51
|
Gurung B, Stricklin M, Wang S. Gut Microbiota-Gut Metabolites and Clostridioides difficile Infection: Approaching Sustainable Solutions for Therapy. Metabolites 2024; 14:74. [PMID: 38276309 PMCID: PMC10819375 DOI: 10.3390/metabo14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is the most common hospital-acquired infection. With the combination of a high rate of antibiotic resistance and recurrence, it has proven to be a debilitating public health threat. Current treatments for CDI include antibiotics and fecal microbiota transplantation, which contribute to recurrent CDIs and potential risks. Therefore, there is an ongoing need to develop new preventative treatment strategies for CDI. Notably, gut microbiota dysbiosis is the primary risk factor for CDI and provides a promising target for developing novel CDI therapy approaches. Along with gut microbiota dysbiosis, a reduction in important gut metabolites like secondary bile acids and short-chain fatty acids (SCFAs) were also seen in patients suffering from CDI. In this review study, we investigated the roles and mechanisms of gut microbiota and gut microbiota-derived gut metabolites, especially secondary bile acids and SCFAs in CDI pathogenesis. Moreover, specific signatures of gut microbiota and gut metabolites, as well as different factors that can modulate the gut microbiota, were also discussed, indicating that gut microbiota modulators like probiotics and prebiotics can be a potential therapeutic strategy for CDI as they can help restore gut microbiota and produce gut metabolites necessary for a healthy gut. The understanding of the associations between gut microbiota-gut metabolites and CDI will allow for developing precise and sustainable approaches, distinct from antibiotics and fecal transplant, for mitigating CDI and other gut microbiota dysbiosis-related diseases.
Collapse
Affiliation(s)
- Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Maranda Stricklin
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (B.G.); (M.S.)
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
52
|
Zhou R, Wu Q, Yang Z, Cai Y, Wang D, Wu D. The Role of the Gut Microbiome in the Development of Acute Pancreatitis. Int J Mol Sci 2024; 25:1159. [PMID: 38256232 PMCID: PMC10816839 DOI: 10.3390/ijms25021159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
With the explosion research on the gut microbiome in the recent years, much insight has been accumulated in comprehending the crosstalk between the gut microbiota community and host health. Acute pancreatitis (AP) is one of the gastrointestinal diseases associated with significant morbidity and subsequent mortality. Studies have elucidated that gut microbiota are engaged in the pathological process of AP. Herein, we summarize the major roles of the gut microbiome in the development of AP. We then portray the association between dysbiosis of the gut microbiota and the severity of AP. Finally, we illustrate the promises and challenges that arise when seeking to incorporate the microbiome in acute pancreatitis treatment.
Collapse
Affiliation(s)
- Ruilin Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
| | - Qingyang Wu
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Q.W.); (D.W.)
| | - Zihan Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
| | - Yanna Cai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
| | - Duan Wang
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Q.W.); (D.W.)
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (R.Z.); (Z.Y.); (Y.C.)
- Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
53
|
Smith AB, Specker JT, Hewlett KK, Scoggins TR, Knight M, Lustig AM, Li Y, Evans KM, Guo Y, She Q, Christopher MW, Garrett TJ, Moustafa AM, Van Tyne D, Prentice BM, Zackular JP. Liberation of host heme by Clostridioides difficile-mediated damage enhances Enterococcus faecalis fitness during infection. mBio 2024; 15:e0165623. [PMID: 38078767 PMCID: PMC10790701 DOI: 10.1128/mbio.01656-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Clostridioides difficile and Enterococcus faecalis are two pathogens of great public health importance. Both bacteria colonize the human gastrointestinal tract where they are known to interact in ways that worsen disease outcomes. We show that the damage associated with C. difficile infection (CDI) releases nutrients that benefit E. faecalis. One particular nutrient, heme, allows E. faecalis to use oxygen to generate energy and grow better in the gut. Understanding the mechanisms of these interspecies interactions could inform therapeutic strategies for CDI.
Collapse
Affiliation(s)
- Alexander B. Smith
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Katharine K. Hewlett
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Troy R. Scoggins
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Montana Knight
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail M. Lustig
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanhong Li
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Kirsten M. Evans
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingchan Guo
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Qianxuan She
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Timothy J. Garrett
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Ahmed M. Moustafa
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
54
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid-altering enzymes impacts bacterial fitness and the global metabolic transcriptome. Microbiol Spectr 2024; 12:e0357623. [PMID: 38018975 PMCID: PMC10783122 DOI: 10.1128/spectrum.03576-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Recent work on bile salt hydrolases (BSHs) in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it are not well understood. In this study, we set out to define if and how Bacteroides thetaiotaomicron (B. theta) uses its BSHs and hydroxysteroid dehydrogenase to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid-altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci. This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Department of Biological Sciences, Genetics Program, College of Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew H. Foley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
55
|
Zhang JX, Luo WM, Wang BW, Li RT, Zhang Q, Zhang XY, Fang ZZ, Zhang ZP. The association between plasma free amino acids and type 2 diabetes mellitus complicated with infection in Chinese patients. Diabetol Metab Syndr 2024; 16:9. [PMID: 38191455 PMCID: PMC10775586 DOI: 10.1186/s13098-023-01203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), one of the most common public diseases threatening human health, is always accompanied by infection. Though there are still a variety of flaws in the treatment of some infectious diseases, metabolomics provides a fresh perspective to explore the relationship between T2DM and infection. Our research aimed to investigate the association between plasma free amino acids (PFAAs) and T2DM complicated with infection in Chinese patients. METHODS A cross-sectional study was conducted from May 2015 to August 2016. We retrieved the medical records of 1032 inpatients with T2DM from Liaoning Medical University First Affiliated Hospital and we used mass spectrometry to quantify 23 PFAAs. Infections contained 15 individual categories that could be retrieved from the database. Principal component analysis was used to extract factors of PFAAs. Multi-variable binary logistic regression was used to obtain odds ratios (OR) and their 95% confidence intervals (CI). RESULTS Among 1032 inpatients,109 (10.6%) had infectious diseases. Six factors, accounting for 68.6% of the total variance, were extracted. Factor 4 consisted of Glu, Asp and Orn. Factor 5 consisted of Hcy and Pip. After adjusting for potential confounders, factor 4 was positively correlated with T2DM complicated with infection in Chinese T2DM patients (OR: 1.27, 95%CI: 1.06-1.52). Individual Hcy in factor 5 was positively associated with T2DM complicated with infection (OR: 1.33, 95%CI: 1.08-1.64). Furthermore, factor 4 (OR: 1.44, 95%CI: 1.11-1.87), Orn (OR: 1.01, 95%CI: 1.00-1.02) and Hcy (OR: 1.56, 95%CI: 1.14-3.14) were positively associated with bacterial infection in Chinese T2DM patients, while factor 5 (OR: 0.71, 95%CI: 0.50-1.00) was negatively associated with bacterial infection. CONCLUSIONS Urea cycle-related metabolites (Orn, Asp, Glu) and Hcy were positively associated with T2DM complicated with infection in China. Orn and Hcy were positively associated with bacterial infection in T2DM patients in China.
Collapse
Affiliation(s)
- Jing-Xi Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Wei-Ming Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Bo-Wen Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Ru-Tao Li
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Qian Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Xiang-Yu Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China.
