis related proteins, NRF2 activation, mitochondrial function and oxidative stress were detected. RESULTS MCL administration significantly attenuated atherosclerotic plaque progress, which characteristics with decreased plaque area, less lipid deposition and increased collagen. Compared with HD group, the level of GPX4 and xCT in atherosclerotic root macrophages were increased in MCL group obviously. In vitro experiment demonstrated that MCL increased GPX4 and xCT level, improved mitochondrial function, attenuated oxidative stress and inhibited lipid peroxidation to suppress macrophage ferroptosis induced with ox-LDL. Moreover, MCL inhibited KEAP1/NRF2 complex formation and enhanced NRF2 nucleus translocation, while the protective effect of MCL on macrophage ferroptosis was abolished by NRF2 inhibition. Additionally, molecular docking suggests that MCL may bind to the Arg483 site of KEAP1, which also contributes to KEAP1/NRF2 binding. Furthermore, Transfection Arg483 (KEAP1-R483S) mutant plasmid can abrogate the anti-ferroptosis and anti-oxidative effects of MC in macrophages. KEAP1-R483S mutation also limited the protective effect of MCL on atherosclerosis progress and macrophage ferroptosis in ApoE-/- mice. CONCLUSION MCL suppressed atherosclerosis by inhibiting macrophage ferroptosis via activating NRF2 pathway, the related mechanism is through binding to the Arg483 site of KEAP1 competitively.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Yuehong Wang
- State Key Laboratory of Systems Medicine for Cancer, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, 200127, PR China
| | - Xinxin Zhu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Jinmei Xu
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Yangyang Tao
- Department of Ultrasound, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Dan Yang
- Department of Forensic Medicine, Harbin Medical University, Harbin, 150001, PR China
| | - Jie Du
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Shan Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Sining Hu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China.
| |
Collapse
|
81
|
Woźniak E, Broncel M, Woźniak A, Satała J, Pawlos A, Bukowska B, Gorzelak-Pabiś P. Lipoprotein(a) is associated with DNA damage in patients with heterozygous familial hypercholesterolemia. Sci Rep 2024; 14:2564. [PMID: 38297066 PMCID: PMC10830471 DOI: 10.1038/s41598-024-52571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024] Open
Abstract
Heterozygous familial hypercholesterolemia (HeFH) is a common autosomal-dominant inherited disorder associated with atherosclerotic cardiovascular disease (ASCVD). HeFH subjects have a higher lipoprotein(a), i.e. Lp(a), concentration than the general population. Patients with FH are exposed to elevated levels of LDL from birth and ox-LDL may induce other oxidation pathways. The aim of the study was to determine the levels of markers of oxidative stress and DNA damage in patients with HeFH and describe the effect of Lp(a) on the resulting damage. Higher DNA damage was identified in patients with HeFH compared to the normolipidemic ones, and ASCVD was associated with greater damage. Oxidative stress markers were elevated in HeFH patients; however, only ox-LDL was higher in the ASCVD group and its level correlated with DNA damage. A positive correlation was found between DNA damage and Lp(a) concentration in the HeFH patients. Higher levels of Lp(a) were associated with greater DNA damage, especially in patients with HeFH and ASCVD. In HeFH patients, the optimal Lp(a) cut-off point associated with ASCVD is > 23.45 nmol/L, i.e. much lower than for the general population; however this cut-off point needs validation in a larger group of HeFH patients.
Collapse
Affiliation(s)
- Ewelina Woźniak
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland.
| | - Marlena Broncel
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Woźniak
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Joanna Satała
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Pawlos
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paulina Gorzelak-Pabiś
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
82
|
Sun Y, Yao J, Wang C, Jin Y, Wan X, Meng Q, Wu J, Liu Q, Sun H. Epigenetic modification of TWIST1 in macrophages promotes hypertension-induced atherosclerotic plaque instability. Int Immunopharmacol 2024; 127:111313. [PMID: 38134595 DOI: 10.1016/j.intimp.2023.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
It is accepted that hypertension is a major, independent risk factor for atherosclerotic cardiovascular ischemic events, which are mainly attributed to the formation of unstable, vulnerable atherosclerotic lesions. But the mechanisms by which hypertension aggravates atherosclerosis (AS) through increased macrophage recruitment are unknown. It has been reported that TWIST1 can regulate the shear stress of blood flow in endothelial cells to promote the development of atherosclerosis, but the function of TWIST1 in macrophage recruitment during hypertension remains undefined. Here, the roles of TWIST1 in macrophage activation during N w -nitro-l-arginine-methyl ester (L-NAME; NO-synthase (NOS) inhibitor)-induced hypertension were investigated in ApoE-/- mice fed a high-fat diet (HFD) and RAW264.7 cells treated with oxidized low-density lipoprotein(ox-LDL). Oil Red O staining and hematoxylin and eosin staining were adopted to analyze atherosclerotic lesions and plaque instability. Chromatin immunoprecipitation (ChIP)-PCR was used to explore whether Lysine-specific histone demethylase 1A (LSD1/KDM1A) and Variegated suppressor 3-9 homolog 1 (SUV39H1) could regulate histone modification of the TWIST1 promoter. We reported that L-NAME increased the expression of TWIST1 in the aortic tissues of ApoE-/- mice fed a high-fat diet (HFD) and RAW264.7 cells treated with ox-LDL. TWIST1 accelerated the development of an unstable atherosclerotic phenotype by promoting macrophage activation, inflammatory factor secretion, macrophage polarization, and lipid phagocytosis. Moreover, we found that H3K9me2 and H3K9me3 in the TWIST1 promoter could be coregulated by LSD1 and SUV39H1, and this process was modulated by CK2α. Taken together, these results revealed that TWIST1 in macrophages is a critical factor that mediates foam cell formation and enhances atherosclerotic plaque vulnerability during hypertension, and targeting TWIST1 may be a promising new therapeutic approach for delaying the progression of AS in hypertension.