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300041, China.
| | - Zhi-Peng Zhang
- General Surgery of Peking University Third Hospital, Beijing, China
| |
Collapse
|
56
|
Xiong X, Othmer HG, Harcombe WR. Emergent antibiotic persistence in a spatially structured synthetic microbial mutualism. THE ISME JOURNAL 2024; 18:wrae075. [PMID: 38691424 PMCID: PMC11104777 DOI: 10.1093/ismejo/wrae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Antibiotic persistence (heterotolerance) allows a subpopulation of bacteria to survive antibiotic-induced killing and contributes to the evolution of antibiotic resistance. Although bacteria typically live in microbial communities with complex ecological interactions, little is known about how microbial ecology affects antibiotic persistence. Here, we demonstrated within a synthetic two-species microbial mutualism of Escherichia coli and Salmonella enterica that the combination of cross-feeding and community spatial structure can emergently cause high antibiotic persistence in bacteria by increasing the cell-to-cell heterogeneity. Tracking ampicillin-induced death for bacteria on agar surfaces, we found that E. coli forms up to 55 times more antibiotic persisters in the cross-feeding coculture than in monoculture. This high persistence could not be explained solely by the presence of S. enterica, the presence of cross-feeding, average nutrient starvation, or spontaneous resistant mutations. Time-series fluorescent microscopy revealed increased cell-to-cell variation in E. coli lag time in the mutualistic co-culture. Furthermore, we discovered that an E. coli cell can survive antibiotic killing if the nearby S. enterica cells on which it relies die first. In conclusion, we showed that the high antibiotic persistence phenotype can be an emergent phenomenon caused by a combination of cross-feeding and spatial structure. Our work highlights the importance of considering spatially structured interactions during antibiotic treatment and understanding microbial community resilience more broadly.
Collapse
Affiliation(s)
- Xianyi Xiong
- Department of Ecology, Evolution, and Behavior, BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
- Division of Community Health & Epidemiology, University of Minnesota School of Public Health, Minneapolis, MN 55454, United States
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States
| | - William R Harcombe
- Department of Ecology, Evolution, and Behavior, BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
57
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
58
|
McMillan AS, Theriot CM. Bile acids impact the microbiota, host, and C. difficile dynamics providing insight into mechanisms of efficacy of FMTs and microbiota-focused therapeutics. Gut Microbes 2024; 16:2393766. [PMID: 39224076 PMCID: PMC11376424 DOI: 10.1080/19490976.2024.2393766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Clostridioides difficile is a major nosocomial pathogen, causing significant morbidity and mortality worldwide. Antibiotic usage, a major risk factor for Clostridioides difficile infection (CDI), disrupts the gut microbiota, allowing C. difficile to proliferate and cause infection, and can often lead to recurrent CDI (rCDI). Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as effective treatments for rCDI and aim to restore colonization resistance provided by a healthy gut microbiota. However, much is still unknown about the mechanisms mediating their success. Bile acids, extensively modified by gut microbes, affect C. difficile's germination, growth, and toxin production while also shaping the gut microbiota and influencing host immune responses. Additionally, microbial interactions, such as nutrient competition and cross-feeding, contribute to colonization resistance against C. difficile and may contribute to the success of microbiota-focused therapeutics. Bile acids as well as other microbial mediated interactions could have implications for other diseases being treated with microbiota-focused therapeutics. This review focuses on the intricate interplay between bile acid modifications, microbial ecology, and host responses with a focus on C. difficile, hoping to shed light on how to move forward with the development of new microbiota mediated therapeutic strategies to combat rCDI and other intestinal diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
59
|
Tejada JN, Walters WA, Wang Y, Kordahi M, Chassaing B, Pickard J, Nunez G, Ley R, Gewirtz AT. Prevention and cure of murine C. difficile infection by a Lachnospiraceae strain. Gut Microbes 2024; 16:2392872. [PMID: 39189608 DOI: 10.1080/19490976.2024.2392872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
We sought to better understand how intestinal microbiota confer protection against Clostridioides difficile (C. difficile) infection (CDI). We utilized gnotobiotic altered Schaedler flora (ASF) mice, which lack the abnormalities of germfree (GF) mice as well as the complexity and heterogeneity of antibiotic-treated mice. Like GF mice, ASF mice were highly prone to rapid lethal CDI, without antibiotics, while very low infectious doses resulted in chronic CDI. Administering such chronic CDI mice an undefined preparation of Clostridia lowered C. difficile levels by several logs. Importantly, such resolution of CDI was associated with colonization of Lachnospiraceae. Fractionation of the Clostridia population to enrich for Lachnospiraceae led to the appreciation that its CDI-impeding property strongly associated with a specific Lachnospiraceae strain, namely uncultured bacteria and archaea (UBA) 3401. UBA3401 was recalcitrant to being propagated as a pure culture but could be maintained in ASF mice, wherein it comprised up to about 50% of the intestinal microbiota, which was sufficient to generate a high-quality genomic sequence of this bacterium. Sequence analysis and ex vivo study of UBA3401 indicated that it had the ability to secrete substance(s) that directly impeded C. difficile growth. Moreover, in vivo administration of UBA3401/ASF feces provided strong protection to C. difficile challenge. Thus, UBA3401 may contribute to and/or provide a means to study microbiota-mediated CDI resistance.
Collapse
Affiliation(s)
- Juan Noriega Tejada
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - William A Walters
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Yanling Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Melissa Kordahi
- INSERM Team "Mucosal Microbiota in Chronic Inflammatory Diseases", CNRS UMR 8104, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM, Microbiome-Host Interaction Group, Paris, France
| | - Benoit Chassaing
- INSERM Team "Mucosal Microbiota in Chronic Inflammatory Diseases", CNRS UMR 8104, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM, Microbiome-Host Interaction Group, Paris, France
| | - Joseph Pickard
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Nunez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ruth Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
60
|
Djambazova KV, van Ardenne JM, Spraggins JM. Advances in Imaging Mass Spectrometry for Biomedical and Clinical Research. Trends Analyt Chem 2023; 169:117344. [PMID: 38045023 PMCID: PMC10688507 DOI: 10.1016/j.trac.2023.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Imaging mass spectrometry (IMS) allows for the untargeted mapping of biomolecules directly from tissue sections. This technology is increasingly integrated into biomedical and clinical research environments to supplement traditional microscopy and provide molecular context for tissue imaging. IMS has widespread clinical applicability in the fields of oncology, dermatology, microbiology, and others. This review summarizes the two most widely employed IMS technologies, matrix-assisted laser desorption/ionization (MALDI) and desorption electrospray ionization (DESI), and covers technological advancements, including efforts to increase spatial resolution, specificity, and throughput. We also highlight recent biomedical applications of IMS, primarily focusing on disease diagnosis, classification, and subtyping.
Collapse
Affiliation(s)
- Katerina V. Djambazova
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacqueline M. van Ardenne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
61
|
Bosnjak M, Karpe AV, Van TTH, Kotsanas D, Jenkin GA, Costello SP, Johanesen P, Moore RJ, Beale DJ, Srikhanta YN, Palombo EA, Larcombe S, Lyras D. Multi-omics analysis of hospital-acquired diarrhoeal patients reveals biomarkers of enterococcal proliferation and Clostridioides difficile infection. Nat Commun 2023; 14:7737. [PMID: 38007555 PMCID: PMC10676382 DOI: 10.1038/s41467-023-43671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023] Open
Abstract
Hospital-acquired diarrhoea (HAD) is common, and often associated with gut microbiota and metabolome dysbiosis following antibiotic administration. Clostridioides difficile is the most significant antibiotic-associated diarrhoeal (AAD) pathogen, but less is known about the microbiota and metabolome associated with AAD and C. difficile infection (CDI) with contrasting antibiotic treatment. We characterised faecal microbiota and metabolome for 169 HAD patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and gain insights into metabolic strategies C. difficile might use for gut colonisation. The specimen microbial community was analysed using 16 S rRNA gene amplicon sequencing, coupled with untargeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS), and short-chain fatty acid (SCFA) profiling using GC-MS. AAD and CDI patients were associated with a spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-antibiotic treatment. Notably, extended antibiotic treatment was associated with enterococcal proliferation (mostly vancomycin-resistant Enterococcus faecium) coupled with putative biomarkers of enterococcal tyrosine decarboxylation. We also uncovered unrecognised metabolome dynamics associated with concomitant enterococcal proliferation and CDI, including biomarkers of Stickland fermentation and amino acid competition that could distinguish CDI from non-CDI patients. Here we show, candidate metabolic biomarkers for diagnostic development with possible implications for CDI and vancomycin-resistant enterococci (VRE) treatment.