Collapse
Affiliation(s)
- Yi Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Yue Jin
- Dalian Medical University, China
| | - Xinyu Wan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China.
| |
Collapse
|
83
|
Abstract
Apoptosis, necroptosis, and pyroptosis are genetically programmed cell death mechanisms that eliminate obsolete, damaged, infected, and self-reactive cells. Apoptosis fragments cells in a manner that limits immune cell activation, whereas the lytic death programs of necroptosis and pyroptosis release proinflammatory intracellular contents. Apoptosis fine-tunes tissue architecture during mammalian development, promotes tissue homeostasis, and is crucial for averting cancer and autoimmunity. All three cell death mechanisms are deployed to thwart the spread of pathogens. Disabling regulators of cell death signaling in mice has revealed how excessive cell death can fuel acute or chronic inflammation. Here we review strategies for modulating cell death in the context of disease. For example, BCL-2 inhibitor venetoclax, an inducer of apoptosis, is approved for the treatment of certain hematologic malignancies. By contrast, inhibition of RIPK1, NLRP3, GSDMD, or NINJ1 to limit proinflammatory cell death and/or the release of large proinflammatory molecules from dying cells may benefit patients with inflammatory diseases.
Collapse
Affiliation(s)
- Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, South San Francisco, California, USA;
| | - Joshua D Webster
- Pathology Department, Genentech, South San Francisco, California, USA
| | - Kim Newton
- Physiological Chemistry Department, Genentech, South San Francisco, California, USA;
| |
Collapse
|
84
|
Vlasschaert C, Buttigieg M, Pershad Y, Lanktree M, Aldrich MC, Rauh MJ, Bick AG. Clonal hematopoiesis of indeterminate potential-associated non-small cell lung cancer risk is potentiated by small particulate matter air pollution among non-smokers: a novel somatic variant-environment interaction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301439. [PMID: 38293139 PMCID: PMC10827270 DOI: 10.1101/2024.01.17.24301439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Small particulate matter air pollution (PM 2.5 ) is a recognized driver of non-small cell lung cancer (NSCLC) among non-smoking individuals. Inhaled PM 2.5 recruits pro-inflammatory macrophages to the air-lung interface, which promotes malignant lung epithelial cell growth and progression to overt cancer. We sought to determine whether clonal hematopoiesis of indeterminate potential (CHIP), a common age-related condition characterized by hyperinflammatory macrophages, exacerbates PM 2.5 -associated NSCLC in non-smokers using genetic, environmental, and phenotypic data from 413,901 individuals in the UK Biobank. Among non-smokers, PM 2.5 is not associated with NSCLC and not associated with prevalence of CHIP, but CHIP is associated with a doubling of NSCLC risk (hazard ratio (HR) 2.01, 95% confidence interval (CI): 1.34-3.00). Moreover, CHIP-associated NSCLC risk is exacerbated in the setting of above-median PM 2.5 levels (HR 2.70, 95% CI: 1.60-4.55). PM 2.5 × CHIP is also associated with significantly greater markers of systemic inflammation (CRP, IL-6, and IL-1β) than expected. Altogether, these results suggest CHIP and PM 2.5 form a novel gene × environment interaction promoting NSCLC tumorigenesis in non-smokers.
Collapse
|
85
|
Tao G, Liao W, Hou J, Jiang X, Deng X, Chen G, Ding C. Advances in crosstalk among innate immune pathways activated by mitochondrial DNA. Heliyon 2024; 10:e24029. [PMID: 38268572 PMCID: PMC10806296 DOI: 10.1016/j.heliyon.2024.e24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Mitochondria are not only the power plant for intracellular oxidative phosphorylation and ATP synthesis, but also involved in cell proliferation, differentiation, signaling and apoptosis. Recent studies have shown that mitochondria play an important role in other pathophysiological functions in addition to cellular energy metabolism. Mitochondria release mitochondrial DNA (mtDNA) as a damage-associated molecular pattern (DAMP) to activate Toll-like receptor 9 (TLR9), NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune signaling pathways against foreign pathogenic microorganisms. The innate immune response not only promotes antimicrobial immune defense and regulates antiviral signaling, but their overactivation also induces the onset and progression of inflammatory diseases. In this paper, we review the role of mtDNA in the activation of innate immune signaling pathways and the crosstalk among innate immune signaling pathways activated by mtDNA, providing clues for the study of inflammatory diseases caused by mtDNA cytoplasmic translocation.
Collapse
Affiliation(s)
- Guangwei Tao
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital of Anhui Medical University, Clinical Immunology Institute, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenyan Liao
- The First Affiliated Hospital, Department of Gynaecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jiafeng Hou
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinmiao Jiang
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xin Deng
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- The First Affiliated Hospital, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
86
|
Song J, Wu J, Robichaux DJ, Li T, Wang S, Arredondo Sancristobal MJ, Dong B, Dobrev D, Karch J, Thomas SS, Li N. A High-Protein Diet Promotes Atrial Arrhythmogenesis via Absent-in-Melanoma 2 Inflammasome. Cells 2024; 13:108. [PMID: 38247800 PMCID: PMC10814244 DOI: 10.3390/cells13020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
High-protein diets (HPDs) offer health benefits, such as weight management and improved metabolic profiles. The effects of HPD on cardiac arrhythmogenesis remain unclear. Atrial fibrillation (AF), the most common arrhythmia, is associated with inflammasome activation. The role of the Absent-in-Melanoma 2 (AIM2) inflammasome in AF pathogenesis remains unexplored. In this study, we discovered that HPD increased susceptibility to AF. To demonstrate the involvement of AIM2 signaling in the pathogenesis of HPD-induced AF, wildtype (WT) and Aim2-/- mice were fed normal-chow (NC) and HPD, respectively. Four weeks later, inflammasome activity was upregulated in the atria of WT-HPD mice, but not in the Aim2-/--HPD mice. The increased AF vulnerability in WT-HPD mice was associated with abnormal sarcoplasmic reticulum (SR) Ca2+-release events in atrial myocytes. HPD increased the cytoplasmic double-strand (ds) DNA level, causing AIM2 activation. Genetic inhibition of AIM2 in Aim2-/- mice reduced susceptibility to AF, cytoplasmic dsDNA level, mitochondrial ROS production, and abnormal SR Ca2+-release in atrial myocytes. These data suggest that HPD creates a substrate conducive to AF development by activating the AIM2-inflammasome, which is associated with mitochondrial oxidative stress along with proarrhythmic SR Ca2+-release. Our data imply that targeting the AIM2 inflammasome might constitute a novel anti-AF strategy in certain patient subpopulations.
Collapse
Affiliation(s)
- Jia Song
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA (M.J.A.S.)
| | - Jiao Wu
- Department of Medicine, Section of Nephrology, Houston, TX 77030, USA
| | - Dexter J. Robichaux
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA (D.D.)
| | - Tingting Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA (M.J.A.S.)
| | - Shuyue Wang
- Department of Medicine, Section of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Bingning Dong
- Department of Medicine, Section of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dobromir Dobrev
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA (D.D.)
- Institute of Pharmacology, University Duisburg-Essen, 45147 Essen, Germany
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA (D.D.)
| | - Sandhya S. Thomas
- Department of Medicine, Section of Nephrology, Houston, TX 77030, USA
- Michael E. Debakey VA Medical Center, Houston, TX 77030, USA
| | - Na Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA (M.J.A.S.)