Collapse
Affiliation(s)
- Marijana Bosnjak
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Avinash V Karpe
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Despina Kotsanas
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Grant A Jenkin
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Samuel P Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Priscilla Johanesen
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah Larcombe
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
62
|
Sah P, Knighten BA, Reidy MA, Zenewicz LA. Polyamines and hypusination are important for Clostridioides difficile toxin B (TcdB)-mediated activation of group 3 innate lymphocytes (ILC3s). Infect Immun 2023; 91:e0023623. [PMID: 37861311 PMCID: PMC10652861 DOI: 10.1128/iai.00236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial gastrointestinal tract bacterial infections. We lack fully effective reliable treatments for this pathogen, and there is a critical need to better understand how C. difficile interacts with our immune system. Group 3 innate lymphocytes (ILC3s) are rare immune cells localized within mucosal tissues that protect against bacterial infections. Upon activation, ILC3s secrete high levels of the cytokine interleukin-22 (IL-22), which is a critical regulator of tissue responses during infection. C. difficile toxin B (TcdB), the major virulence factor, directly activates ILC3s, resulting in high IL-22 levels. We previously reported that polyamines are important in the activation of ILC3s by the innate cytokine interleukin-23 (IL-23) but did not identify a specific mechanism. In this study, we examine how a pathogen impacts a metabolic pathway important for immune cell function and hypothesized that polyamines are important in TcdB-mediated ILC3 activation. We show that TcdB upregulates the polyamine biosynthesis pathway, and the inhibition of the pathway decreases TcdB-mediated ILC3 activation. Two polyamines, putrescine and spermidine, are involved. Spermidine is the key polyamine in the hypusination of eukaryotic initiation factor 5A (eIF5A), and the inhibition of eIF5A reduced ILC3 activation. Thus, there is potential to leverage polyamines in ILC3s to promote activation of ILC3s during C. difficile infection and other bacterial infections where ILC3s serve a protective role.
Collapse
Affiliation(s)
- Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bailey A. Knighten
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Megan A. Reidy
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
63
|
Meschiari M, Kaleci S, Monte MD, Dessilani A, Santoro A, Scialpi F, Franceschini E, Orlando G, Cervo A, Monica M, Forghieri F, Venturelli C, Ricchizzi E, Chester J, Sarti M, Guaraldi G, Luppi M, Mussini C. Vancomycin resistant enterococcus risk factors for hospital colonization in hematological patients: a matched case-control study. Antimicrob Resist Infect Control 2023; 12:126. [PMID: 37957773 PMCID: PMC10644555 DOI: 10.1186/s13756-023-01332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Vancomycin-resistant enterococcus (VRE) was the fastest growing pathogen in Europe in 2022 (+ 21%) but its clinical relevance is still unclear. We aim to identify risk factors for acquired VRE rectal colonization in hematological patients and evaluate the clinical impact of VRE colonization on subsequent infection, and 30- and 90-day overall mortality rates, compared to a matched control group. METHODS A retrospective, single center, case-control matched study (ratio 1:1) was conducted in a hematological department from January 2017 to December 2020. Case patients with nosocomial isolation of VRE from rectal swab screening (≥ 48 h) were matched to controls by age, sex, ethnicity, and hematologic disease. Univariate and multivariate logistic regression compared risk factors for colonization. RESULTS A total of 83 cases were matched with 83 controls. Risk factors for VRE colonization were febrile neutropenia, bone marrow transplant, central venous catheter, bedsores, reduced mobility, altered bowel habits, cachexia, previous hospitalization and antibiotic treatments before and during hospitalization. VRE bacteraemia and Clostridioides difficile infection (CDI) occurred more frequently among cases without any impact on 30 and 90-days overall mortality. Vancomycin administration and altered bowel habits were the only independent risk factors for VRE colonization at multivariate analysis (OR: 3.53 and 3.1; respectively). CONCLUSIONS Antimicrobial stewardship strategies to reduce inappropriate Gram-positive coverage in hematological patients is urgently required, as independent risk factors for VRE nosocomial colonization identified in this study include any use of vancomycin and altered bowel habits. VRE colonization and infection did not influence 30- and 90-day mortality. There was a strong correlation between CDI and VRE, which deserves further investigation to target new therapeutic approaches.
Collapse
Affiliation(s)
- Marianna Meschiari
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy.
| | - Shaniko Kaleci
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Martina Del Monte
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Andrea Dessilani
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Antonella Santoro
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Francesco Scialpi
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Erica Franceschini
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Gabriella Orlando
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Adriana Cervo
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Morselli Monica
- Section of Hematology, Department of Surgical and Medical Sciences, AOU Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Surgical and Medical Sciences, AOU Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia Venturelli
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Enrico Ricchizzi
- Agenzia Sanitaria e Sociale Regionale Emilia-Romagna, Viale Aldo Moro 21, Bologna, 40127, Italy
| | - Johanna Chester
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, 41121, Italy
| | - Mario Sarti
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Giovanni Guaraldi
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| | - Mario Luppi
- Section of Hematology, Department of Surgical and Medical Sciences, AOU Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, University of Modena and Reggio Emilia, Via del Pozzo 71, Modena, 41122, Italy
| |
Collapse
|
64
|
Han Z, Min Y, Pang K, Wu D. Therapeutic Approach Targeting Gut Microbiome in Gastrointestinal Infectious Diseases. Int J Mol Sci 2023; 24:15654. [PMID: 37958637 PMCID: PMC10650060 DOI: 10.3390/ijms242115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
While emerging evidence highlights the significance of gut microbiome in gastrointestinal infectious diseases, treatments like Fecal Microbiota Transplantation (FMT) and probiotics are gaining popularity, especially for diarrhea patients. However, the specific role of the gut microbiome in different gastrointestinal infectious diseases remains uncertain. There is no consensus on whether gut modulation therapy is universally effective for all such infections. In this comprehensive review, we examine recent developments of the gut microbiome's involvement in several gastrointestinal infectious diseases, including infection of Helicobacter pylori, Clostridium difficile, Vibrio cholerae, enteric viruses, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa Staphylococcus aureus, Candida albicans, and Giardia duodenalis. We have also incorporated information about fungi and engineered bacteria in gastrointestinal infectious diseases, aiming for a more comprehensive overview of the role of the gut microbiome. This review will provide insights into the pathogenic mechanisms of the gut microbiome while exploring the microbiome's potential in the prevention, diagnosis, prediction, and treatment of gastrointestinal infections.
Collapse
Affiliation(s)
- Ziying Han
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| | - Yiyang Min
- Peking Union Medical College, Beijing 100730, China
| | - Ke Pang
- Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| |
Collapse
|
65
|
Kim D, Lee J, Shyaka C, Kwak JH, Pai H, Rho M, Ciufolini MA, Han M, Park JH, Kim YR, Jung S, Jang AR, Kim E, Lee JY, Lee H, Son YJ, Hwang HJ. Identification of Micrococcin P2-Derivatives as Antibiotic Candidates against Two Gram-Positive Pathogens. J Med Chem 2023; 66:14263-14277. [PMID: 37796116 DOI: 10.1021/acs.jmedchem.3c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Thiopeptides exhibit potent antimicrobial activity against Gram-positive pathogens by inhibiting bacterial protein synthesis. Micrococcins are among the structurally simpler thiopeptides, but they have not been exploited in detail. This research involved a computational simulation of micrococcin P2 (MP2) docking in parallel with the structure-activity relationship (SAR) studied. The incorporation of particular nitrogen heterocycles in the side chain of MP2 enhances the antimicrobial activity. Micrococcin analogues 6c and 6d thus proved to be more effective against impetigo and C. difficile infection (CDI), respectively, as compared to current first-line treatments. Compound 6c also showed a shorter treatment period than that of a first-line treatment for impetigo. This may be attributed to its ability to downregulate pro-inflammatory cytokines. Compound 6d had no observed recurrence for C. difficile and exerted a minimal impact on the beneficial gut microbiome. Their pharmacokinetic properties and low toxicity profile make these compounds ideal candidates for the treatment of impetigo and CDI and validate their involvement in preclinical development.