| |
Collapse
|
87
|
Liu K, Wang H, Wang Y, Zhang X, Wang R, Zhang Z, Wang J, Lu X, Wu X, Han Y. Exploring the therapeutic potential of Sirt6-enriched adipose stem cell-derived exosomes in myocardial ischemia-reperfusion injury: unfolding new epigenetic frontiers. Clin Epigenetics 2024; 16:7. [PMID: 38172884 PMCID: PMC10765803 DOI: 10.1186/s13148-023-01618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The management of myocardial ischemia-reperfusion injury (MIRI) presents continuous therapeutic challenges. NAD-dependent deacetylase Sirtuin 6 (Sirt6) plays distinct roles in various disease contexts and is hence investigated for potential therapeutic applications for MIRI. This study aimed to examine the impact of Sirt6-overexpressing exosomes derived from adipose stem cells (S-ASC-Exo) on MIRI, focusing on their influence on AIM2-pyroptosis and mitophagy processes. The sirtuin family of proteins, particularly Sirtuin 6 (Sirt6), play a pivotal role in these processes. This study aimed to explore the potential therapeutic effects of Sirt6-enriched exosomes derived from adipose stem cells (S-ASC-Exo) on regulating MIRI. RESULTS Bioinformatic analysis revealed a significant downregulation of Sirt6 in MIRI subjected to control group, causing a consequential increase in mitophagy and pyroptosis regulator expressions. Therefore, our study revealed that Sirt6-enriched exosomes influenced the progression of MIRI through the regulation of target proteins AIM2 and GSDMD, associated with pyroptosis, and p62 and Beclin-1, related to mitophagy. The introduction of S-ASC-Exo inhibited AIM2-pyroptosis while enhancing mitophagy. Consequently, this led to a significant reduction of GSDMD cleavage and pyroptosis in endothelial cells, catalyzing a deceleration in the progression of atherosclerosis. Extensive in vivo and in vitro assays were performed to validate the expressions of these specific genes and proteins, which affirmed the dynamic modulation by Sirt6-enriched exosomes. Furthermore, treatment with S-ASC-Exo drastically ameliorated cardiac functions and limited infarct size, underlining their cardioprotective attributes. CONCLUSIONS Our study underscores the potential therapeutic role of Sirt6-enriched exosomes in managing MIRI. We demonstrated their profound cardioprotective effect, evident in the enhanced cardiac function and attenuated tissue damage, through the strategic modulation of AIM2-pyroptosis and mitophagy. Given the intricate interplay between Sirt6 and the aforementioned processes, a comprehensive understanding of these pathways is essential to fully exploit the therapeutic potential of Sirt6. Altogether, our findings indicate the promise of Sirt6-enriched exosomes as a novel therapeutic strategy in treating ischemia-reperfusion injuries and cardiovascular diseases at large. Future research needs to underscore optimizing the balance of mitophagy during myocardial ischemia to avoid potential loss of normal myocytes.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiac Surgery, Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Hecheng Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yiou Wang
- Department of Anesthesiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Ruihu Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoxuan Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jian Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xinran Lu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China.
| |
Collapse
|
88
|
Lin A, Brittan M, Baker AH, Dimmeler S, Fisher EA, Sluimer JC, Misra A. Clonal Expansion in Cardiovascular Pathology. JACC Basic Transl Sci 2024; 9:120-144. [PMID: 38362345 PMCID: PMC10864919 DOI: 10.1016/j.jacbts.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 02/17/2024]
Abstract
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H. Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Edward A. Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, New York, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Judith C. Sluimer
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
89
|
Li X, Clarke MCH. Expansion of fibroblast-like cells may explain the CANTOS meta-analysis findings for patients with clonal hematopoiesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:23-25. [PMID: 39195901 DOI: 10.1038/s44161-023-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Xuan Li
- The University of Cambridge, Victor Phillip Dahdaleh Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge, UK.
| | - Murray C H Clarke
- The University of Cambridge, Victor Phillip Dahdaleh Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
90
|
Wu C, Zheng P, Ma L, Xu C, Hu L, Yang Z, Fei F, Shen Z, Zhang X, Wu Z, Cheng H, Mao W, Ke Y. Protein Tyrosine Phosphatase SHP2 in Macrophages Acts as an Antiatherosclerotic Regulator in Mice. Arterioscler Thromb Vasc Biol 2024; 44:202-217. [PMID: 37942607 DOI: 10.1161/atvbaha.123.319663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Macrophages have versatile roles in atherosclerosis. SHP2 (Src homology 2 containing protein tyrosine phosphatase 2) has been demonstrated to play a critical role in regulating macrophage activation. However, the mechanism of SHP2 regulation of macrophage function in an atherosclerotic microenvironment remains unknown. METHODS APOE (apolipoprotein E) or LDLR (low-density lipoprotein receptor) null mice treated with SHP099 were fed a Western diet for 8 weeks, while Shp2MKO:ApoE-/- or Shp2MKO:Ldlr-/- mice and exo-AAV8-SHP2E76K/ApoE-/- mice were fed a Western diet for 12 weeks. In vitro, levels of proinflammatory factors and phagocytic function were then studied in mouse peritoneal macrophages. RNA sequencing was used to identify PPARγ (peroxisome proliferative activated receptor γ) as the key downstream molecule. A PPARγ agonist was used to rescue the phenotypes observed in SHP2-deleted mice. RESULTS Pharmacological inhibition and selective deletion in macrophages of SHP2 aggravated atherosclerosis in APOE and LDLR null mice with increased plaque macrophages and apoptotic cells. In vitro, SHP2 deficiency in APOE and LDLR null macrophages enhanced proinflammatory polarization and its efferocytosis was dramatically impaired. Conversely, the expression of gain-of-function mutation of SHP2 in mouse macrophages reduced atherosclerosis. The SHP2 agonist lovastatin repressesed macrophage inflammatory activation and enhanced efferocytosis. Mechanistically, RNA sequencing analysis identified PPARγ as a key downstream transcription factor. PPARγ was decreased in macrophages upon SHP2 deletion and inhibition. Importantly, PPARγ agonist decreased atherosclerosis in SHP2 knockout mice, restored efferocytotic defects, and reduced inflammatory activation in SHP2 deleted macrophages. PPARγ was decreased by the ubiquitin-mediated degradation upon SHP2 inhibition or deletion. Finally, we found that SHP2 was downregulated in atherosclerotic vessels. CONCLUSIONS Overall, SHP2 in macrophages was found to act as an antiatherosclerotic regulator by stabilizing PPARγ in APOE/LDLR null mice.