Collapse
Affiliation(s)
- Dahyun Kim
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Jusuk Lee
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Clovis Shyaka
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong Global University, 558 Handong Ro, Heunghae-Eup, Buk-Gu, Pohang 37554, Republic of Korea
- Office of the President, Sunlin University, 30, 36 Chogok-gil, Heunghae-Eup, Buk-Gu, Pohang 37560, Republic of Korea
| | - Hyunjoo Pai
- Department of Internal Medicine, Hanyang University College of Medicine, 232 Wangsimri Ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, 222 Wangsimri Ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| | - Marco A Ciufolini
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6K 1Z1, Canada
| | - Minwoo Han
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea
- Nodcure Inc., 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea
| | - Young-Rok Kim
- School of Life Science, Handong Global University, 558 Handong Ro, Heunghae-Eup, Buk-Gu, Pohang 37554, Republic of Korea
| | - Sungji Jung
- School of Life Science, Handong Global University, 558 Handong Ro, Heunghae-Eup, Buk-Gu, Pohang 37554, Republic of Korea
| | - Ah-Ra Jang
- Nodcure Inc., 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea
| | - Eunjung Kim
- School of Life Science, Handong Global University, 558 Handong Ro, Heunghae-Eup, Buk-Gu, Pohang 37554, Republic of Korea
| | - Jee-Young Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Hakyeong Lee
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Young-Jin Son
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Hee-Jong Hwang
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| |
Collapse
|
66
|
Doernberg SB, Arias CA, Altman DR, Babiker A, Boucher HW, Creech CB, Cosgrove SE, Evans SR, Fowler VG, Fritz SA, Hamasaki T, Kelly BJ, Leal SM, Liu C, Lodise TP, Miller LG, Munita JM, Murray BE, Pettigrew MM, Ruffin F, Scheetz MH, Shopsin B, Tran TT, Turner NA, Williams DJ, Zaharoff S, Holland TL. Priorities and Progress in Gram-positive Bacterial Infection Research by the Antibacterial Resistance Leadership Group: A Narrative Review. Clin Infect Dis 2023; 77:S295-S304. [PMID: 37843115 PMCID: PMC10578051 DOI: 10.1093/cid/ciad565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The Antibacterial Resistance Leadership Group (ARLG) has prioritized infections caused by gram-positive bacteria as one of its core areas of emphasis. The ARLG Gram-positive Committee has focused on studies responding to 3 main identified research priorities: (1) investigation of strategies or therapies for infections predominantly caused by gram-positive bacteria, (2) evaluation of the efficacy of novel agents for infections caused by methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci, and (3) optimization of dosing and duration of antimicrobial agents for gram-positive infections. Herein, we summarize ARLG accomplishments in gram-positive bacterial infection research, including studies aiming to (1) inform optimal vancomycin dosing, (2) determine the role of dalbavancin in MRSA bloodstream infection, (3) characterize enterococcal bloodstream infections, (4) demonstrate the benefits of short-course therapy for pediatric community-acquired pneumonia, (5) develop quality of life measures for use in clinical trials, and (6) advance understanding of the microbiome. Future studies will incorporate innovative methodologies with a focus on interventional clinical trials that have the potential to change clinical practice for difficult-to-treat infections, such as MRSA bloodstream infections.
Collapse
Affiliation(s)
- Sarah B Doernberg
- Division of Infectious Diseases, Department of Medicine, University of California, SanFrancisco, California, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Medicine, Weill-Cornell Medical College, New York, New York, USA
| | - Deena R Altman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, NewYork, New York, USA
| | - Ahmed Babiker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Helen W Boucher
- Tufts University School of Medicine, Medford, Massachusetts, USA
| | - C Buddy Creech
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Vaccine Research Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sara E Cosgrove
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Scott R Evans
- Department of Biostatistics, George Washington University, Washington, District of Columbia, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stephanie A Fritz
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Toshimitsu Hamasaki
- Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Brendan J Kelly
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sixto M Leal
- Department of Laboratory Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Catherine Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Loren G Miller
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Division of Infectious Diseases, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jose M Munita
- Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
- Multidisciplinary Initiative for Collaborative Research on Bacterial Resistance, Santiago, Chile
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Felicia Ruffin
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Marc H Scheetz
- Pharmacometrics Center of Excellence, College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA
| | - Bo Shopsin
- Division of Infectious Diseases, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Microbiology, NewYork University Grossman School of Medicine, New York, New York, USA
| | - Truc T Tran
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nicholas A Turner
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Derek J Williams
- Division of Hospital Medicine, Department of Pediatrics, Vanderbilt University School of Medicine and the Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Smitha Zaharoff
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas L Holland
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
67
|
Yang J, Meng L, Li Y, Huang H. Strategies for applying probiotics in the antibiotic management of Clostridioides difficile infection. Food Funct 2023; 14:8711-8733. [PMID: 37725066 DOI: 10.1039/d3fo02110f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The vital role of probiotics in the food field has been widely recognized, and at the same time, probiotics are gradually exhibiting surprising effects in the field of nutraceuticals, especially in regulating gut inflammation and the nutritional environment. As a dietary supplement in clinical nutrition, the coadministration of probiotics with antibiotics model has been applied to prevent intestinal infections caused by Clostridioides difficile. However, the mechanism behind this "bacteria-drug combination" model remains unclear. In particular, the selection of specific probiotic strains, the order of probiotics or antibiotics, and the time interval of coadministration are key issues that need to be further explored and clarified. Here, we focus on the issues mentioned above and give reasonable opinions, mainly including: (1) probiotics are safer and more effective when they intervene after antibiotics have been used; (2) the choice of the time interval between coadministration should be based on the metabolism of antibiotics in the host, differences in probiotic strains, the baseline ecological environment of the host's intestine, and the host immune level; in addition, the selection of the coadministration regime should also take into account factors such as the antibiotic sensitivity of probiotics and dosage of probiotics; and (3) by encapsulating probiotics, combining probiotics with prebiotics, and developing next-generation probiotics (NGPs) and postbiotic formulations, we can provide a more reasonable reference for this type of "bacteria-drug combination" model, and also provide targeted guidance for the application of probiotic dietary supplements in the antibiotic management of C. difficile infection.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| |
Collapse
|
68
|
Larsen IS, Chenaux M, Collins FWJ, Mandic A, Hansen LBS, Lauridsen CAS, Haller RF, Elvig-Jørgensen S, Horwell E, Christiansen J, Silva A, Vehreschild MJGT, Cutting SM, Roggenbuck-Wedemeyer M, Kristensen NN. Bacillus velezensis DSM 33864 reduces Clostridioides difficile colonization without disturbing commensal gut microbiota composition. Sci Rep 2023; 13:14941. [PMID: 37696924 PMCID: PMC10495459 DOI: 10.1038/s41598-023-42128-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Up to 25% of the US population harbor Clostridioides difficile in the gut. Following antibiotic disruption of the gut microbiota, C. difficile can act as an opportunistic pathogen and induce potentially lethal infections. Consequently, reducing the colonization of C. difficile in at-risk populations is warranted, prompting us to identify and characterize a probiotic candidate specifically targeting C. difficile colonization. We identified Bacillus velezensis DSM 33864 as a promising strain to reduce C. difficile levels in vitro. We further investigated the effects of B. velezensis DSM 33864 in an assay including human fecal medium and in healthy or clindamycin-treated mouse models of C. difficile colonization. The addition of B. velezensis DSM 33864 to human fecal samples was shown to reduce the colonization of C. difficile in vitro. This was supported in vivo where orally administered B. velezensis DSM 33864 spores reduced C. difficile levels in clindamycin-treated mice. The commensal microbiota composition or post-antibiotic reconstitution was not impacted by B. velezensis DSM 33864 in human fecal samples, short-, or long-term administration in mice. In conclusion, oral administration of B. velezensis DSM 33864 specifically reduced C. difficile colonization in vitro and in vivo without adversely impacting the commensal gut microbiota composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ed Horwell
- Bioscience Innovation Centre, Sporegen Ltd., 2 Royal College Street, London, NW1 0NH, UK
| | | | | | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Simon M Cutting
- Bioscience Innovation Centre, Sporegen Ltd., 2 Royal College Street, London, NW1 0NH, UK
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | | | | |
Collapse
|
69
|
Shirley DA, Tornel W, Warren CA, Moonah S. Clostridioides difficile Infection in Children: Recent Updates on Epidemiology, Diagnosis, Therapy. Pediatrics 2023; 152:e2023062307. [PMID: 37560802 PMCID: PMC10471512 DOI: 10.1542/peds.2023-062307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 08/11/2023] Open
Abstract
Clostridioides (formerly Clostridium) difficile is the most important infectious cause of antibiotic-associated diarrhea worldwide and a leading cause of healthcare-associated infection in the United States. The incidence of C. difficile infection (CDI) in children has increased, with 20 000 cases now reported annually, also posing indirect educational and economic consequences. In contrast to infection in adults, CDI in children is more commonly community-associated, accounting for three-quarters of all cases. A wide spectrum of disease severity ranging from asymptomatic carriage to severe diarrhea can occur, varying by age. Fulminant disease, although rare in children, is associated with high morbidity and even fatality. Diagnosis of CDI can be challenging as currently available tests detect either the presence of organism or disease-causing toxin but cannot distinguish colonization from infection. Since colonization can be high in specific pediatric groups, such as infants and young children, biomarkers to aid in accurate diagnosis are urgently needed. Similar to disease in adults, recurrence of CDI in children is common, affecting 20% to 30% of incident cases. Metronidazole has long been considered the mainstay therapy for CDI in children. However, new evidence supports the safety and efficacy of oral vancomycin and fidaxomicin as additional treatment options, whereas fecal microbiota transplantation is gaining popularity for recurrent infection. Recent advancements in our understanding of emerging epidemiologic trends and management of CDI unique to children are highlighted in this review. Despite encouraging therapeutic advancements, there remains a pressing need to optimize CDI therapy in children, particularly as it pertains to severe and recurrent disease.
Collapse
Affiliation(s)
| | | | - Cirle A. Warren
- Infectious Diseases and International Health, Department of Medicine
- Complicated C. difficile Clinic, UVA Health, University of Virginia, Charlottesville, Virginia
| | - Shannon Moonah
- Infectious Diseases and International Health, Department of Medicine
| |
Collapse
|
70
|
Potter AD, Baiocco CM, Papin JA, Criss AK. Transcriptome-guided metabolic network analysis reveals rearrangements of carbon flux distribution in Neisseria gonorrhoeae during neutrophil co-culture. mSystems 2023; 8:e0126522. [PMID: 37387581 PMCID: PMC10470122 DOI: 10.1128/msystems.01265-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
The ability of bacterial pathogens to metabolically adapt to the environmental conditions of their hosts is critical to both colonization and invasive disease. Infection with Neisseria gonorrhoeae (the gonococcus, Gc) is characterized by the influx of neutrophils [polymorphonuclear leukocytes (PMNs)], which fail to clear the bacteria and make antimicrobial products that can exacerbate tissue damage. The inability of the human host to clear Gc infection is particularly concerning in light of the emergence of strains that are resistant to all clinically recommended antibiotics. Bacterial metabolism represents a promising target for the development of new therapeutics against Gc. Here, we generated a curated genome-scale metabolic network reconstruction (GENRE) of Gc strain FA1090. This GENRE links genetic information to metabolic phenotypes and predicts Gc biomass synthesis and energy consumption. We validated this model with published data and in new results reported here. Contextualization of this model using the transcriptional profile of Gc exposed to PMNs revealed substantial rearrangements of Gc central metabolism and induction of Gc nutrient acquisition strategies for alternate carbon source use. These features enhanced the growth of Gc in the presence of neutrophils. From these results, we conclude that the metabolic interplay between Gc and PMNs helps define infection outcomes. The use of transcriptional profiling and metabolic modeling to reveal new mechanisms by which Gc persists in the presence of PMNs uncovers unique aspects of metabolism in this fastidious bacterium, which could be targeted to block infection and thereby reduce the burden of gonorrhea in the human population. IMPORTANCE The World Health Organization designated Gc as a high-priority pathogen for research and development of new antimicrobials. Bacterial metabolism is a promising target for new antimicrobials, as metabolic enzymes are widely conserved among bacterial strains and are critical for nutrient acquisition and survival within the human host. Here we used genome-scale metabolic modeling to characterize the core metabolic pathways of this fastidious bacterium and to uncover the pathways used by Gc during culture with primary human immune cells. These analyses revealed that Gc relies on different metabolic pathways during co-culture with human neutrophils than in rich media. Conditionally essential genes emerging from these analyses were validated experimentally. These results show that metabolic adaptation in the context of innate immunity is important to Gc pathogenesis. Identifying the metabolic pathways used by Gc during infection can highlight new therapeutic targets for drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Baiocco
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
71
|
Romo JA, Tomihiro M, Kumamoto CA. Pre-colonization with the fungus Candida glabrata exacerbates infection by the bacterial pathogen Clostridioides difficile in a murine model. mSphere 2023; 8:e0012223. [PMID: 37358292 PMCID: PMC10449511 DOI: 10.1128/msphere.00122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 06/27/2023] Open
Abstract
The contributions of commensal fungi to human health and disease are not well understood. Candida species such as C. albicans and C. glabrata are opportunistic pathogenic fungi and common colonizers of the human intestinal tract. They have been shown to affect the host immune system and interact with the gut microbiome and pathogenic microorganisms. Therefore, Candida species could be expected to play important ecological roles in the host gastrointestinal tract. Previously, our group demonstrated that pre-colonization of mice with C. albicans protected them against lethal C. difficile infection (CDI). Here, we show that mice pre-colonized with C. glabrata succumbed to CDI more rapidly than mice that were not pre-colonized suggesting an enhancement in C. difficile pathogenesis. Further, when C. difficile was added to pre-formed C. glabrata biofilms, an increase in matrix and overall biomass was observed. These effects were also shown with C. glabrata clinical isolates. Interestingly, the presence of C. difficile increased C. glabrata biofilm susceptibility to caspofungin, indicating potential effects on the fungal cell wall. Defining this intricate and intimate relationship will lead to an understanding of the role of Candida species in the context of CDI and novel aspects of Candida biology. IMPORTANCE Most microbiome studies have only considered the bacterial populations while ignoring other members of the microbiome such as fungi, other eukaryotic microorganisms, and viruses. Therefore, the role of fungi in human health and disease has been significantly understudied compared to their bacterial counterparts. This has generated a significant gap in knowledge that has negatively impacted disease diagnosis, understanding, and the development of therapeutics. With the development of novel technologies, we now have an understanding of mycobiome composition, but we do not understand the roles of fungi in the host. Here, we present findings showing that Candida glabrata, an opportunistic pathogenic yeast that colonizes the mammalian gastrointestinal tract, can impact the severity and outcome of a Clostridioides difficile infection (CDI) in a murine model. These findings bring attention to fungal colonizers during CDI, a bacterial infection of the gastrointestinal tract.