Collapse
Affiliation(s)
- Chenxia Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China (C.W., L.H.)
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China (C.W., L.H., W.M.)
| | - Peiyao Zheng
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Ma
- Department of Cardiology, Affiliated Hospital of Nantong University, China (L.M.)
| | - Chen Xu
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Luoxia Hu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China (C.W., L.H.)
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China (C.W., L.H., W.M.)
| | - Zhiyi Yang
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (F.F.)
| | - Zhuxia Shen
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, China (Z.S.)
| | - Xue Zhang
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital (X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| | - Ziheng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (Z.W.)
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Mao
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital (P.Z., C.X., Z.Y., H.C.), Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Zhejiang Hospital (W.M.), Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital (X.Z., Y.K.), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
91
|
Jia Y, Cheng L, Yang J, Mao J, Xie Y, Yang X, Zhang X, Wang D, Zhao Z, Schober A, Wei Y. miR-223-3p Prevents Necroptotic Macrophage Death by Targeting Ripk3 in a Negative Feedback Loop and Consequently Ameliorates Advanced Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:218-237. [PMID: 37970714 DOI: 10.1161/atvbaha.123.319776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND The formation of large necrotic cores results in vulnerable atherosclerotic plaques, which can lead to severe cardiovascular diseases. However, the specific regulatory mechanisms underlying the development of necrotic cores remain unclear. METHODS To evaluate how the modes of lesional cell death are reprogrammed during the development of atherosclerosis, the expression levels of key proteins that are involved in the necroptotic, apoptotic, and pyroptotic pathways were compared between different stages of plaques in humans and mice. Luciferase assays and loss-of-function studies were performed to identify the microRNA-mediated regulatory mechanism that protects foamy macrophages from necroptotic cell death. The role of this mechanism in atherosclerosis was determined by using a knockout mouse model with perivascular drug administration and tail vein injection of microRNA inhibitors in Apoe-/- mice. RESULTS Here, we demonstrate that the necroptotic, rather than the apoptotic or pyroptotic, pathway is more activated in advanced unstable plaques compared with stable plaques in both humans and mice, which closely correlates with necrotic core formation. The upregulated expression of Ripk3 (receptor-interacting protein kinase 3) promotes the C/EBPβ (CCAAT/enhancer binding protein beta)-dependent transcription of the microRNA miR-223-3p, which conversely inhibits Ripk3 expression and forms a negative feedback loop to regulate the necroptosis of foamy macrophages. The knockout of the Mir223 gene in bone marrow cells accelerates atherosclerosis in Apoe-/- mice, but this effect can be rescued by Ripk3 deficiency or treatment with the necroptosis inhibitors necrostatin-1 and GSK-872. Like the Mir223 knockout, treating Apoe-/- mice with miR-223-3p inhibitors increases atherosclerosis. CONCLUSIONS Our study suggests that miR-223-3p expression in macrophages protects against atherosclerotic plaque rupture by limiting the formation of necrotic cores, thus providing a potential microRNA therapeutic candidate for atherosclerosis.
Collapse
Affiliation(s)
- Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Lianping Cheng
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Jiaxuan Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Jiaqi Mao
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Xian Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Xin Zhang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Dingxin Wang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Zhen Zhao
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, China (Z.Z.)
- Vascular Center of Shanghai Jiaotong University, China (Z.Z.)
| | - Andreas Schober
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
- Experimental Vascular Medicine (EVM), Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany (A.S.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.)
| | - Yuanyuan Wei
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
- Shanghai Key Laboratory of Bioactive Small Molecules and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences (Y.W.), Fudan University, China
| |
Collapse
|
92
|
Vande Walle L, Lamkanfi M. Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nat Rev Drug Discov 2024; 23:43-66. [PMID: 38030687 DOI: 10.1038/s41573-023-00822-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Diseases associated with chronic inflammation constitute a major health burden across the world. As central instigators of the inflammatory response to infection and tissue damage, inflammasomes - and the NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome in particular - have emerged as key regulators in diverse rheumatic, metabolic and neurodegenerative diseases. Similarly to other inflammasome sensors, NLRP3 assembles a cytosolic innate immune complex that activates the cysteine protease caspase-1, which in turn cleaves gasdermin D (GSDMD) to induce pyroptosis, a regulated mode of lytic cell death. Pyroptosis is highly inflammatory, partly because of the concomitant extracellular release of the inflammasome-dependent cytokines IL-1β and IL-18 along with a myriad of additional danger signals and intracellular antigens. Here, we discuss how NLRP3 and downstream inflammasome effectors such as GSDMD, apoptosis-associated speck-like protein containing a CARD (ASC) and nerve injury-induced protein 1 (NINJ1) have gained significant traction as therapeutic targets. We highlight the recent progress in developing small-molecule and biologic inhibitors that are advancing into the clinic and serving to harness the broad therapeutic potential of modulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lieselotte Vande Walle
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
93
|
Fidler TP, Dunbar A, Kim E, Hardaway B, Pauli J, Xue C, Abramowicz S, Xiao T, O’Connor K, Sachs N, Wang N, Maegdefessel L, Levine R, Reilly M, Tall AR. Suppression of IL-1β promotes beneficial accumulation of fibroblast-like cells in atherosclerotic plaques in clonal hematopoiesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:60-75. [PMID: 38362011 PMCID: PMC10868728 DOI: 10.1038/s44161-023-00405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/30/2023] [Indexed: 02/17/2024]
Abstract
Clonal hematopoiesis (CH) is an independent risk factor for atherosclerotic cardiovascular disease. Murine models of CH suggest a central role of inflammasomes and IL-1β in accelerated atherosclerosis and plaque destabilization. Here we show using single-cell RNA sequencing in human carotid plaques that inflammasome components are enriched in macrophages, while the receptor for IL-1β is enriched in fibroblasts and smooth muscle cells (SMCs). To address the role of inflammatory crosstalk in features of plaque destabilization, we conducted SMC fate mapping in Ldlr-/- mice modeling Jak2VF or Tet2 CH treated with IL-1β antibodies. Unexpectedly, this treatment minimally affected SMC differentiation, leading instead to a prominent expansion of fibroblast-like cells. Depletion of fibroblasts from mice treated with IL-1β antibody resulted in thinner fibrous caps. Conversely, genetic inactivation of Jak2VF during plaque regression promoted fibroblast accumulation and fibrous cap thickening. Our studies suggest that suppression of inflammasomes promotes plaque stabilization by recruiting fibroblast-like cells to the fibrous cap.
Collapse
Affiliation(s)
- Trevor P. Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of San Francisco, San Francisco, CA, USA
| | - Andrew Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Brian Hardaway
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica Pauli
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Chenyi Xue
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadja Sachs
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Muredach Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
94
|
Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. Blood 2023; 142:2235-2246. [PMID: 37931207 PMCID: PMC10862247 DOI: 10.1182/blood.2023022222] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is described as the outsized contribution of expanded clones of hematopoietic stem and progenitor cells (HSPCs) to blood cell production. The prevalence of CH increases dramatically with age. CH can be caused by somatic mutations in individual genes or by gains and/or losses of larger chromosomal segments. CH is a premalignant state; the somatic mutations detected in CH are the initiating mutations for hematologic malignancies, and CH is a strong predictor of the development of blood cancers. Moreover, CH is associated with nonmalignant disorders and increased overall mortality. The somatic mutations that drive clonal expansion of HSPCs can alter the function of terminally differentiated blood cells, including the release of elevated levels of inflammatory cytokines. These cytokines may then contribute to a broad range of inflammatory disorders that increase in prevalence with age. Specific somatic mutations in the peripheral blood in coordination with blood count parameters can powerfully predict the development of hematologic malignancies and overall mortality in CH. In this review, we summarize the current understanding of CH nosology and origins. We provide an overview of available tools for risk stratification and discuss management strategies for patients with CH presenting to hematology clinics.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
95
|
Cacic AM, Schulz FI, Germing U, Dietrich S, Gattermann N. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023; 13:1303785. [PMID: 38162500 PMCID: PMC10754976 DOI: 10.3389/fonc.2023.1303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has fascinated the medical community for some time. Discovered about a decade ago, this phenomenon links age-related alterations in hematopoiesis not only to the later development of hematological malignancies but also to an increased risk of early-onset cardiovascular disease and some other disorders. CHIP is detected in the blood and is characterized by clonally expanded somatic mutations in cancer-associated genes, predisposing to the development of hematologic neoplasms such as MDS and AML. CHIP-associated mutations often involve DNA damage repair genes and are frequently observed following prior cytotoxic cancer therapy. Genetic predisposition seems to be a contributing factor. It came as a surprise that CHIP significantly elevates the risk of myocardial infarction and stroke, and also contributes to heart failure and pulmonary hypertension. Meanwhile, evidence of mutant clonal macrophages in vessel walls and organ parenchyma helps to explain the pathophysiology. Besides aging, there are some risk factors promoting the appearance of CHIP, such as smoking, chronic inflammation, chronic sleep deprivation, and high birth weight. This article describes fundamental aspects of CHIP and explains its association with hematologic malignancies, cardiovascular disorders, and other medical conditions, while also exploring potential progress in the clinical management of affected individuals. While it is important to diagnose conditions that can lead to adverse, but potentially preventable, effects, it is equally important not to stress patients by confronting them with disconcerting findings that cannot be remedied. Individuals with diagnosed or suspected CHIP should receive counseling in a specialized outpatient clinic, where professionals from relevant medical specialties may help them to avoid the development of CHIP-related health problems. Unfortunately, useful treatments and clinical guidelines for managing CHIP are still largely lacking. However, there are some promising approaches regarding the management of cardiovascular disease risk. In the future, strategies aimed at restoration of gene function or inhibition of inflammatory mediators may become an option.