Collapse
Affiliation(s)
- Jesús A. Romo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Makenzie Tomihiro
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
72
|
Granata G, Schiavone F, Taglietti F, Petrosillo N. Clostridioides difficile and Enterococci's Interplay in the Human Gut: Bacterial Alliance or Competition? A Systematic Literature Review. J Clin Med 2023; 12:4997. [PMID: 37568399 PMCID: PMC10420055 DOI: 10.3390/jcm12154997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Clostridioides difficile and Enterococcus spp. are two common bacterial pathogens populating the human microbiota. We possess scant data on how Clostridioides difficile interacts with Enterococcus spp. in the gut microbiota in subjects colonized with Clostridioides difficile or during a Clostridioides difficile infection. We carried out a systematic review of studies on Enterococcus spp. and Clostridioides difficile's interaction in the gut microbiota and on the effect of Enterococcus spp. gut colonization on CDI development. Studies on Enterococcus spp. and Clostridioides difficile's interaction in the gut microbiota and on the effect of Enterococcus spp. gut colonization on CDI were searched using the search terms "clostridium", "clostridioides", "difficile" and "enterococcus" on the MEDLINE and SCOPUS databases. PubMed was searched until 1 May 2023. An English language restriction was applied. The risk of bias in the included studies was not assessed. Quantitative and qualitative information was summarized in textual descriptions. Fourteen studies, published from August 2012 to November 2022, on Clostridioides difficile and Enterococcus spp.'s interaction in the gut microbiota met the inclusion criteria. The studies included in our systematic review reported evidence that the Enterococcus spp. intestinal burden represents a risk factor for the occurrence of CDI. There is supporting evidence that Enterococcus spp. play a role in CDI development and clinical outcomes.
Collapse
Affiliation(s)
- Guido Granata
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Roma, Italy;
| | - Francesco Schiavone
- Divers and Raiders Group Command “Teseo Tesei” COMSUBIN, Medical Service, Italian Navy, 19025 Portovenere, Italy
| | - Fabrizio Taglietti
- Systemic and Immune Depression-Associated Infection Unit, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149 Roma, Italy;
| | - Nicola Petrosillo
- Infection Prevention & Control-Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00127 Rome, Italy;
| |
Collapse
|
73
|
Soto Ocaña J, Bayard NU, Hart JL, Thomas AK, Furth EE, Lacy DB, Aronoff DM, Zackular JP. Nonsteroidal anti-inflammatory drugs sensitize epithelial cells to Clostridioides difficile toxin-mediated mitochondrial damage. SCIENCE ADVANCES 2023; 9:eadh5552. [PMID: 37467340 PMCID: PMC10355836 DOI: 10.1126/sciadv.adh5552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Clostridioides difficile damages the colonic mucosa through the action of two potent exotoxins. Factors shaping C. difficile pathogenesis are incompletely understood but are likely due to the ecological factors in the gastrointestinal ecosystem, mucosal immune responses, and environmental factors. Little is known about the role of pharmaceutical drugs during C. difficile infection (CDI), but recent studies have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs) worsen CDI. The mechanism underlying this phenomenon remains unclear. Here, we show that NSAIDs exacerbate CDI by disrupting colonic epithelial cells (CECs) and sensitizing cells to C. difficile toxin-mediated damage independent of their canonical role of inhibiting cyclooxygenase (COX) enzymes. Notably, we find that NSAIDs and C. difficile toxins target the mitochondria of CECs and enhance C. difficile toxin-mediated damage. Our results demonstrate that NSAIDs exacerbate CDI by synergizing with C. difficile toxins to damage host cell mitochondria. Together, this work highlights a role for NSAIDs in exacerbating microbial infection in the colon.
Collapse
Affiliation(s)
- Joshua Soto Ocaña
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nile U. Bayard
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jessica L. Hart
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David M. Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
74
|
McMillan AS, Foley MH, Perkins CE, Theriot CM. Loss of Bacteroides thetaiotaomicron bile acid altering enzymes impact bacterial fitness and the global metabolic transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546749. [PMID: 37425690 PMCID: PMC10327073 DOI: 10.1101/2023.06.27.546749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Bacteroides thetaiotaomicron (B. theta) is a Gram-negative gut bacterium that encodes enzymes that alter the bile acid pool in the gut. Primary bile acids are synthesized by the host liver and are modified by gut bacteria. B. theta encodes two bile salt hydrolases (BSHs), as well as a hydroxysteroid dehydrogenase (HSDH). We hypothesize that B. theta modifies the bile acid pool in the gut to provide a fitness advantage for itself. To investigate each gene's role, different combinations of genes encoding bile acid altering enzymes (bshA, bshB, and hsdhA) were knocked out by allelic exchange, including a triple KO. Bacterial growth and membrane integrity assays were done in the presence and absence of bile acids. To explore if B. theta's response to nutrient limitation changes due to the presence of bile acid altering enzymes, RNASeq analysis of WT and triple KO strains in the presence and absence of bile acids was done. WT B. theta is more sensitive to deconjugated bile acids (CA, CDCA, and DCA) compared to the triple KO, which also decreased membrane integrity. The presence of bshB is detrimental to growth in conjugated forms of CDCA and DCA. RNA-Seq analysis also showed bile acid exposure impacts multiple metabolic pathways in B. theta, but DCA significantly increases expression of many genes in carbohydrate metabolism, specifically those in polysaccharide utilization loci or PULs, in nutrient limited conditions. This study suggests that bile acids B. theta encounters in the gut may signal the bacteria to increase or decrease its utilization of carbohydrates. Further study looking at the interactions between bacteria, bile acids, and the host may inform rationally designed probiotics and diets to ameliorate inflammation and disease. Importance Recent work on BSHs in Gram-negative bacteria, such as Bacteroides, has primarily focused on how they can impact host physiology. However, the benefits bile acid metabolism confers to the bacterium that performs it is not well understood. In this study we set out to define if and how B. theta uses its BSHs and HSDH to modify bile acids to provide a fitness advantage for itself in vitro and in vivo. Genes encoding bile acid altering enzymes were able to impact how B. theta responds to nutrient limitation in the presence of bile acids, specifically carbohydrate metabolism, affecting many polysaccharide utilization loci (PULs). This suggests that B. theta may be able to shift its metabolism, specifically its ability to target different complex glycans including host mucin, when it comes into contact with specific bile acids in the gut. This work will aid in our understanding of how to rationally manipulate the bile acid pool and the microbiota to exploit carbohydrate metabolism in the context of inflammation and other GI diseases.
Collapse
Affiliation(s)
- Arthur S. McMillan
- Genetics Program, Department of Biological Sciences, College of Science
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Matthew H. Foley
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Caroline E. Perkins
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Casey M. Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
75
|
Gawey BJ, Khanna S. Clostridioides difficile Infection: Landscape and Microbiome Therapeutics. Gastroenterol Hepatol (N Y) 2023; 19:319-328. [PMID: 37706187 PMCID: PMC10496268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea and is common in the community. Both younger individuals who may be healthy otherwise and older individuals with comorbid conditions are at risk for developing CDI, with the predominant risk factor being antibiotic use. Unlike other gastrointestinal infections, CDI is not self-limited, requires antimicrobial therapy, and tends to recur at high rates even without additional risk factor exposure. The goals of CDI management include controlling active symptoms and using a recurrence prevention strategy such as a narrow-spectrum antibiotic, tapered and pulsed regimens, antibody- based therapies (directed against toxin B), or microbiome restoration. In recent years, fecal microbiota transplantation (FMT) has been the most used modality to prevent recurrent CDI with high cure rates. Heterogeneity, lack of scalability, and serious adverse events from FMT have led to development of standardized microbiota restoration therapies (MRTs). The US Food and Drug Administration has approved 2 stool-derived MRTs for prevention of recurrent CDI: fecal microbiota, live-jslm, an enema-based therapy; and fecal microbiota spores, live-brpk, an oral therapy. A phase 3 trial for a synthetic oral MRT is underway. This article outlines the pathophysiology and treatment of CDI, focusing primarily on the gut microbiome and standardized MRTs.