Collapse
Affiliation(s)
- Anna Maria Cacic
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|
96
|
Yan B, Yuan Q, Guryanova OA. Epigenetic Mechanisms in Hematologic Aging and Premalignant Conditions. EPIGENOMES 2023; 7:32. [PMID: 38131904 PMCID: PMC10743085 DOI: 10.3390/epigenomes7040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are essential for maintaining overall health by continuously generating blood cells throughout an individual's lifespan. However, as individuals age, the hematopoietic system undergoes significant functional decline, rendering them more susceptible to age-related diseases. Growing research evidence has highlighted the critical role of epigenetic regulation in this age-associated decline. This review aims to provide an overview of the diverse epigenetic mechanisms involved in the regulation of normal HSCs during the aging process and their implications in aging-related diseases. Understanding the intricate interplay of epigenetic mechanisms that contribute to aging-related changes in the hematopoietic system holds great potential for the development of innovative strategies to delay the aging process. In fact, interventions targeting epigenetic modifications have shown promising outcomes in alleviating aging-related phenotypes and extending lifespan in various animal models. Small molecule-based therapies and reprogramming strategies enabling epigenetic rejuvenation have emerged as effective approaches for ameliorating or even reversing aging-related conditions. By acquiring a deeper understanding of these epigenetic mechanisms, it is anticipated that interventions can be devised to prevent or mitigate the rates of hematologic aging and associated diseases later in life. Ultimately, these advancements have the potential to improve overall health and enhance the quality of life in aging individuals.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | | | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
97
|
Sébert M. Next-generation therapy for lower-risk MDS. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:59-64. [PMID: 38066862 PMCID: PMC10727062 DOI: 10.1182/hematology.2023000520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Myelodysplastic syndromes (MDS) are malignant myeloid neoplasms characterized by ineffective clonal hematopoiesis leading to peripheral blood cytopenia and a variable risk of transformation to acute myeloid leukemia. In lower-risk (LR) MDS, as defined by prognostic scoring systems recently updated with the addition of a mutation profile, therapeutic options aim to reduce cytopenia, mainly anemia. Although options for reducing the transfusion burden have recently been improved, erythropoiesis-stimulating agents (ESAs), lenalidomide, hypomethylating agents, and, more recently, luspatercept have shown efficacy in rarely more than 50% of patients with a duration of response often far inferior to the patient's life expectancy. Nevertheless, several new therapies are currently under investigation aiming at improving cytopenia in patients with LR-MDS, mostly by targeting different biological pathways. Targeting ligands of the transforming growth factor β pathway has led to the approval of luspatercept in LR-MDS with ring sideroblasts or SF3B1 mutation, potentially replacing first-line ESAs in this population. Here, we also discuss the evolving standard of care for the treatment of LR-MDS and explore some of the most promising next-generation agents under investigation.
Collapse
Affiliation(s)
- Marie Sébert
- Saint-Louis Hospital (AP-HP) and Université de Paris Cité and INSERM U944, Paris, France
| |
Collapse
|
98
|
Oyama N, Iwamoto T, Doyu K, Miyazato S, Okazaki T, Yamada S, Kondo T, Wada H, Yagita Y. JAK2 V617F Mutation and Large Cerebral Artery Disease in Patients with Myeloproliferative Neoplasms. J Atheroscler Thromb 2023; 30:1917-1926. [PMID: 37344447 DOI: 10.5551/jat.64118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
AIM The aim of the present study was to clarify the association between the Janus kinase 2 (JAK2) V617F mutation and large cerebral artery disease (LCAD) in patients with myeloproliferative neoplasms (MPNs). METHODS We retrospectively analysed patients diagnosed with MPNs between June 1992 and June 2022 who underwent brain magnetic resonance imaging. LCAD was defined as extracranial or intracranial large artery stenosis (≥ 50%) or occlusion on magnetic resonance angiography. RESULTS A total of 86 patients (47 males; median age, 69 years old) were enrolled in this study. JAK2 V617F mutation was detected in 63 (73.3%) patients and LCAD in 35 (40.7%) patients. Univariate analysis showed that history of ischaemic stroke (LCAD, 62.9% vs. non-LCAD, 11.8%; P<0.001), JAK2 V617F mutation (91.4% vs. 60.8%, P=0.002), and age ≥ 60 years (85.7% vs. 60.8%, P=0.016) were significantly associated with LCAD. Multiple logistic regression analysis showed that, in addition to ischaemic stroke, age ≥ 60 years and diabetes mellitus, JAK2 V617F mutation (odds ratio 29.2, 95% confidence interval 1.2-709.8, P=0.038) was independently associated with LCAD. LCAD was frequently observed in the intracranial carotid (14/35, 40.0%) and middle cerebral (13/35, 37.1%) arteries. CONCLUSIONS This study revealed a significant association between the JAK2 V617F mutation and LCAD in patients with MPNs. This suggests that the JAK2 V617F mutation may promote cerebrovascular atherosclerosis and could be very important in determining therapeutic strategies for patients with not only JAK2 V617F-mutated MPNs but also LCAD-related stroke.