Collapse
Affiliation(s)
- Brent J. Gawey
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sahil Khanna
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
76
|
Schönherr S, Jung L, Lübbert C. [Clostridioides difficile - New Insights and Therapy Recommendations]. Dtsch Med Wochenschr 2023; 148:752-758. [PMID: 37257477 DOI: 10.1055/a-1970-9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
After an increase in Clostridioides difficile infections (CDI) until 2013 due to epidemic ribotypes such as 027 and 078, CDI incidence in Germany is now declining, as confirmed by recent epidemiological data. Despite this success through antimicrobial stewardship and hospital hygiene, the burden of disease remains high, especially in older patients (>65 years) with comorbidities. The main risk factor for CDI is the use of broad-spectrum antibiotics, which disrupt the gut microbiota, allowing C. difficile colonization. Coinfection with other intestinal pathogens such as enterococci can further increase the virulence of C. difficile. The updated 2021 ESCMID guidelines recommend fidaxomicin instead of vancomycin as the antibiotic of choice for the treatment of CDI because of its lower recurrence rate. Vancomycin remains a good alternative; however, metronidazole should only be used if neither antibiotic is available. In the future, ridinilazole may be available as another therapeutic option that has a narrow spectrum of activity and low intestinal absorption. For the treatment of recurrent CDI, the new guidelines also include the use of the monoclonal antibody bezlotoxumab. In addition, a new oral microbiome therapy, SER-109 (capsules containing purified Firmicutes spores), which showed promising results in a phase 3 study, may provide an easy-to-administer alternative to fecal microbiota transplantation. Hopes for a well-performing toxoid vaccine for primary and secondary prevention of CDI have unfortunately not been fulfilled in the CLOVER trial.
Collapse
Affiliation(s)
- Sebastian Schönherr
- Bereich Infektiologie und Tropenmedizin, Klinik und Poliklinik für Hämatologie, Zelltherapie, Hämostaseologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig
- Interdisziplinäres Zentrum für Infektionsmedizin, Universitätsklinikum Leipzig, Leipzig
| | - Laura Jung
- Bereich Infektiologie und Tropenmedizin, Klinik und Poliklinik für Hämatologie, Zelltherapie, Hämostaseologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig
- Interdisziplinäres Zentrum für Infektionsmedizin, Universitätsklinikum Leipzig, Leipzig
| | - Christoph Lübbert
- Bereich Infektiologie und Tropenmedizin, Klinik und Poliklinik für Hämatologie, Zelltherapie, Hämostaseologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig
- Interdisziplinäres Zentrum für Infektionsmedizin, Universitätsklinikum Leipzig, Leipzig
- Klinik für Infektiologie und Tropenmedizin, Klinikum St. Georg, Leipzig
| |
Collapse
|
77
|
Blachier F. Amino Acid-Derived Bacterial Metabolites in the Colorectal Luminal Fluid: Effects on Microbial Communication, Metabolism, Physiology, and Growth. Microorganisms 2023; 11:1317. [PMID: 37317289 DOI: 10.3390/microorganisms11051317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Undigested dietary and endogenous proteins, as well as unabsorbed amino acids, can move from the terminal part of the ileum into the large intestine, where they meet a dense microbial population. Exfoliated cells and mucus released from the large intestine epithelium also supply nitrogenous material to this microbial population. The bacteria in the large intestine luminal fluid release amino acids from the available proteins, and amino acids are then used for bacterial protein synthesis, energy production, and in other various catabolic pathways. The resulting metabolic intermediaries and end products can then accumulate in the colorectal fluid, and their concentrations appear to depend on different parameters, including microbiota composition and metabolic activity, substrate availability, and the capacity of absorptive colonocytes to absorb these metabolites. The aim of the present review is to present how amino acid-derived bacterial metabolites can affect microbial communication between both commensal and pathogenic microorganisms, as well as their metabolism, physiology, and growth.
Collapse
Affiliation(s)
- François Blachier
- Université Paris-Saclay, AgroParisTech, INRAe, UMR PNCA, 91120 Palaiseau, France
| |
Collapse
|
78
|
Yadegar A, Pakpoor S, Ibrahim FF, Nabavi-Rad A, Cook L, Walter J, Seekatz AM, Wong K, Monaghan TM, Kao D. Beneficial effects of fecal microbiota transplantation in recurrent Clostridioides difficile infection. Cell Host Microbe 2023; 31:695-711. [PMID: 37167952 DOI: 10.1016/j.chom.2023.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fecal microbiota transplantation (FMT) is highly effective in preventing recurrent Clostridioides difficile infection (rCDI). However, the mechanisms underpinning its clinical efficacy are incompletely understood. Herein, we provide an overview of rCDI pathogenesis followed by a discussion of potential mechanisms of action focusing on the current understanding of trans-kingdom microbial, metabolic, immunological, and epigenetic mechanisms. We then outline the current research gaps and offer methodological recommendations for future studies to elevate the quality of research and advance knowledge translation. By combining interventional trials with multiomics technology and host and environmental factors, analyzing longitudinally collected biospecimens will generate results that can be validated with animal and other models. Collectively, this will confirm causality and improve translation, ultimately to develop targeted therapies to replace FMT.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Pakpoor
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Fathima F Ibrahim
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laura Cook
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jens Walter
- School of Microbiology, Department of Medicine and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna M Seekatz
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
79
|
Wang R. Clostridioides difficile infection: microbe-microbe interactions and live biotherapeutics. Front Microbiol 2023; 14:1182612. [PMID: 37228365 PMCID: PMC10203151 DOI: 10.3389/fmicb.2023.1182612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Clostridioides difficile is a gram-positive, spore-forming, obligate anaerobe that infects the colon. C. difficile is estimated to cause nearly half a million cases in the United States annually, with about 29,000 associated deaths. Unfortunately, the current antibiotic treatment is not ideal. While antibiotics can treat the infections, they also disrupt the gut microbiota that mediates colonization resistance against enteric pathogens, including C. difficile; disrupted gut microbiota provides a window of opportunity for recurrent infections. Therefore, therapeutics that restore the gut microbiota and suppress C. difficile are being evaluated for safety and efficacy. This review will start with mechanisms by which gut bacteria affect C. difficile pathogenesis, followed by a discussion on biotherapeutics for recurrent C. difficile infections.
Collapse
|
80
|
Powers DA, Jenior ML, Kolling GL, Papin JA. Network analysis of toxin production in Clostridioides difficile identifies key metabolic dependencies. PLoS Comput Biol 2023; 19:e1011076. [PMID: 37099624 PMCID: PMC10166488 DOI: 10.1371/journal.pcbi.1011076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Clostridioides difficile pathogenesis is mediated through its two toxin proteins, TcdA and TcdB, which induce intestinal epithelial cell death and inflammation. It is possible to alter C. difficile toxin production by changing various metabolite concentrations within the extracellular environment. However, it is unknown which intracellular metabolic pathways are involved and how they regulate toxin production. To investigate the response of intracellular metabolic pathways to diverse nutritional environments and toxin production states, we use previously published genome-scale metabolic models of C. difficile strains CD630 and CDR20291 (iCdG709 and iCdR703). We integrated publicly available transcriptomic data with the models using the RIPTiDe algorithm to create 16 unique contextualized C. difficile models representing a range of nutritional environments and toxin states. We used Random Forest with flux sampling and shadow pricing analyses to identify metabolic patterns correlated with toxin states and environment. Specifically, we found that arginine and ornithine uptake is particularly active in low toxin states. Additionally, uptake of arginine and ornithine is highly dependent on intracellular fatty acid and large polymer metabolite pools. We also applied the metabolic transformation algorithm (MTA) to identify model perturbations that shift metabolism from a high toxin state to a low toxin state. This analysis expands our understanding of toxin production in C. difficile and identifies metabolic dependencies that could be leveraged to mitigate disease severity.