Collapse
Affiliation(s)
- Naoki Oyama
- Department of Stroke Medicine, Kawasaki Medical School
| | | | - Keito Doyu
- Department of Stroke Medicine, Kawasaki Medical School
| | - Saki Miyazato
- Department of Stroke Medicine, Kawasaki Medical School
| | | | - Seiko Yamada
- Department of Hematology, Kawasaki Medical School
| | | | - Hideho Wada
- Department of Hematology, Kawasaki Medical School
| | | |
Collapse
|
99
|
Zhang S, Liu C, Sun J, Li Y, Lu J, Xiong X, Hu L, Zhao H, Zhou H. Bridging the Gap: Investigating the Link between Inflammasomes and Postoperative Cognitive Dysfunction. Aging Dis 2023; 14:1981-2002. [PMID: 37450925 PMCID: PMC10676784 DOI: 10.14336/ad.2023.0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/01/2023] [Indexed: 07/18/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a cluster of cognitive problems that may arise after surgery. POCD symptoms include memory loss, focus inattention, and communication difficulties. Inflammasomes, intracellular multiprotein complexes that control inflammation, may have a significant role in the development of POCD. It has been postulated that the NLRP3 inflammasome promotes cognitive impairment by triggering the inflammatory response in the brain. Nevertheless, there are many gaps in the current literature to understand the underlying pathophysiological mechanisms and develop future therapy. This review article underlines the limits of our current knowledge about the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome and POCD. We first discuss inflammasomes and their types, structures, and functions, then summarize recent evidence of the NLRP3 inflammasome's involvement in POCD. Next, we propose a hypothesis that suggests the involvement of inflammasomes in multiple organs, including local surgical sites, blood circulation, and other peripheral organs, leading to systemic inflammation and subsequent neuronal dysfunction in the brain, resulting in POCD. Research directions are then discussed, including analyses of inflammasomes in more clinical POCD animal models and clinical trials, studies of inflammasome types that are involved in POCD, and investigations into whether inflammasomes occur at the surgical site, in circulating blood, and in peripheral organs. Finally, we discuss the potential benefits of using new technologies and approaches to study inflammasomes in POCD. A thorough investigation of inflammasomes in POCD might substantially affect clinical practice.
Collapse
Affiliation(s)
- Siyu Zhang
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jintao Sun
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Yang Li
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Jian Lu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Heng Zhao
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Hongmei Zhou
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| |
Collapse
|
100
|
Liu Z, Chen Y, Mei Y, Yan M, Liang H. Gasdermin D-Mediated Pyroptosis in Diabetic Cardiomyopathy: Molecular Mechanisms and Pharmacological Implications. Molecules 2023; 28:7813. [PMID: 38067543 PMCID: PMC10708146 DOI: 10.3390/molecules28237813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition triggered by diabetes mellitus (DM), which can lead to heart failure (HF). One of the most important cellular processes associated with DCM is the death of cardiomyocytes. Gasdermin D (GSDMD) plays a key role in mediating pyroptosis, a type of programmed cell death closely associated with inflammasome activation. Recent studies have revealed that pyroptosis is induced during hyperglycemia, which is crucial to the development of DCM. Although the effects of pyroptosis on DCM have been discussed, the relationship between DCM and GSDMD is not fully clarified. Recent studies gave us the impetus for clarifying the meaning of GSDMD in DCM. The purpose of this review is to summarize new and emerging insights, mainly discussing the structures of GSDMD and the mechanism of pore formation, activation pathways, molecular mechanisms of GSDMD-mediated pyroptosis, and the therapeutic potential of GSDMD in DCM. The implications of this review will pave the way for a new therapeutic target in DCM.
Collapse
Affiliation(s)
- Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yifan Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Haihai Liang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Z.L.); (Y.C.); (Y.M.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| |
Collapse
|