Collapse
Affiliation(s)
- Deborah A. Powers
- Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew L. Jenior
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
81
|
Brüssow H. The human microbiome project at ten years - some critical comments and reflections on "our third genome", the human virome. MICROBIOME RESEARCH REPORTS 2023; 2:7. [PMID: 38045612 PMCID: PMC10688805 DOI: 10.20517/mrr.2022.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 12/05/2023]
Abstract
The Human Microbiome Project (HMP) has raised great expectations claiming the far-reaching influence of the microbiome on human health and disease ranging from obesity and malnutrition to effects going well beyond the gut. So far, with the notable exception of fecal microbiota transplantation in Clostridioides difficile infection, practical application of microbiome intervention has only achieved modest clinical effects. It is argued here that we need criteria for the link between microbiome and disease modelled on the links between pathogens and infectious disease in Koch's postulates. The most important question is whether the microbiome change is a cause of the given disease or a consequence of a pathology leading to disease where the microbiome change is only a parallel event without a causal connection to the disease - in philosophical parlance, an epiphenomenon. Also discussed here is whether human virome research is a necessary complement to the microbiome project with a high potential for practical applications.
Collapse
Affiliation(s)
- Harald Brüssow
- KU Leuven, Department of Biosystems, Laboratory of Gene Technology, Leuven B-3001, Belgium
| |
Collapse
|
82
|
Sun S, Wang D, Dong D, Xu L, Xie M, Wang Y, Ni T, Jiang W, Zhu X, Ning N, Sun Q, Zhao S, Li M, Chen P, Yu M, Li J, Chen E, Zhao B, Peng Y, Mao E. Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis. Crit Care 2023; 27:127. [PMID: 36978107 PMCID: PMC10044080 DOI: 10.1186/s13054-023-04412-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The gut microbiome plays a pivotal role in the progression of sepsis. However, the specific mechanism of gut microbiota and its metabolites involved in the process of sepsis remains elusive, which limits its translational application. METHOD In this study, we used a combination of the microbiome and untargeted metabolomics to analyze stool samples from patients with sepsis enrolled at admission, then microbiota, metabolites, and potential signaling pathways that might play important roles in disease outcome were screened out. Finally, the above results were validated by the microbiome and transcriptomics analysis in an animal model of sepsis. RESULTS Patients with sepsis showed destruction of symbiotic flora and elevated abundance of Enterococcus, which were validated in animal experiments. Additionally, patients with a high burden of Bacteroides, especially B. vulgatus, had higher Acute Physiology and Chronic Health Evaluation II scores and longer stays in the intensive care unit. The intestinal transcriptome in CLP rats illustrated that Enterococcus and Bacteroides had divergent profiles of correlation with differentially expressed genes, indicating distinctly different roles for these bacteria in sepsis. Furthermore, patients with sepsis exhibited disturbances in gut amino acid metabolism compared with healthy controls; namely, tryptophan metabolism was tightly related to an altered microbiota and the severity of sepsis. CONCLUSION Alterations in microbial and metabolic features in the gut corresponded with the progression of sepsis. Our findings may help to predict the clinical outcome of patients in the early stage of sepsis and provide a translational basis for exploring new therapies.
Collapse
Affiliation(s)
- Silei Sun
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Lili Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Mengqi Xie
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Yihui Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Tongtian Ni
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Weisong Jiang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Xiaojuan Zhu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Ning Ning
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Qian Sun
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Shuyuan Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Mengjiao Li
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Peili Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Meiling Yu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Jian Li
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China
| | - Bing Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin ER Road, Shanghai, 200025, China.
| |
Collapse
|
83
|
Taglialegna A. Helping C. difficile to thrive. Nat Rev Microbiol 2023; 21:65. [PMID: 36460929 DOI: 10.1038/s41579-022-00838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
84
|
Bustin KA, Abbas A, Wang X, Abt MC, Zackular JP, Matthews ML. Characterizing metabolic drivers of Clostridioides difficile infection with activity-based hydrazine probes. Front Pharmacol 2023; 14:1074619. [PMID: 36778002 PMCID: PMC9908766 DOI: 10.3389/fphar.2023.1074619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Many enzymes require post-translational modifications or cofactor machinery for primary function. As these catalytically essential moieties are highly regulated, they act as dual sensors and chemical handles for context-dependent metabolic activity. Clostridioides difficile is a major nosocomial pathogen that infects the colon. Energy generating metabolism, particularly through amino acid Stickland fermentation, is central to colonization and persistence of this pathogen during infection. Here using activity-based protein profiling (ABPP), we revealed Stickland enzyme activity is a biomarker for C. difficile infection (CDI) and annotated two such cofactor-dependent Stickland reductases. We structurally characterized the cysteine-derived pyruvoyl cofactors of D-proline and glycine reductase in C. difficile cultures and showed through cofactor monitoring that their activity is regulated by their respective amino acid substrates. Proline reductase was consistently active in toxigenic C. difficile, confirming the enzyme to be a major metabolic driver of CDI. Further, activity-based hydrazine probes were shown to be active site-directed inhibitors of proline reductase. As such, this enzyme activity, via its druggable cofactor modality, is a promising therapeutic target that could allow for the repopulation of bacteria that compete with C. difficile for proline and therefore restore colonization resistance against C. difficile in the gut.
Collapse
Affiliation(s)
- Katelyn A. Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Arwa Abbas
- Division of Protective Immunity, Children’s Hospital of Pennsylvania, Philadelphia, PA, United States
| | - Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Megan L. Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
85
|
Context-Specific Genome-Scale Metabolic Modelling and Its Application to the Analysis of COVID-19 Metabolic Signatures. Metabolites 2023; 13:metabo13010126. [PMID: 36677051 PMCID: PMC9866716 DOI: 10.3390/metabo13010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Genome-scale metabolic models (GEMs) have found numerous applications in different domains, ranging from biotechnology to systems medicine. Herein, we overview the most popular algorithms for the automated reconstruction of context-specific GEMs using high-throughput experimental data. Moreover, we describe different datasets applied in the process, and protocols that can be used to further automate the model reconstruction and validation. Finally, we describe recent COVID-19 applications of context-specific GEMs, focusing on the analysis of metabolic implications, identification of biomarkers and potential drug targets.
Collapse
|
86
|
Dougherty MW, Jobin C. Intestinal bacteria and colorectal cancer: etiology and treatment. Gut Microbes 2023; 15:2185028. [PMID: 36927206 PMCID: PMC10026918 DOI: 10.1080/19490976.2023.2185028] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The etiology of colorectal cancer (CRC) is influenced by bacterial communities that colonize the gastrointestinal tract. These microorganisms derive essential nutrients from indigestible dietary or host-derived compounds and activate molecular signaling pathways necessary for normal tissue and immune function. Associative and mechanistic studies have identified bacterial species whose presence may increase CRC risk, including notable examples such as Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis, and pks+ E. coli. In recent years this work has expanded in scope to include aspects of host mutational status, intra-tumoral microbial heterogeneity, transient infection, and the cumulative influence of multiple carcinogenic bacteria after sequential or co-colonization. In this review, we will provide an updated overview of how host-bacteria interactions influence CRC development, how this knowledge may be utilized to diagnose or prevent CRC, and how the gut microbiome influences CRC treatment efficacy.
Collapse
Affiliation(s)
- Michael W. Dougherty
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|